]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/mm/pgtable.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / pgtable.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
4f76cd38 2#include <linux/mm.h>
5a0e3ad6 3#include <linux/gfp.h>
e3e28812 4#include <linux/hugetlb.h>
4f76cd38
JF
5#include <asm/pgalloc.h>
6#include <asm/tlb.h>
a1d5a869 7#include <asm/fixmap.h>
6b637835 8#include <asm/mtrr.h>
4f76cd38 9
94d49eb3
KS
10#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
11phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
12EXPORT_SYMBOL(physical_mask);
13#endif
14
14315592 15#ifdef CONFIG_HIGHPTE
5fba4af4 16#define PGTABLE_HIGHMEM __GFP_HIGHMEM
14315592 17#else
5fba4af4 18#define PGTABLE_HIGHMEM 0
14315592
IC
19#endif
20
69de6c1a
TG
21#ifndef CONFIG_PARAVIRT
22static inline
23void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
24{
25 tlb_remove_page(tlb, table);
26}
27#endif
28
5fba4af4 29gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
4f76cd38 30
4cf58924 31pgtable_t pte_alloc_one(struct mm_struct *mm)
4f76cd38 32{
5fba4af4 33 return __pte_alloc_one(mm, __userpte_alloc_gfp);
4f76cd38
JF
34}
35
14315592
IC
36static int __init setup_userpte(char *arg)
37{
38 if (!arg)
39 return -EINVAL;
40
41 /*
42 * "userpte=nohigh" disables allocation of user pagetables in
43 * high memory.
44 */
45 if (strcmp(arg, "nohigh") == 0)
46 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
47 else
48 return -EINVAL;
49 return 0;
50}
51early_param("userpte", setup_userpte);
52
9e1b32ca 53void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
397f687a 54{
b4ed71f5 55 pgtable_pte_page_dtor(pte);
6944a9c8 56 paravirt_release_pte(page_to_pfn(pte));
48a8b97c 57 paravirt_tlb_remove_table(tlb, pte);
397f687a
JF
58}
59
98233368 60#if CONFIG_PGTABLE_LEVELS > 2
9e1b32ca 61void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
170fdff7 62{
c283610e 63 struct page *page = virt_to_page(pmd);
6944a9c8 64 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
1de14c3c
DH
65 /*
66 * NOTE! For PAE, any changes to the top page-directory-pointer-table
67 * entries need a full cr3 reload to flush.
68 */
69#ifdef CONFIG_X86_PAE
70 tlb->need_flush_all = 1;
71#endif
c283610e 72 pgtable_pmd_page_dtor(page);
48a8b97c 73 paravirt_tlb_remove_table(tlb, page);
170fdff7 74}
5a5f8f42 75
98233368 76#if CONFIG_PGTABLE_LEVELS > 3
9e1b32ca 77void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
5a5f8f42 78{
2761fa09 79 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
48a8b97c 80 paravirt_tlb_remove_table(tlb, virt_to_page(pud));
5a5f8f42 81}
b8504058
KS
82
83#if CONFIG_PGTABLE_LEVELS > 4
84void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
85{
86 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
48a8b97c 87 paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
b8504058
KS
88}
89#endif /* CONFIG_PGTABLE_LEVELS > 4 */
98233368
KS
90#endif /* CONFIG_PGTABLE_LEVELS > 3 */
91#endif /* CONFIG_PGTABLE_LEVELS > 2 */
170fdff7 92
4f76cd38
JF
93static inline void pgd_list_add(pgd_t *pgd)
94{
95 struct page *page = virt_to_page(pgd);
4f76cd38 96
4f76cd38 97 list_add(&page->lru, &pgd_list);
4f76cd38
JF
98}
99
100static inline void pgd_list_del(pgd_t *pgd)
101{
102 struct page *page = virt_to_page(pgd);
4f76cd38 103
4f76cd38 104 list_del(&page->lru);
4f76cd38
JF
105}
106
4f76cd38 107#define UNSHARED_PTRS_PER_PGD \
68db065c 108 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
184d47f0
KC
109#define MAX_UNSHARED_PTRS_PER_PGD \
