]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/mm/ioremap.c
mm: introduce include/linux/pgtable.h
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / ioremap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
57c8a661 10#include <linux/memblock.h>
1da177e4 11#include <linux/init.h>
a148ecfd 12#include <linux/io.h>
9de94dbb 13#include <linux/ioport.h>
3cbd09e4
TG
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
d61fc448 16#include <linux/mmiotrace.h>
8f716c9b
TL
17#include <linux/mem_encrypt.h>
18#include <linux/efi.h>
3cbd09e4 19
d1163651 20#include <asm/set_memory.h>
66441bd3 21#include <asm/e820/api.h>
e55f31a5 22#include <asm/efi.h>
3cbd09e4 23#include <asm/fixmap.h>
ca5999fd 24#include <linux/pgtable.h>
3cbd09e4 25#include <asm/tlbflush.h>
f6df72e7 26#include <asm/pgalloc.h>
eb243d1d 27#include <asm/memtype.h>
8f716c9b 28#include <asm/setup.h>
1da177e4 29
78c86e5e 30#include "physaddr.h"
240d3a7c 31
5da04cc8
LJ
32/*
33 * Descriptor controlling ioremap() behavior.
34 */
35struct ioremap_desc {
36 unsigned int flags;
0e4c12b4
TL
37};
38
e9332cac
TG
39/*
40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
41 * conflicts.
42 */
3a96ce8c 43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
b14097bd 44 enum page_cache_mode pcm)
e9332cac 45{
d806e5ee 46 unsigned long nrpages = size >> PAGE_SHIFT;
93809be8 47 int err;
e9332cac 48
b14097bd
JG
49 switch (pcm) {
50 case _PAGE_CACHE_MODE_UC:
d806e5ee 51 default:
1219333d 52 err = _set_memory_uc(vaddr, nrpages);
d806e5ee 53 break;
b14097bd 54 case _PAGE_CACHE_MODE_WC:
b310f381 55 err = _set_memory_wc(vaddr, nrpages);
56 break;
623dffb2
TK
57 case _PAGE_CACHE_MODE_WT:
58 err = _set_memory_wt(vaddr, nrpages);
59 break;
b14097bd 60 case _PAGE_CACHE_MODE_WB:
1219333d 61 err = _set_memory_wb(vaddr, nrpages);
d806e5ee
TG
62 break;
63 }
e9332cac
TG
64
65 return err;
66}
67
5da04cc8
LJ
68/* Does the range (or a subset of) contain normal RAM? */
69static unsigned int __ioremap_check_ram(struct resource *res)
c81c8a1e 70{
0e4c12b4 71 unsigned long start_pfn, stop_pfn;
c81c8a1e
RD
72 unsigned long i;
73
0e4c12b4 74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
5da04cc8 75 return 0;
0e4c12b4
TL
76
77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 if (stop_pfn > start_pfn) {
80 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 if (pfn_valid(start_pfn + i) &&
82 !PageReserved(pfn_to_page(start_pfn + i)))
5da04cc8 83 return IORES_MAP_SYSTEM_RAM;
0e4c12b4
TL
84 }
85
5da04cc8 86 return 0;
0e4c12b4
TL
87}
88
5da04cc8
LJ
89/*
90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91 * there the whole memory is already encrypted.
92 */
93static unsigned int __ioremap_check_encrypted(struct resource *res)
0e4c12b4 94{
5da04cc8
LJ
95 if (!sev_active())
96 return 0;
97
98 switch (res->desc) {
99 case IORES_DESC_NONE:
100 case IORES_DESC_RESERVED:
101 break;
102 default:
103 return IORES_MAP_ENCRYPTED;
104 }
105
106 return 0;
0e4c12b4
TL
107}
108
985e537a
TL
109/*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
113static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114{
115 if (!sev_active())
116 return;
117
870b4333
BP
118 if (!IS_ENABLED(CONFIG_EFI))
119 return;
120
985e537a
TL
121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA)
122 desc->flags |= IORES_MAP_ENCRYPTED;
123}
124
5da04cc8 125static int __ioremap_collect_map_flags(struct resource *res, void *arg)
0e4c12b4 126{
5da04cc8 127 struct ioremap_desc *desc = arg;
0e4c12b4 128
5da04cc8
LJ
129 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
130 desc->flags |= __ioremap_check_ram(res);
0e4c12b4 131
5da04cc8
LJ
132 if (!(desc->flags & IORES_MAP_ENCRYPTED))
133 desc->flags |= __ioremap_check_encrypted(res);
c81c8a1e 134
5da04cc8
LJ
135 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
136 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
0e4c12b4
TL
137}
138
139/*
140 * To avoid multiple resource walks, this function walks resources marked as
141 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
142 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
985e537a
TL
143 *
144 * After that, deal with misc other ranges in __ioremap_check_other() which do
145 * not fall into the above category.
0e4c12b4
TL
146 */
147static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
5da04cc8 148 struct ioremap_desc *desc)
0e4c12b4
TL
149{
150 u64 start, end;
151
152 start = (u64)addr;
153 end = start + size - 1;
5da04cc8 154 memset(desc, 0, sizeof(struct ioremap_desc));
0e4c12b4 155
5da04cc8 156 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
985e537a
TL
157
158 __ioremap_check_other(addr, desc);
c81c8a1e
RD
159}
160
1da177e4
LT
161/*
162 * Remap an arbitrary physical address space into the kernel virtual
5d72b4fb
TK
163 * address space. It transparently creates kernel huge I/O mapping when
164 * the physical address is aligned by a huge page size (1GB or 2MB) and
165 * the requested size is at least the huge page size.
166 *
167 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
168 * Therefore, the mapping code falls back to use a smaller page toward 4KB
169 * when a mapping range is covered by non-WB type of MTRRs.
1da177e4
LT
170 *
171 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
172 * have to convert them into an offset in a page-aligned mapping, but the
173 * caller shouldn't need to know that small detail.
174 */
5da04cc8
LJ
175static void __iomem *
176__ioremap_caller(resource_size_t phys_addr, unsigned long size,
177 enum page_cache_mode pcm, void *caller, bool encrypted)
1da177e4 178{
ffa71f33 179 unsigned long offset, vaddr;
0e4c12b4 180 resource_size_t last_addr;
87e547fe
PP
181 const resource_size_t unaligned_phys_addr = phys_addr;
182 const unsigned long unaligned_size = size;
5da04cc8 183 struct ioremap_desc io_desc;
91eebf40 184 struct vm_struct *area;
b14097bd 185 enum page_cache_mode new_pcm;
d806e5ee 186 pgprot_t prot;
dee7cbb2 187 int retval;
d61fc448 188 void __iomem *ret_addr;
1da177e4
LT
189
190 /* Don't allow wraparound or zero size */
191 last_addr = phys_addr + size - 1;
192 if (!size || last_addr < phys_addr)
193 return NULL;
194
e3100c82 195 if (!phys_addr_valid(phys_addr)) {
6997ab49 196 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
4c8337ac 197 (unsigned long long)phys_addr);
e3100c82
TG
198 WARN_ON_ONCE(1);
199 return NULL;
200 }
201
5da04cc8 202 __ioremap_check_mem(phys_addr, size, &io_desc);
0e4c12b4 203
1da177e4
LT
204 /*
205 * Don't allow anybody to remap normal RAM that we're using..
206 */
5da04cc8 207 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
8a0a5da6
TG
208 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
209 &phys_addr, &last_addr);
9a58eebe 210 return NULL;
906e36c5 211 }
9a58eebe 212
d7677d40 213 /*
214 * Mappings have to be page-aligned
215 */
216 offset = phys_addr & ~PAGE_MASK;
ffa71f33 217 phys_addr &= PHYSICAL_PAGE_MASK;
d7677d40 218 size = PAGE_ALIGN(last_addr+1) - phys_addr;
219
ecdd6ee7 220 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
e00c8cc9 221 pcm, &new_pcm);
dee7cbb2 222 if (retval) {
ecdd6ee7 223 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
dee7cbb2
VP
224 return NULL;
225 }
226
b14097bd
JG
227 if (pcm != new_pcm) {
228 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
279e669b 229 printk(KERN_ERR
b14097bd 230 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
4c8337ac
RD
231 (unsigned long long)phys_addr,
232 (unsigned long long)(phys_addr + size),
b14097bd 233 pcm, new_pcm);
de2a47cf 234 goto err_free_memtype;
d7677d40 235 }
b14097bd 236 pcm = new_pcm;
d7677d40 237 }
238
0e4c12b4
TL
239 /*
240 * If the page being mapped is in memory and SEV is active then
241 * make sure the memory encryption attribute is enabled in the
242 * resulting mapping.
243 */
b14097bd 244 prot = PAGE_KERNEL_IO;
5da04cc8 245 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
0e4c12b4
TL
246 prot = pgprot_encrypted(prot);
247
b14097bd
JG
248 switch (pcm) {
249 case _PAGE_CACHE_MODE_UC:
d806e5ee 250 default:
b14097bd
JG
251 prot = __pgprot(pgprot_val(prot) |
252 cachemode2protval(_PAGE_CACHE_MODE_UC));
d806e5ee 253 break;
b14097bd
JG
254 case _PAGE_CACHE_MODE_UC_MINUS:
255 prot = __pgprot(pgprot_val(prot) |
256 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
de33c442 257 break;
b14097bd
JG
258 case _PAGE_CACHE_MODE_WC:
259 prot = __pgprot(pgprot_val(prot) |
260 cachemode2protval(_PAGE_CACHE_MODE_WC));
b310f381 261 break;
d838270e
TK
262 case _PAGE_CACHE_MODE_WT:
263 prot = __pgprot(pgprot_val(prot) |
264 cachemode2protval(_PAGE_CACHE_MODE_WT));
265 break;
b14097bd 266 case _PAGE_CACHE_MODE_WB:
d806e5ee
TG
267 break;
268 }
a148ecfd 269
1da177e4
LT
270 /*
271 * Ok, go for it..
272 */
23016969 273 area = get_vm_area_caller(size, VM_IOREMAP, caller);
1da177e4 274 if (!area)
de2a47cf 275 goto err_free_memtype;
1da177e4 276 area->phys_addr = phys_addr;
e66aadbe 277 vaddr = (unsigned long) area->addr;
43a432b1 278
ecdd6ee7 279 if (memtype_kernel_map_sync(phys_addr, size, pcm))
de2a47cf 280 goto err_free_area;
e9332cac 281
de2a47cf
XF
282 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
283 goto err_free_area;
e9332cac 284
d61fc448 285 ret_addr = (void __iomem *) (vaddr + offset);
87e547fe 286 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
d61fc448 287
c7a7b814
TG
288 /*
289 * Check if the request spans more than any BAR in the iomem resource
290 * tree.
291 */
9abb0ecd
LA
292 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
293 pr_warn("caller %pS mapping multiple BARs\n", caller);
c7a7b814 294
d61fc448 295 return ret_addr;
de2a47cf
XF
296err_free_area:
297 free_vm_area(area);
298err_free_memtype:
ecdd6ee7 299 memtype_free(phys_addr, phys_addr + size);
de2a47cf 300 return NULL;
1da177e4 301}
1da177e4
LT
302
303/**
c0d94aa5 304 * ioremap - map bus memory into CPU space
9efc31b8 305 * @phys_addr: bus address of the memory
1da177e4
LT
306 * @size: size of the resource to map
307 *
c0d94aa5 308 * ioremap performs a platform specific sequence of operations to
1da177e4
LT
309 * make bus memory CPU accessible via the readb/readw/readl/writeb/
310 * writew/writel functions and the other mmio helpers. The returned
311 * address is not guaranteed to be usable directly as a virtual
91eebf40 312 * address.
1da177e4
LT
313 *
314 * This version of ioremap ensures that the memory is marked uncachable
315 * on the CPU as well as honouring existing caching rules from things like
91eebf40 316 * the PCI bus. Note that there are other caches and buffers on many
1da177e4
LT
317 * busses. In particular driver authors should read up on PCI writes
318 *
319 * It's useful if some control registers are in such an area and
320 * write combining or read caching is not desirable:
91eebf40 321 *
1da177e4
LT
322 * Must be freed with iounmap.
323 */
c0d94aa5 324void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
1da177e4 325{
de33c442
SS
326 /*
327 * Ideally, this should be:
cb32edf6 328 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
de33c442
SS
329 *
330 * Till we fix all X drivers to use ioremap_wc(), we will use
e4b6be33
LR
331 * UC MINUS. Drivers that are certain they need or can already
332 * be converted over to strong UC can use ioremap_uc().
de33c442 333 */
b14097bd 334 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
de33c442 335
b14097bd 336 return __ioremap_caller(phys_addr, size, pcm,
c3a7a61c 337 __builtin_return_address(0), false);
1da177e4 338}
c0d94aa5 339EXPORT_SYMBOL(ioremap);
1da177e4 340
e4b6be33
LR
341/**
342 * ioremap_uc - map bus memory into CPU space as strongly uncachable
343 * @phys_addr: bus address of the memory
344 * @size: size of the resource to map
345 *
346 * ioremap_uc performs a platform specific sequence of operations to
347 * make bus memory CPU accessible via the readb/readw/readl/writeb/
348 * writew/writel functions and the other mmio helpers. The returned
349 * address is not guaranteed to be usable directly as a virtual
350 * address.
351 *
352 * This version of ioremap ensures that the memory is marked with a strong
353 * preference as completely uncachable on the CPU when possible. For non-PAT
354 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
355 * systems this will set the PAT entry for the pages as strong UC. This call
356 * will honor existing caching rules from things like the PCI bus. Note that
357 * there are other caches and buffers on many busses. In particular driver
358 * authors should read up on PCI writes.
359 *
360 * It's useful if some control registers are in such an area and
361 * write combining or read caching is not desirable:
362 *
363 * Must be freed with iounmap.
364 */
365void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
366{
367 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
368
369 return __ioremap_caller(phys_addr, size, pcm,
c3a7a61c 370 __builtin_return_address(0), false);
e4b6be33
LR
371}
372EXPORT_SYMBOL_GPL(ioremap_uc);
373
b310f381 374/**
375 * ioremap_wc - map memory into CPU space write combined
9efc31b8 376 * @phys_addr: bus address of the memory
b310f381 377 * @size: size of the resource to map
378 *
379 * This version of ioremap ensures that the memory is marked write combining.
380 * Write combining allows faster writes to some hardware devices.
381 *
382 * Must be freed with iounmap.
383 */
d639bab8 384void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
b310f381 385{
7202fdb1 386 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
c3a7a61c 387 __builtin_return_address(0), false);
b310f381 388}
389EXPORT_SYMBOL(ioremap_wc);
390
d838270e
TK
391/**
392 * ioremap_wt - map memory into CPU space write through
393 * @phys_addr: bus address of the memory
394 * @size: size of the resource to map
395 *
396 * This version of ioremap ensures that the memory is marked write through.
397 * Write through stores data into memory while keeping the cache up-to-date.
398 *
399 * Must be freed with iounmap.
400 */
401void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
402{
403 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
c3a7a61c 404 __builtin_return_address(0), false);
d838270e
TK
405}
406EXPORT_SYMBOL(ioremap_wt);
407
c3a7a61c
LJ
408void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
409{
410 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
411 __builtin_return_address(0), true);
412}
413EXPORT_SYMBOL(ioremap_encrypted);
414
b9e76a00 415void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
5f868152 416{
b14097bd 417 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
c3a7a61c 418 __builtin_return_address(0), false);
5f868152
TG
419}
420EXPORT_SYMBOL(ioremap_cache);
421
28b2ee20
RR
422void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
423 unsigned long prot_val)
424{
b14097bd
JG
425 return __ioremap_caller(phys_addr, size,
426 pgprot2cachemode(__pgprot(prot_val)),
c3a7a61c 427 __builtin_return_address(0), false);
28b2ee20
RR
428}
429EXPORT_SYMBOL(ioremap_prot);
430
bf5421c3
AK
431/**
432 * iounmap - Free a IO remapping
433 * @addr: virtual address from ioremap_*
434 *
435 * Caller must ensure there is only one unmapping for the same pointer.
436 */
1da177e4
LT
437void iounmap(volatile void __iomem *addr)
438{
bf5421c3 439 struct vm_struct *p, *o;
c23a4e96
AM
440
441 if ((void __force *)addr <= high_memory)
1da177e4
LT
442 return;
443
444 /*
33c2b803
TL
445 * The PCI/ISA range special-casing was removed from __ioremap()
446 * so this check, in theory, can be removed. However, there are
447 * cases where iounmap() is called for addresses not obtained via
448 * ioremap() (vga16fb for example). Add a warning so that these
449 * cases can be caught and fixed.
1da177e4 450 */
6e92a5a6 451 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
33c2b803
TL
452 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
453 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
1da177e4 454 return;
33c2b803 455 }
1da177e4 456
6d60ce38
KH
457 mmiotrace_iounmap(addr);
458
91eebf40
TG
459 addr = (volatile void __iomem *)
460 (PAGE_MASK & (unsigned long __force)addr);
bf5421c3
AK
461
462 /* Use the vm area unlocked, assuming the caller
463 ensures there isn't another iounmap for the same address
464 in parallel. Reuse of the virtual address is prevented by
465 leaving it in the global lists until we're done with it.
466 cpa takes care of the direct mappings. */
ef932473 467 p = find_vm_area((void __force *)addr);
bf5421c3
AK
468
469 if (!p) {
91eebf40 470 printk(KERN_ERR "iounmap: bad address %p\n", addr);
c23a4e96 471 dump_stack();
bf5421c3 472 return;
1da177e4
LT
473 }
474
ecdd6ee7 475 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
d7677d40 476
bf5421c3 477 /* Finally remove it */
6e92a5a6 478 o = remove_vm_area((void __force *)addr);
bf5421c3 479 BUG_ON(p != o || o == NULL);
91eebf40 480 kfree(p);
1da177e4 481}
129f6946 482EXPORT_SYMBOL(iounmap);
1da177e4 483
0f472d04
AK
484int __init arch_ioremap_p4d_supported(void)
485{
486 return 0;
487}
488
1e6277de 489int __init arch_ioremap_pud_supported(void)
5d72b4fb
TK
490{
491#ifdef CONFIG_X86_64
b8291adc 492 return boot_cpu_has(X86_FEATURE_GBPAGES);
5d72b4fb
TK
493#else
494 return 0;
495#endif
496}
497
1e6277de 498int __init arch_ioremap_pmd_supported(void)
5d72b4fb 499{
16bf9226 500 return boot_cpu_has(X86_FEATURE_PSE);
5d72b4fb
TK
501}
502
e045fb2a 503/*
504 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
505 * access
506 */
4707a341 507void *xlate_dev_mem_ptr(phys_addr_t phys)
e045fb2a 508{
94d4b476
IM
509 unsigned long start = phys & PAGE_MASK;
510 unsigned long offset = phys & ~PAGE_MASK;
562bfca4 511 void *vaddr;
e045fb2a 512
8458bf94
TL
513 /* memremap() maps if RAM, otherwise falls back to ioremap() */
514 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
e045fb2a 515
8458bf94 516 /* Only add the offset on success and return NULL if memremap() failed */
94d4b476
IM
517 if (vaddr)
518 vaddr += offset;
e045fb2a 519
562bfca4 520 return vaddr;
e045fb2a 521}
522
4707a341 523void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
e045fb2a 524{
8458bf94 525 memunmap((void *)((unsigned long)addr & PAGE_MASK));
e045fb2a 526}
527
8f716c9b
TL
528/*
529 * Examine the physical address to determine if it is an area of memory
530 * that should be mapped decrypted. If the memory is not part of the
531 * kernel usable area it was accessed and created decrypted, so these
1de32862
TL
532 * areas should be mapped decrypted. And since the encryption key can
533 * change across reboots, persistent memory should also be mapped
534 * decrypted.
072f58c6
TL
535 *
536 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
537 * only persistent memory should be mapped decrypted.
8f716c9b
TL
538 */
539static bool memremap_should_map_decrypted(resource_size_t phys_addr,
540 unsigned long size)
541{
1de32862
TL
542 int is_pmem;
543
544 /*
545 * Check if the address is part of a persistent memory region.
546 * This check covers areas added by E820, EFI and ACPI.
547 */
548 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
549 IORES_DESC_PERSISTENT_MEMORY);
550 if (is_pmem != REGION_DISJOINT)
551 return true;
552
553 /*
554 * Check if the non-volatile attribute is set for an EFI
555 * reserved area.
556 */
557 if (efi_enabled(EFI_BOOT)) {
558 switch (efi_mem_type(phys_addr)) {
559 case EFI_RESERVED_TYPE:
560 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
561 return true;
562 break;
563 default:
564 break;
565 }
566 }
567
8f716c9b
TL
568 /* Check if the address is outside kernel usable area */
569 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
570 case E820_TYPE_RESERVED:
571 case E820_TYPE_ACPI:
572 case E820_TYPE_NVS:
573 case E820_TYPE_UNUSABLE:
072f58c6
TL
574 /* For SEV, these areas are encrypted */
575 if (sev_active())
576 break;
577 /* Fallthrough */
578
1de32862 579 case E820_TYPE_PRAM:
8f716c9b
TL
580 return true;
581 default:
582 break;
583 }
584
585 return false;
586}
587
588/*
589 * Examine the physical address to determine if it is EFI data. Check
590 * it against the boot params structure and EFI tables and memory types.
591 */
592static bool memremap_is_efi_data(resource_size_t phys_addr,
593 unsigned long size)
594{
595 u64 paddr;
596
597 /* Check if the address is part of EFI boot/runtime data */
598 if (!efi_enabled(EFI_BOOT))
599 return false;
600
601 paddr = boot_params.efi_info.efi_memmap_hi;
602 paddr <<= 32;
603 paddr |= boot_params.efi_info.efi_memmap;
604 if (phys_addr == paddr)
605 return true;
606
607 paddr = boot_params.efi_info.efi_systab_hi;
608 paddr <<= 32;
609 paddr |= boot_params.efi_info.efi_systab;
610 if (phys_addr == paddr)
611 return true;
612
613 if (efi_is_table_address(phys_addr))
614 return true;
615
616 switch (efi_mem_type(phys_addr)) {
617 case EFI_BOOT_SERVICES_DATA:
618 case EFI_RUNTIME_SERVICES_DATA:
619 return true;
620 default:
621 break;
622 }
623
624 return false;
625}
626
627/*
628 * Examine the physical address to determine if it is boot data by checking
629 * it against the boot params setup_data chain.
630 */
631static bool memremap_is_setup_data(resource_size_t phys_addr,
632 unsigned long size)
633{
634 struct setup_data *data;
635 u64 paddr, paddr_next;
636
637 paddr = boot_params.hdr.setup_data;
638 while (paddr) {
639 unsigned int len;
640
641 if (phys_addr == paddr)
642 return true;
643
644 data = memremap(paddr, sizeof(*data),
645 MEMREMAP_WB | MEMREMAP_DEC);
646
647 paddr_next = data->next;
648 len = data->len;
649
b3c72fc9
DK
650 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
651 memunmap(data);
652 return true;
653 }
654
655 if (data->type == SETUP_INDIRECT &&
656 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
657 paddr = ((struct setup_indirect *)data->data)->addr;
658 len = ((struct setup_indirect *)data->data)->len;
659 }
660
8f716c9b
TL
661 memunmap(data);
662
663 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
664 return true;
665
666 paddr = paddr_next;
667 }
668
669 return false;
670}
671
672/*
673 * Examine the physical address to determine if it is boot data by checking
674 * it against the boot params setup_data chain (early boot version).
675 */
676static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
677 unsigned long size)
678{
679 struct setup_data *data;
680 u64 paddr, paddr_next;
681
682 paddr = boot_params.hdr.setup_data;
683 while (paddr) {
684 unsigned int len;
685
686 if (phys_addr == paddr)
687 return true;
688
689 data = early_memremap_decrypted(paddr, sizeof(*data));
690
691 paddr_next = data->next;
692 len = data->len;
693
694 early_memunmap(data, sizeof(*data));
695
696 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
697 return true;
698
699 paddr = paddr_next;
700 }
701
702 return false;
703}
704
705/*
706 * Architecture function to determine if RAM remap is allowed. By default, a
707 * RAM remap will map the data as encrypted. Determine if a RAM remap should
708 * not be done so that the data will be mapped decrypted.
709 */
710bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
711 unsigned long flags)
712{
072f58c6 713 if (!mem_encrypt_active())
8f716c9b
TL
714 return true;
715
716 if (flags & MEMREMAP_ENC)
717 return true;
718
719 if (flags & MEMREMAP_DEC)
720 return false;
721
072f58c6
TL
722 if (sme_active()) {
723 if (memremap_is_setup_data(phys_addr, size) ||
724 memremap_is_efi_data(phys_addr, size))
725 return false;
726 }
8f716c9b 727
072f58c6 728 return !memremap_should_map_decrypted(phys_addr, size);
8f716c9b
TL
729}
730
731/*
732 * Architecture override of __weak function to adjust the protection attributes
733 * used when remapping memory. By default, early_memremap() will map the data
734 * as encrypted. Determine if an encrypted mapping should not be done and set
735 * the appropriate protection attributes.
736 */
737pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
738 unsigned long size,
739 pgprot_t prot)
740{
072f58c6
TL
741 bool encrypted_prot;
742
743 if (!mem_encrypt_active())
8f716c9b
TL
744 return prot;
745
072f58c6
TL
746 encrypted_prot = true;
747
748 if (sme_active()) {
749 if (early_memremap_is_setup_data(phys_addr, size) ||
750 memremap_is_efi_data(phys_addr, size))
751 encrypted_prot = false;
752 }
753
754 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
755 encrypted_prot = false;
8f716c9b 756
072f58c6
TL
757 return encrypted_prot ? pgprot_encrypted(prot)
758 : pgprot_decrypted(prot);
8f716c9b
TL
759}
760
8458bf94
TL
761bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
762{
763 return arch_memremap_can_ram_remap(phys_addr, size, 0);
764}
765
ce9084ba 766#ifdef CONFIG_AMD_MEM_ENCRYPT
f88a68fa
TL
767/* Remap memory with encryption */
768void __init *early_memremap_encrypted(resource_size_t phys_addr,
769 unsigned long size)
770{
771 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
772}
773
774/*
775 * Remap memory with encryption and write-protected - cannot be called
776 * before pat_init() is called
777 */
778void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
779 unsigned long size)
780{
1f6f655e 781 if (!x86_has_pat_wp())
f88a68fa 782 return NULL;
f88a68fa
TL
783 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
784}
785
786/* Remap memory without encryption */
787void __init *early_memremap_decrypted(resource_size_t phys_addr,
788 unsigned long size)
789{
790 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
791}
792
793/*
794 * Remap memory without encryption and write-protected - cannot be called
795 * before pat_init() is called
796 */
797void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
798 unsigned long size)
799{
1f6f655e 800 if (!x86_has_pat_wp())
f88a68fa 801 return NULL;
f88a68fa
TL
802 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
803}
ce9084ba 804#endif /* CONFIG_AMD_MEM_ENCRYPT */
f88a68fa 805
45c7b28f 806static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
0947b2f3 807
551889a6 808static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
0947b2f3 809{
37cc8d7f 810 /* Don't assume we're using swapper_pg_dir at this point */
6c690ee1 811 pgd_t *base = __va(read_cr3_pa());
37cc8d7f 812 pgd_t *pgd = &base[pgd_index(addr)];
e0c4f675
KS
813 p4d_t *p4d = p4d_offset(pgd, addr);
814 pud_t *pud = pud_offset(p4d, addr);
551889a6
IC
815 pmd_t *pmd = pmd_offset(pud, addr);
816
817 return pmd;
0947b2f3
HY
818}
819
551889a6 820static inline pte_t * __init early_ioremap_pte(unsigned long addr)
0947b2f3 821{
551889a6 822 return &bm_pte[pte_index(addr)];
0947b2f3
HY
823}
824
fef5ba79
JF
825bool __init is_early_ioremap_ptep(pte_t *ptep)
826{
827 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
828}
829
beacfaac 830void __init early_ioremap_init(void)
0947b2f3 831{
551889a6 832 pmd_t *pmd;
0947b2f3 833
73159fdc
AL
834#ifdef CONFIG_X86_64
835 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
836#else
837 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
838#endif
839
5b7c73e0 840 early_ioremap_setup();
8827247f 841
551889a6 842 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
45c7b28f
JF
843 memset(bm_pte, 0, sizeof(bm_pte));
844 pmd_populate_kernel(&init_mm, pmd, bm_pte);
551889a6 845
0e3a9549 846 /*
551889a6 847 * The boot-ioremap range spans multiple pmds, for which
0e3a9549
IM
848 * we are not prepared:
849 */
499a5f1e
JB
850#define __FIXADDR_TOP (-PAGE_SIZE)
851 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
852 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
853#undef __FIXADDR_TOP
551889a6 854 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
0e3a9549 855 WARN_ON(1);
551889a6
IC
856 printk(KERN_WARNING "pmd %p != %p\n",
857 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
91eebf40 858 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
551889a6 859 fix_to_virt(FIX_BTMAP_BEGIN));
91eebf40 860 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
551889a6 861 fix_to_virt(FIX_BTMAP_END));
91eebf40
TG
862
863 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
864 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
865 FIX_BTMAP_BEGIN);
0e3a9549 866 }
0947b2f3
HY
867}
868
5b7c73e0
MS
869void __init __early_set_fixmap(enum fixed_addresses idx,
870 phys_addr_t phys, pgprot_t flags)
0947b2f3 871{
551889a6
IC
872 unsigned long addr = __fix_to_virt(idx);
873 pte_t *pte;
0947b2f3
HY
874
875 if (idx >= __end_of_fixed_addresses) {
876 BUG();
877 return;
878 }
beacfaac 879 pte = early_ioremap_pte(addr);
4583ed51 880
fb43d6cb 881 /* Sanitize 'prot' against any unsupported bits: */
510bb96f 882 pgprot_val(flags) &= __supported_pte_mask;
fb43d6cb 883
0947b2f3 884 if (pgprot_val(flags))
551889a6 885 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
0947b2f3 886 else
4f9c11dd 887 pte_clear(&init_mm, addr, pte);
58430c5d 888 flush_tlb_one_kernel(addr);
0947b2f3 889}