]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/mm/tlb.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mm / tlb.c
CommitLineData
c048fdfe
GC
1#include <linux/init.h>
2
3#include <linux/mm.h>
c048fdfe
GC
4#include <linux/spinlock.h>
5#include <linux/smp.h>
c048fdfe 6#include <linux/interrupt.h>
4b599fed 7#include <linux/export.h>
93296720 8#include <linux/cpu.h>
c048fdfe 9
c048fdfe 10#include <asm/tlbflush.h>
c048fdfe 11#include <asm/mmu_context.h>
350f8f56 12#include <asm/cache.h>
6dd01bed 13#include <asm/apic.h>
bdbcdd48 14#include <asm/uv/uv.h>
3df3212f 15#include <linux/debugfs.h>
5af5573e 16
c048fdfe
GC
17/*
18 * Smarter SMP flushing macros.
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
52aec330 28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
c048fdfe
GC
29 */
30
e1074888
AL
31#ifdef CONFIG_SMP
32
52aec330
AS
33struct flush_tlb_info {
34 struct mm_struct *flush_mm;
35 unsigned long flush_start;
36 unsigned long flush_end;
37};
93296720 38
c048fdfe
GC
39/*
40 * We cannot call mmdrop() because we are in interrupt context,
41 * instead update mm->cpu_vm_mask.
42 */
43void leave_mm(int cpu)
44{
02171b4a 45 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
c6ae41e7 46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
c048fdfe 47 BUG();
a6fca40f
SS
48 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
49 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
50 load_cr3(swapper_pg_dir);
7c7f1547
DH
51 /*
52 * This gets called in the idle path where RCU
53 * functions differently. Tracing normally
54 * uses RCU, so we have to call the tracepoint
55 * specially here.
56 */
57 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
a6fca40f 58 }
c048fdfe
GC
59}
60EXPORT_SYMBOL_GPL(leave_mm);
61
69c0319a
AL
62#endif /* CONFIG_SMP */
63
64void switch_mm(struct mm_struct *prev, struct mm_struct *next,
65 struct task_struct *tsk)
078194f8
AL
66{
67 unsigned long flags;
68
69 local_irq_save(flags);
70 switch_mm_irqs_off(prev, next, tsk);
71 local_irq_restore(flags);
72}
73
74void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
75 struct task_struct *tsk)
69c0319a
AL
76{
77 unsigned cpu = smp_processor_id();
78
79 if (likely(prev != next)) {
e37e43a4
AL
80 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
81 /*
82 * If our current stack is in vmalloc space and isn't
83 * mapped in the new pgd, we'll double-fault. Forcibly
84 * map it.
85 */
86 unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
87
88 pgd_t *pgd = next->pgd + stack_pgd_index;
89
90 if (unlikely(pgd_none(*pgd)))
91 set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
92 }
93
69c0319a
AL
94#ifdef CONFIG_SMP
95 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
96 this_cpu_write(cpu_tlbstate.active_mm, next);
97#endif
e37e43a4 98
69c0319a
AL
99 cpumask_set_cpu(cpu, mm_cpumask(next));
100
101 /*
102 * Re-load page tables.
103 *
104 * This logic has an ordering constraint:
105 *
106 * CPU 0: Write to a PTE for 'next'
107 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
108 * CPU 1: set bit 1 in next's mm_cpumask
109 * CPU 1: load from the PTE that CPU 0 writes (implicit)
110 *
111 * We need to prevent an outcome in which CPU 1 observes
112 * the new PTE value and CPU 0 observes bit 1 clear in
113 * mm_cpumask. (If that occurs, then the IPI will never
114 * be sent, and CPU 0's TLB will contain a stale entry.)
115 *
116 * The bad outcome can occur if either CPU's load is
117 * reordered before that CPU's store, so both CPUs must
118 * execute full barriers to prevent this from happening.
119 *
120 * Thus, switch_mm needs a full barrier between the
121 * store to mm_cpumask and any operation that could load
122 * from next->pgd. TLB fills are special and can happen
123 * due to instruction fetches or for no reason at all,
124 * and neither LOCK nor MFENCE orders them.
125 * Fortunately, load_cr3() is serializing and gives the
126 * ordering guarantee we need.
127 *
128 */
129 load_cr3(next->pgd);
130
131 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
132
133 /* Stop flush ipis for the previous mm */
134 cpumask_clear_cpu(cpu, mm_cpumask(prev));
135
136 /* Load per-mm CR4 state */
137 load_mm_cr4(next);
138
139#ifdef CONFIG_MODIFY_LDT_SYSCALL
140 /*
141 * Load the LDT, if the LDT is different.
142 *
143 * It's possible that prev->context.ldt doesn't match
144 * the LDT register. This can happen if leave_mm(prev)
145 * was called and then modify_ldt changed
146 * prev->context.ldt but suppressed an IPI to this CPU.
147 * In this case, prev->context.ldt != NULL, because we
148 * never set context.ldt to NULL while the mm still
149 * exists. That means that next->context.ldt !=
150 * prev->context.ldt, because mms never share an LDT.
151 */
152 if (unlikely(prev->context.ldt != next->context.ldt))
153 load_mm_ldt(next);
154#endif
155 }
156#ifdef CONFIG_SMP
157 else {
158 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
159 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
160
161 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
162 /*
163 * On established mms, the mm_cpumask is only changed
164 * from irq context, from ptep_clear_flush() while in
165 * lazy tlb mode, and here. Irqs are blocked during
166 * schedule, protecting us from simultaneous changes.
167 */
168 cpumask_set_cpu(cpu, mm_cpumask(next));
169
170 /*
171 * We were in lazy tlb mode and leave_mm disabled
172 * tlb flush IPI delivery. We must reload CR3
173 * to make sure to use no freed page tables.
174 *
175 * As above, load_cr3() is serializing and orders TLB
176 * fills with respect to the mm_cpumask write.
177 */
178 load_cr3(next->pgd);
179 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
180 load_mm_cr4(next);
181 load_mm_ldt(next);
182 }
183 }
184#endif
185}
186
187#ifdef CONFIG_SMP
188
c048fdfe 189/*
c048fdfe
GC
190 * The flush IPI assumes that a thread switch happens in this order:
191 * [cpu0: the cpu that switches]
192 * 1) switch_mm() either 1a) or 1b)
193 * 1a) thread switch to a different mm
52aec330
AS
194 * 1a1) set cpu_tlbstate to TLBSTATE_OK
195 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
196 * if cpu0 was in lazy tlb mode.
197 * 1a2) update cpu active_mm
c048fdfe 198 * Now cpu0 accepts tlb flushes for the new mm.
52aec330 199 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
c048fdfe
GC
200 * Now the other cpus will send tlb flush ipis.
201 * 1a4) change cr3.
52aec330
AS
202 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
203 * Stop ipi delivery for the old mm. This is not synchronized with
204 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
205 * mm, and in the worst case we perform a superfluous tlb flush.
c048fdfe 206 * 1b) thread switch without mm change
52aec330
AS
207 * cpu active_mm is correct, cpu0 already handles flush ipis.
208 * 1b1) set cpu_tlbstate to TLBSTATE_OK
c048fdfe
GC
209 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
210 * Atomically set the bit [other cpus will start sending flush ipis],
211 * and test the bit.
212 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
213 * 2) switch %%esp, ie current
214 *
215 * The interrupt must handle 2 special cases:
216 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
217 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
218 * runs in kernel space, the cpu could load tlb entries for user space
219 * pages.
220 *
52aec330 221 * The good news is that cpu_tlbstate is local to each cpu, no
c048fdfe
GC
222 * write/read ordering problems.
223 */
224
225/*
52aec330 226 * TLB flush funcation:
c048fdfe
GC
227 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
228 * 2) Leave the mm if we are in the lazy tlb mode.
02cf94c3 229 */
52aec330 230static void flush_tlb_func(void *info)
c048fdfe 231{
52aec330 232 struct flush_tlb_info *f = info;
c048fdfe 233
fd0f5869
TS
234 inc_irq_stat(irq_tlb_count);
235
858eaaa7 236 if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
52aec330 237 return;
c048fdfe 238
ec659934 239 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
52aec330 240 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
d17d8f9d 241 if (f->flush_end == TLB_FLUSH_ALL) {
52aec330 242 local_flush_tlb();
d17d8f9d
DH
243 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
244 } else {
52aec330 245 unsigned long addr;
d17d8f9d 246 unsigned long nr_pages =
bbc03778 247 (f->flush_end - f->flush_start) / PAGE_SIZE;
52aec330
AS
248 addr = f->flush_start;
249 while (addr < f->flush_end) {
250 __flush_tlb_single(addr);
251 addr += PAGE_SIZE;
e7b52ffd 252 }
d17d8f9d 253 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
52aec330
AS
254 }
255 } else
256 leave_mm(smp_processor_id());
c048fdfe 257
c048fdfe
GC
258}
259
4595f962 260void native_flush_tlb_others(const struct cpumask *cpumask,
e7b52ffd
AS
261 struct mm_struct *mm, unsigned long start,
262 unsigned long end)
4595f962 263{
52aec330 264 struct flush_tlb_info info;
18c98243
NA
265
266 if (end == 0)
267 end = start + PAGE_SIZE;
52aec330
AS
268 info.flush_mm = mm;
269 info.flush_start = start;
270 info.flush_end = end;
271
ec659934 272 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
18c98243
NA
273 if (end == TLB_FLUSH_ALL)
274 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
275 else
276 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
277 (end - start) >> PAGE_SHIFT);
278
4595f962 279 if (is_uv_system()) {
bdbcdd48 280 unsigned int cpu;
0e21990a 281
25542c64 282 cpu = smp_processor_id();
e7b52ffd 283 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
bdbcdd48 284 if (cpumask)
52aec330
AS
285 smp_call_function_many(cpumask, flush_tlb_func,
286 &info, 1);
0e21990a 287 return;
4595f962 288 }
52aec330 289 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
c048fdfe 290}
c048fdfe
GC
291
292void flush_tlb_current_task(void)
293{
294 struct mm_struct *mm = current->mm;
c048fdfe
GC
295
296 preempt_disable();
c048fdfe 297
ec659934 298 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
71b3c126
AL
299
300 /* This is an implicit full barrier that synchronizes with switch_mm. */
c048fdfe 301 local_flush_tlb();
71b3c126 302
d17d8f9d 303 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
78f1c4d6 304 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
e7b52ffd 305 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
c048fdfe
GC
306 preempt_enable();
307}
308
a5102476
DH
309/*
310 * See Documentation/x86/tlb.txt for details. We choose 33
311 * because it is large enough to cover the vast majority (at
312 * least 95%) of allocations, and is small enough that we are
313 * confident it will not cause too much overhead. Each single
314 * flush is about 100 ns, so this caps the maximum overhead at
315 * _about_ 3,000 ns.
316 *
317 * This is in units of pages.
318 */
86426851 319static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
e9f4e0a9 320
611ae8e3
AS
321void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
322 unsigned long end, unsigned long vmflag)
323{
324 unsigned long addr;
9dfa6dee
DH
325 /* do a global flush by default */
326 unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
e7b52ffd
AS
327
328 preempt_disable();
71b3c126
AL
329 if (current->active_mm != mm) {
330 /* Synchronize with switch_mm. */
331 smp_mb();
332
4995ab9c 333 goto out;
71b3c126 334 }
e7b52ffd 335
611ae8e3
AS
336 if (!current->mm) {
337 leave_mm(smp_processor_id());
71b3c126
AL
338
339 /* Synchronize with switch_mm. */
340 smp_mb();
341
4995ab9c 342 goto out;
611ae8e3 343 }
c048fdfe 344
9dfa6dee
DH
345 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
346 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
e7b52ffd 347
71b3c126
AL
348 /*
349 * Both branches below are implicit full barriers (MOV to CR or
350 * INVLPG) that synchronize with switch_mm.