110 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
4f76cd38 111
617d34d9
JF
112
113static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
114{
a052f0a5 115 virt_to_page(pgd)->pt_mm = mm;
617d34d9
JF
116}
117
118struct mm_struct *pgd_page_get_mm(struct page *page)
119{
a052f0a5 120 return page->pt_mm;
617d34d9
JF
121}
122
123static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
4f76cd38 124{
4f76cd38
JF
125 /* If the pgd points to a shared pagetable level (either the
126 ptes in non-PAE, or shared PMD in PAE), then just copy the
127 references from swapper_pg_dir. */
98233368
KS
128 if (CONFIG_PGTABLE_LEVELS == 2 ||
129 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
b8504058 130 CONFIG_PGTABLE_LEVELS >= 4) {
68db065c
JF
131 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
132 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
4f76cd38 133 KERNEL_PGD_PTRS);
4f76cd38
JF
134 }
135
136 /* list required to sync kernel mapping updates */
617d34d9
JF
137 if (!SHARED_KERNEL_PMD) {
138 pgd_set_mm(pgd, mm);
4f76cd38 139 pgd_list_add(pgd);
617d34d9 140 }
4f76cd38
JF
141}
142
17b74627 143static void pgd_dtor(pgd_t *pgd)
4f76cd38 144{
4f76cd38
JF
145 if (SHARED_KERNEL_PMD)
146 return;
147
a79e53d8 148 spin_lock(&pgd_lock);
4f76cd38 149 pgd_list_del(pgd);
a79e53d8 150 spin_unlock(&pgd_lock);
4f76cd38
JF
151}
152
85958b46
JF
153/*
154 * List of all pgd's needed for non-PAE so it can invalidate entries
155 * in both cached and uncached pgd's; not needed for PAE since the
156 * kernel pmd is shared. If PAE were not to share the pmd a similar
157 * tactic would be needed. This is essentially codepath-based locking
158 * against pageattr.c; it is the unique case in which a valid change
159 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
160 * vmalloc faults work because attached pagetables are never freed.
6d49e352 161 * -- nyc
85958b46
JF
162 */
163
4f76cd38 164#ifdef CONFIG_X86_PAE
d8d5900e
JF
165/*
166 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
167 * updating the top-level pagetable entries to guarantee the
168 * processor notices the update. Since this is expensive, and
169 * all 4 top-level entries are used almost immediately in a
170 * new process's life, we just pre-populate them here.
171 *
172 * Also, if we're in a paravirt environment where the kernel pmd is
173 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
174 * and initialize the kernel pmds here.
175 */
176#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
184d47f0 177#define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
d8d5900e 178
f59dbe9c
JR
179/*
180 * We allocate separate PMDs for the kernel part of the user page-table
181 * when PTI is enabled. We need them to map the per-process LDT into the
182 * user-space page-table.
183 */
28e3ace7 184#define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
f59dbe9c 185 KERNEL_PGD_PTRS : 0)
184d47f0 186#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
f59dbe9c 187
d8d5900e
JF
188void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
189{
190 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
191
192 /* Note: almost everything apart from _PAGE_PRESENT is
193 reserved at the pmd (PDPT) level. */
194 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
195
196 /*
197 * According to Intel App note "TLBs, Paging-Structure Caches,
198 * and Their Invalidation", April 2007, document 317080-001,
199 * section 8.1: in PAE mode we explicitly have to flush the
200 * TLB via cr3 if the top-level pgd is changed...
