]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/mm/mpx.c
x86/fpu: Rename fpu-internal.h to fpu/internal.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / mpx.c
CommitLineData
57319d80
QR
1/*
2 * mpx.c - Memory Protection eXtensions
3 *
4 * Copyright (c) 2014, Intel Corporation.
5 * Qiaowei Ren <qiaowei.ren@intel.com>
6 * Dave Hansen <dave.hansen@intel.com>
7 */
8#include <linux/kernel.h>
fcc7ffd6 9#include <linux/slab.h>
57319d80
QR
10#include <linux/syscalls.h>
11#include <linux/sched/sysctl.h>
12
fe3d197f 13#include <asm/insn.h>
57319d80 14#include <asm/mman.h>
1de4fa14 15#include <asm/mmu_context.h>
57319d80 16#include <asm/mpx.h>
fe3d197f 17#include <asm/processor.h>
78f7f1e5 18#include <asm/fpu/internal.h>
57319d80
QR
19
20static const char *mpx_mapping_name(struct vm_area_struct *vma)
21{
22 return "[mpx]";
23}
24
25static struct vm_operations_struct mpx_vma_ops = {
26 .name = mpx_mapping_name,
27};
28
1de4fa14
DH
29static int is_mpx_vma(struct vm_area_struct *vma)
30{
31 return (vma->vm_ops == &mpx_vma_ops);
32}
33
57319d80
QR
34/*
35 * This is really a simplified "vm_mmap". it only handles MPX
36 * bounds tables (the bounds directory is user-allocated).
37 *
38 * Later on, we use the vma->vm_ops to uniquely identify these
39 * VMAs.
40 */
41static unsigned long mpx_mmap(unsigned long len)
42{
43 unsigned long ret;
44 unsigned long addr, pgoff;
45 struct mm_struct *mm = current->mm;
46 vm_flags_t vm_flags;
47 struct vm_area_struct *vma;
48
49 /* Only bounds table and bounds directory can be allocated here */
50 if (len != MPX_BD_SIZE_BYTES && len != MPX_BT_SIZE_BYTES)
51 return -EINVAL;
52
53 down_write(&mm->mmap_sem);
54
55 /* Too many mappings? */
56 if (mm->map_count > sysctl_max_map_count) {
57 ret = -ENOMEM;
58 goto out;
59 }
60
61 /* Obtain the address to map to. we verify (or select) it and ensure
62 * that it represents a valid section of the address space.
63 */
64 addr = get_unmapped_area(NULL, 0, len, 0, MAP_ANONYMOUS | MAP_PRIVATE);
65 if (addr & ~PAGE_MASK) {
66 ret = addr;
67 goto out;
68 }
69
70 vm_flags = VM_READ | VM_WRITE | VM_MPX |
71 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
72
73 /* Set pgoff according to addr for anon_vma */
74 pgoff = addr >> PAGE_SHIFT;
75
76 ret = mmap_region(NULL, addr, len, vm_flags, pgoff);
77 if (IS_ERR_VALUE(ret))
78 goto out;
79
80 vma = find_vma(mm, ret);
81 if (!vma) {
82 ret = -ENOMEM;
83 goto out;
84 }
85 vma->vm_ops = &mpx_vma_ops;
86
87 if (vm_flags & VM_LOCKED) {
88 up_write(&mm->mmap_sem);
89 mm_populate(ret, len);
90 return ret;
91 }
92
93out:
94 up_write(&mm->mmap_sem);
95 return ret;
96}
fcc7ffd6
DH
97
98enum reg_type {
99 REG_TYPE_RM = 0,
100 REG_TYPE_INDEX,
101 REG_TYPE_BASE,
102};
103
68c009c4
DH
104static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
105 enum reg_type type)
fcc7ffd6
DH
106{
107 int regno = 0;
108
109 static const int regoff[] = {
110 offsetof(struct pt_regs, ax),
111 offsetof(struct pt_regs, cx),
112 offsetof(struct pt_regs, dx),
113 offsetof(struct pt_regs, bx),
114 offsetof(struct pt_regs, sp),
115 offsetof(struct pt_regs, bp),
116 offsetof(struct pt_regs, si),
117 offsetof(struct pt_regs, di),
118#ifdef CONFIG_X86_64
119 offsetof(struct pt_regs, r8),
120 offsetof(struct pt_regs, r9),
121 offsetof(struct pt_regs, r10),
122 offsetof(struct pt_regs, r11),
123 offsetof(struct pt_regs, r12),
124 offsetof(struct pt_regs, r13),
125 offsetof(struct pt_regs, r14),
126 offsetof(struct pt_regs, r15),
127#endif
128 };
129 int nr_registers = ARRAY_SIZE(regoff);
130 /*
131 * Don't possibly decode a 32-bit instructions as
132 * reading a 64-bit-only register.
