]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/platform/efi/quirks.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / arch / x86 / platform / efi / quirks.c
CommitLineData
26d7f65f
MF
1#define pr_fmt(fmt) "efi: " fmt
2
eeb9db09
ST
3#include <linux/init.h>
4#include <linux/kernel.h>
5#include <linux/string.h>
6#include <linux/time.h>
7#include <linux/types.h>
8#include <linux/efi.h>
9#include <linux/slab.h>
10#include <linux/memblock.h>
11#include <linux/bootmem.h>
44be28e9 12#include <linux/acpi.h>
d394f2d9 13#include <linux/dmi.h>
5520b7e7
IM
14
15#include <asm/e820/api.h>
eeb9db09
ST
16#include <asm/efi.h>
17#include <asm/uv/uv.h>
18
19#define EFI_MIN_RESERVE 5120
20
21#define EFI_DUMMY_GUID \
22 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
23
24static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
25
26static bool efi_no_storage_paranoia;
27
28/*
29 * Some firmware implementations refuse to boot if there's insufficient
30 * space in the variable store. The implementation of garbage collection
31 * in some FW versions causes stale (deleted) variables to take up space
32 * longer than intended and space is only freed once the store becomes
33 * almost completely full.
34 *
35 * Enabling this option disables the space checks in
36 * efi_query_variable_store() and forces garbage collection.
37 *
38 * Only enable this option if deleting EFI variables does not free up
39 * space in your variable store, e.g. if despite deleting variables
40 * you're unable to create new ones.
41 */
42static int __init setup_storage_paranoia(char *arg)
43{
44 efi_no_storage_paranoia = true;
45 return 0;
46}
47early_param("efi_no_storage_paranoia", setup_storage_paranoia);
48
49/*
50 * Deleting the dummy variable which kicks off garbage collection
51*/
52void efi_delete_dummy_variable(void)
53{
54 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
55 EFI_VARIABLE_NON_VOLATILE |
56 EFI_VARIABLE_BOOTSERVICE_ACCESS |
57 EFI_VARIABLE_RUNTIME_ACCESS,
58 0, NULL);
59}
60
ca0e30dc
AB
61/*
62 * In the nonblocking case we do not attempt to perform garbage
63 * collection if we do not have enough free space. Rather, we do the
64 * bare minimum check and give up immediately if the available space
65 * is below EFI_MIN_RESERVE.
66 *
67 * This function is intended to be small and simple because it is
68 * invoked from crash handler paths.
69 */
70static efi_status_t
71query_variable_store_nonblocking(u32 attributes, unsigned long size)
72{
73 efi_status_t status;
74 u64 storage_size, remaining_size, max_size;
75
76 status = efi.query_variable_info_nonblocking(attributes, &storage_size,
77 &remaining_size,
78 &max_size);
79 if (status != EFI_SUCCESS)
80 return status;
81
82 if (remaining_size - size < EFI_MIN_RESERVE)
83 return EFI_OUT_OF_RESOURCES;
84
85 return EFI_SUCCESS;
86}
87
eeb9db09
ST
88/*
89 * Some firmware implementations refuse to boot if there's insufficient space
90 * in the variable store. Ensure that we never use more than a safe limit.
91 *
92 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
93 * store.
94 */
ca0e30dc
AB
95efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
96 bool nonblocking)
eeb9db09
ST
97{
98 efi_status_t status;
99 u64 storage_size, remaining_size, max_size;
100
101 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
102 return 0;
103
ca0e30dc
AB
104 if (nonblocking)
105 return query_variable_store_nonblocking(attributes, size);
106
eeb9db09
ST
107 status = efi.query_variable_info(attributes, &storage_size,
108 &remaining_size, &max_size);
109 if (status != EFI_SUCCESS)
110 return status;
111
112 /*
113 * We account for that by refusing the write if permitting it would
114 * reduce the available space to under 5KB. This figure was provided by
115 * Samsung, so should be safe.
116 */
117 if ((remaining_size - size < EFI_MIN_RESERVE) &&
118 !efi_no_storage_paranoia) {
119
120 /*
121 * Triggering garbage collection may require that the firmware
122 * generate a real EFI_OUT_OF_RESOURCES error. We can force
123 * that by attempting to use more space than is available.