201 */
4981d01e 202 flush_tlb_mm(mm);
d8d5900e
JF
203}
204#else /* !CONFIG_X86_PAE */
205
206/* No need to prepopulate any pagetable entries in non-PAE modes. */
207#define PREALLOCATED_PMDS 0
184d47f0 208#define MAX_PREALLOCATED_PMDS 0
f59dbe9c 209#define PREALLOCATED_USER_PMDS 0
184d47f0 210#define MAX_PREALLOCATED_USER_PMDS 0
d8d5900e
JF
211#endif /* CONFIG_X86_PAE */
212
f59dbe9c 213static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
d8d5900e
JF
214{
215 int i;
216
f59dbe9c 217 for (i = 0; i < count; i++)
09ef4939
KS
218 if (pmds[i]) {
219 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
d8d5900e 220 free_page((unsigned long)pmds[i]);
dc6c9a35 221 mm_dec_nr_pmds(mm);
09ef4939 222 }
d8d5900e
JF
223}
224
f59dbe9c 225static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
d8d5900e
JF
226{
227 int i;
228 bool failed = false;
5fba4af4 229 gfp_t gfp = GFP_PGTABLE_USER;
3e79ec7d
VD
230
231 if (mm == &init_mm)
232 gfp &= ~__GFP_ACCOUNT;
d8d5900e 233
f59dbe9c 234 for (i = 0; i < count; i++) {
3e79ec7d 235 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
09ef4939 236 if (!pmd)
d8d5900e 237 failed = true;
09ef4939 238 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
2a46eed5 239 free_page((unsigned long)pmd);
09ef4939
KS
240 pmd = NULL;
241 failed = true;
242 }
dc6c9a35
KS
243 if (pmd)
244 mm_inc_nr_pmds(mm);
d8d5900e
JF
245 pmds[i] = pmd;
246 }
247
248 if (failed) {
f59dbe9c 249 free_pmds(mm, pmds, count);
d8d5900e
JF
250 return -ENOMEM;
251 }
252
253 return 0;
254}
255
4f76cd38
JF
256/*
257 * Mop up any pmd pages which may still be attached to the pgd.
258 * Normally they will be freed by munmap/exit_mmap, but any pmd we
259 * preallocate which never got a corresponding vma will need to be
260 * freed manually.
261 */
f59dbe9c
JR
262static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
263{
264 pgd_t pgd = *pgdp;
265
266 if (pgd_val(pgd) != 0) {
267 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
268
9bc4f28a 269 pgd_clear(pgdp);
f59dbe9c
JR
270
271 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
272 pmd_free(mm, pmd);
273 mm_dec_nr_pmds(mm);
274 }
275}
276
4f76cd38
JF
277static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
278{
279 int i;
280
f59dbe9c
JR
281 for (i = 0; i < PREALLOCATED_PMDS; i++)
282 mop_up_one_pmd(mm, &pgdp[i]);
4f76cd38 283
f59dbe9c 284#ifdef CONFIG_PAGE_TABLE_ISOLATION
4f76cd38 285
28e3ace7 286 if (!boot_cpu_has(X86_FEATURE_PTI))
f59dbe9c 287 return;
4f76cd38 288
f59dbe9c
JR
289 pgdp = kernel_to_user_pgdp(pgdp);
290
291 for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
292 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
293#endif
4f76cd38
JF
294}
295
d8d5900e 296static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
4f76cd38 297{
e0c4f675 298 p4d_t *p4d;
4f76cd38 299 pud_t *pud;
4f76cd38
JF
300 int i;
301
cf3e5050
JF
302 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
303 return;
304
e0c4f675
KS
305 p4d = p4d_offset(pgd, 0);
306 pud = pud_offset(p4d, 0);
4f76cd38 307
73b44ff4 308 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
d8d5900e 309 pmd_t *pmd = pmds[i];
4f76cd38 310
68db065c 311 if (i >= KERNEL_PGD_BOUNDARY)
4f76cd38
JF
312 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
313 sizeof(pmd_t) * PTRS_PER_PMD);
314
315 pud_populate(mm, pud, pmd);
316 }
4f76cd38 317}
1ec1fe73 318
f59dbe9c
JR
319#ifdef CONFIG_PAGE_TABLE_ISOLATION
320static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
321 pgd_t *k_pgd, pmd_t *pmds[])
322{
323 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
324 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
325 p4d_t *u_p4d;
326 pud_t *u_pud;
327 int i;
328
329 u_p4d = p4d_offset(u_pgd, 0);
330 u_pud = pud_offset(u_p4d, 0);
331
332 s_pgd += KERNEL_PGD_BOUNDARY;
333 u_pud += KERNEL_PGD_BOUNDARY;
334
335 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
336 pmd_t *pmd = pmds[i];
337
338 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
339 sizeof(pmd_t) * PTRS_PER_PMD);
340
341 pud_populate(mm, u_pud, pmd);
342 }
343
344}
345#else
346static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
347 pgd_t *k_pgd, pmd_t *pmds[])
348{
349}
350#endif
1db491f7
FY
351/*
352 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
353 * assumes that pgd should be in one page.
354 *
355 * But kernel with PAE paging that is not running as a Xen domain
356 * only needs to allocate 32 bytes for pgd instead of one page.