133 */
134 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
135 nr_registers -= 8;
136
137 switch (type) {
138 case REG_TYPE_RM:
139 regno = X86_MODRM_RM(insn->modrm.value);
140 if (X86_REX_B(insn->rex_prefix.value) == 1)
141 regno += 8;
142 break;
143
144 case REG_TYPE_INDEX:
145 regno = X86_SIB_INDEX(insn->sib.value);
146 if (X86_REX_X(insn->rex_prefix.value) == 1)
147 regno += 8;
148 break;
149
150 case REG_TYPE_BASE:
151 regno = X86_SIB_BASE(insn->sib.value);
152 if (X86_REX_B(insn->rex_prefix.value) == 1)
153 regno += 8;
154 break;
155
156 default:
157 pr_err("invalid register type");
158 BUG();
159 break;
160 }
161
162 if (regno > nr_registers) {
163 WARN_ONCE(1, "decoded an instruction with an invalid register");
164 return -EINVAL;
165 }
166 return regoff[regno];
167}
168
169/*
170 * return the address being referenced be instruction
171 * for rm=3 returning the content of the rm reg
172 * for rm!=3 calculates the address using SIB and Disp
173 */
174static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
175{
68c009c4
DH
176 unsigned long addr, base, indx;
177 int addr_offset, base_offset, indx_offset;
fcc7ffd6
DH
178 insn_byte_t sib;
179
180 insn_get_modrm(insn);
181 insn_get_sib(insn);
182 sib = insn->sib.value;
183
184 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
185 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
186 if (addr_offset < 0)
187 goto out_err;
188 addr = regs_get_register(regs, addr_offset);
189 } else {
190 if (insn->sib.nbytes) {
191 base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
192 if (base_offset < 0)
193 goto out_err;
194
195 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
196 if (indx_offset < 0)
197 goto out_err;
198
199 base = regs_get_register(regs, base_offset);
200 indx = regs_get_register(regs, indx_offset);
201 addr = base + indx * (1 << X86_SIB_SCALE(sib));
202 } else {
203 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
204 if (addr_offset < 0)
205 goto out_err;
206 addr = regs_get_register(regs, addr_offset);
207 }
208 addr += insn->displacement.value;
209 }
210 return (void __user *)addr;
211out_err:
212 return (void __user *)-1;
213}
214
215static int mpx_insn_decode(struct insn *insn,
216 struct pt_regs *regs)
217{
218 unsigned char buf[MAX_INSN_SIZE];
219 int x86_64 = !test_thread_flag(TIF_IA32);
220 int not_copied;
221 int nr_copied;
222
223 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
224 nr_copied = sizeof(buf) - not_copied;
225 /*
226 * The decoder _should_ fail nicely if we pass it a short buffer.
227 * But, let's not depend on that implementation detail. If we
228 * did not get anything, just error out now.
229 */
230 if (!nr_copied)
231 return -EFAULT;
232 insn_init(insn, buf, nr_copied, x86_64);
233 insn_get_length(insn);
234 /*
235 * copy_from_user() tries to get as many bytes as we could see in
236 * the largest possible instruction. If the instruction we are
237 * after is shorter than that _and_ we attempt to copy from
238 * something unreadable, we might get a short read. This is OK
239 * as long as the read did not stop in the middle of the
240 * instruction. Check to see if we got a partial instruction.
241 */
242 if (nr_copied < insn->length)
243 return -EFAULT;
244
245 insn_get_opcode(insn);
246 /*
247 * We only _really_ need to decode bndcl/bndcn/bndcu
248 * Error out on anything else.
249 */
250 if (insn->opcode.bytes[0] != 0x0f)
251 goto bad_opcode;
252 if ((insn->opcode.bytes[1] != 0x1a) &&
253 (insn->opcode.bytes[1] != 0x1b))
254 goto bad_opcode;
255
256 return 0;
257bad_opcode:
258 return -EINVAL;
259}
260
261/*
262 * If a bounds overflow occurs then a #BR is generated. This
263 * function decodes MPX instructions to get violation address
264 * and set this address into extended struct siginfo.