124 */
125 unsigned long dummy_size = remaining_size + 1024;
126 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
127
128 if (!dummy)
129 return EFI_OUT_OF_RESOURCES;
130
131 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
132 EFI_VARIABLE_NON_VOLATILE |
133 EFI_VARIABLE_BOOTSERVICE_ACCESS |
134 EFI_VARIABLE_RUNTIME_ACCESS,
135 dummy_size, dummy);
136
137 if (status == EFI_SUCCESS) {
138 /*
139 * This should have failed, so if it didn't make sure
140 * that we delete it...
141 */
142 efi_delete_dummy_variable();
143 }
144
145 kfree(dummy);
146
147 /*
148 * The runtime code may now have triggered a garbage collection
149 * run, so check the variable info again
150 */
151 status = efi.query_variable_info(attributes, &storage_size,
152 &remaining_size, &max_size);
153
154 if (status != EFI_SUCCESS)
155 return status;
156
157 /*
158 * There still isn't enough room, so return an error
159 */
160 if (remaining_size - size < EFI_MIN_RESERVE)
161 return EFI_OUT_OF_RESOURCES;
162 }
163
164 return EFI_SUCCESS;
165}
166EXPORT_SYMBOL_GPL(efi_query_variable_store);
167
816e7612
MF
168/*
169 * The UEFI specification makes it clear that the operating system is
170 * free to do whatever it wants with boot services code after
171 * ExitBootServices() has been called. Ignoring this recommendation a
172 * significant bunch of EFI implementations continue calling into boot
173 * services code (SetVirtualAddressMap). In order to work around such
174 * buggy implementations we reserve boot services region during EFI
175 * init and make sure it stays executable. Then, after
176 * SetVirtualAddressMap(), it is discarded.
177 *
178 * However, some boot services regions contain data that is required
179 * by drivers, so we need to track which memory ranges can never be
180 * freed. This is done by tagging those regions with the
181 * EFI_MEMORY_RUNTIME attribute.
182 *
183 * Any driver that wants to mark a region as reserved must use
184 * efi_mem_reserve() which will insert a new EFI memory descriptor
185 * into efi.memmap (splitting existing regions if necessary) and tag
186 * it with EFI_MEMORY_RUNTIME.
187 */
188void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
189{
190 phys_addr_t new_phys, new_size;
191 struct efi_mem_range mr;
192 efi_memory_desc_t md;
193 int num_entries;
194 void *new;
195
196 if (efi_mem_desc_lookup(addr, &md)) {
197 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
198 return;
199 }
200
201 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
202 pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
203 return;
204 }
205
6f6266a5
OS
206 /* No need to reserve regions that will never be freed. */
207 if (md.attribute & EFI_MEMORY_RUNTIME)
208 return;
209
92dc3350
MF
210 size += addr % EFI_PAGE_SIZE;
211 size = round_up(size, EFI_PAGE_SIZE);
212 addr = round_down(addr, EFI_PAGE_SIZE);
213
816e7612 214 mr.range.start = addr;
92dc3350 215 mr.range.end = addr + size - 1;
816e7612
MF
216 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
217
218 num_entries = efi_memmap_split_count(&md, &mr.range);
219 num_entries += efi.memmap.nr_map;
220
221 new_size = efi.memmap.desc_size * num_entries;
222
20b1e22d 223 new_phys = efi_memmap_alloc(num_entries);
816e7612
MF
224 if (!new_phys) {
225 pr_err("Could not allocate boot services memmap\n");
226 return;
227 }
228
229 new = early_memremap(new_phys, new_size);
230 if (!new) {
231 pr_err("Failed to map new boot services memmap\n");
232 return;
233 }
234
235 efi_memmap_insert(&efi.memmap, new, &mr);
236 early_memunmap(new, new_size);
237
238 efi_memmap_install(new_phys, num_entries);
239}
240
452308de
MF
241/*
242 * Helper function for efi_reserve_boot_services() to figure out if we
243 * can free regions in efi_free_boot_services().