357 */
358#ifdef CONFIG_X86_PAE
359
360#include <linux/slab.h>
361
362#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
363#define PGD_ALIGN 32
364
365static struct kmem_cache *pgd_cache;
366
782de70c 367void __init pgtable_cache_init(void)
1db491f7
FY
368{
369 /*
370 * When PAE kernel is running as a Xen domain, it does not use
371 * shared kernel pmd. And this requires a whole page for pgd.
372 */
373 if (!SHARED_KERNEL_PMD)
caa84136 374 return;
1db491f7
FY
375
376 /*
377 * when PAE kernel is not running as a Xen domain, it uses
378 * shared kernel pmd. Shared kernel pmd does not require a whole
379 * page for pgd. We are able to just allocate a 32-byte for pgd.
380 * During boot time, we create a 32-byte slab for pgd table allocation.
381 */
382 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
383 SLAB_PANIC, NULL);
1db491f7 384}
1db491f7
FY
385
386static inline pgd_t *_pgd_alloc(void)
387{
388 /*
389 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
390 * We allocate one page for pgd.
391 */
392 if (!SHARED_KERNEL_PMD)
5fba4af4 393 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
e3238faf 394 PGD_ALLOCATION_ORDER);
1db491f7
FY
395
396 /*
397 * Now PAE kernel is not running as a Xen domain. We can allocate
398 * a 32-byte slab for pgd to save memory space.
399 */
5fba4af4 400 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
1db491f7
FY
401}
402
403static inline void _pgd_free(pgd_t *pgd)
404{
405 if (!SHARED_KERNEL_PMD)
e3238faf 406 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
1db491f7
FY
407 else
408 kmem_cache_free(pgd_cache, pgd);
409}
410#else
d9e9a641 411
1db491f7
FY
412static inline pgd_t *_pgd_alloc(void)
413{
5fba4af4
MR
414 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
415 PGD_ALLOCATION_ORDER);
1db491f7
FY
416}
417
418static inline void _pgd_free(pgd_t *pgd)
419{
d9e9a641 420 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
1db491f7
FY
421}
422#endif /* CONFIG_X86_PAE */
423
d8d5900e 424pgd_t *pgd_alloc(struct mm_struct *mm)
1ec1fe73 425{
d8d5900e 426 pgd_t *pgd;
184d47f0
KC
427 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
428 pmd_t *pmds[MAX_PREALLOCATED_PMDS];
1ec1fe73 429
1db491f7 430 pgd = _pgd_alloc();
d8d5900e
JF
431
432 if (pgd == NULL)
433 goto out;
434
435 mm->pgd = pgd;
436
f59dbe9c 437 if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
d8d5900e
JF
438 goto out_free_pgd;
439
f59dbe9c 440 if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
d8d5900e 441 goto out_free_pmds;
1ec1fe73 442
f59dbe9c
JR
443 if (paravirt_pgd_alloc(mm) != 0)
444 goto out_free_user_pmds;
445
1ec1fe73 446 /*
d8d5900e
JF
447 * Make sure that pre-populating the pmds is atomic with
448 * respect to anything walking the pgd_list, so that they
449 * never see a partially populated pgd.
1ec1fe73 450 */
a79e53d8 451 spin_lock(&pgd_lock);
4f76cd38 452
617d34d9 453 pgd_ctor(mm, pgd);
d8d5900e 454 pgd_prepopulate_pmd(mm, pgd, pmds);
f59dbe9c 455 pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
4f76cd38 456
a79e53d8 457 spin_unlock(&pgd_lock);
4f76cd38
JF
458
459 return pgd;
d8d5900e 460
f59dbe9c
JR
461out_free_user_pmds:
462 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
d8d5900e 463out_free_pmds:
f59dbe9c 464 free_pmds(mm, pmds, PREALLOCATED_PMDS);
d8d5900e 465out_free_pgd:
1db491f7 466 _pgd_free(pgd);
d8d5900e
JF
467out:
468 return NULL;
4f76cd38
JF
469}
470
471void pgd_free(struct mm_struct *mm, pgd_t *pgd)
472{
473 pgd_mop_up_pmds(mm, pgd);
474 pgd_dtor(pgd);
eba0045f 475 paravirt_pgd_free(mm, pgd);
1db491f7 476 _pgd_free(pgd);
4f76cd38 477}
ee5aa8d3 478
0f9a921c
RR
479/*
480 * Used to set accessed or dirty bits in the page table entries
481 * on other architectures. On x86, the accessed and dirty bits
482 * are tracked by hardware. However, do_wp_page calls this function
483 * to also make the pte writeable at the same time the dirty bit is
484 * set. In that case we do actually need to write the PTE.