351 */
9dfa6dee
DH
352 if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
353 base_pages_to_flush = TLB_FLUSH_ALL;
ec659934 354 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
611ae8e3 355 local_flush_tlb();
9824cf97 356 } else {
611ae8e3 357 /* flush range by one by one 'invlpg' */
9824cf97 358 for (addr = start; addr < end; addr += PAGE_SIZE) {
ec659934 359 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
611ae8e3 360 __flush_tlb_single(addr);
9824cf97 361 }
e7b52ffd 362 }
d17d8f9d 363 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
4995ab9c 364out:
9dfa6dee 365 if (base_pages_to_flush == TLB_FLUSH_ALL) {
4995ab9c
DH
366 start = 0UL;
367 end = TLB_FLUSH_ALL;
368 }
e7b52ffd 369 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
4995ab9c 370 flush_tlb_others(mm_cpumask(mm), mm, start, end);
c048fdfe
GC
371 preempt_enable();
372}
373
e7b52ffd 374void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
c048fdfe
GC
375{
376 struct mm_struct *mm = vma->vm_mm;
c048fdfe
GC
377
378 preempt_disable();
c048fdfe
GC
379
380 if (current->active_mm == mm) {
71b3c126
AL
381 if (current->mm) {
382 /*
383 * Implicit full barrier (INVLPG) that synchronizes
384 * with switch_mm.
385 */
e7b52ffd 386 __flush_tlb_one(start);
71b3c126 387 } else {
c048fdfe 388 leave_mm(smp_processor_id());
71b3c126
AL
389
390 /* Synchronize with switch_mm. */
391 smp_mb();
392 }
c048fdfe
GC
393 }
394
78f1c4d6 395 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
e7b52ffd 396 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
c048fdfe
GC
397
398 preempt_enable();
399}
400
401static void do_flush_tlb_all(void *info)
402{
ec659934 403 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
c048fdfe 404 __flush_tlb_all();
c6ae41e7 405 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
3f8afb77 406 leave_mm(smp_processor_id());
c048fdfe
GC
407}
408
409void flush_tlb_all(void)
410{
ec659934 411 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
15c8b6c1 412 on_each_cpu(do_flush_tlb_all, NULL, 1);
c048fdfe 413}
3df3212f 414
effee4b9
AS
415static void do_kernel_range_flush(void *info)
416{
417 struct flush_tlb_info *f = info;
418 unsigned long addr;
419
420 /* flush range by one by one 'invlpg' */
6df46865 421 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
effee4b9
AS
422 __flush_tlb_single(addr);
423}
424
425void flush_tlb_kernel_range(unsigned long start, unsigned long end)
426{
effee4b9
AS
427
428 /* Balance as user space task's flush, a bit conservative */
e9f4e0a9
DH
429 if (end == TLB_FLUSH_ALL ||
430 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
effee4b9 431 on_each_cpu(do_flush_tlb_all, NULL, 1);
e9f4e0a9
DH
432 } else {
433 struct flush_tlb_info info;
effee4b9
AS
434 info.flush_start = start;
435 info.flush_end = end;
436 on_each_cpu(do_kernel_range_flush, &info, 1);
437 }
438}
2d040a1c
DH
439
440static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
441 size_t count, loff_t *ppos)
442{
443 char buf[32];
444 unsigned int len;
445
446 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
447 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
448}
449
450static ssize_t tlbflush_write_file(struct file *file,
451 const char __user *user_buf, size_t count, loff_t *ppos)
452{
453 char buf[32];
454 ssize_t len;
455 int ceiling;
456
457 len = min(count, sizeof(buf) - 1);
458 if (copy_from_user(buf, user_buf, len))
459 return -EFAULT;
460
461 buf[len] = '\0';
462 if (kstrtoint(buf, 0, &ceiling))
463 return -EINVAL;
464
465 if (ceiling < 0)
466 return -EINVAL;
467
468 tlb_single_page_flush_ceiling = ceiling;
469 return count;
470}
471
472static const struct file_operations fops_tlbflush = {
473 .read = tlbflush_read_file,
474 .write = tlbflush_write_file,
475 .llseek = default_llseek,
476};
477
478static int __init create_tlb_single_page_flush_ceiling(void)
479{
480 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
481 arch_debugfs_dir, NULL, &fops_tlbflush);
482 return 0;
483}
484late_initcall(create_tlb_single_page_flush_ceiling);
e1074888
AL
485
486#endif /* CONFIG_SMP */