244 *
245 * Use this function to ensure we do not free regions owned by somebody
246 * else. We must only reserve (and then free) regions:
247 *
248 * - Not within any part of the kernel
09821ff1 249 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
452308de
MF
250 */
251static bool can_free_region(u64 start, u64 size)
252{
253 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
254 return false;
255
09821ff1 256 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
452308de
MF
257 return false;
258
259 return true;
260}
261
eeb9db09
ST
262void __init efi_reserve_boot_services(void)
263{
78ce248f 264 efi_memory_desc_t *md;
eeb9db09 265
78ce248f 266 for_each_efi_memory_desc(md) {
eeb9db09
ST
267 u64 start = md->phys_addr;
268 u64 size = md->num_pages << EFI_PAGE_SHIFT;
452308de 269 bool already_reserved;
eeb9db09
ST
270
271 if (md->type != EFI_BOOT_SERVICES_CODE &&
272 md->type != EFI_BOOT_SERVICES_DATA)
273 continue;
452308de
MF
274
275 already_reserved = memblock_is_region_reserved(start, size);
276
277 /*
278 * Because the following memblock_reserve() is paired
279 * with free_bootmem_late() for this region in
280 * efi_free_boot_services(), we must be extremely
281 * careful not to reserve, and subsequently free,
282 * critical regions of memory (like the kernel image) or
283 * those regions that somebody else has already
284 * reserved.
285 *
286 * A good example of a critical region that must not be
287 * freed is page zero (first 4Kb of memory), which may
288 * contain boot services code/data but is marked
09821ff1 289 * E820_TYPE_RESERVED by trim_bios_range().
452308de
MF
290 */
291 if (!already_reserved) {
eeb9db09 292 memblock_reserve(start, size);
452308de
MF
293
294 /*
295 * If we are the first to reserve the region, no
296 * one else cares about it. We own it and can
297 * free it later.
298 */
299 if (can_free_region(start, size))
300 continue;
301 }
302
303 /*
304 * We don't own the region. We must not free it.
305 *
306 * Setting this bit for a boot services region really
307 * doesn't make sense as far as the firmware is
308 * concerned, but it does provide us with a way to tag
309 * those regions that must not be paired with
310 * free_bootmem_late().
311 */
312 md->attribute |= EFI_MEMORY_RUNTIME;
eeb9db09
ST
313 }
314}
315
316void __init efi_free_boot_services(void)
317{
816e7612 318 phys_addr_t new_phys, new_size;
78ce248f 319 efi_memory_desc_t *md;
816e7612
MF
320 int num_entries = 0;
321 void *new, *new_md;
eeb9db09 322
78ce248f 323 for_each_efi_memory_desc(md) {
eeb9db09
ST
324 unsigned long long start = md->phys_addr;
325 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
5bc653b7 326 size_t rm_size;
eeb9db09
ST
327
328 if (md->type != EFI_BOOT_SERVICES_CODE &&
816e7612
MF
329 md->type != EFI_BOOT_SERVICES_DATA) {
330 num_entries++;
eeb9db09 331 continue;
816e7612 332 }
eeb9db09 333
452308de 334 /* Do not free, someone else owns it: */
816e7612
MF
335 if (md->attribute & EFI_MEMORY_RUNTIME) {
336 num_entries++;
eeb9db09 337 continue;
816e7612 338 }
eeb9db09 339
5bc653b7
AL
340 /*
341 * Nasty quirk: if all sub-1MB memory is used for boot
342 * services, we can get here without having allocated the
343 * real mode trampoline. It's too late to hand boot services
344 * memory back to the memblock allocator, so instead
345 * try to manually allocate the trampoline if needed.
346 *
347 * I've seen this on a Dell XPS 13 9350 with firmware
348 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
349 * grub2-efi on a hard disk. (And no, I don't know why
350 * this happened, but Linux should still try to boot rather
351 * panicing early.)
352 */
353 rm_size = real_mode_size_needed();
354 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
355 set_real_mode_mem(start, rm_size);
356 start += rm_size;
357 size -= rm_size;
358 }
359
eeb9db09
ST
360 free_bootmem_late(start, size);
361 }
816e7612 362
1ea34adb
JG
363 if (!num_entries)
364 return;
365
816e7612 366 new_size = efi.memmap.desc_size * num_entries;
20b1e22d 367 new_phys = efi_memmap_alloc(num_entries);
816e7612
MF
368 if (!new_phys) {
369 pr_err("Failed to allocate new EFI memmap\n");
370 return;
371 }
372
373 new = memremap(new_phys, new_size, MEMREMAP_WB);
374 if (!new) {
375 pr_err("Failed to map new EFI memmap\n");
376 return;
377 }
378
379 /*
380 * Build a new EFI memmap that excludes any boot services
381 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
382 * regions have now been freed.