485 */
ee5aa8d3
JF
486int ptep_set_access_flags(struct vm_area_struct *vma,
487 unsigned long address, pte_t *ptep,
488 pte_t entry, int dirty)
489{
490 int changed = !pte_same(*ptep, entry);
491
87930019 492 if (changed && dirty)
9bc4f28a 493 set_pte(ptep, entry);
ee5aa8d3
JF
494
495 return changed;
496}
f9fbf1a3 497
db3eb96f
AA
498#ifdef CONFIG_TRANSPARENT_HUGEPAGE
499int pmdp_set_access_flags(struct vm_area_struct *vma,
500 unsigned long address, pmd_t *pmdp,
501 pmd_t entry, int dirty)
502{
503 int changed = !pmd_same(*pmdp, entry);
504
505 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
506
507 if (changed && dirty) {
9bc4f28a 508 set_pmd(pmdp, entry);
5e4bf1a5
IM
509 /*
510 * We had a write-protection fault here and changed the pmd
511 * to to more permissive. No need to flush the TLB for that,
512 * #PF is architecturally guaranteed to do that and in the
513 * worst-case we'll generate a spurious fault.
514 */
db3eb96f
AA
515 }
516
517 return changed;
518}
a00cc7d9
MW
519
520int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
521 pud_t *pudp, pud_t entry, int dirty)
522{
523 int changed = !pud_same(*pudp, entry);
524
525 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
526
527 if (changed && dirty) {
9bc4f28a 528 set_pud(pudp, entry);
a00cc7d9
MW
529 /*
530 * We had a write-protection fault here and changed the pud
531 * to to more permissive. No need to flush the TLB for that,
532 * #PF is architecturally guaranteed to do that and in the
533 * worst-case we'll generate a spurious fault.
534 */
535 }
536
537 return changed;
538}
db3eb96f
AA
539#endif
540
f9fbf1a3
JF
541int ptep_test_and_clear_young(struct vm_area_struct *vma,
542 unsigned long addr, pte_t *ptep)
543{
544 int ret = 0;
545
546 if (pte_young(*ptep))
547 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
48e23957 548 (unsigned long *) &ptep->pte);
f9fbf1a3 549
f9fbf1a3
JF
550 return ret;
551}
c20311e1 552
db3eb96f
AA
553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
554int pmdp_test_and_clear_young(struct vm_area_struct *vma,
555 unsigned long addr, pmd_t *pmdp)
556{
557 int ret = 0;
558
559 if (pmd_young(*pmdp))
560 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
f2d6bfe9 561 (unsigned long *)pmdp);
db3eb96f 562
db3eb96f
AA
563 return ret;
564}
a00cc7d9
MW
565int pudp_test_and_clear_young(struct vm_area_struct *vma,
566 unsigned long addr, pud_t *pudp)
567{
568 int ret = 0;
569
570 if (pud_young(*pudp))
571 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
572 (unsigned long *)pudp);
573
574 return ret;
575}
db3eb96f
AA
576#endif
577
c20311e1
JF
578int ptep_clear_flush_young(struct vm_area_struct *vma,
579 unsigned long address, pte_t *ptep)
580{
b13b1d2d
SL
581 /*
582 * On x86 CPUs, clearing the accessed bit without a TLB flush
583 * doesn't cause data corruption. [ It could cause incorrect
584 * page aging and the (mistaken) reclaim of hot pages, but the
585 * chance of that should be relatively low. ]
586 *
587 * So as a performance optimization don't flush the TLB when
588 * clearing the accessed bit, it will eventually be flushed by
589 * a context switch or a VM operation anyway. [ In the rare
590 * event of it not getting flushed for a long time the delay
591 * shouldn't really matter because there's no real memory
592 * pressure for swapout to react to. ]
593 */
594 return ptep_test_and_clear_young(vma, address, ptep);
c20311e1 595}
7c7e6e07 596
db3eb96f
AA
597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
598int pmdp_clear_flush_young(struct vm_area_struct *vma,
599 unsigned long address, pmd_t *pmdp)
600{
601 int young;
602
603 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
604
605 young = pmdp_test_and_clear_young(vma, address, pmdp);
606 if (young)
607 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
608
609 return young;
610}
db3eb96f
AA
611#endif
612
fd862dde
GP
613/**
614 * reserve_top_address - reserves a hole in the top of kernel address space
615 * @reserve - size of hole to reserve
616 *
617 * Can be used to relocate the fixmap area and poke a hole in the top
618 * of kernel address space to make room for a hypervisor.
