]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/mm/init.c
x86/speculation/l1tf: Drop the swap storage limit restriction when l1tf=off
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / init.c
CommitLineData
5a0e3ad6 1#include <linux/gfp.h>
2c1b284e 2#include <linux/initrd.h>
540aca06 3#include <linux/ioport.h>
e5b2bb55 4#include <linux/swap.h>
a9ce6bc1 5#include <linux/memblock.h>
377eeaa8
AK
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
540aca06 8
d1163651 9#include <asm/set_memory.h>
66441bd3 10#include <asm/e820/api.h>
4fcb2083 11#include <asm/init.h>
e5b2bb55 12#include <asm/page.h>
540aca06 13#include <asm/page_types.h>
e5b2bb55 14#include <asm/sections.h>
49834396 15#include <asm/setup.h>
f765090a 16#include <asm/tlbflush.h>
9518e0e4 17#include <asm/tlb.h>
76c06927 18#include <asm/proto.h>
17623915 19#include <asm/dma.h> /* for MAX_DMA_PFN */
cd745be8 20#include <asm/microcode.h>
0483e1fa 21#include <asm/kaslr.h>
c138d811 22#include <asm/hypervisor.h>
c7ad5ad2 23#include <asm/cpufeature.h>
aa8c6248 24#include <asm/pti.h>
9518e0e4 25
d17d8f9d
DH
26/*
27 * We need to define the tracepoints somewhere, and tlb.c
28 * is only compied when SMP=y.
29 */
30#define CREATE_TRACE_POINTS
31#include <trace/events/tlb.h>
32
5c51bdbe
YL
33#include "mm_internal.h"
34
281d4078
JG
35/*
36 * Tables translating between page_cache_type_t and pte encoding.
c709feda 37 *
d5dc861b
TK
38 * The default values are defined statically as minimal supported mode;
39 * WC and WT fall back to UC-. pat_init() updates these values to support
40 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
41 * for the details. Note, __early_ioremap() used during early boot-time
42 * takes pgprot_t (pte encoding) and does not use these tables.
c709feda
IM
43 *
44 * Index into __cachemode2pte_tbl[] is the cachemode.
45 *
46 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
47 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
281d4078
JG
48 */
49uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
c709feda 50 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
9cd25aac 51 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
c709feda
IM
52 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
53 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
54 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
281d4078 56};
31bb7723 57EXPORT_SYMBOL(__cachemode2pte_tbl);
c709feda 58
281d4078 59uint8_t __pte2cachemode_tbl[8] = {
c709feda 60 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
9cd25aac 61 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
c709feda
IM
62 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
63 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
64 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
9cd25aac 65 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
c709feda 66 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
281d4078
JG
67 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
68};
31bb7723 69EXPORT_SYMBOL(__pte2cachemode_tbl);
281d4078 70
cf470659
YL
71static unsigned long __initdata pgt_buf_start;
72static unsigned long __initdata pgt_buf_end;
73static unsigned long __initdata pgt_buf_top;
f765090a 74
9985b4c6
YL
75static unsigned long min_pfn_mapped;
76
c9b3234a
YL
77static bool __initdata can_use_brk_pgt = true;
78
ddd3509d
SS
79/*
80 * Pages returned are already directly mapped.
81 *
82 * Changing that is likely to break Xen, see commit:
83 *
84 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
85 *
86 * for detailed information.
