]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/xen/enlighten_pv.c
x86/xen: don't indicate DCA support in pv domains
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / enlighten_pv.c
CommitLineData
e1dab14c
VK
1/*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14#include <linux/cpu.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/smp.h>
18#include <linux/preempt.h>
19#include <linux/hardirq.h>
20#include <linux/percpu.h>
21#include <linux/delay.h>
22#include <linux/start_kernel.h>
23#include <linux/sched.h>
24#include <linux/kprobes.h>
25#include <linux/bootmem.h>
26#include <linux/export.h>
27#include <linux/mm.h>
28#include <linux/page-flags.h>
29#include <linux/highmem.h>
30#include <linux/console.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/memblock.h>
34#include <linux/edd.h>
35#include <linux/frame.h>
36
37#include <xen/xen.h>
38#include <xen/events.h>
39#include <xen/interface/xen.h>
40#include <xen/interface/version.h>
41#include <xen/interface/physdev.h>
42#include <xen/interface/vcpu.h>
43#include <xen/interface/memory.h>
44#include <xen/interface/nmi.h>
45#include <xen/interface/xen-mca.h>
46#include <xen/features.h>
47#include <xen/page.h>
48#include <xen/hvc-console.h>
49#include <xen/acpi.h>
50
51#include <asm/paravirt.h>
52#include <asm/apic.h>
53#include <asm/page.h>
54#include <asm/xen/pci.h>
55#include <asm/xen/hypercall.h>
56#include <asm/xen/hypervisor.h>
57#include <asm/xen/cpuid.h>
58#include <asm/fixmap.h>
59#include <asm/processor.h>
60#include <asm/proto.h>
61#include <asm/msr-index.h>
62#include <asm/traps.h>
63#include <asm/setup.h>
64#include <asm/desc.h>
65#include <asm/pgalloc.h>
66#include <asm/pgtable.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/stackprotector.h>
70#include <asm/hypervisor.h>
71#include <asm/mach_traps.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75
76#ifdef CONFIG_ACPI
77#include <linux/acpi.h>
78#include <asm/acpi.h>
79#include <acpi/pdc_intel.h>
80#include <acpi/processor.h>
81#include <xen/interface/platform.h>
82#endif
83
84#include "xen-ops.h"
85#include "mmu.h"
86#include "smp.h"
87#include "multicalls.h"
88#include "pmu.h"
89
90void *xen_initial_gdt;
91
92RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
93
94static int xen_cpu_up_prepare_pv(unsigned int cpu);
95static int xen_cpu_dead_pv(unsigned int cpu);
96
97struct tls_descs {
98 struct desc_struct desc[3];
99};
100
101/*
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
107 */
108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109
110/*
111 * On restore, set the vcpu placement up again.
112 * If it fails, then we're in a bad state, since
113 * we can't back out from using it...
114 */
115void xen_vcpu_restore(void)
116{
117 int cpu;
118
119 for_each_possible_cpu(cpu) {
120 bool other_cpu = (cpu != smp_processor_id());
121 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
122 NULL);
123
124 if (other_cpu && is_up &&
125 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
126 BUG();
127
128 xen_setup_runstate_info(cpu);
129
130 if (xen_have_vcpu_info_placement)
131 xen_vcpu_setup(cpu);
132
133 if (other_cpu && is_up &&
134 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
135 BUG();
136 }
137}
138
139static void __init xen_banner(void)
140{
141 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
142 struct xen_extraversion extra;
143 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
144
145 pr_info("Booting paravirtualized kernel %son %s\n",
146 xen_feature(XENFEAT_auto_translated_physmap) ?
147 "with PVH extensions " : "", pv_info.name);
148 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
149 version >> 16, version & 0xffff, extra.extraversion,
150 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
151}
152/* Check if running on Xen version (major, minor) or later */
153bool
154xen_running_on_version_or_later(unsigned int major, unsigned int minor)
155{
156 unsigned int version;
157
158 if (!xen_domain())
159 return false;
160
161 version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
163 ((version >> 16) > major))
164 return true;
165 return false;
166}
167
168#define CPUID_THERM_POWER_LEAF 6
169#define APERFMPERF_PRESENT 0
170
171static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
172static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
173
174static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
175static __read_mostly unsigned int cpuid_leaf5_ecx_val;
176static __read_mostly unsigned int cpuid_leaf5_edx_val;
177
178static void xen_cpuid(unsigned int *ax, unsigned int *bx,
179 unsigned int *cx, unsigned int *dx)
180{
181 unsigned maskebx = ~0;
182 unsigned maskecx = ~0;
183 unsigned maskedx = ~0;
184 unsigned setecx = 0;
185 /*
186 * Mask out inconvenient features, to try and disable as many
187 * unsupported kernel subsystems as possible.