619 */
620void __init reserve_top_address(unsigned long reserve)
621{
622#ifdef CONFIG_X86_32
623 BUG_ON(fixmaps_set > 0);
73159fdc
AL
624 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
625 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
626 -reserve, __FIXADDR_TOP + PAGE_SIZE);
fd862dde
GP
627#endif
628}
629
7c7e6e07
JF
630int fixmaps_set;
631
aeaaa59c 632void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
7c7e6e07
JF
633{
634 unsigned long address = __fix_to_virt(idx);
635
05ab1d8a
FT
636#ifdef CONFIG_X86_64
637 /*
638 * Ensure that the static initial page tables are covering the
639 * fixmap completely.
640 */
641 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
642 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
643#endif
644
7c7e6e07
JF
645 if (idx >= __end_of_fixed_addresses) {
646 BUG();
647 return;
648 }
aeaaa59c 649 set_pte_vaddr(address, pte);
7c7e6e07
JF
650 fixmaps_set++;
651}
aeaaa59c 652
f53e2cd0
ST
653void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
654 phys_addr_t phys, pgprot_t flags)
aeaaa59c 655{
fb43d6cb
DH
656 /* Sanitize 'prot' against any unsupported bits: */
657 pgprot_val(flags) &= __default_kernel_pte_mask;
658
aeaaa59c
JF
659 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
660}
6b637835
TK
661
662#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
b8504058
KS
663#ifdef CONFIG_X86_5LEVEL
664/**
665 * p4d_set_huge - setup kernel P4D mapping
666 *
667 * No 512GB pages yet -- always return 0
668 */
669int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
670{
671 return 0;
672}
673
674/**
675 * p4d_clear_huge - clear kernel P4D mapping when it is set
676 *
677 * No 512GB pages yet -- always return 0
678 */
679int p4d_clear_huge(p4d_t *p4d)
680{
681 return 0;
682}
683#endif
684
3d3ca416
TK
685/**
686 * pud_set_huge - setup kernel PUD mapping
687 *
b73522e0
TK
688 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
689 * function sets up a huge page only if any of the following conditions are met:
690 *
691 * - MTRRs are disabled, or
692 *
693 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
694 *
695 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
696 * has no effect on the requested PAT memory type.
697 *
698 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
699 * page mapping attempt fails.
3d3ca416
TK
700 *
701 * Returns 1 on success and 0 on failure.
702 */
6b637835
TK
703int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
704{
b73522e0 705 u8 mtrr, uniform;
6b637835 706
b73522e0
TK
707 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
708 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
709 (mtrr != MTRR_TYPE_WRBACK))
6b637835
TK
710 return 0;
711
e3e28812
JR
712 /* Bail out if we are we on a populated non-leaf entry: */
713 if (pud_present(*pud) && !pud_huge(*pud))
714 return 0;
715
6b637835
TK
716 set_pte((pte_t *)pud, pfn_pte(
717 (u64)addr >> PAGE_SHIFT,
d0735693 718 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
6b637835
TK
719
720 return 1;
721}
722
3d3ca416
TK
723/**
724 * pmd_set_huge - setup kernel PMD mapping
725 *
b73522e0 726 * See text over pud_set_huge() above.
3d3ca416
TK
727 *
728 * Returns 1 on success and 0 on failure.
729 */
6b637835
TK
730int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
731{
b73522e0 732 u8 mtrr, uniform;
6b637835 733
b73522e0
TK
734 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
735 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
736 (mtrr != MTRR_TYPE_WRBACK)) {
737 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
738 __func__, addr, addr + PMD_SIZE);
6b637835 739 return 0;
b73522e0 740 }
6b637835 741
e3e28812
JR
742 /* Bail out if we are we on a populated non-leaf entry: */
743 if (pmd_present(*pmd) && !pmd_huge(*pmd))
744 return 0;
745
6b637835
TK
746 set_pte((pte_t *)pmd, pfn_pte(
747 (u64)addr >> PAGE_SHIFT,
d0735693 748 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
6b637835
TK
749
750 return 1;
751}
752
d8a71905
JM
753/**
754 * pud_clear_huge - clear kernel PUD mapping when it is set
755 *
756 * Returns 1 on success and 0 on failure (no PUD map is found).