383 */
384 new_md = new;
385 for_each_efi_memory_desc(md) {
386 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
387 (md->type == EFI_BOOT_SERVICES_CODE ||
388 md->type == EFI_BOOT_SERVICES_DATA))
389 continue;
390
391 memcpy(new_md, md, efi.memmap.desc_size);
392 new_md += efi.memmap.desc_size;
393 }
394
395 memunmap(new);
396
397 if (efi_memmap_install(new_phys, num_entries)) {
398 pr_err("Could not install new EFI memmap\n");
399 return;
400 }
eeb9db09
ST
401}
402
403/*
404 * A number of config table entries get remapped to virtual addresses
405 * after entering EFI virtual mode. However, the kexec kernel requires
406 * their physical addresses therefore we pass them via setup_data and
407 * correct those entries to their respective physical addresses here.
408 *
409 * Currently only handles smbios which is necessary for some firmware
410 * implementation.
411 */
412int __init efi_reuse_config(u64 tables, int nr_tables)
413{
414 int i, sz, ret = 0;
415 void *p, *tablep;
416 struct efi_setup_data *data;
417
418 if (!efi_setup)
419 return 0;
420
421 if (!efi_enabled(EFI_64BIT))
422 return 0;
423
424 data = early_memremap(efi_setup, sizeof(*data));
425 if (!data) {
426 ret = -ENOMEM;
427 goto out;
428 }
429
430 if (!data->smbios)
431 goto out_memremap;
432
433 sz = sizeof(efi_config_table_64_t);
434
435 p = tablep = early_memremap(tables, nr_tables * sz);
436 if (!p) {
437 pr_err("Could not map Configuration table!\n");
438 ret = -ENOMEM;
439 goto out_memremap;
440 }
441
442 for (i = 0; i < efi.systab->nr_tables; i++) {
443 efi_guid_t guid;
444
445 guid = ((efi_config_table_64_t *)p)->guid;
446
447 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
448 ((efi_config_table_64_t *)p)->table = data->smbios;
449 p += sz;
450 }
98a716b6 451 early_memunmap(tablep, nr_tables * sz);
eeb9db09
ST
452
453out_memremap:
98a716b6 454 early_memunmap(data, sizeof(*data));
eeb9db09
ST
455out:
456 return ret;
457}
458
d394f2d9
AT
459static const struct dmi_system_id sgi_uv1_dmi[] = {
460 { NULL, "SGI UV1",
461 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
462 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
463 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
464 }
465 },
466 { } /* NULL entry stops DMI scanning */
467};
468
eeb9db09
ST
469void __init efi_apply_memmap_quirks(void)
470{
471 /*
472 * Once setup is done earlier, unmap the EFI memory map on mismatched
473 * firmware/kernel architectures since there is no support for runtime
474 * services.
475 */
476 if (!efi_runtime_supported()) {
26d7f65f 477 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
9479c7ce 478 efi_memmap_unmap();
eeb9db09
ST
479 }
480
d394f2d9
AT
481 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
482 if (dmi_check_system(sgi_uv1_dmi))
eeb9db09
ST
483 set_bit(EFI_OLD_MEMMAP, &efi.flags);
484}
44be28e9
MF
485
486/*
487 * For most modern platforms the preferred method of powering off is via
488 * ACPI. However, there are some that are known to require the use of
489 * EFI runtime services and for which ACPI does not work at all.
490 *
491 * Using EFI is a last resort, to be used only if no other option
492 * exists.
493 */
494bool efi_reboot_required(void)
495{
496 if (!acpi_gbl_reduced_hardware)
497 return false;
498
499 efi_reboot_quirk_mode = EFI_RESET_WARM;
500 return true;
501}
502
503bool efi_poweroff_required(void)
504{
13737181 505 return acpi_gbl_reduced_hardware || acpi_no_s5;
44be28e9 506}