188 */
189 switch (*ax) {
190 case 1:
191 maskecx = cpuid_leaf1_ecx_mask;
192 setecx = cpuid_leaf1_ecx_set_mask;
193 maskedx = cpuid_leaf1_edx_mask;
194 break;
195
196 case CPUID_MWAIT_LEAF:
197 /* Synthesize the values.. */
198 *ax = 0;
199 *bx = 0;
200 *cx = cpuid_leaf5_ecx_val;
201 *dx = cpuid_leaf5_edx_val;
202 return;
203
204 case CPUID_THERM_POWER_LEAF:
205 /* Disabling APERFMPERF for kernel usage */
206 maskecx = ~(1 << APERFMPERF_PRESENT);
207 break;
208
209 case 0xb:
210 /* Suppress extended topology stuff */
211 maskebx = 0;
212 break;
213 }
214
215 asm(XEN_EMULATE_PREFIX "cpuid"
216 : "=a" (*ax),
217 "=b" (*bx),
218 "=c" (*cx),
219 "=d" (*dx)
220 : "0" (*ax), "2" (*cx));
221
222 *bx &= maskebx;
223 *cx &= maskecx;
224 *cx |= setecx;
225 *dx &= maskedx;
226}
227STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
228
229static bool __init xen_check_mwait(void)
230{
231#ifdef CONFIG_ACPI
232 struct xen_platform_op op = {
233 .cmd = XENPF_set_processor_pminfo,
234 .u.set_pminfo.id = -1,
235 .u.set_pminfo.type = XEN_PM_PDC,
236 };
237 uint32_t buf[3];
238 unsigned int ax, bx, cx, dx;
239 unsigned int mwait_mask;
240
241 /* We need to determine whether it is OK to expose the MWAIT
242 * capability to the kernel to harvest deeper than C3 states from ACPI
243 * _CST using the processor_harvest_xen.c module. For this to work, we
244 * need to gather the MWAIT_LEAF values (which the cstate.c code
245 * checks against). The hypervisor won't expose the MWAIT flag because
246 * it would break backwards compatibility; so we will find out directly
247 * from the hardware and hypercall.
248 */
249 if (!xen_initial_domain())
250 return false;
251
252 /*
253 * When running under platform earlier than Xen4.2, do not expose
254 * mwait, to avoid the risk of loading native acpi pad driver
255 */
256 if (!xen_running_on_version_or_later(4, 2))
257 return false;
258
259 ax = 1;
260 cx = 0;
261
262 native_cpuid(&ax, &bx, &cx, &dx);
263
264 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
265 (1 << (X86_FEATURE_MWAIT % 32));
266
267 if ((cx & mwait_mask) != mwait_mask)
268 return false;
269
270 /* We need to emulate the MWAIT_LEAF and for that we need both
271 * ecx and edx. The hypercall provides only partial information.
272 */
273
274 ax = CPUID_MWAIT_LEAF;
275 bx = 0;
276 cx = 0;
277 dx = 0;
278
279 native_cpuid(&ax, &bx, &cx, &dx);
280
281 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
282 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
283 */
284 buf[0] = ACPI_PDC_REVISION_ID;
285 buf[1] = 1;
286 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
287
288 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
289
290 if ((HYPERVISOR_platform_op(&op) == 0) &&
291 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
292 cpuid_leaf5_ecx_val = cx;
293 cpuid_leaf5_edx_val = dx;
294 }
295 return true;
296#else
297 return false;
298#endif
299}
300static void __init xen_init_cpuid_mask(void)
301{
302 unsigned int ax, bx, cx, dx;
303 unsigned int xsave_mask;
304
305 cpuid_leaf1_edx_mask =
306 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
307 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
308
309 if (!xen_initial_domain())
310 cpuid_leaf1_edx_mask &=
311 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
312
313 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
314
315 ax = 1;
316 cx = 0;
317 cpuid(1, &ax, &bx, &cx, &dx);
318
319 xsave_mask =
320 (1 << (X86_FEATURE_XSAVE % 32)) |
321 (1 << (X86_FEATURE_OSXSAVE % 32));
322
323 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
324 if ((cx & xsave_mask) != xsave_mask)
325 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
326 if (xen_check_mwait())
327 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
328}
329
0808e80c
JG
330static void __init xen_init_capabilities(void)
331{
332 setup_clear_cpu_cap(X86_BUG_SYSRET_SS_ATTRS);
333 setup_force_cpu_cap(X86_FEATURE_XENPV);
3ee99df3 334 setup_clear_cpu_cap(X86_FEATURE_DCA);
0808e80c
JG
335}
336
e1dab14c
VK
337static void xen_set_debugreg(int reg, unsigned long val)
338{
339 HYPERVISOR_set_debugreg(reg, val);
340}
341
342static unsigned long xen_get_debugreg(int reg)
343{
344 return HYPERVISOR_get_debugreg(reg);
345}
346
347static void xen_end_context_switch(struct task_struct *next)
348{
349 xen_mc_flush();
350 paravirt_end_context_switch(next);
351}
352
353static unsigned long xen_store_tr(void)
354{
355 return 0;
356}
357
358/*
359 * Set the page permissions for a particular virtual address. If the
360 * address is a vmalloc mapping (or other non-linear mapping), then
361 * find the linear mapping of the page and also set its protections to
362 * match.
363 */
364static void set_aliased_prot(void *v, pgprot_t prot)
365{
366 int level;
367 pte_t *ptep;
368 pte_t pte;
369 unsigned long pfn;
370 struct page *page;
371 unsigned char dummy;
372
373 ptep = lookup_address((unsigned long)v, &level);
374 BUG_ON(ptep == NULL);
375
376 pfn = pte_pfn(*ptep);
377 page = pfn_to_page(pfn);
378
379 pte = pfn_pte(pfn, prot);
380
381 /*
382 * Careful: update_va_mapping() will fail if the virtual address
383 * we're poking isn't populated in the page tables. We don't
384 * need to worry about the direct map (that's always in the page
385 * tables), but we need to be careful about vmap space. In
386 * particular, the top level page table can lazily propagate
387 * entries between processes, so if we've switched mms since we
388 * vmapped the target in the first place, we might not have the
389 * top-level page table entry populated.