265 *
266 * Note that this is not a super precise way of doing this.
267 * Userspace could have, by the time we get here, written
268 * anything it wants in to the instructions. We can not
269 * trust anything about it. They might not be valid
270 * instructions or might encode invalid registers, etc...
271 *
272 * The caller is expected to kfree() the returned siginfo_t.
273 */
274siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
275 struct xsave_struct *xsave_buf)
276{
fe3d197f
DH
277 struct bndreg *bndregs, *bndreg;
278 siginfo_t *info = NULL;
fcc7ffd6
DH
279 struct insn insn;
280 uint8_t bndregno;
281 int err;
fcc7ffd6
DH
282
283 err = mpx_insn_decode(&insn, regs);
284 if (err)
285 goto err_out;
286
287 /*
288 * We know at this point that we are only dealing with
289 * MPX instructions.
290 */
291 insn_get_modrm(&insn);
292 bndregno = X86_MODRM_REG(insn.modrm.value);
293 if (bndregno > 3) {
294 err = -EINVAL;
295 goto err_out;
296 }
fe3d197f
DH
297 /* get the bndregs _area_ of the xsave structure */
298 bndregs = get_xsave_addr(xsave_buf, XSTATE_BNDREGS);
299 if (!bndregs) {
300 err = -EINVAL;
301 goto err_out;
302 }
303 /* now go select the individual register in the set of 4 */
304 bndreg = &bndregs[bndregno];
305
fcc7ffd6
DH
306 info = kzalloc(sizeof(*info), GFP_KERNEL);
307 if (!info) {
308 err = -ENOMEM;
309 goto err_out;
310 }
311 /*
312 * The registers are always 64-bit, but the upper 32
313 * bits are ignored in 32-bit mode. Also, note that the
314 * upper bounds are architecturally represented in 1's
315 * complement form.
316 *
317 * The 'unsigned long' cast is because the compiler
318 * complains when casting from integers to different-size
319 * pointers.
320 */
fe3d197f
DH
321 info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
322 info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
fcc7ffd6
DH
323 info->si_addr_lsb = 0;
324 info->si_signo = SIGSEGV;
325 info->si_errno = 0;
326 info->si_code = SEGV_BNDERR;
327 info->si_addr = mpx_get_addr_ref(&insn, regs);
328 /*
329 * We were not able to extract an address from the instruction,
330 * probably because there was something invalid in it.
331 */
332 if (info->si_addr == (void *)-1) {
333 err = -EINVAL;
334 goto err_out;
335 }
336 return info;
337err_out:
fe3d197f
DH
338 /* info might be NULL, but kfree() handles that */
339 kfree(info);
fcc7ffd6
DH
340 return ERR_PTR(err);
341}
fe3d197f
DH
342
343static __user void *task_get_bounds_dir(struct task_struct *tsk)
344{
345 struct bndcsr *bndcsr;
346
347 if (!cpu_feature_enabled(X86_FEATURE_MPX))
348 return MPX_INVALID_BOUNDS_DIR;
349
814564a0
DH
350 /*
351 * 32-bit binaries on 64-bit kernels are currently
352 * unsupported.
353 */
354 if (IS_ENABLED(CONFIG_X86_64) && test_thread_flag(TIF_IA32))
355 return MPX_INVALID_BOUNDS_DIR;
fe3d197f
DH
356 /*
357 * The bounds directory pointer is stored in a register
358 * only accessible if we first do an xsave.
359 */
360 fpu_save_init(&tsk->thread.fpu);
361 bndcsr = get_xsave_addr(&tsk->thread.fpu.state->xsave, XSTATE_BNDCSR);
362 if (!bndcsr)
363 return MPX_INVALID_BOUNDS_DIR;
364
365 /*
366 * Make sure the register looks valid by checking the
367 * enable bit.
368 */
369 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
370 return MPX_INVALID_BOUNDS_DIR;
371
372 /*
373 * Lastly, mask off the low bits used for configuration
374 * flags, and return the address of the bounds table.
375 */
376 return (void __user *)(unsigned long)
377 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
378}
379
380int mpx_enable_management(struct task_struct *tsk)
381{
382 void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
383 struct mm_struct *mm = tsk->mm;
384 int ret = 0;
385
386 /*
387 * runtime in the userspace will be responsible for allocation of
388 * the bounds directory. Then, it will save the base of the bounds
389 * directory into XSAVE/XRSTOR Save Area and enable MPX through
390 * XRSTOR instruction.
391 *
0afc4a94 392 * xsave_state() is expected to be very expensive. Storing the bounds
fe3d197f
DH
393 * directory here means that we do not have to do xsave in the unmap
394 * path; we can just use mm->bd_addr instead.
395 */
396 bd_base = task_get_bounds_dir(tsk);
397 down_write(&mm->mmap_sem);
398 mm->bd_addr = bd_base;
399 if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
400 ret = -ENXIO;
401
402 up_write(&mm->mmap_sem);
403 return ret;
404}
405
406int mpx_disable_management(struct task_struct *tsk)
407{
408 struct mm_struct *mm = current->mm;
409
410 if (!cpu_feature_enabled(X86_FEATURE_MPX))
411 return -ENXIO;
412
413 down_write(&mm->mmap_sem);
414 mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
415 up_write(&mm->mmap_sem);
416 return 0;
417}
418
419/*
420 * With 32-bit mode, MPX_BT_SIZE_BYTES is 4MB, and the size of each
421 * bounds table is 16KB. With 64-bit mode, MPX_BT_SIZE_BYTES is 2GB,
422 * and the size of each bounds table is 4MB.
423 */
424static int allocate_bt(long __user *bd_entry)
425{
426 unsigned long expected_old_val = 0;
427 unsigned long actual_old_val = 0;
428 unsigned long bt_addr;
429 int ret = 0;
430
431 /*
432 * Carve the virtual space out of userspace for the new
433 * bounds table:
434 */
435 bt_addr = mpx_mmap(MPX_BT_SIZE_BYTES);
436 if (IS_ERR((void *)bt_addr))
437 return PTR_ERR((void *)bt_addr);
438 /*
439 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
440 */
441 bt_addr = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
442
443 /*
444 * Go poke the address of the new bounds table in to the
445 * bounds directory entry out in userspace memory. Note:
446 * we may race with another CPU instantiating the same table.
447 * In that case the cmpxchg will see an unexpected
448 * 'actual_old_val'.
449 *
450 * This can fault, but that's OK because we do not hold
451 * mmap_sem at this point, unlike some of the other part
452 * of the MPX code that have to pagefault_disable().
453 */
454 ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
455 expected_old_val, bt_addr);
456 if (ret)
457 goto out_unmap;
458
459 /*
460 * The user_atomic_cmpxchg_inatomic() will only return nonzero
461 * for faults, *not* if the cmpxchg itself fails. Now we must
462 * verify that the cmpxchg itself completed successfully.
463 */
464 /*
465 * We expected an empty 'expected_old_val', but instead found
466 * an apparently valid entry. Assume we raced with another
467 * thread to instantiate this table and desclare succecss.
468 */
469 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
470 ret = 0;
471 goto out_unmap;
472 }
473 /*
474 * We found a non-empty bd_entry but it did not have the
475 * VALID_FLAG set. Return an error which will result in
476 * a SEGV since this probably means that somebody scribbled
477 * some invalid data in to a bounds table.
478 */
479 if (expected_old_val != actual_old_val) {
480 ret = -EINVAL;
481 goto out_unmap;
482 }
483 return 0;
484out_unmap:
485 vm_munmap(bt_addr & MPX_BT_ADDR_MASK, MPX_BT_SIZE_BYTES);
486 return ret;
487}
488
489/*
490 * When a BNDSTX instruction attempts to save bounds to a bounds
491 * table, it will first attempt to look up the table in the
492 * first-level bounds directory. If it does not find a table in
493 * the directory, a #BR is generated and we get here in order to
494 * allocate a new table.
495 *
496 * With 32-bit mode, the size of BD is 4MB, and the size of each
497 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
498 * and the size of each bound table is 4MB.
499 */
500static int do_mpx_bt_fault(struct xsave_struct *xsave_buf)
501{
502 unsigned long bd_entry, bd_base;
503 struct bndcsr *bndcsr;
504
505 bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
506 if (!bndcsr)
507 return -EINVAL;
508 /*
509 * Mask off the preserve and enable bits
510 */
511 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
512 /*
513 * The hardware provides the address of the missing or invalid
514 * entry via BNDSTATUS, so we don't have to go look it up.
515 */
516 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
517 /*
518 * Make sure the directory entry is within where we think
519 * the directory is.
520 */
521 if ((bd_entry < bd_base) ||
522 (bd_entry >= bd_base + MPX_BD_SIZE_BYTES))
523 return -EINVAL;
524
525 return allocate_bt((long __user *)bd_entry);
526}
527
528int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
529{
530 /*
531 * Userspace never asked us to manage the bounds tables,
532 * so refuse to help.
533 */
534 if (!kernel_managing_mpx_tables(current->mm))
535 return -EINVAL;
536
537 if (do_mpx_bt_fault(xsave_buf)) {
538 force_sig(SIGSEGV, current);
539 /*
540 * The force_sig() is essentially "handling" this
541 * exception, so we do not pass up the error
542 * from do_mpx_bt_fault().
543 */
544 }
545 return 0;
546}
1de4fa14
DH
547
548/*
549 * A thin wrapper around get_user_pages(). Returns 0 if the
550 * fault was resolved or -errno if not.
551 */
552static int mpx_resolve_fault(long __user *addr, int write)
553{
554 long gup_ret;
555 int nr_pages = 1;
556 int force = 0;
557
558 gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
559 nr_pages, write, force, NULL, NULL);
560 /*
561 * get_user_pages() returns number of pages gotten.
562 * 0 means we failed to fault in and get anything,
563 * probably because 'addr' is bad.
564 */
565 if (!gup_ret)
566 return -EFAULT;
567 /* Other error, return it */
568 if (gup_ret < 0)
569 return gup_ret;
570 /* must have gup'd a page and gup_ret>0, success */
571 return 0;
572}
573
574/*
575 * Get the base of bounds tables pointed by specific bounds
576 * directory entry.
577 */
578static int get_bt_addr(struct mm_struct *mm,
579 long __user *bd_entry, unsigned long *bt_addr)
580{
581 int ret;
582 int valid_bit;
583
584 if (!access_ok(VERIFY_READ, (bd_entry), sizeof(*bd_entry)))
585 return -EFAULT;
586
587 while (1) {
588 int need_write = 0;
589
590 pagefault_disable();
591 ret = get_user(*bt_addr, bd_entry);
592 pagefault_enable();
593 if (!ret)
594 break;
595 if (ret == -EFAULT)
596 ret = mpx_resolve_fault(bd_entry, need_write);
597 /*
598 * If we could not resolve the fault, consider it
599 * userspace's fault and error out.
600 */
601 if (ret)
602 return ret;
603 }
604
605 valid_bit = *bt_addr & MPX_BD_ENTRY_VALID_FLAG;
606 *bt_addr &= MPX_BT_ADDR_MASK;
607
608 /*
609 * When the kernel is managing bounds tables, a bounds directory
610 * entry will either have a valid address (plus the valid bit)
611 * *OR* be completely empty. If we see a !valid entry *and* some
612 * data in the address field, we know something is wrong. This
613 * -EINVAL return will cause a SIGSEGV.
614 */
615 if (!valid_bit && *bt_addr)
616 return -EINVAL;
617 /*
618 * Do we have an completely zeroed bt entry? That is OK. It
619 * just means there was no bounds table for this memory. Make
620 * sure to distinguish this from -EINVAL, which will cause
621 * a SEGV.
622 */
623 if (!valid_bit)
624 return -ENOENT;
625
626 return 0;
627}
628
629/*
630 * Free the backing physical pages of bounds table 'bt_addr'.
631 * Assume start...end is within that bounds table.
632 */
633static int zap_bt_entries(struct mm_struct *mm,
634 unsigned long bt_addr,
635 unsigned long start, unsigned long end)
636{
637 struct vm_area_struct *vma;
638 unsigned long addr, len;
639
640 /*
641 * Find the first overlapping vma. If vma->vm_start > start, there
642 * will be a hole in the bounds table. This -EINVAL return will
643 * cause a SIGSEGV.
644 */
645 vma = find_vma(mm, start);
646 if (!vma || vma->vm_start > start)
647 return -EINVAL;
648
649 /*
650 * A NUMA policy on a VM_MPX VMA could cause this bouds table to
651 * be split. So we need to look across the entire 'start -> end'
652 * range of this bounds table, find all of the VM_MPX VMAs, and
653 * zap only those.
654 */
655 addr = start;
656 while (vma && vma->vm_start < end) {
657 /*
658 * We followed a bounds directory entry down
659 * here. If we find a non-MPX VMA, that's bad,
660 * so stop immediately and return an error. This
661 * probably results in a SIGSEGV.
662 */
663 if (!is_mpx_vma(vma))
664 return -EINVAL;
665
666 len = min(vma->vm_end, end) - addr;
667 zap_page_range(vma, addr, len, NULL);
668
669 vma = vma->vm_next;
670 addr = vma->vm_start;
671 }
672
673 return 0;
674}
675
676static int unmap_single_bt(struct mm_struct *mm,
677 long __user *bd_entry, unsigned long bt_addr)
678{
679 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
680 unsigned long actual_old_val = 0;
681 int ret;
682
683 while (1) {
684 int need_write = 1;
685
686 pagefault_disable();
687 ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
688 expected_old_val, 0);
689 pagefault_enable();
690 if (!ret)
691 break;
692 if (ret == -EFAULT)
693 ret = mpx_resolve_fault(bd_entry, need_write);
694 /*
695 * If we could not resolve the fault, consider it
696 * userspace's fault and error out.
697 */
698 if (ret)
699 return ret;
700 }
701 /*
702 * The cmpxchg was performed, check the results.
703 */
704 if (actual_old_val != expected_old_val) {
705 /*
706 * Someone else raced with us to unmap the table.
707 * There was no bounds table pointed to by the
708 * directory, so declare success. Somebody freed
709 * it.
710 */
711 if (!actual_old_val)
712 return 0;
713 /*
714 * Something messed with the bounds directory
715 * entry. We hold mmap_sem for read or write
716 * here, so it could not be a _new_ bounds table
717 * that someone just allocated. Something is
718 * wrong, so pass up the error and SIGSEGV.
719 */
720 return -EINVAL;
721 }
722
723 /*
724 * Note, we are likely being called under do_munmap() already. To
725 * avoid recursion, do_munmap() will check whether it comes
726 * from one bounds table through VM_MPX flag.
727 */
728 return do_munmap(mm, bt_addr, MPX_BT_SIZE_BYTES);
729}
730
731/*
732 * If the bounds table pointed by bounds directory 'bd_entry' is
733 * not shared, unmap this whole bounds table. Otherwise, only free
734 * those backing physical pages of bounds table entries covered
735 * in this virtual address region start...end.
736 */
737static int unmap_shared_bt(struct mm_struct *mm,
738 long __user *bd_entry, unsigned long start,
739 unsigned long end, bool prev_shared, bool next_shared)
740{
741 unsigned long bt_addr;
742 int ret;
743
744 ret = get_bt_addr(mm, bd_entry, &bt_addr);
745 /*
746 * We could see an "error" ret for not-present bounds
747 * tables (not really an error), or actual errors, but
748 * stop unmapping either way.
749 */
750 if (ret)
751 return ret;
752
753 if (prev_shared && next_shared)
754 ret = zap_bt_entries(mm, bt_addr,
755 bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
756 bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
757 else if (prev_shared)
758 ret = zap_bt_entries(mm, bt_addr,
759 bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
760 bt_addr+MPX_BT_SIZE_BYTES);
761 else if (next_shared)
762 ret = zap_bt_entries(mm, bt_addr, bt_addr,
763 bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
764 else
765 ret = unmap_single_bt(mm, bd_entry, bt_addr);
766
767 return ret;
768}
769
770/*
771 * A virtual address region being munmap()ed might share bounds table
772 * with adjacent VMAs. We only need to free the backing physical
773 * memory of these shared bounds tables entries covered in this virtual
774 * address region.
775 */
776static int unmap_edge_bts(struct mm_struct *mm,
777 unsigned long start, unsigned long end)
778{
779 int ret;
780 long __user *bde_start, *bde_end;
781 struct vm_area_struct *prev, *next;
782 bool prev_shared = false, next_shared = false;
783
784 bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
785 bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
786
787 /*
788 * Check whether bde_start and bde_end are shared with adjacent
789 * VMAs.
790 *
791 * We already unliked the VMAs from the mm's rbtree so 'start'
792 * is guaranteed to be in a hole. This gets us the first VMA
793 * before the hole in to 'prev' and the next VMA after the hole
794 * in to 'next'.
