]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/mm/init.c
x86/cpufeatures: Add X86_BUG_CPU_INSECURE
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / init.c
CommitLineData
5a0e3ad6 1#include <linux/gfp.h>
2c1b284e 2#include <linux/initrd.h>
540aca06 3#include <linux/ioport.h>
e5b2bb55 4#include <linux/swap.h>
a9ce6bc1 5#include <linux/memblock.h>
17623915 6#include <linux/bootmem.h> /* for max_low_pfn */
540aca06 7
d1163651 8#include <asm/set_memory.h>
66441bd3 9#include <asm/e820/api.h>
4fcb2083 10#include <asm/init.h>
e5b2bb55 11#include <asm/page.h>
540aca06 12#include <asm/page_types.h>
e5b2bb55 13#include <asm/sections.h>
49834396 14#include <asm/setup.h>
f765090a 15#include <asm/tlbflush.h>
9518e0e4 16#include <asm/tlb.h>
76c06927 17#include <asm/proto.h>
17623915 18#include <asm/dma.h> /* for MAX_DMA_PFN */
cd745be8 19#include <asm/microcode.h>
0483e1fa 20#include <asm/kaslr.h>
c138d811 21#include <asm/hypervisor.h>
c7ad5ad2 22#include <asm/cpufeature.h>
9518e0e4 23
d17d8f9d
DH
24/*
25 * We need to define the tracepoints somewhere, and tlb.c
26 * is only compied when SMP=y.
27 */
28#define CREATE_TRACE_POINTS
29#include <trace/events/tlb.h>
30
5c51bdbe
YL
31#include "mm_internal.h"
32
281d4078
JG
33/*
34 * Tables translating between page_cache_type_t and pte encoding.
c709feda 35 *
d5dc861b
TK
36 * The default values are defined statically as minimal supported mode;
37 * WC and WT fall back to UC-. pat_init() updates these values to support
38 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
39 * for the details. Note, __early_ioremap() used during early boot-time
40 * takes pgprot_t (pte encoding) and does not use these tables.
c709feda
IM
41 *
42 * Index into __cachemode2pte_tbl[] is the cachemode.
43 *
44 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
45 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
281d4078
JG
46 */
47uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
c709feda 48 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
9cd25aac 49 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
c709feda
IM
50 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
51 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
52 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
53 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
281d4078 54};
31bb7723 55EXPORT_SYMBOL(__cachemode2pte_tbl);
c709feda 56
281d4078 57uint8_t __pte2cachemode_tbl[8] = {
c709feda 58 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
9cd25aac 59 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
c709feda
IM
60 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
61 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
62 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
9cd25aac 63 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
c709feda 64 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
281d4078
JG
65 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
66};
31bb7723 67EXPORT_SYMBOL(__pte2cachemode_tbl);
281d4078 68
cf470659
YL
69static unsigned long __initdata pgt_buf_start;
70static unsigned long __initdata pgt_buf_end;
71static unsigned long __initdata pgt_buf_top;
f765090a 72
9985b4c6
YL
73static unsigned long min_pfn_mapped;
74
c9b3234a
YL
75static bool __initdata can_use_brk_pgt = true;
76
ddd3509d
SS
77/*
78 * Pages returned are already directly mapped.
79 *
80 * Changing that is likely to break Xen, see commit:
81 *
82 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
83 *
84 * for detailed information.
85 */
22c8ca2a 86__ref void *alloc_low_pages(unsigned int num)
5c51bdbe
YL
87{
88 unsigned long pfn;
22c8ca2a 89 int i;
5c51bdbe 90
5c51bdbe 91 if (after_bootmem) {
22c8ca2a 92 unsigned int order;
5c51bdbe 93
22c8ca2a
YL
94 order = get_order((unsigned long)num << PAGE_SHIFT);
95 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
96 __GFP_ZERO, order);
5c51bdbe 97 }
5c51bdbe 98
c9b3234a 99 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
5c51bdbe
YL
100 unsigned long ret;
101 if (min_pfn_mapped >= max_pfn_mapped)
d4dd100f 102 panic("alloc_low_pages: ran out of memory");
5c51bdbe
YL
103 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
104 max_pfn_mapped << PAGE_SHIFT,
22c8ca2a 105 PAGE_SIZE * num , PAGE_SIZE);
5c51bdbe 106 if (!ret)
d4dd100f 107 panic("alloc_low_pages: can not alloc memory");
22c8ca2a 108 memblock_reserve(ret, PAGE_SIZE * num);
5c51bdbe 109 pfn = ret >> PAGE_SHIFT;
22c8ca2a
YL
110 } else {
111 pfn = pgt_buf_end;
112 pgt_buf_end += num;
c9b3234a
YL
113 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
114 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
22c8ca2a
YL
115 }
116
117 for (i = 0; i < num; i++) {
118 void *adr;
119
120 adr = __va((pfn + i) << PAGE_SHIFT);
121 clear_page(adr);
122 }
5c51bdbe 123
22c8ca2a 124 return __va(pfn << PAGE_SHIFT);
5c51bdbe
YL
125}
126
fb754f95
TG
127/*
128 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
129 * With KASLR memory randomization, depending on the machine e820 memory
130 * and the PUD alignment. We may need twice more pages when KASLR memory
131 * randomization is enabled.
132 */
133#ifndef CONFIG_RANDOMIZE_MEMORY
134#define INIT_PGD_PAGE_COUNT 6
135#else
136#define INIT_PGD_PAGE_COUNT 12
137#endif
138#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
8d57470d
YL
139RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
140void __init early_alloc_pgt_buf(void)
141{
142 unsigned long tables = INIT_PGT_BUF_SIZE;
143 phys_addr_t base;
144
145 base = __pa(extend_brk(tables, PAGE_SIZE));
146
147 pgt_buf_start = base >> PAGE_SHIFT;
148 pgt_buf_end = pgt_buf_start;
149 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
150}
151
f765090a
PE
152int after_bootmem;
153
10971ab2 154early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
148b2098 155
844ab6f9
JS
156struct map_range {
157 unsigned long start;
158 unsigned long end;
159 unsigned page_size_mask;
160};
161
fa62aafe 162static int page_size_mask;
f765090a 163
22ddfcaa 164static void __init probe_page_size_mask(void)
fa62aafe 165{
fa62aafe 166 /*
288cf3c6
CB
167 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
168 * use small pages.
fa62aafe
YL
169 * This will simplify cpa(), which otherwise needs to support splitting
170 * large pages into small in interrupt context, etc.
171 */
d9ee35ac 172 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK))
fa62aafe 173 page_size_mask |= 1 << PG_LEVEL_2M;
d9ee35ac
VB
174 else
175 direct_gbpages = 0;
fa62aafe
YL
176
177 /* Enable PSE if available */
16bf9226 178 if (boot_cpu_has(X86_FEATURE_PSE))
375074cc 179 cr4_set_bits_and_update_boot(X86_CR4_PSE);
fa62aafe
YL
180
181 /* Enable PGE if available */
c109bf95 182 if (boot_cpu_has(X86_FEATURE_PGE)) {
375074cc 183 cr4_set_bits_and_update_boot(X86_CR4_PGE);
fa62aafe 184 __supported_pte_mask |= _PAGE_GLOBAL;
0cdb81be
JB
185 } else
186 __supported_pte_mask &= ~_PAGE_GLOBAL;
e61980a7
IM
187
188 /* Enable 1 GB linear kernel mappings if available: */
b8291adc 189 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
e61980a7
IM
190 printk(KERN_INFO "Using GB pages for direct mapping\n");
191 page_size_mask |= 1 << PG_LEVEL_1G;
192 } else {
193 direct_gbpages = 0;
194 }
fa62aafe 195}
279b706b 196
c7ad5ad2
AL
197static void setup_pcid(void)
198{
199#ifdef CONFIG_X86_64
200 if (boot_cpu_has(X86_FEATURE_PCID)) {
201 if (boot_cpu_has(X86_FEATURE_PGE)) {
202 /*
203 * This can't be cr4_set_bits_and_update_boot() --
204 * the trampoline code can't handle CR4.PCIDE and
205 * it wouldn't do any good anyway. Despite the name,
206 * cr4_set_bits_and_update_boot() doesn't actually
207 * cause the bits in question to remain set all the
208 * way through the secondary boot asm.
209 *
210 * Instead, we brute-force it and set CR4.PCIDE
211 * manually in start_secondary().
212 */
213 cr4_set_bits(X86_CR4_PCIDE);
214 } else {
215 /*
216 * flush_tlb_all(), as currently implemented, won't
217 * work if PCID is on but PGE is not. Since that
218 * combination doesn't exist on real hardware, there's
219 * no reason to try to fully support it, but it's
220 * polite to avoid corrupting data if we're on
221 * an improperly configured VM.
222 */
223 setup_clear_cpu_cap(X86_FEATURE_PCID);
224 }
225 }
226#endif
227}
228
f765090a
PE
229#ifdef CONFIG_X86_32
230#define NR_RANGE_MR 3
231#else /* CONFIG_X86_64 */
232#define NR_RANGE_MR 5
233#endif
234
dc9dd5cc
JB
235static int __meminit save_mr(struct map_range *mr, int nr_range,
236 unsigned long start_pfn, unsigned long end_pfn,
237 unsigned long page_size_mask)
f765090a
PE
238{
239 if (start_pfn < end_pfn) {
240 if (nr_range >= NR_RANGE_MR)
241 panic("run out of range for init_memory_mapping\n");
242 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
243 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
244 mr[nr_range].page_size_mask = page_size_mask;
245 nr_range++;
246 }
247
248 return nr_range;
249}
250
aeebe84c
YL
251/*
252 * adjust the page_size_mask for small range to go with
253 * big page size instead small one if nearby are ram too.
254 */
bd721ea7 255static void __ref adjust_range_page_size_mask(struct map_range *mr,
aeebe84c
YL
256 int nr_range)
257{
258 int i;
259
260 for (i = 0; i < nr_range; i++) {
261 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
262 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
263 unsigned long start = round_down(mr[i].start, PMD_SIZE);
264 unsigned long end = round_up(mr[i].end, PMD_SIZE);
265
266#ifdef CONFIG_X86_32
267 if ((end >> PAGE_SHIFT) > max_low_pfn)
268 continue;
269#endif
270
271 if (memblock_is_region_memory(start, end - start))
272 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
273 }
274 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
275 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
276 unsigned long start = round_down(mr[i].start, PUD_SIZE);
277 unsigned long end = round_up(mr[i].end, PUD_SIZE);
278
279 if (memblock_is_region_memory(start, end - start))
280 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
281 }
282 }
283}
284
f15e0518
DH
285static const char *page_size_string(struct map_range *mr)
286{
287 static const char str_1g[] = "1G";
288 static const char str_2m[] = "2M";
289 static const char str_4m[] = "4M";
290 static const char str_4k[] = "4k";
291
292 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
293 return str_1g;
294 /*
295 * 32-bit without PAE has a 4M large page size.
296 * PG_LEVEL_2M is misnamed, but we can at least
297 * print out the right size in the string.
298 */
299 if (IS_ENABLED(CONFIG_X86_32) &&
300 !IS_ENABLED(CONFIG_X86_PAE) &&
301 mr->page_size_mask & (1<<PG_LEVEL_2M))
302 return str_4m;
303
304 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
305 return str_2m;
306
307 return str_4k;
308}
309
4e33e065
YL
310static int __meminit split_mem_range(struct map_range *mr, int nr_range,
311 unsigned long start,
312 unsigned long end)
f765090a 313{
2e8059ed 314 unsigned long start_pfn, end_pfn, limit_pfn;
1829ae9a 315 unsigned long pfn;
4e33e065 316 int i;
f765090a 317
2e8059ed
YL
318 limit_pfn = PFN_DOWN(end);
319
f765090a 320 /* head if not big page alignment ? */
1829ae9a 321 pfn = start_pfn = PFN_DOWN(start);
f765090a
PE
322#ifdef CONFIG_X86_32
323 /*
324 * Don't use a large page for the first 2/4MB of memory
325 * because there are often fixed size MTRRs in there
326 * and overlapping MTRRs into large pages can cause
327 * slowdowns.
328 */
1829ae9a 329 if (pfn == 0)
84d77001 330 end_pfn = PFN_DOWN(PMD_SIZE);
f765090a 331 else
1829ae9a 332 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 333#else /* CONFIG_X86_64 */
1829ae9a 334 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 335#endif
2e8059ed
YL
336 if (end_pfn > limit_pfn)
337 end_pfn = limit_pfn;
f765090a
PE
338 if (start_pfn < end_pfn) {
339 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
1829ae9a 340 pfn = end_pfn;
f765090a
PE
341 }
342
343 /* big page (2M) range */
1829ae9a 344 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 345#ifdef CONFIG_X86_32
2e8059ed 346 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a 347#else /* CONFIG_X86_64 */
1829ae9a 348 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed
YL
349 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
350 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
351#endif
352
353 if (start_pfn < end_pfn) {
354 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
355 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 356 pfn = end_pfn;
f765090a
PE
357 }
358
359#ifdef CONFIG_X86_64
360 /* big page (1G) range */
1829ae9a 361 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed 362 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
f765090a
PE
363 if (start_pfn < end_pfn) {
364 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
365 page_size_mask &
366 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
1829ae9a 367 pfn = end_pfn;
f765090a
PE
368 }
369
370 /* tail is not big page (1G) alignment */
1829ae9a 371 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
2e8059ed 372 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
373 if (start_pfn < end_pfn) {
374 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
375 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 376 pfn = end_pfn;
f765090a
PE
377 }
378#endif
379
380 /* tail is not big page (2M) alignment */
1829ae9a 381 start_pfn = pfn;
2e8059ed 382 end_pfn = limit_pfn;
f765090a
PE
383 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
384
7de3d66b
YL
385 if (!after_bootmem)
386 adjust_range_page_size_mask(mr, nr_range);
387
f765090a
PE
388 /* try to merge same page size and continuous */
389 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
390 unsigned long old_start;
391 if (mr[i].end != mr[i+1].start ||
392 mr[i].page_size_mask != mr[i+1].page_size_mask)
393 continue;
394 /* move it */
395 old_start = mr[i].start;
396 memmove(&mr[i], &mr[i+1],
397 (nr_range - 1 - i) * sizeof(struct map_range));
398 mr[i--].start = old_start;
399 nr_range--;
400 }
401
402 for (i = 0; i < nr_range; i++)
c9cdaeb2 403 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
365811d6 404 mr[i].start, mr[i].end - 1,
f15e0518 405 page_size_string(&mr[i]));
f765090a 406
4e33e065
YL
407 return nr_range;
408}
409
08b46d5d 410struct range pfn_mapped[E820_MAX_ENTRIES];
0e691cf8 411int nr_pfn_mapped;
66520ebc
JS
412
413static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
414{
08b46d5d 415 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
66520ebc 416 nr_pfn_mapped, start_pfn, end_pfn);
08b46d5d 417 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
66520ebc
JS
418
419 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
420
421 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
422 max_low_pfn_mapped = max(max_low_pfn_mapped,
423 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
424}
425
426bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
427{
428 int i;
429
430 for (i = 0; i < nr_pfn_mapped; i++)
431 if ((start_pfn >= pfn_mapped[i].start) &&
432 (end_pfn <= pfn_mapped[i].end))
433 return true;
434
435 return false;
436}
437
4e33e065
YL
438/*
439 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
440 * This runs before bootmem is initialized and gets pages directly from
441 * the physical memory. To access them they are temporarily mapped.
442 */
bd721ea7 443unsigned long __ref init_memory_mapping(unsigned long start,
4e33e065
YL
444 unsigned long end)
445{
446 struct map_range mr[NR_RANGE_MR];
447 unsigned long ret = 0;
448 int nr_range, i;
449
c9cdaeb2 450 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
4e33e065
YL
451 start, end - 1);
452
453 memset(mr, 0, sizeof(mr));
454 nr_range = split_mem_range(mr, 0, start, end);
455
f765090a
PE
456 for (i = 0; i < nr_range; i++)
457 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
458 mr[i].page_size_mask);
f765090a 459
66520ebc
JS
460 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
461
c14fa0b6
YL
462 return ret >> PAGE_SHIFT;
463}
464
66520ebc 465/*
cf8b166d 466 * We need to iterate through the E820 memory map and create direct mappings
09821ff1 467 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
cf8b166d
ZY
468 * create direct mappings for all pfns from [0 to max_low_pfn) and
469 * [4GB to max_pfn) because of possible memory holes in high addresses
470 * that cannot be marked as UC by fixed/variable range MTRRs.
471 * Depending on the alignment of E820 ranges, this may possibly result
472 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
473 *
474 * init_mem_mapping() calls init_range_memory_mapping() with big range.
475 * That range would have hole in the middle or ends, and only ram parts
476 * will be mapped in init_range_memory_mapping().
66520ebc 477 */
8d57470d 478static unsigned long __init init_range_memory_mapping(
b8fd39c0
YL
479 unsigned long r_start,
480 unsigned long r_end)
66520ebc
JS
481{
482 unsigned long start_pfn, end_pfn;
8d57470d 483 unsigned long mapped_ram_size = 0;
66520ebc
JS
484 int i;
485
66520ebc 486 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
b8fd39c0
YL
487 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
488 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
489 if (start >= end)
66520ebc
JS
490 continue;
491
c9b3234a
YL
492 /*
493 * if it is overlapping with brk pgt, we need to
494 * alloc pgt buf from memblock instead.
495 */
496 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
497 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
f763ad1d 498 init_memory_mapping(start, end);
8d57470d 499 mapped_ram_size += end - start;
c9b3234a 500 can_use_brk_pgt = true;
66520ebc 501 }
8d57470d
YL
502
503 return mapped_ram_size;
66520ebc
JS
504}
505
6979287a
YL
506static unsigned long __init get_new_step_size(unsigned long step_size)
507{
508 /*
132978b9 509 * Initial mapped size is PMD_SIZE (2M).
6979287a
YL
510 * We can not set step_size to be PUD_SIZE (1G) yet.
511 * In worse case, when we cross the 1G boundary, and
512 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
132978b9
JB
513 * to map 1G range with PTE. Hence we use one less than the
514 * difference of page table level shifts.
6979287a 515 *
132978b9
JB
516 * Don't need to worry about overflow in the top-down case, on 32bit,
517 * when step_size is 0, round_down() returns 0 for start, and that
518 * turns it into 0x100000000ULL.
519 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
520 * needs to be taken into consideration by the code below.
6979287a 521 */
132978b9 522 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
6979287a
YL
523}
524
0167d7d8
TC
525/**
526 * memory_map_top_down - Map [map_start, map_end) top down
527 * @map_start: start address of the target memory range
528 * @map_end: end address of the target memory range
529 *
530 * This function will setup direct mapping for memory range
531 * [map_start, map_end) in top-down. That said, the page tables
532 * will be allocated at the end of the memory, and we map the
533 * memory in top-down.
534 */
535static void __init memory_map_top_down(unsigned long map_start,
536 unsigned long map_end)
c14fa0b6 537{
0167d7d8 538 unsigned long real_end, start, last_start;
8d57470d
YL
539 unsigned long step_size;
540 unsigned long addr;
541 unsigned long mapped_ram_size = 0;
ab951937 542
98e7a989 543 /* xen has big range in reserved near end of ram, skip it at first.*/
0167d7d8 544 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
8d57470d
YL
545 real_end = addr + PMD_SIZE;
546
547 /* step_size need to be small so pgt_buf from BRK could cover it */
548 step_size = PMD_SIZE;
549 max_pfn_mapped = 0; /* will get exact value next */
550 min_pfn_mapped = real_end >> PAGE_SHIFT;
551 last_start = start = real_end;
cf8b166d
ZY
552
553 /*
554 * We start from the top (end of memory) and go to the bottom.
555 * The memblock_find_in_range() gets us a block of RAM from the
556 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
557 * for page table.
558 */
0167d7d8 559 while (last_start > map_start) {
8d57470d
YL
560 if (last_start > step_size) {
561 start = round_down(last_start - 1, step_size);
0167d7d8
TC
562 if (start < map_start)
563 start = map_start;
8d57470d 564 } else
0167d7d8 565 start = map_start;
132978b9 566 mapped_ram_size += init_range_memory_mapping(start,
8d57470d
YL
567 last_start);
568 last_start = start;
569 min_pfn_mapped = last_start >> PAGE_SHIFT;
132978b9 570 if (mapped_ram_size >= step_size)
6979287a 571 step_size = get_new_step_size(step_size);
8d57470d
YL
572 }
573
0167d7d8
TC
574 if (real_end < map_end)
575 init_range_memory_mapping(real_end, map_end);
576}
577
b959ed6c
TC
578/**
579 * memory_map_bottom_up - Map [map_start, map_end) bottom up
580 * @map_start: start address of the target memory range
581 * @map_end: end address of the target memory range
582 *
583 * This function will setup direct mapping for memory range
584 * [map_start, map_end) in bottom-up. Since we have limited the
585 * bottom-up allocation above the kernel, the page tables will
586 * be allocated just above the kernel and we map the memory
587 * in [map_start, map_end) in bottom-up.
588 */
589static void __init memory_map_bottom_up(unsigned long map_start,
590 unsigned long map_end)
591{
132978b9 592 unsigned long next, start;
b959ed6c
TC
593 unsigned long mapped_ram_size = 0;
594 /* step_size need to be small so pgt_buf from BRK could cover it */
595 unsigned long step_size = PMD_SIZE;
596
597 start = map_start;
598 min_pfn_mapped = start >> PAGE_SHIFT;
599
600 /*
601 * We start from the bottom (@map_start) and go to the top (@map_end).
602 * The memblock_find_in_range() gets us a block of RAM from the
603 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
604 * for page table.
605 */
606 while (start < map_end) {
132978b9 607 if (step_size && map_end - start > step_size) {
b959ed6c
TC
608 next = round_up(start + 1, step_size);
609 if (next > map_end)
610 next = map_end;
132978b9 611 } else {
b959ed6c 612 next = map_end;
132978b9 613 }
b959ed6c 614
132978b9 615 mapped_ram_size += init_range_memory_mapping(start, next);
b959ed6c
TC
616 start = next;
617
132978b9 618 if (mapped_ram_size >= step_size)
b959ed6c 619 step_size = get_new_step_size(step_size);
b959ed6c
TC
620 }
621}
622
0167d7d8
TC
623void __init init_mem_mapping(void)
624{
625 unsigned long end;
626
627 probe_page_size_mask();
c7ad5ad2 628 setup_pcid();
0167d7d8
TC
629
630#ifdef CONFIG_X86_64
631 end = max_pfn << PAGE_SHIFT;
632#else
633 end = max_low_pfn << PAGE_SHIFT;
634#endif
635
636 /* the ISA range is always mapped regardless of memory holes */
637 init_memory_mapping(0, ISA_END_ADDRESS);
638
b234e8a0
TG
639 /* Init the trampoline, possibly with KASLR memory offset */
640 init_trampoline();
641
b959ed6c
TC
642 /*
643 * If the allocation is in bottom-up direction, we setup direct mapping
644 * in bottom-up, otherwise we setup direct mapping in top-down.
645 */
646 if (memblock_bottom_up()) {
647 unsigned long kernel_end = __pa_symbol(_end);
648
649 /*
650 * we need two separate calls here. This is because we want to
651 * allocate page tables above the kernel. So we first map
652 * [kernel_end, end) to make memory above the kernel be mapped
653 * as soon as possible. And then use page tables allocated above
654 * the kernel to map [ISA_END_ADDRESS, kernel_end).
655 */
656 memory_map_bottom_up(kernel_end, end);
657 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
658 } else {
659 memory_map_top_down(ISA_END_ADDRESS, end);
660 }
8d57470d 661
f763ad1d
YL
662#ifdef CONFIG_X86_64
663 if (max_pfn > max_low_pfn) {
664 /* can we preseve max_low_pfn ?*/
665 max_low_pfn = max_pfn;
666 }
719272c4
YL
667#else
668 early_ioremap_page_table_range_init();
8170e6be
PA
669#endif
670
719272c4
YL
671 load_cr3(swapper_pg_dir);
672 __flush_tlb_all();
719272c4 673
f72e38e8 674 x86_init.hyper.init_mem_mapping();
c138d811 675
c14fa0b6 676 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
22ddfcaa 677}
e5b2bb55 678
540aca06
PE
679/*
680 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
681 * is valid. The argument is a physical page number.
682 *
a4866aa8
KC
683 * On x86, access has to be given to the first megabyte of RAM because that
684 * area traditionally contains BIOS code and data regions used by X, dosemu,
685 * and similar apps. Since they map the entire memory range, the whole range
686 * must be allowed (for mapping), but any areas that would otherwise be
687 * disallowed are flagged as being "zero filled" instead of rejected.
688 * Access has to be given to non-kernel-ram areas as well, these contain the
689 * PCI mmio resources as well as potential bios/acpi data regions.
540aca06
PE
690 */
691int devmem_is_allowed(unsigned long pagenr)
692{
a4866aa8
KC
693 if (page_is_ram(pagenr)) {
694 /*
695 * For disallowed memory regions in the low 1MB range,
696 * request that the page be shown as all zeros.
697 */
698 if (pagenr < 256)
699 return 2;
700
701 return 0;
702 }
703
704 /*
705 * This must follow RAM test, since System RAM is considered a
706 * restricted resource under CONFIG_STRICT_IOMEM.
707 */
708 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
709 /* Low 1MB bypasses iomem restrictions. */
710 if (pagenr < 256)
711 return 1;
712
540aca06 713 return 0;
a4866aa8
KC
714 }
715
716 return 1;
540aca06
PE
717}
718
e5b2bb55
PE
719void free_init_pages(char *what, unsigned long begin, unsigned long end)
720{
c967da6a 721 unsigned long begin_aligned, end_aligned;
e5b2bb55 722
c967da6a
YL
723 /* Make sure boundaries are page aligned */
724 begin_aligned = PAGE_ALIGN(begin);
725 end_aligned = end & PAGE_MASK;
726
727 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
728 begin = begin_aligned;
729 end = end_aligned;
730 }
731
732 if (begin >= end)
e5b2bb55
PE
733 return;
734
735 /*
736 * If debugging page accesses then do not free this memory but
737 * mark them not present - any buggy init-section access will
738 * create a kernel page fault:
739 */
a75e1f63
CB
740 if (debug_pagealloc_enabled()) {
741 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
742 begin, end - 1);
743 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
744 } else {
745 /*
746 * We just marked the kernel text read only above, now that
747 * we are going to free part of that, we need to make that
748 * writeable and non-executable first.
749 */
750 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
751 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
e5b2bb55 752
a75e1f63
CB
753 free_reserved_area((void *)begin, (void *)end,
754 POISON_FREE_INITMEM, what);
755 }
e5b2bb55
PE
756}
757
18278229 758void __ref free_initmem(void)
e5b2bb55 759{
0c6fc11a 760 e820__reallocate_tables();
47533968 761
c88442ec 762 free_init_pages("unused kernel",
e5b2bb55
PE
763 (unsigned long)(&__init_begin),
764 (unsigned long)(&__init_end));
765}
731ddea6
PE
766
767#ifdef CONFIG_BLK_DEV_INITRD
0d26d1d8 768void __init free_initrd_mem(unsigned long start, unsigned long end)
731ddea6 769{
c967da6a
YL
770 /*
771 * end could be not aligned, and We can not align that,
772 * decompresser could be confused by aligned initrd_end
773 * We already reserve the end partial page before in
774 * - i386_start_kernel()
775 * - x86_64_start_kernel()
776 * - relocate_initrd()
777 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
778 */
c88442ec 779 free_init_pages("initrd", start, PAGE_ALIGN(end));
731ddea6
PE
780}
781#endif
17623915 782
4270fd8b
IM
783/*
784 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
785 * and pass it to the MM layer - to help it set zone watermarks more
786 * accurately.
787 *
788 * Done on 64-bit systems only for the time being, although 32-bit systems
789 * might benefit from this as well.
790 */
791void __init memblock_find_dma_reserve(void)
792{
793#ifdef CONFIG_X86_64
794 u64 nr_pages = 0, nr_free_pages = 0;
795 unsigned long start_pfn, end_pfn;
796 phys_addr_t start_addr, end_addr;
797 int i;
798 u64 u;
799
800 /*
801 * Iterate over all memory ranges (free and reserved ones alike),
802 * to calculate the total number of pages in the first 16 MB of RAM:
803 */
804 nr_pages = 0;
805 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
806 start_pfn = min(start_pfn, MAX_DMA_PFN);
807 end_pfn = min(end_pfn, MAX_DMA_PFN);
808
809 nr_pages += end_pfn - start_pfn;
810 }
811
812 /*
813 * Iterate over free memory ranges to calculate the number of free
814 * pages in the DMA zone, while not counting potential partial
815 * pages at the beginning or the end of the range:
816 */
817 nr_free_pages = 0;
818 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
819 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
820 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
821
822 if (start_pfn < end_pfn)
823 nr_free_pages += end_pfn - start_pfn;
824 }
825
826 set_dma_reserve(nr_pages - nr_free_pages);
827#endif
828}
829
17623915
PE
830void __init zone_sizes_init(void)
831{
832 unsigned long max_zone_pfns[MAX_NR_ZONES];
833
834 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
835
836#ifdef CONFIG_ZONE_DMA
c072b90c 837 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
17623915
PE
838#endif
839#ifdef CONFIG_ZONE_DMA32
c072b90c 840 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
17623915
PE
841#endif
842 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
843#ifdef CONFIG_HIGHMEM
844 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
845#endif
846
847 free_area_init_nodes(max_zone_pfns);
848}
849
1e02ce4c 850DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
3d28ebce 851 .loaded_mm = &init_mm,
10af6235 852 .next_asid = 1,
1e02ce4c
AL
853 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
854};
855EXPORT_SYMBOL_GPL(cpu_tlbstate);
856
bd809af1
JG
857void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
858{
859 /* entry 0 MUST be WB (hardwired to speed up translations) */
860 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
861
862 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
863 __pte2cachemode_tbl[entry] = cache;
864}