87 */
22c8ca2a 88__ref void *alloc_low_pages(unsigned int num)
5c51bdbe
YL
89{
90 unsigned long pfn;
22c8ca2a 91 int i;
5c51bdbe 92
5c51bdbe 93 if (after_bootmem) {
22c8ca2a 94 unsigned int order;
5c51bdbe 95
22c8ca2a 96 order = get_order((unsigned long)num << PAGE_SHIFT);
75f296d9 97 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
5c51bdbe 98 }
5c51bdbe 99
c9b3234a 100 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
75f2d3a0
JG
101 unsigned long ret = 0;
102
103 if (min_pfn_mapped < max_pfn_mapped) {
104 ret = memblock_find_in_range(
105 min_pfn_mapped << PAGE_SHIFT,
5c51bdbe 106 max_pfn_mapped << PAGE_SHIFT,
22c8ca2a 107 PAGE_SIZE * num , PAGE_SIZE);
75f2d3a0
JG
108 }
109 if (ret)
110 memblock_reserve(ret, PAGE_SIZE * num);
111 else if (can_use_brk_pgt)
112 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
113
5c51bdbe 114 if (!ret)
d4dd100f 115 panic("alloc_low_pages: can not alloc memory");
75f2d3a0 116
5c51bdbe 117 pfn = ret >> PAGE_SHIFT;
22c8ca2a
YL
118 } else {
119 pfn = pgt_buf_end;
120 pgt_buf_end += num;
c9b3234a
YL
121 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
122 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
22c8ca2a
YL
123 }
124
125 for (i = 0; i < num; i++) {
126 void *adr;
127
128 adr = __va((pfn + i) << PAGE_SHIFT);
129 clear_page(adr);
130 }
5c51bdbe 131
22c8ca2a 132 return __va(pfn << PAGE_SHIFT);
5c51bdbe
YL
133}
134
fb754f95
TG
135/*
136 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
137 * With KASLR memory randomization, depending on the machine e820 memory
138 * and the PUD alignment. We may need twice more pages when KASLR memory
139 * randomization is enabled.
140 */
141#ifndef CONFIG_RANDOMIZE_MEMORY
142#define INIT_PGD_PAGE_COUNT 6
143#else
144#define INIT_PGD_PAGE_COUNT 12
145#endif
146#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
8d57470d
YL
147RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
148void __init early_alloc_pgt_buf(void)
149{
150 unsigned long tables = INIT_PGT_BUF_SIZE;
151 phys_addr_t base;
152
153 base = __pa(extend_brk(tables, PAGE_SIZE));
154
155 pgt_buf_start = base >> PAGE_SHIFT;
156 pgt_buf_end = pgt_buf_start;
157 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
158}
159
f765090a
PE
160int after_bootmem;
161
10971ab2 162early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
148b2098 163
844ab6f9
JS
164struct map_range {
165 unsigned long start;
166 unsigned long end;
167 unsigned page_size_mask;
168};
169
fa62aafe 170static int page_size_mask;
f765090a 171
22ddfcaa 172static void __init probe_page_size_mask(void)
fa62aafe 173{
fa62aafe 174 /*
4675ff05 175 * For pagealloc debugging, identity mapping will use small pages.
fa62aafe
YL
176 * This will simplify cpa(), which otherwise needs to support splitting
177 * large pages into small in interrupt context, etc.
178 */
4675ff05 179 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
fa62aafe 180 page_size_mask |= 1 << PG_LEVEL_2M;
d9ee35ac
VB
181 else
182 direct_gbpages = 0;
fa62aafe
YL
183
184 /* Enable PSE if available */
16bf9226 185 if (boot_cpu_has(X86_FEATURE_PSE))
375074cc 186 cr4_set_bits_and_update_boot(X86_CR4_PSE);
fa62aafe
YL
187
188 /* Enable PGE if available */
c313ec66 189 __supported_pte_mask &= ~_PAGE_GLOBAL;
c109bf95 190 if (boot_cpu_has(X86_FEATURE_PGE)) {
375074cc 191 cr4_set_bits_and_update_boot(X86_CR4_PGE);
39114b7a 192 __supported_pte_mask |= _PAGE_GLOBAL;
c313ec66 193 }
e61980a7 194
8a57f484
DH
195 /* By the default is everything supported: */
196 __default_kernel_pte_mask = __supported_pte_mask;
197 /* Except when with PTI where the kernel is mostly non-Global: */
198 if (cpu_feature_enabled(X86_FEATURE_PTI))
199 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
200
e61980a7 201 /* Enable 1 GB linear kernel mappings if available: */
b8291adc 202 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
e61980a7
IM
203 printk(KERN_INFO "Using GB pages for direct mapping\n");
204 page_size_mask |= 1 << PG_LEVEL_1G;
205 } else {
206 direct_gbpages = 0;
207 }
fa62aafe 208}
279b706b 209
c7ad5ad2
AL
210static void setup_pcid(void)
211{
6cff64b8
DH
212 if (!IS_ENABLED(CONFIG_X86_64))
213 return;
214
215 if (!boot_cpu_has(X86_FEATURE_PCID))
216 return;
217
218 if (boot_cpu_has(X86_FEATURE_PGE)) {
219 /*
220 * This can't be cr4_set_bits_and_update_boot() -- the
221 * trampoline code can't handle CR4.PCIDE and it wouldn't
222 * do any good anyway. Despite the name,
223 * cr4_set_bits_and_update_boot() doesn't actually cause
224 * the bits in question to remain set all the way through
225 * the secondary boot asm.
226 *
227 * Instead, we brute-force it and set CR4.PCIDE manually in
228 * start_secondary().
229 */
230 cr4_set_bits(X86_CR4_PCIDE);
231
232 /*
233 * INVPCID's single-context modes (2/3) only work if we set
234 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
235 * on systems that have X86_CR4_PCIDE clear, or that have
236 * no INVPCID support at all.
237 */
238 if (boot_cpu_has(X86_FEATURE_INVPCID))
239 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
240 } else {
241 /*
242 * flush_tlb_all(), as currently implemented, won't work if
243 * PCID is on but PGE is not. Since that combination
244 * doesn't exist on real hardware, there's no reason to try
245 * to fully support it, but it's polite to avoid corrupting
246 * data if we're on an improperly configured VM.
247 */
248 setup_clear_cpu_cap(X86_FEATURE_PCID);
c7ad5ad2 249 }
c7ad5ad2
AL
250}
251
f765090a
PE
252#ifdef CONFIG_X86_32
253#define NR_RANGE_MR 3
254#else /* CONFIG_X86_64 */
255#define NR_RANGE_MR 5
256#endif
257
dc9dd5cc
JB
258static int __meminit save_mr(struct map_range *mr, int nr_range,
259 unsigned long start_pfn, unsigned long end_pfn,
260 unsigned long page_size_mask)
f765090a
PE
261{
262 if (start_pfn < end_pfn) {
263 if (nr_range >= NR_RANGE_MR)
264 panic("run out of range for init_memory_mapping\n");
265 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
266 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
267 mr[nr_range].page_size_mask = page_size_mask;
268 nr_range++;
269 }
270
271 return nr_range;
272}
273
aeebe84c
YL
274/*
275 * adjust the page_size_mask for small range to go with
276 * big page size instead small one if nearby are ram too.
277 */
bd721ea7 278static void __ref adjust_range_page_size_mask(struct map_range *mr,
aeebe84c
YL
279 int nr_range)
280{
281 int i;
282
283 for (i = 0; i < nr_range; i++) {
284 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
285 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
286 unsigned long start = round_down(mr[i].start, PMD_SIZE);
287 unsigned long end = round_up(mr[i].end, PMD_SIZE);
288
289#ifdef CONFIG_X86_32
290 if ((end >> PAGE_SHIFT) > max_low_pfn)
291 continue;
292#endif
293
294 if (memblock_is_region_memory(start, end - start))
295 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
296 }
297 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
298 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
299 unsigned long start = round_down(mr[i].start, PUD_SIZE);
300 unsigned long end = round_up(mr[i].end, PUD_SIZE);
301
302 if (memblock_is_region_memory(start, end - start))
303 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
304 }
305 }
306}
307
f15e0518
DH
308static const char *page_size_string(struct map_range *mr)
309{
310 static const char str_1g[] = "1G";
311 static const char str_2m[] = "2M";
312 static const char str_4m[] = "4M";
313 static const char str_4k[] = "4k";
314
315 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
316 return str_1g;
317 /*
318 * 32-bit without PAE has a 4M large page size.
319 * PG_LEVEL_2M is misnamed, but we can at least
320 * print out the right size in the string.
321 */
322 if (IS_ENABLED(CONFIG_X86_32) &&
323 !IS_ENABLED(CONFIG_X86_PAE) &&
324 mr->page_size_mask & (1<<PG_LEVEL_2M))
325 return str_4m;
326
327 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
328 return str_2m;
329
330 return str_4k;
331}
332
4e33e065
YL
333static int __meminit split_mem_range(struct map_range *mr, int nr_range,
334 unsigned long start,
335 unsigned long end)
f765090a 336{
2e8059ed 337 unsigned long start_pfn, end_pfn, limit_pfn;
1829ae9a 338 unsigned long pfn;
4e33e065 339 int i;
f765090a 340
2e8059ed
YL
341 limit_pfn = PFN_DOWN(end);
342
f765090a 343 /* head if not big page alignment ? */
1829ae9a 344 pfn = start_pfn = PFN_DOWN(start);
f765090a
PE
345#ifdef CONFIG_X86_32
346 /*
347 * Don't use a large page for the first 2/4MB of memory
348 * because there are often fixed size MTRRs in there
349 * and overlapping MTRRs into large pages can cause
350 * slowdowns.
351 */
1829ae9a 352 if (pfn == 0)
84d77001 353 end_pfn = PFN_DOWN(PMD_SIZE);
f765090a 354 else
1829ae9a 355 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 356#else /* CONFIG_X86_64 */
1829ae9a 357 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 358#endif
2e8059ed
YL
359 if (end_pfn > limit_pfn)
360 end_pfn = limit_pfn;
f765090a
PE
361 if (start_pfn < end_pfn) {
362 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
1829ae9a 363 pfn = end_pfn;
f765090a
PE
364 }
365
366 /* big page (2M) range */
1829ae9a 367 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 368#ifdef CONFIG_X86_32
2e8059ed 369 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a 370#else /* CONFIG_X86_64 */
1829ae9a 371 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed
YL
372 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
373 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
374#endif
375
376 if (start_pfn < end_pfn) {
377 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
378 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 379 pfn = end_pfn;
f765090a
PE
380 }
381
382#ifdef CONFIG_X86_64
383 /* big page (1G) range */
1829ae9a 384 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed 385 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
f765090a
PE
386 if (start_pfn < end_pfn) {
387 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
388 page_size_mask &
389 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
1829ae9a 390 pfn = end_pfn;
f765090a
PE
391 }
392
393 /* tail is not big page (1G) alignment */
1829ae9a 394 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
2e8059ed 395 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
396 if (start_pfn < end_pfn) {
397 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
398 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 399 pfn = end_pfn;
f765090a
PE
400 }
401#endif
402
403 /* tail is not big page (2M) alignment */
1829ae9a 404 start_pfn = pfn;
2e8059ed 405 end_pfn = limit_pfn;
f765090a
PE
406 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
407
7de3d66b
YL
408 if (!after_bootmem)
409 adjust_range_page_size_mask(mr, nr_range);
410
f765090a
PE
411 /* try to merge same page size and continuous */
412 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
413 unsigned long old_start;
414 if (mr[i].end != mr[i+1].start ||
415 mr[i].page_size_mask != mr[i+1].page_size_mask)
416 continue;
417 /* move it */
418 old_start = mr[i].start;
419 memmove(&mr[i], &mr[i+1],
420 (nr_range - 1 - i) * sizeof(struct map_range));
421 mr[i--].start = old_start;
422 nr_range--;
423 }
424
425 for (i = 0; i < nr_range; i++)
c9cdaeb2 426 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
365811d6 427 mr[i].start, mr[i].end - 1,
f15e0518 428 page_size_string(&mr[i]));
f765090a 429
4e33e065
YL
430 return nr_range;
431}
432
08b46d5d 433struct range pfn_mapped[E820_MAX_ENTRIES];
0e691cf8 434int nr_pfn_mapped;
66520ebc
JS
435
436static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
437{
08b46d5d 438 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
66520ebc 439 nr_pfn_mapped, start_pfn, end_pfn);
08b46d5d 440 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
66520ebc
JS
441
442 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
443
444 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
445 max_low_pfn_mapped = max(max_low_pfn_mapped,
446 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
447}
448
449bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
450{
451 int i;
452
453 for (i = 0; i < nr_pfn_mapped; i++)
454 if ((start_pfn >= pfn_mapped[i].start) &&
455 (end_pfn <= pfn_mapped[i].end))
456 return true;
457
458 return false;
459}
460
4e33e065
YL
461/*
462 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
463 * This runs before bootmem is initialized and gets pages directly from
464 * the physical memory. To access them they are temporarily mapped.
465 */
bd721ea7 466unsigned long __ref init_memory_mapping(unsigned long start,
4e33e065
YL
467 unsigned long end)
468{
469 struct map_range mr[NR_RANGE_MR];
470 unsigned long ret = 0;
471 int nr_range, i;
472
c9cdaeb2 473 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
4e33e065
YL
474 start, end - 1);
475
476 memset(mr, 0, sizeof(mr));
477 nr_range = split_mem_range(mr, 0, start, end);
478
f765090a
PE
479 for (i = 0; i < nr_range; i++)
480 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
481 mr[i].page_size_mask);
f765090a 482
66520ebc
JS
483 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
484
c14fa0b6
YL
485 return ret >> PAGE_SHIFT;
486}
487
66520ebc 488/*
cf8b166d 489 * We need to iterate through the E820 memory map and create direct mappings
09821ff1 490 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
cf8b166d
ZY
491 * create direct mappings for all pfns from [0 to max_low_pfn) and
492 * [4GB to max_pfn) because of possible memory holes in high addresses
493 * that cannot be marked as UC by fixed/variable range MTRRs.
494 * Depending on the alignment of E820 ranges, this may possibly result
495 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
496 *
497 * init_mem_mapping() calls init_range_memory_mapping() with big range.
498 * That range would have hole in the middle or ends, and only ram parts
499 * will be mapped in init_range_memory_mapping().
66520ebc 500 */
8d57470d 501static unsigned long __init init_range_memory_mapping(
b8fd39c0
YL
502 unsigned long r_start,
503 unsigned long r_end)
66520ebc
JS
504{
505 unsigned long start_pfn, end_pfn;
8d57470d 506 unsigned long mapped_ram_size = 0;
66520ebc
JS
507 int i;
508
66520ebc 509 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
b8fd39c0
YL
510 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
511 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
512 if (start >= end)
66520ebc
JS
513 continue;
514
c9b3234a
YL
515 /*
516 * if it is overlapping with brk pgt, we need to
517 * alloc pgt buf from memblock instead.
518 */
519 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
520 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
f763ad1d 521 init_memory_mapping(start, end);
8d57470d 522 mapped_ram_size += end - start;
c9b3234a 523 can_use_brk_pgt = true;
66520ebc 524 }
8d57470d
YL
525
526 return mapped_ram_size;
66520ebc
JS
527}
528
6979287a
YL
529static unsigned long __init get_new_step_size(unsigned long step_size)
530{
531 /*
132978b9 532 * Initial mapped size is PMD_SIZE (2M).
6979287a
YL
533 * We can not set step_size to be PUD_SIZE (1G) yet.
534 * In worse case, when we cross the 1G boundary, and
535 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
132978b9
JB
536 * to map 1G range with PTE. Hence we use one less than the
537 * difference of page table level shifts.
6979287a 538 *
132978b9
JB
539 * Don't need to worry about overflow in the top-down case, on 32bit,
540 * when step_size is 0, round_down() returns 0 for start, and that
541 * turns it into 0x100000000ULL.
542 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
543 * needs to be taken into consideration by the code below.
6979287a 544 */
132978b9 545 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
6979287a
YL
546}
547
0167d7d8
TC
548/**
549 * memory_map_top_down - Map [map_start, map_end) top down
550 * @map_start: start address of the target memory range
551 * @map_end: end address of the target memory range
552 *
553 * This function will setup direct mapping for memory range
554 * [map_start, map_end) in top-down. That said, the page tables
555 * will be allocated at the end of the memory, and we map the
556 * memory in top-down.
557 */
558static void __init memory_map_top_down(unsigned long map_start,
559 unsigned long map_end)
c14fa0b6 560{
0167d7d8 561 unsigned long real_end, start, last_start;
8d57470d
YL
562 unsigned long step_size;
563 unsigned long addr;
564 unsigned long mapped_ram_size = 0;
ab951937 565
98e7a989 566 /* xen has big range in reserved near end of ram, skip it at first.*/
0167d7d8 567 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
8d57470d
YL
568 real_end = addr + PMD_SIZE;
569
570 /* step_size need to be small so pgt_buf from BRK could cover it */
571 step_size = PMD_SIZE;
572 max_pfn_mapped = 0; /* will get exact value next */
573 min_pfn_mapped = real_end >> PAGE_SHIFT;
574 last_start = start = real_end;
cf8b166d
ZY
575
576 /*
577 * We start from the top (end of memory) and go to the bottom.
578 * The memblock_find_in_range() gets us a block of RAM from the
579 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
580 * for page table.
581 */
0167d7d8 582 while (last_start > map_start) {
8d57470d
YL
583 if (last_start > step_size) {
584 start = round_down(last_start - 1, step_size);
0167d7d8
TC
585 if (start < map_start)
586 start = map_start;
8d57470d 587 } else
0167d7d8 588 start = map_start;
132978b9 589 mapped_ram_size += init_range_memory_mapping(start,
8d57470d
YL
590 last_start);
591 last_start = start;
592 min_pfn_mapped = last_start >> PAGE_SHIFT;
132978b9 593 if (mapped_ram_size >= step_size)
6979287a 594 step_size = get_new_step_size(step_size);
8d57470d
YL
595 }
596
0167d7d8
TC
597 if (real_end < map_end)
598 init_range_memory_mapping(real_end, map_end);
599}
600
b959ed6c
TC
601/**
602 * memory_map_bottom_up - Map [map_start, map_end) bottom up
603 * @map_start: start address of the target memory range
604 * @map_end: end address of the target memory range
605 *
606 * This function will setup direct mapping for memory range
607 * [map_start, map_end) in bottom-up. Since we have limited the
608 * bottom-up allocation above the kernel, the page tables will
609 * be allocated just above the kernel and we map the memory
610 * in [map_start, map_end) in bottom-up.
611 */
612static void __init memory_map_bottom_up(unsigned long map_start,
613 unsigned long map_end)
614{
132978b9 615 unsigned long next, start;
b959ed6c
TC
616 unsigned long mapped_ram_size = 0;
617 /* step_size need to be small so pgt_buf from BRK could cover it */
618 unsigned long step_size = PMD_SIZE;
619
620 start = map_start;
621 min_pfn_mapped = start >> PAGE_SHIFT;
622
623 /*
624 * We start from the bottom (@map_start) and go to the top (@map_end).
625 * The memblock_find_in_range() gets us a block of RAM from the
626 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
627 * for page table.
628 */
629 while (start < map_end) {
132978b9 630 if (step_size && map_end - start > step_size) {
b959ed6c
TC
631 next = round_up(start + 1, step_size);
632 if (next > map_end)
633 next = map_end;
132978b9 634 } else {
b959ed6c 635 next = map_end;
132978b9 636 }
b959ed6c 637
132978b9 638 mapped_ram_size += init_range_memory_mapping(start, next);
b959ed6c
TC
639 start = next;
640
132978b9 641 if (mapped_ram_size >= step_size)
b959ed6c 642 step_size = get_new_step_size(step_size);
b959ed6c
TC
643 }
644}
645
0167d7d8
TC
646void __init init_mem_mapping(void)
647{
648 unsigned long end;
649
aa8c6248 650 pti_check_boottime_disable();
0167d7d8 651 probe_page_size_mask();
c7ad5ad2 652 setup_pcid();
0167d7d8
TC
653
654#ifdef CONFIG_X86_64
655 end = max_pfn << PAGE_SHIFT;
656#else
657 end = max_low_pfn << PAGE_SHIFT;
658#endif
659
660 /* the ISA range is always mapped regardless of memory holes */
661 init_memory_mapping(0, ISA_END_ADDRESS);
662
b234e8a0
TG
663 /* Init the trampoline, possibly with KASLR memory offset */
664 init_trampoline();
665
b959ed6c
TC
666 /*
667 * If the allocation is in bottom-up direction, we setup direct mapping
668 * in bottom-up, otherwise we setup direct mapping in top-down.
669 */
670 if (memblock_bottom_up()) {
671 unsigned long kernel_end = __pa_symbol(_end);
672
673 /*
674 * we need two separate calls here. This is because we want to
675 * allocate page tables above the kernel. So we first map
676 * [kernel_end, end) to make memory above the kernel be mapped
677 * as soon as possible. And then use page tables allocated above
678 * the kernel to map [ISA_END_ADDRESS, kernel_end).
679 */
680 memory_map_bottom_up(kernel_end, end);
681 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
682 } else {
683 memory_map_top_down(ISA_END_ADDRESS, end);
684 }
8d57470d 685
f763ad1d
YL
686#ifdef CONFIG_X86_64
687 if (max_pfn > max_low_pfn) {
688 /* can we preseve max_low_pfn ?*/
689 max_low_pfn = max_pfn;
690 }
719272c4
YL
691#else
692 early_ioremap_page_table_range_init();
8170e6be
PA
693#endif
694
719272c4
YL
695 load_cr3(swapper_pg_dir);
696 __flush_tlb_all();
719272c4 697
f72e38e8 698 x86_init.hyper.init_mem_mapping();
c138d811 699
c14fa0b6 700 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
22ddfcaa 701}
e5b2bb55 702
540aca06
PE
703/*
704 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
705 * is valid. The argument is a physical page number.
706 *
a4866aa8
KC
707 * On x86, access has to be given to the first megabyte of RAM because that
708 * area traditionally contains BIOS code and data regions used by X, dosemu,
709 * and similar apps. Since they map the entire memory range, the whole range
710 * must be allowed (for mapping), but any areas that would otherwise be
711 * disallowed are flagged as being "zero filled" instead of rejected.
712 * Access has to be given to non-kernel-ram areas as well, these contain the
713 * PCI mmio resources as well as potential bios/acpi data regions.
540aca06
PE
714 */
715int devmem_is_allowed(unsigned long pagenr)
716{
2bdce744
DW
717 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
718 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
719 != REGION_DISJOINT) {
a4866aa8
KC
720 /*
721 * For disallowed memory regions in the low 1MB range,
722 * request that the page be shown as all zeros.
723 */
724 if (pagenr < 256)
725 return 2;
726
727 return 0;
728 }
729
730 /*
731 * This must follow RAM test, since System RAM is considered a
732 * restricted resource under CONFIG_STRICT_IOMEM.
733 */
734 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
735 /* Low 1MB bypasses iomem restrictions. */
736 if (pagenr < 256)
737 return 1;
738
540aca06 739 return 0;
a4866aa8
KC
740 }
741
742 return 1;
540aca06
PE
743}
744
e5b2bb55
PE
745void free_init_pages(char *what, unsigned long begin, unsigned long end)
746{
c967da6a 747 unsigned long begin_aligned, end_aligned;
e5b2bb55 748
c967da6a
YL
749 /* Make sure boundaries are page aligned */
750 begin_aligned = PAGE_ALIGN(begin);
751 end_aligned = end & PAGE_MASK;
752
753 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
754 begin = begin_aligned;
755 end = end_aligned;
756 }
757
758 if (begin >= end)
e5b2bb55
PE
759 return;
760
761 /*
762 * If debugging page accesses then do not free this memory but
763 * mark them not present - any buggy init-section access will
764 * create a kernel page fault:
765 */
a75e1f63
CB
766 if (debug_pagealloc_enabled()) {
767 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
768 begin, end - 1);
769 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
770 } else {
771 /*
772 * We just marked the kernel text read only above, now that
773 * we are going to free part of that, we need to make that
774 * writeable and non-executable first.
775 */
776 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
777 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
e5b2bb55 778
a75e1f63
CB
779 free_reserved_area((void *)begin, (void *)end,
780 POISON_FREE_INITMEM, what);
781 }
e5b2bb55
PE
782}
783
6ea2738e
DH
784/*
785 * begin/end can be in the direct map or the "high kernel mapping"
786 * used for the kernel image only. free_init_pages() will do the
787 * right thing for either kind of address.
788 */
789void free_kernel_image_pages(void *begin, void *end)
790{
c40a56a7
DH
791 unsigned long begin_ul = (unsigned long)begin;
792 unsigned long end_ul = (unsigned long)end;
793 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
794
795
796 free_init_pages("unused kernel image", begin_ul, end_ul);
797
798 /*
799 * PTI maps some of the kernel into userspace. For performance,
800 * this includes some kernel areas that do not contain secrets.
801 * Those areas might be adjacent to the parts of the kernel image
802 * being freed, which may contain secrets. Remove the "high kernel
803 * image mapping" for these freed areas, ensuring they are not even
804 * potentially vulnerable to Meltdown regardless of the specific
805 * optimizations PTI is currently using.
806 *
807 * The "noalias" prevents unmapping the direct map alias which is
808 * needed to access the freed pages.
809 *
810 * This is only valid for 64bit kernels. 32bit has only one mapping
811 * which can't be treated in this way for obvious reasons.