795 */
796 next = find_vma_prev(mm, start, &prev);
797 if (prev && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(prev->vm_end-1))
798 == bde_start)
799 prev_shared = true;
800 if (next && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(next->vm_start))
801 == bde_end)
802 next_shared = true;
803
804 /*
805 * This virtual address region being munmap()ed is only
806 * covered by one bounds table.
807 *
808 * In this case, if this table is also shared with adjacent
809 * VMAs, only part of the backing physical memory of the bounds
810 * table need be freeed. Otherwise the whole bounds table need
811 * be unmapped.
812 */
813 if (bde_start == bde_end) {
814 return unmap_shared_bt(mm, bde_start, start, end,
815 prev_shared, next_shared);
816 }
817
818 /*
819 * If more than one bounds tables are covered in this virtual
820 * address region being munmap()ed, we need to separately check
821 * whether bde_start and bde_end are shared with adjacent VMAs.
822 */
823 ret = unmap_shared_bt(mm, bde_start, start, end, prev_shared, false);
824 if (ret)
825 return ret;
826 ret = unmap_shared_bt(mm, bde_end, start, end, false, next_shared);
827 if (ret)
828 return ret;
829
830 return 0;
831}
832
833static int mpx_unmap_tables(struct mm_struct *mm,
834 unsigned long start, unsigned long end)
835{
836 int ret;
837 long __user *bd_entry, *bde_start, *bde_end;
838 unsigned long bt_addr;
839
840 /*
841 * "Edge" bounds tables are those which are being used by the region
842 * (start -> end), but that may be shared with adjacent areas. If they
843 * turn out to be completely unshared, they will be freed. If they are
844 * shared, we will free the backing store (like an MADV_DONTNEED) for
845 * areas used by this region.
846 */
847 ret = unmap_edge_bts(mm, start, end);
848 switch (ret) {
849 /* non-present tables are OK */
850 case 0:
851 case -ENOENT:
852 /* Success, or no tables to unmap */
853 break;
854 case -EINVAL:
855 case -EFAULT:
856 default:
857 return ret;
858 }
859
860 /*
861 * Only unmap the bounds table that are
862 * 1. fully covered
863 * 2. not at the edges of the mapping, even if full aligned
864 */
865 bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
866 bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
867 for (bd_entry = bde_start + 1; bd_entry < bde_end; bd_entry++) {
868 ret = get_bt_addr(mm, bd_entry, &bt_addr);
869 switch (ret) {
870 case 0:
871 break;
872 case -ENOENT:
873 /* No table here, try the next one */
874 continue;
875 case -EINVAL:
876 case -EFAULT:
877 default:
878 /*
879 * Note: we are being strict here.
880 * Any time we run in to an issue
881 * unmapping tables, we stop and
882 * SIGSEGV.
883 */
884 return ret;
885 }
886
887 ret = unmap_single_bt(mm, bd_entry, bt_addr);
888 if (ret)
889 return ret;
890 }
891
892 return 0;
893}
894
895/*
896 * Free unused bounds tables covered in a virtual address region being
897 * munmap()ed. Assume end > start.
898 *
899 * This function will be called by do_munmap(), and the VMAs covering
900 * the virtual address region start...end have already been split if
901 * necessary, and the 'vma' is the first vma in this range (start -> end).
902 */
903void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
904 unsigned long start, unsigned long end)
905{
906 int ret;
907
908 /*
909 * Refuse to do anything unless userspace has asked
910 * the kernel to help manage the bounds tables,
911 */
912 if (!kernel_managing_mpx_tables(current->mm))
913 return;
914 /*
915 * This will look across the entire 'start -> end' range,
916 * and find all of the non-VM_MPX VMAs.
917 *
918 * To avoid recursion, if a VM_MPX vma is found in the range
919 * (start->end), we will not continue follow-up work. This
920 * recursion represents having bounds tables for bounds tables,
921 * which should not occur normally. Being strict about it here
922 * helps ensure that we do not have an exploitable stack overflow.
923 */
924 do {
925 if (vma->vm_flags & VM_MPX)
926 return;
927 vma = vma->vm_next;
928 } while (vma && vma->vm_start < end);
929
930 ret = mpx_unmap_tables(mm, start, end);
931 if (ret)
932 force_sig(SIGSEGV, current);
933}