757 */
758int pud_clear_huge(pud_t *pud)
759{
760 if (pud_large(*pud)) {
761 pud_clear(pud);
762 return 1;
763 }
764
765 return 0;
766}
767
3d3ca416
TK
768/**
769 * pmd_clear_huge - clear kernel PMD mapping when it is set
770 *
771 * Returns 1 on success and 0 on failure (no PMD map is found).
772 */
6b637835
TK
773int pmd_clear_huge(pmd_t *pmd)
774{
775 if (pmd_large(*pmd)) {
776 pmd_clear(pmd);
777 return 1;
778 }
779
780 return 0;
781}
b6bdb751 782
f967db0b 783#ifdef CONFIG_X86_64
b6bdb751
TK
784/**
785 * pud_free_pmd_page - Clear pud entry and free pmd page.
786 * @pud: Pointer to a PUD.
785a19f9 787 * @addr: Virtual address associated with pud.
b6bdb751 788 *
5e0fb5df 789 * Context: The pud range has been unmapped and TLB purged.
b6bdb751 790 * Return: 1 if clearing the entry succeeded. 0 otherwise.
5e0fb5df
TK
791 *
792 * NOTE: Callers must allow a single page allocation.
b6bdb751 793 */
785a19f9 794int pud_free_pmd_page(pud_t *pud, unsigned long addr)
b6bdb751 795{
5e0fb5df
TK
796 pmd_t *pmd, *pmd_sv;
797 pte_t *pte;
28ee90fe
TK
798 int i;
799
9cf6fa24 800 pmd = pud_pgtable(*pud);
5e0fb5df
TK
801 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
802 if (!pmd_sv)
803 return 0;
28ee90fe 804
5e0fb5df
TK
805 for (i = 0; i < PTRS_PER_PMD; i++) {
806 pmd_sv[i] = pmd[i];
807 if (!pmd_none(pmd[i]))
808 pmd_clear(&pmd[i]);
809 }
28ee90fe
TK
810
811 pud_clear(pud);
5e0fb5df
TK
812
813 /* INVLPG to clear all paging-structure caches */
814 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
815
816 for (i = 0; i < PTRS_PER_PMD; i++) {
817 if (!pmd_none(pmd_sv[i])) {
818 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
819 free_page((unsigned long)pte);
820 }
821 }
822
823 free_page((unsigned long)pmd_sv);
d1c5246e
DW
824
825 pgtable_pmd_page_dtor(virt_to_page(pmd));
28ee90fe
TK
826 free_page((unsigned long)pmd);
827
828 return 1;
b6bdb751
TK
829}
830
831/**
832 * pmd_free_pte_page - Clear pmd entry and free pte page.
833 * @pmd: Pointer to a PMD.
785a19f9 834 * @addr: Virtual address associated with pmd.
b6bdb751 835 *
5e0fb5df 836 * Context: The pmd range has been unmapped and TLB purged.
b6bdb751
TK
837 * Return: 1 if clearing the entry succeeded. 0 otherwise.
838 */
785a19f9 839int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
b6bdb751 840{
28ee90fe
TK
841 pte_t *pte;
842
28ee90fe
TK
843 pte = (pte_t *)pmd_page_vaddr(*pmd);
844 pmd_clear(pmd);
5e0fb5df
TK
845
846 /* INVLPG to clear all paging-structure caches */
847 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
848
28ee90fe
TK
849 free_page((unsigned long)pte);
850
851 return 1;
b6bdb751 852}
f967db0b
TK
853
854#else /* !CONFIG_X86_64 */
855
f967db0b
TK
856/*
857 * Disable free page handling on x86-PAE. This assures that ioremap()
858 * does not update sync'd pmd entries. See vmalloc_sync_one().
859 */
785a19f9 860int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
f967db0b
TK
861{
862 return pmd_none(*pmd);
863}
864
865#endif /* CONFIG_X86_64 */
6b637835 866#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */