]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/mm/mem_encrypt.c
x86/mm: Add support to encrypt the kernel in-place
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / mem_encrypt.c
CommitLineData
7744ccdb
TL
1/*
2 * AMD Memory Encryption Support
3 *
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/linkage.h>
5868f365 14#include <linux/init.h>
21729f81 15#include <linux/mm.h>
c7753208
TL
16#include <linux/dma-mapping.h>
17#include <linux/swiotlb.h>
7744ccdb 18
7f8b7e7f
TL
19#include <asm/tlbflush.h>
20#include <asm/fixmap.h>
b9d05200
TL
21#include <asm/setup.h>
22#include <asm/bootparam.h>
c7753208 23#include <asm/set_memory.h>
6ebcb060
TL
24#include <asm/cacheflush.h>
25#include <asm/sections.h>
7f8b7e7f 26
7744ccdb
TL
27/*
28 * Since SME related variables are set early in the boot process they must
29 * reside in the .data section so as not to be zeroed out when the .bss
30 * section is later cleared.
31 */
32unsigned long sme_me_mask __section(.data) = 0;
33EXPORT_SYMBOL_GPL(sme_me_mask);
5868f365 34
7f8b7e7f
TL
35/* Buffer used for early in-place encryption by BSP, no locking needed */
36static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
37
38/*
39 * This routine does not change the underlying encryption setting of the
40 * page(s) that map this memory. It assumes that eventually the memory is
41 * meant to be accessed as either encrypted or decrypted but the contents
42 * are currently not in the desired state.
43 *
44 * This routine follows the steps outlined in the AMD64 Architecture
45 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
46 */
47static void __init __sme_early_enc_dec(resource_size_t paddr,
48 unsigned long size, bool enc)
49{
50 void *src, *dst;
51 size_t len;
52
53 if (!sme_me_mask)
54 return;
55
56 local_flush_tlb();
57 wbinvd();
58
59 /*
60 * There are limited number of early mapping slots, so map (at most)
61 * one page at time.
62 */
63 while (size) {
64 len = min_t(size_t, sizeof(sme_early_buffer), size);
65
66 /*
67 * Create mappings for the current and desired format of
68 * the memory. Use a write-protected mapping for the source.
69 */
70 src = enc ? early_memremap_decrypted_wp(paddr, len) :
71 early_memremap_encrypted_wp(paddr, len);
72
73 dst = enc ? early_memremap_encrypted(paddr, len) :
74 early_memremap_decrypted(paddr, len);
75
76 /*
77 * If a mapping can't be obtained to perform the operation,
78 * then eventual access of that area in the desired mode
79 * will cause a crash.
80 */
81 BUG_ON(!src || !dst);
82
83 /*
84 * Use a temporary buffer, of cache-line multiple size, to
85 * avoid data corruption as documented in the APM.
86 */
87 memcpy(sme_early_buffer, src, len);
88 memcpy(dst, sme_early_buffer, len);
89
90 early_memunmap(dst, len);
91 early_memunmap(src, len);
92
93 paddr += len;
94 size -= len;
95 }
96}
97
98void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
99{
100 __sme_early_enc_dec(paddr, size, true);
101}
102
103void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
104{
105 __sme_early_enc_dec(paddr, size, false);
106}
107
b9d05200
TL
108static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
109 bool map)
110{
111 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
112 pmdval_t pmd_flags, pmd;
113
114 /* Use early_pmd_flags but remove the encryption mask */
115 pmd_flags = __sme_clr(early_pmd_flags);
116
117 do {
118 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
119 __early_make_pgtable((unsigned long)vaddr, pmd);
120
121 vaddr += PMD_SIZE;
122 paddr += PMD_SIZE;
123 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
124 } while (size);
125
126 __native_flush_tlb();
127}
128
129void __init sme_unmap_bootdata(char *real_mode_data)
130{
131 struct boot_params *boot_data;
132 unsigned long cmdline_paddr;
133
134 if (!sme_active())
135 return;
136
137 /* Get the command line address before unmapping the real_mode_data */
138 boot_data = (struct boot_params *)real_mode_data;
139 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
140
141 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
142
143 if (!cmdline_paddr)
144 return;
145
146 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
147}
148
149void __init sme_map_bootdata(char *real_mode_data)
150{
151 struct boot_params *boot_data;
152 unsigned long cmdline_paddr;
153
154 if (!sme_active())
155 return;
156
157 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
158
159 /* Get the command line address after mapping the real_mode_data */
160 boot_data = (struct boot_params *)real_mode_data;
161 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
162
163 if (!cmdline_paddr)
164 return;
165
166 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
167}
168
21729f81
TL
169void __init sme_early_init(void)
170{
171 unsigned int i;
172
173 if (!sme_me_mask)
174 return;
175
176 early_pmd_flags = __sme_set(early_pmd_flags);
177
178 __supported_pte_mask = __sme_set(__supported_pte_mask);
179
180 /* Update the protection map with memory encryption mask */
181 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
182 protection_map[i] = pgprot_encrypted(protection_map[i]);
183}
184
c7753208
TL
185/* Architecture __weak replacement functions */
186void __init mem_encrypt_init(void)
187{
188 if (!sme_me_mask)
189 return;
190
191 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
192 swiotlb_update_mem_attributes();
193}
194
195void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
196{
197 WARN(PAGE_ALIGN(size) != size,
198 "size is not page-aligned (%#lx)\n", size);
199
200 /* Make the SWIOTLB buffer area decrypted */
201 set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
202}
203
6ebcb060
TL
204static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
205 unsigned long end)
206{
207 unsigned long pgd_start, pgd_end, pgd_size;
208 pgd_t *pgd_p;
209
210 pgd_start = start & PGDIR_MASK;
211 pgd_end = end & PGDIR_MASK;
212
213 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
214 pgd_size *= sizeof(pgd_t);
215
216 pgd_p = pgd_base + pgd_index(start);
217
218 memset(pgd_p, 0, pgd_size);
219}
220
221#define PGD_FLAGS _KERNPG_TABLE_NOENC
222#define P4D_FLAGS _KERNPG_TABLE_NOENC
223#define PUD_FLAGS _KERNPG_TABLE_NOENC
224#define PMD_FLAGS (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
225
226static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
227 unsigned long vaddr, pmdval_t pmd_val)
228{
229 pgd_t *pgd_p;
230 p4d_t *p4d_p;
231 pud_t *pud_p;
232 pmd_t *pmd_p;
233
234 pgd_p = pgd_base + pgd_index(vaddr);
235 if (native_pgd_val(*pgd_p)) {
236 if (IS_ENABLED(CONFIG_X86_5LEVEL))
237 p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
238 else
239 pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
240 } else {
241 pgd_t pgd;
242
243 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
244 p4d_p = pgtable_area;
245 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
246 pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
247
248 pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
249 } else {
250 pud_p = pgtable_area;
251 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
252 pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
253
254 pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
255 }
256 native_set_pgd(pgd_p, pgd);
257 }
258
259 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
260 p4d_p += p4d_index(vaddr);
261 if (native_p4d_val(*p4d_p)) {
262 pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
263 } else {
264 p4d_t p4d;
265
266 pud_p = pgtable_area;
267 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
268 pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
269
270 p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
271 native_set_p4d(p4d_p, p4d);
272 }
273 }
274
275 pud_p += pud_index(vaddr);
276 if (native_pud_val(*pud_p)) {
277 if (native_pud_val(*pud_p) & _PAGE_PSE)
278 goto out;
279
280 pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
281 } else {
282 pud_t pud;
283
284 pmd_p = pgtable_area;
285 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
286 pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
287
288 pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
289 native_set_pud(pud_p, pud);
290 }
291
292 pmd_p += pmd_index(vaddr);
293 if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
294 native_set_pmd(pmd_p, native_make_pmd(pmd_val));
295
296out:
297 return pgtable_area;
298}
299
300static unsigned long __init sme_pgtable_calc(unsigned long len)
301{
302 unsigned long p4d_size, pud_size, pmd_size;
303 unsigned long total;
304
305 /*
306 * Perform a relatively simplistic calculation of the pagetable
307 * entries that are needed. That mappings will be covered by 2MB
308 * PMD entries so we can conservatively calculate the required
309 * number of P4D, PUD and PMD structures needed to perform the
310 * mappings. Incrementing the count for each covers the case where
311 * the addresses cross entries.
312 */
313 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
314 p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
315 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
316 pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
317 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
318 } else {
319 p4d_size = 0;
320 pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
321 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
322 }
323 pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
324 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
325
326 total = p4d_size + pud_size + pmd_size;
327
328 /*
329 * Now calculate the added pagetable structures needed to populate
330 * the new pagetables.
331 */
332 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
333 p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
334 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
335 pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
336 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
337 } else {
338 p4d_size = 0;
339 pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
340 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
341 }
342 pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
343 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
344
345 total += p4d_size + pud_size + pmd_size;
346
347 return total;
348}
349
5868f365
TL
350void __init sme_encrypt_kernel(void)
351{
6ebcb060
TL
352 unsigned long workarea_start, workarea_end, workarea_len;
353 unsigned long execute_start, execute_end, execute_len;
354 unsigned long kernel_start, kernel_end, kernel_len;
355 unsigned long pgtable_area_len;
356 unsigned long paddr, pmd_flags;
357 unsigned long decrypted_base;
358 void *pgtable_area;
359 pgd_t *pgd;
360
361 if (!sme_active())
362 return;
363
364 /*
365 * Prepare for encrypting the kernel by building new pagetables with
366 * the necessary attributes needed to encrypt the kernel in place.
367 *
368 * One range of virtual addresses will map the memory occupied
369 * by the kernel as encrypted.
370 *
371 * Another range of virtual addresses will map the memory occupied
372 * by the kernel as decrypted and write-protected.
373 *
374 * The use of write-protect attribute will prevent any of the
375 * memory from being cached.
376 */
377
378 /* Physical addresses gives us the identity mapped virtual addresses */
379 kernel_start = __pa_symbol(_text);
380 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
381 kernel_len = kernel_end - kernel_start;
382
383 /* Set the encryption workarea to be immediately after the kernel */
384 workarea_start = kernel_end;
385
386 /*
387 * Calculate required number of workarea bytes needed:
388 * executable encryption area size:
389 * stack page (PAGE_SIZE)
390 * encryption routine page (PAGE_SIZE)
391 * intermediate copy buffer (PMD_PAGE_SIZE)
392 * pagetable structures for the encryption of the kernel
393 * pagetable structures for workarea (in case not currently mapped)
394 */
395 execute_start = workarea_start;
396 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
397 execute_len = execute_end - execute_start;
398
399 /*
400 * One PGD for both encrypted and decrypted mappings and a set of
401 * PUDs and PMDs for each of the encrypted and decrypted mappings.
402 */
403 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
404 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
405
406 /* PUDs and PMDs needed in the current pagetables for the workarea */
407 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
408
409 /*
410 * The total workarea includes the executable encryption area and
411 * the pagetable area.
412 */
413 workarea_len = execute_len + pgtable_area_len;
414 workarea_end = workarea_start + workarea_len;
415
416 /*
417 * Set the address to the start of where newly created pagetable
418 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
419 * structures are created when the workarea is added to the current
420 * pagetables and when the new encrypted and decrypted kernel
421 * mappings are populated.
422 */
423 pgtable_area = (void *)execute_end;
424
425 /*
426 * Make sure the current pagetable structure has entries for
427 * addressing the workarea.
428 */
429 pgd = (pgd_t *)native_read_cr3_pa();
430 paddr = workarea_start;
431 while (paddr < workarea_end) {
432 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
433 paddr,
434 paddr + PMD_FLAGS);
435
436 paddr += PMD_PAGE_SIZE;
437 }
438
439 /* Flush the TLB - no globals so cr3 is enough */
440 native_write_cr3(__native_read_cr3());
441
442 /*
443 * A new pagetable structure is being built to allow for the kernel
444 * to be encrypted. It starts with an empty PGD that will then be
445 * populated with new PUDs and PMDs as the encrypted and decrypted
446 * kernel mappings are created.
447 */
448 pgd = pgtable_area;
449 memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
450 pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;
451
452 /* Add encrypted kernel (identity) mappings */
453 pmd_flags = PMD_FLAGS | _PAGE_ENC;
454 paddr = kernel_start;
455 while (paddr < kernel_end) {
456 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
457 paddr,
458 paddr + pmd_flags);
459
460 paddr += PMD_PAGE_SIZE;
461 }
462
463 /*
464 * A different PGD index/entry must be used to get different
465 * pagetable entries for the decrypted mapping. Choose the next
466 * PGD index and convert it to a virtual address to be used as
467 * the base of the mapping.
468 */
469 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
470 decrypted_base <<= PGDIR_SHIFT;
471
472 /* Add decrypted, write-protected kernel (non-identity) mappings */
473 pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
474 paddr = kernel_start;
475 while (paddr < kernel_end) {
476 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
477 paddr + decrypted_base,
478 paddr + pmd_flags);
479
480 paddr += PMD_PAGE_SIZE;
481 }
482
483 /* Add decrypted workarea mappings to both kernel mappings */
484 paddr = workarea_start;
485 while (paddr < workarea_end) {
486 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
487 paddr,
488 paddr + PMD_FLAGS);
489
490 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
491 paddr + decrypted_base,
492 paddr + PMD_FLAGS);
493
494 paddr += PMD_PAGE_SIZE;
495 }
496
497 /* Perform the encryption */
498 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
499 kernel_len, workarea_start, (unsigned long)pgd);
500
501 /*
502 * At this point we are running encrypted. Remove the mappings for
503 * the decrypted areas - all that is needed for this is to remove
504 * the PGD entry/entries.
505 */
506 sme_clear_pgd(pgd, kernel_start + decrypted_base,
507 kernel_end + decrypted_base);
508
509 sme_clear_pgd(pgd, workarea_start + decrypted_base,
510 workarea_end + decrypted_base);
511
512 /* Flush the TLB - no globals so cr3 is enough */
513 native_write_cr3(__native_read_cr3());
5868f365
TL
514}
515
516void __init sme_enable(void)
517{
518}