390 *
391 * We disable preemption because we want the same mm active when
392 * we probe the target and when we issue the hypercall. We'll
393 * have the same nominal mm, but if we're a kernel thread, lazy
394 * mm dropping could change our pgd.
395 *
396 * Out of an abundance of caution, this uses __get_user() to fault
397 * in the target address just in case there's some obscure case
398 * in which the target address isn't readable.
399 */
400
401 preempt_disable();
402
403 probe_kernel_read(&dummy, v, 1);
404
405 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
406 BUG();
407
408 if (!PageHighMem(page)) {
409 void *av = __va(PFN_PHYS(pfn));
410
411 if (av != v)
412 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
413 BUG();
414 } else
415 kmap_flush_unused();
416
417 preempt_enable();
418}
419
420static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
421{
422 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
423 int i;
424
425 /*
426 * We need to mark the all aliases of the LDT pages RO. We
427 * don't need to call vm_flush_aliases(), though, since that's
428 * only responsible for flushing aliases out the TLBs, not the
429 * page tables, and Xen will flush the TLB for us if needed.
430 *
431 * To avoid confusing future readers: none of this is necessary
432 * to load the LDT. The hypervisor only checks this when the
433 * LDT is faulted in due to subsequent descriptor access.
434 */
435
436 for (i = 0; i < entries; i += entries_per_page)
437 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
438}
439
440static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
441{
442 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
443 int i;
444
445 for (i = 0; i < entries; i += entries_per_page)
446 set_aliased_prot(ldt + i, PAGE_KERNEL);
447}
448
449static void xen_set_ldt(const void *addr, unsigned entries)
450{
451 struct mmuext_op *op;
452 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
453
454 trace_xen_cpu_set_ldt(addr, entries);
455
456 op = mcs.args;
457 op->cmd = MMUEXT_SET_LDT;
458 op->arg1.linear_addr = (unsigned long)addr;
459 op->arg2.nr_ents = entries;
460
461 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
462
463 xen_mc_issue(PARAVIRT_LAZY_CPU);
464}
465
466static void xen_load_gdt(const struct desc_ptr *dtr)
467{
468 unsigned long va = dtr->address;
469 unsigned int size = dtr->size + 1;
470 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
471 unsigned long frames[pages];
472 int f;
473
474 /*
475 * A GDT can be up to 64k in size, which corresponds to 8192
476 * 8-byte entries, or 16 4k pages..
477 */
478
479 BUG_ON(size > 65536);
480 BUG_ON(va & ~PAGE_MASK);
481
482 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
483 int level;
484 pte_t *ptep;
485 unsigned long pfn, mfn;
486 void *virt;
487
488 /*
489 * The GDT is per-cpu and is in the percpu data area.
490 * That can be virtually mapped, so we need to do a
491 * page-walk to get the underlying MFN for the
492 * hypercall. The page can also be in the kernel's
493 * linear range, so we need to RO that mapping too.
494 */
495 ptep = lookup_address(va, &level);
496 BUG_ON(ptep == NULL);
497
498 pfn = pte_pfn(*ptep);
499 mfn = pfn_to_mfn(pfn);
500 virt = __va(PFN_PHYS(pfn));
501
502 frames[f] = mfn;
503
504 make_lowmem_page_readonly((void *)va);
505 make_lowmem_page_readonly(virt);
506 }
507
508 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
509 BUG();
510}
511
512/*
513 * load_gdt for early boot, when the gdt is only mapped once
514 */
515static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
516{
517 unsigned long va = dtr->address;
518 unsigned int size = dtr->size + 1;
519 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
520 unsigned long frames[pages];
521 int f;
522
523 /*
524 * A GDT can be up to 64k in size, which corresponds to 8192
525 * 8-byte entries, or 16 4k pages..
526 */
527
528 BUG_ON(size > 65536);
529 BUG_ON(va & ~PAGE_MASK);
530
531 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
532 pte_t pte;
533 unsigned long pfn, mfn;
534
535 pfn = virt_to_pfn(va);
536 mfn = pfn_to_mfn(pfn);
537
538 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
539
540 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
541 BUG();
542
543 frames[f] = mfn;
544 }
545
546 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
547 BUG();
548}
549
550static inline bool desc_equal(const struct desc_struct *d1,
551 const struct desc_struct *d2)
552{
553 return d1->a == d2->a && d1->b == d2->b;
554}
555
556static void load_TLS_descriptor(struct thread_struct *t,
557 unsigned int cpu, unsigned int i)
558{
559 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
560 struct desc_struct *gdt;
561 xmaddr_t maddr;
562 struct multicall_space mc;
563
564 if (desc_equal(shadow, &t->tls_array[i]))
565 return;
566
567 *shadow = t->tls_array[i];
568
569 gdt = get_cpu_gdt_rw(cpu);
570 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
571 mc = __xen_mc_entry(0);
572
573 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
574}
575
576static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
577{
578 /*
579 * XXX sleazy hack: If we're being called in a lazy-cpu zone
580 * and lazy gs handling is enabled, it means we're in a
581 * context switch, and %gs has just been saved. This means we
582 * can zero it out to prevent faults on exit from the
583 * hypervisor if the next process has no %gs. Either way, it
584 * has been saved, and the new value will get loaded properly.
585 * This will go away as soon as Xen has been modified to not
586 * save/restore %gs for normal hypercalls.
587 *
588 * On x86_64, this hack is not used for %gs, because gs points
589 * to KERNEL_GS_BASE (and uses it for PDA references), so we
590 * must not zero %gs on x86_64
591 *
592 * For x86_64, we need to zero %fs, otherwise we may get an
593 * exception between the new %fs descriptor being loaded and
594 * %fs being effectively cleared at __switch_to().
595 */
596 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
597#ifdef CONFIG_X86_32
598 lazy_load_gs(0);
599#else
600 loadsegment(fs, 0);
601#endif
602 }
603
604 xen_mc_batch();
605
606 load_TLS_descriptor(t, cpu, 0);
607 load_TLS_descriptor(t, cpu, 1);
608 load_TLS_descriptor(t, cpu, 2);
609
610 xen_mc_issue(PARAVIRT_LAZY_CPU);
611}
612
613#ifdef CONFIG_X86_64
614static void xen_load_gs_index(unsigned int idx)
615{
616 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
617 BUG();
618}
619#endif
620
621static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
622 const void *ptr)
623{
624 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
625 u64 entry = *(u64 *)ptr;
626
627 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
628
629 preempt_disable();
630
631 xen_mc_flush();
632 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
633 BUG();
634
635 preempt_enable();
636}
637
638static int cvt_gate_to_trap(int vector, const gate_desc *val,
639 struct trap_info *info)
640{
641 unsigned long addr;
642
643 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
644 return 0;
645
646 info->vector = vector;
647
648 addr = gate_offset(*val);
649#ifdef CONFIG_X86_64
650 /*
651 * Look for known traps using IST, and substitute them
652 * appropriately. The debugger ones are the only ones we care
653 * about. Xen will handle faults like double_fault,
654 * so we should never see them. Warn if
655 * there's an unexpected IST-using fault handler.
656 */
657 if (addr == (unsigned long)debug)
658 addr = (unsigned long)xen_debug;
659 else if (addr == (unsigned long)int3)
660 addr = (unsigned long)xen_int3;
661 else if (addr == (unsigned long)stack_segment)
662 addr = (unsigned long)xen_stack_segment;
663 else if (addr == (unsigned long)double_fault) {
664 /* Don't need to handle these */
665 return 0;
666#ifdef CONFIG_X86_MCE
667 } else if (addr == (unsigned long)machine_check) {
668 /*
669 * when xen hypervisor inject vMCE to guest,
670 * use native mce handler to handle it
671 */
672 ;
673#endif
674 } else if (addr == (unsigned long)nmi)
675 /*
676 * Use the native version as well.
677 */
678 ;
679 else {
680 /* Some other trap using IST? */
681 if (WARN_ON(val->ist != 0))
682 return 0;
683 }
684#endif /* CONFIG_X86_64 */
685 info->address = addr;
686
687 info->cs = gate_segment(*val);
688 info->flags = val->dpl;
689 /* interrupt gates clear IF */
690 if (val->type == GATE_INTERRUPT)
691 info->flags |= 1 << 2;
692
693 return 1;
694}
695
696/* Locations of each CPU's IDT */
697static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
698
699/* Set an IDT entry. If the entry is part of the current IDT, then
700 also update Xen. */
701static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
702{
703 unsigned long p = (unsigned long)&dt[entrynum];
704 unsigned long start, end;
705
706 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
707
708 preempt_disable();
709
710 start = __this_cpu_read(idt_desc.address);
711 end = start + __this_cpu_read(idt_desc.size) + 1;
712
713 xen_mc_flush();
714
715 native_write_idt_entry(dt, entrynum, g);
716
717 if (p >= start && (p + 8) <= end) {
718 struct trap_info info[2];
719
720 info[1].address = 0;
721
722 if (cvt_gate_to_trap(entrynum, g, &info[0]))
723 if (HYPERVISOR_set_trap_table(info))
724 BUG();
725 }
726
727 preempt_enable();
728}
729
730static void xen_convert_trap_info(const struct desc_ptr *desc,
731 struct trap_info *traps)
732{
733 unsigned in, out, count;
734
735 count = (desc->size+1) / sizeof(gate_desc);
736 BUG_ON(count > 256);
737
738 for (in = out = 0; in < count; in++) {
739 gate_desc *entry = (gate_desc *)(desc->address) + in;
740
741 if (cvt_gate_to_trap(in, entry, &traps[out]))
742 out++;
743 }
744 traps[out].address = 0;
745}
746
747void xen_copy_trap_info(struct trap_info *traps)
748{
749 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
750
751 xen_convert_trap_info(desc, traps);
752}
753
754/* Load a new IDT into Xen. In principle this can be per-CPU, so we
755 hold a spinlock to protect the static traps[] array (static because
756 it avoids allocation, and saves stack space). */
757static void xen_load_idt(const struct desc_ptr *desc)
758{
759 static DEFINE_SPINLOCK(lock);
760 static struct trap_info traps[257];
761
762 trace_xen_cpu_load_idt(desc);
763
764 spin_lock(&lock);
765
766 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
767
768 xen_convert_trap_info(desc, traps);
769
770 xen_mc_flush();
771 if (HYPERVISOR_set_trap_table(traps))
772 BUG();
773
774 spin_unlock(&lock);
775}
776
777/* Write a GDT descriptor entry. Ignore LDT descriptors, since
778 they're handled differently. */
779static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
780 const void *desc, int type)
781{
782 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
783
784 preempt_disable();
785
786 switch (type) {
787 case DESC_LDT:
788 case DESC_TSS:
789 /* ignore */
790 break;
791
792 default: {
793 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
794
795 xen_mc_flush();
796 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
797 BUG();
798 }
799
800 }
801
802 preempt_enable();
803}
804
805/*
806 * Version of write_gdt_entry for use at early boot-time needed to
807 * update an entry as simply as possible.
808 */
809static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
810 const void *desc, int type)
811{
812 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
813
814 switch (type) {
815 case DESC_LDT:
816 case DESC_TSS:
817 /* ignore */
818 break;
819
820 default: {
821 xmaddr_t maddr = virt_to_machine(&dt[entry]);
822
823 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
824 dt[entry] = *(struct desc_struct *)desc;
825 }
826
827 }
828}
829
830static void xen_load_sp0(struct tss_struct *tss,
831 struct thread_struct *thread)
832{
833 struct multicall_space mcs;
834
835 mcs = xen_mc_entry(0);
836 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
837 xen_mc_issue(PARAVIRT_LAZY_CPU);
838 tss->x86_tss.sp0 = thread->sp0;
839}
840
841void xen_set_iopl_mask(unsigned mask)
842{
843 struct physdev_set_iopl set_iopl;
844
845 /* Force the change at ring 0. */
846 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
847 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
848}
849
850static void xen_io_delay(void)
851{
852}
853
854static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
855
856static unsigned long xen_read_cr0(void)
857{
858 unsigned long cr0 = this_cpu_read(xen_cr0_value);
859
860 if (unlikely(cr0 == 0)) {
861 cr0 = native_read_cr0();
862 this_cpu_write(xen_cr0_value, cr0);
863 }
864
865 return cr0;
866}
867
868static void xen_write_cr0(unsigned long cr0)
869{
870 struct multicall_space mcs;
871
872 this_cpu_write(xen_cr0_value, cr0);
873
874 /* Only pay attention to cr0.TS; everything else is
875 ignored. */
876 mcs = xen_mc_entry(0);
877
878 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
879
880 xen_mc_issue(PARAVIRT_LAZY_CPU);
881}
882
883static void xen_write_cr4(unsigned long cr4)
884{
885 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
886
887 native_write_cr4(cr4);
888}
889#ifdef CONFIG_X86_64
890static inline unsigned long xen_read_cr8(void)
891{
892 return 0;
893}
894static inline void xen_write_cr8(unsigned long val)
895{
896 BUG_ON(val);
897}
898#endif
899
900static u64 xen_read_msr_safe(unsigned int msr, int *err)
901{
902 u64 val;
903
904 if (pmu_msr_read(msr, &val, err))
905 return val;
906
907 val = native_read_msr_safe(msr, err);
908 switch (msr) {
909 case MSR_IA32_APICBASE:
910#ifdef CONFIG_X86_X2APIC
911 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
912#endif
913 val &= ~X2APIC_ENABLE;
914 break;
915 }
916 return val;
917}
918
919static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
920{
921 int ret;
922
923 ret = 0;
924
925 switch (msr) {
926#ifdef CONFIG_X86_64
927 unsigned which;
928 u64 base;
929
930 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
931 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
932 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
933
934 set:
935 base = ((u64)high << 32) | low;
936 if (HYPERVISOR_set_segment_base(which, base) != 0)
937 ret = -EIO;
938 break;
939#endif
940
941 case MSR_STAR:
942 case MSR_CSTAR:
943 case MSR_LSTAR:
944 case MSR_SYSCALL_MASK:
945 case MSR_IA32_SYSENTER_CS:
946 case MSR_IA32_SYSENTER_ESP:
947 case MSR_IA32_SYSENTER_EIP:
948 /* Fast syscall setup is all done in hypercalls, so
949 these are all ignored. Stub them out here to stop
950 Xen console noise. */
951 break;
952
953 default:
954 if (!pmu_msr_write(msr, low, high, &ret))
955 ret = native_write_msr_safe(msr, low, high);
956 }
957
958 return ret;
959}
960
961static u64 xen_read_msr(unsigned int msr)
962{
963 /*
964 * This will silently swallow a #GP from RDMSR. It may be worth
965 * changing that.
966 */
967 int err;
968
969 return xen_read_msr_safe(msr, &err);
970}
971
972static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
973{
974 /*
975 * This will silently swallow a #GP from WRMSR. It may be worth
976 * changing that.
977 */
978 xen_write_msr_safe(msr, low, high);
979}
980
981void xen_setup_shared_info(void)
982{
983 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
984 set_fixmap(FIX_PARAVIRT_BOOTMAP,
985 xen_start_info->shared_info);
986
987 HYPERVISOR_shared_info =
988 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
989 } else
990 HYPERVISOR_shared_info =
991 (struct shared_info *)__va(xen_start_info->shared_info);
992
993#ifndef CONFIG_SMP
994 /* In UP this is as good a place as any to set up shared info */
995 xen_setup_vcpu_info_placement();
996#endif
997
998 xen_setup_mfn_list_list();
999}
1000
1001/* This is called once we have the cpu_possible_mask */
1002void xen_setup_vcpu_info_placement(void)
1003{
1004 int cpu;
1005
1006 for_each_possible_cpu(cpu) {
1007 /* Set up direct vCPU id mapping for PV guests. */
1008 per_cpu(xen_vcpu_id, cpu) = cpu;
1009 xen_vcpu_setup(cpu);
1010 }
1011
1012 /*
1013 * xen_vcpu_setup managed to place the vcpu_info within the
1014 * percpu area for all cpus, so make use of it.
1015 */
1016 if (xen_have_vcpu_info_placement) {
1017 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1018 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1019 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1020 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1021 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1022 }
1023}
1024
1025static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1026 unsigned long addr, unsigned len)
1027{
1028 char *start, *end, *reloc;
1029 unsigned ret;
1030
1031 start = end = reloc = NULL;
1032
1033#define SITE(op, x) \
1034 case PARAVIRT_PATCH(op.x): \
1035 if (xen_have_vcpu_info_placement) { \
1036 start = (char *)xen_##x##_direct; \
1037 end = xen_##x##_direct_end; \
1038 reloc = xen_##x##_direct_reloc; \
1039 } \
1040 goto patch_site
1041
1042 switch (type) {
1043 SITE(pv_irq_ops, irq_enable);
1044 SITE(pv_irq_ops, irq_disable);
1045 SITE(pv_irq_ops, save_fl);
1046 SITE(pv_irq_ops, restore_fl);
1047#undef SITE
1048
1049 patch_site:
1050 if (start == NULL || (end-start) > len)
1051 goto default_patch;
1052
1053 ret = paravirt_patch_insns(insnbuf, len, start, end);
1054
1055 /* Note: because reloc is assigned from something that
1056 appears to be an array, gcc assumes it's non-null,
1057 but doesn't know its relationship with start and
1058 end. */
1059 if (reloc > start && reloc < end) {
1060 int reloc_off = reloc - start;
1061 long *relocp = (long *)(insnbuf + reloc_off);
1062 long delta = start - (char *)addr;
1063
1064 *relocp += delta;
1065 }
1066 break;
1067
1068 default_patch:
1069 default:
1070 ret = paravirt_patch_default(type, clobbers, insnbuf,
1071 addr, len);
1072 break;
1073 }
1074
1075 return ret;
1076}
1077
1078static const struct pv_info xen_info __initconst = {
1079 .shared_kernel_pmd = 0,
1080
1081#ifdef CONFIG_X86_64
1082 .extra_user_64bit_cs = FLAT_USER_CS64,
1083#endif
1084 .name = "Xen",
1085};
1086
1087static const struct pv_init_ops xen_init_ops __initconst = {
1088 .patch = xen_patch,
1089};
1090
1091static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1092 .cpuid = xen_cpuid,
1093
1094 .set_debugreg = xen_set_debugreg,
1095 .get_debugreg = xen_get_debugreg,
1096
1097 .read_cr0 = xen_read_cr0,
1098 .write_cr0 = xen_write_cr0,
1099
1100 .read_cr4 = native_read_cr4,
1101 .write_cr4 = xen_write_cr4,
1102
1103#ifdef CONFIG_X86_64
1104 .read_cr8 = xen_read_cr8,
1105 .write_cr8 = xen_write_cr8,
1106#endif
1107
1108 .wbinvd = native_wbinvd,
1109
1110 .read_msr = xen_read_msr,
1111 .write_msr = xen_write_msr,
1112
1113 .read_msr_safe = xen_read_msr_safe,
1114 .write_msr_safe = xen_write_msr_safe,
1115
1116 .read_pmc = xen_read_pmc,
1117
1118 .iret = xen_iret,
1119#ifdef CONFIG_X86_64
1120 .usergs_sysret64 = xen_sysret64,
1121#endif
1122
1123 .load_tr_desc = paravirt_nop,
1124 .set_ldt = xen_set_ldt,
1125 .load_gdt = xen_load_gdt,
1126 .load_idt = xen_load_idt,
1127 .load_tls = xen_load_tls,
1128#ifdef CONFIG_X86_64
1129 .load_gs_index = xen_load_gs_index,
1130#endif
1131
1132 .alloc_ldt = xen_alloc_ldt,
1133 .free_ldt = xen_free_ldt,
1134
1135 .store_idt = native_store_idt,
1136 .store_tr = xen_store_tr,
1137
1138 .write_ldt_entry = xen_write_ldt_entry,
1139 .write_gdt_entry = xen_write_gdt_entry,
1140 .write_idt_entry = xen_write_idt_entry,
1141 .load_sp0 = xen_load_sp0,
1142
1143 .set_iopl_mask = xen_set_iopl_mask,
1144 .io_delay = xen_io_delay,
1145
1146 /* Xen takes care of %gs when switching to usermode for us */
1147 .swapgs = paravirt_nop,
1148
1149 .start_context_switch = paravirt_start_context_switch,
1150 .end_context_switch = xen_end_context_switch,
1151};
1152
1153static void xen_restart(char *msg)
1154{
1155 xen_reboot(SHUTDOWN_reboot);
1156}
1157
1158static void xen_machine_halt(void)
1159{
1160 xen_reboot(SHUTDOWN_poweroff);
1161}
1162
1163static void xen_machine_power_off(void)
1164{
1165 if (pm_power_off)
1166 pm_power_off();
1167 xen_reboot(SHUTDOWN_poweroff);
1168}
1169
1170static void xen_crash_shutdown(struct pt_regs *regs)
1171{
1172 xen_reboot(SHUTDOWN_crash);
1173}
1174
1175static const struct machine_ops xen_machine_ops __initconst = {
1176 .restart = xen_restart,
1177 .halt = xen_machine_halt,
1178 .power_off = xen_machine_power_off,
1179 .shutdown = xen_machine_halt,
1180 .crash_shutdown = xen_crash_shutdown,
1181 .emergency_restart = xen_emergency_restart,
1182};
1183
1184static unsigned char xen_get_nmi_reason(void)
1185{
1186 unsigned char reason = 0;
1187
1188 /* Construct a value which looks like it came from port 0x61. */
1189 if (test_bit(_XEN_NMIREASON_io_error,
1190 &HYPERVISOR_shared_info->arch.nmi_reason))
1191 reason |= NMI_REASON_IOCHK;
1192 if (test_bit(_XEN_NMIREASON_pci_serr,
1193 &HYPERVISOR_shared_info->arch.nmi_reason))
1194 reason |= NMI_REASON_SERR;
1195
1196 return reason;
1197}
1198
1199static void __init xen_boot_params_init_edd(void)
1200{
1201#if IS_ENABLED(CONFIG_EDD)
1202 struct xen_platform_op op;
1203 struct edd_info *edd_info;
1204 u32 *mbr_signature;
1205 unsigned nr;
1206 int ret;
1207
1208 edd_info = boot_params.eddbuf;
1209 mbr_signature = boot_params.edd_mbr_sig_buffer;
1210
1211 op.cmd = XENPF_firmware_info;
1212
1213 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1214 for (nr = 0; nr < EDDMAXNR; nr++) {
1215 struct edd_info *info = edd_info + nr;
1216
1217 op.u.firmware_info.index = nr;
1218 info->params.length = sizeof(info->params);
1219 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1220 &info->params);
1221 ret = HYPERVISOR_platform_op(&op);
1222 if (ret)
1223 break;
1224
1225#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1226 C(device);
1227 C(version);
1228 C(interface_support);
1229 C(legacy_max_cylinder);
1230 C(legacy_max_head);
1231 C(legacy_sectors_per_track);
1232#undef C
1233 }
1234 boot_params.eddbuf_entries = nr;
1235
1236 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1237 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1238 op.u.firmware_info.index = nr;
1239 ret = HYPERVISOR_platform_op(&op);
1240 if (ret)
1241 break;
1242 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1243 }
1244 boot_params.edd_mbr_sig_buf_entries = nr;
1245#endif
1246}
1247
1248/*
1249 * Set up the GDT and segment registers for -fstack-protector. Until
1250 * we do this, we have to be careful not to call any stack-protected
1251 * function, which is most of the kernel.
1252 */
1253static void xen_setup_gdt(int cpu)
1254{
1255 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1256 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1257
1258 setup_stack_canary_segment(0);
1259 switch_to_new_gdt(0);
1260
1261 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1262 pv_cpu_ops.load_gdt = xen_load_gdt;
1263}
1264
1265static void __init xen_dom0_set_legacy_features(void)
1266{
1267 x86_platform.legacy.rtc = 1;
1268}
1269
1270/* First C function to be called on Xen boot */
1271asmlinkage __visible void __init xen_start_kernel(void)
1272{
1273 struct physdev_set_iopl set_iopl;
1274 unsigned long initrd_start = 0;
1275 int rc;
1276
1277 if (!xen_start_info)
1278 return;
1279
1280 xen_domain_type = XEN_PV_DOMAIN;
1281
1282 xen_setup_features();
1283
1284 xen_setup_machphys_mapping();
1285
1286 /* Install Xen paravirt ops */
1287 pv_info = xen_info;
1288 pv_init_ops = xen_init_ops;
1289 pv_cpu_ops = xen_cpu_ops;
1290
1291 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1292
1293 x86_init.resources.memory_setup = xen_memory_setup;
1294 x86_init.oem.arch_setup = xen_arch_setup;
1295 x86_init.oem.banner = xen_banner;
1296
1297 xen_init_time_ops();
1298
1299 /*
1300 * Set up some pagetable state before starting to set any ptes.
1301 */
1302
1303 xen_init_mmu_ops();
1304
1305 /* Prevent unwanted bits from being set in PTEs. */
1306 __supported_pte_mask &= ~_PAGE_GLOBAL;
1307
1308 /*
1309 * Prevent page tables from being allocated in highmem, even
1310 * if CONFIG_HIGHPTE is enabled.
1311 */
1312 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1313
1314 /* Work out if we support NX */
1315 x86_configure_nx();
1316
1317 /* Get mfn list */
1318 xen_build_dynamic_phys_to_machine();
1319
1320 /*
1321 * Set up kernel GDT and segment registers, mainly so that
1322 * -fstack-protector code can be executed.
1323 */
1324 xen_setup_gdt(0);
1325
1326 xen_init_irq_ops();
1327 xen_init_cpuid_mask();
0808e80c 1328 xen_init_capabilities();
e1dab14c
VK
1329
1330#ifdef CONFIG_X86_LOCAL_APIC
1331 /*
1332 * set up the basic apic ops.