812 */
813 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
814 set_memory_np_noalias(begin_ul, len_pages);
6ea2738e
DH
815}
816
b3f0907c
BS
817void __weak mem_encrypt_free_decrypted_mem(void) { }
818
18278229 819void __ref free_initmem(void)
e5b2bb55 820{
0c6fc11a 821 e820__reallocate_tables();
47533968 822
b3f0907c
BS
823 mem_encrypt_free_decrypted_mem();
824
6ea2738e 825 free_kernel_image_pages(&__init_begin, &__init_end);
e5b2bb55 826}
731ddea6
PE
827
828#ifdef CONFIG_BLK_DEV_INITRD
0d26d1d8 829void __init free_initrd_mem(unsigned long start, unsigned long end)
731ddea6 830{
c967da6a
YL
831 /*
832 * end could be not aligned, and We can not align that,
833 * decompresser could be confused by aligned initrd_end
834 * We already reserve the end partial page before in
835 * - i386_start_kernel()
836 * - x86_64_start_kernel()
837 * - relocate_initrd()
838 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
839 */
c88442ec 840 free_init_pages("initrd", start, PAGE_ALIGN(end));
731ddea6
PE
841}
842#endif
17623915 843
4270fd8b
IM
844/*
845 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
846 * and pass it to the MM layer - to help it set zone watermarks more
847 * accurately.
848 *
849 * Done on 64-bit systems only for the time being, although 32-bit systems
850 * might benefit from this as well.
851 */
852void __init memblock_find_dma_reserve(void)
853{
854#ifdef CONFIG_X86_64
855 u64 nr_pages = 0, nr_free_pages = 0;
856 unsigned long start_pfn, end_pfn;
857 phys_addr_t start_addr, end_addr;
858 int i;
859 u64 u;
860
861 /*
862 * Iterate over all memory ranges (free and reserved ones alike),
863 * to calculate the total number of pages in the first 16 MB of RAM:
864 */
865 nr_pages = 0;
866 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
867 start_pfn = min(start_pfn, MAX_DMA_PFN);
868 end_pfn = min(end_pfn, MAX_DMA_PFN);
869
870 nr_pages += end_pfn - start_pfn;
871 }
872
873 /*
874 * Iterate over free memory ranges to calculate the number of free
875 * pages in the DMA zone, while not counting potential partial
876 * pages at the beginning or the end of the range:
877 */
878 nr_free_pages = 0;
879 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
880 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
881 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
882
883 if (start_pfn < end_pfn)
884 nr_free_pages += end_pfn - start_pfn;
885 }
886
887 set_dma_reserve(nr_pages - nr_free_pages);
888#endif
889}
890
17623915
PE
891void __init zone_sizes_init(void)
892{
893 unsigned long max_zone_pfns[MAX_NR_ZONES];
894
895 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
896
897#ifdef CONFIG_ZONE_DMA
c072b90c 898 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
17623915
PE
899#endif
900#ifdef CONFIG_ZONE_DMA32
c072b90c 901 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
17623915
PE
902#endif
903 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
904#ifdef CONFIG_HIGHMEM
905 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
906#endif
907
908 free_area_init_nodes(max_zone_pfns);
909}
910
6fd166aa 911__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
3d28ebce 912 .loaded_mm = &init_mm,
10af6235 913 .next_asid = 1,
1e02ce4c
AL
914 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
915};
1e547681 916EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
1e02ce4c 917
bd809af1
JG
918void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
919{
920 /* entry 0 MUST be WB (hardwired to speed up translations) */
921 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
922
923 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
924 __pte2cachemode_tbl[entry] = cache;
925}
377eeaa8 926
792adb90 927#ifdef CONFIG_SWAP
377eeaa8
AK
928unsigned long max_swapfile_size(void)
929{
930 unsigned long pages;
931
932 pages = generic_max_swapfile_size();
933
5b5e4d62 934 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
377eeaa8 935 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
b0a182f8 936 unsigned long long l1tf_limit = l1tf_pfn_limit();
1a7ed1ba
VB
937 /*
938 * We encode swap offsets also with 3 bits below those for pfn
939 * which makes the usable limit higher.
940 */
0d0f6249 941#if CONFIG_PGTABLE_LEVELS > 2
1a7ed1ba
VB
942 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
943#endif
9df95169 944 pages = min_t(unsigned long long, l1tf_limit, pages);
377eeaa8
AK
945 }
946 return pages;
947}
792adb90 948#endif