1333 */
1334 xen_init_apic();
1335#endif
1336
1337 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1338 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1339 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1340 }
1341
1342 machine_ops = xen_machine_ops;
1343
1344 /*
1345 * The only reliable way to retain the initial address of the
1346 * percpu gdt_page is to remember it here, so we can go and
1347 * mark it RW later, when the initial percpu area is freed.
1348 */
1349 xen_initial_gdt = &per_cpu(gdt_page, 0);
1350
1351 xen_smp_init();
1352
1353#ifdef CONFIG_ACPI_NUMA
1354 /*
1355 * The pages we from Xen are not related to machine pages, so
1356 * any NUMA information the kernel tries to get from ACPI will
1357 * be meaningless. Prevent it from trying.
1358 */
1359 acpi_numa = -1;
1360#endif
1361 /* Don't do the full vcpu_info placement stuff until we have a
1362 possible map and a non-dummy shared_info. */
1363 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1364
1365 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1366
1367 local_irq_disable();
1368 early_boot_irqs_disabled = true;
1369
1370 xen_raw_console_write("mapping kernel into physical memory\n");
1371 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1372 xen_start_info->nr_pages);
1373 xen_reserve_special_pages();
1374
1375 /* keep using Xen gdt for now; no urgent need to change it */
1376
1377#ifdef CONFIG_X86_32
1378 pv_info.kernel_rpl = 1;
1379 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1380 pv_info.kernel_rpl = 0;
1381#else
1382 pv_info.kernel_rpl = 0;
1383#endif
1384 /* set the limit of our address space */
1385 xen_reserve_top();
1386
1387 /*
1388 * We used to do this in xen_arch_setup, but that is too late
1389 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1390 * early_amd_init which pokes 0xcf8 port.
1391 */
1392 set_iopl.iopl = 1;
1393 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1394 if (rc != 0)
1395 xen_raw_printk("physdev_op failed %d\n", rc);
1396
1397#ifdef CONFIG_X86_32
1398 /* set up basic CPUID stuff */
1399 cpu_detect(&new_cpu_data);
1400 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1401 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1402#endif
1403
1404 if (xen_start_info->mod_start) {
1405 if (xen_start_info->flags & SIF_MOD_START_PFN)
1406 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1407 else
1408 initrd_start = __pa(xen_start_info->mod_start);
1409 }
1410
1411 /* Poke various useful things into boot_params */
1412 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1413 boot_params.hdr.ramdisk_image = initrd_start;
1414 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1415 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1416 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1417
1418 if (!xen_initial_domain()) {
1419 add_preferred_console("xenboot", 0, NULL);
1420 add_preferred_console("tty", 0, NULL);
1421 add_preferred_console("hvc", 0, NULL);
1422 if (pci_xen)
1423 x86_init.pci.arch_init = pci_xen_init;
1424 } else {
1425 const struct dom0_vga_console_info *info =
1426 (void *)((char *)xen_start_info +
1427 xen_start_info->console.dom0.info_off);
1428 struct xen_platform_op op = {
1429 .cmd = XENPF_firmware_info,
1430 .interface_version = XENPF_INTERFACE_VERSION,
1431 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1432 };
1433
1434 x86_platform.set_legacy_features =
1435 xen_dom0_set_legacy_features;
1436 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1437 xen_start_info->console.domU.mfn = 0;
1438 xen_start_info->console.domU.evtchn = 0;
1439
1440 if (HYPERVISOR_platform_op(&op) == 0)
1441 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1442
1443 /* Make sure ACS will be enabled */
1444 pci_request_acs();
1445
1446 xen_acpi_sleep_register();
1447
1448 /* Avoid searching for BIOS MP tables */
1449 x86_init.mpparse.find_smp_config = x86_init_noop;
1450 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1451
1452 xen_boot_params_init_edd();
1453 }
1454#ifdef CONFIG_PCI
1455 /* PCI BIOS service won't work from a PV guest. */
1456 pci_probe &= ~PCI_PROBE_BIOS;
1457#endif
1458 xen_raw_console_write("about to get started...\n");
1459
1460 /* Let's presume PV guests always boot on vCPU with id 0. */
1461 per_cpu(xen_vcpu_id, 0) = 0;
1462
1463 xen_setup_runstate_info(0);
1464
1465 xen_efi_init();
1466
1467 /* Start the world */
1468#ifdef CONFIG_X86_32
1469 i386_start_kernel();
1470#else
1471 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1472 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1473#endif
1474}
1475
1476static int xen_cpu_up_prepare_pv(unsigned int cpu)
1477{
1478 int rc;
1479
1480 xen_setup_timer(cpu);
1481
1482 rc = xen_smp_intr_init(cpu);
1483 if (rc) {
1484 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1485 cpu, rc);
1486 return rc;
1487 }
04e95761
VK
1488
1489 rc = xen_smp_intr_init_pv(cpu);
1490 if (rc) {
1491 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1492 cpu, rc);
1493 return rc;
1494 }
1495
e1dab14c
VK
1496 return 0;
1497}
1498
1499static int xen_cpu_dead_pv(unsigned int cpu)
1500{
1501 xen_smp_intr_free(cpu);
04e95761 1502 xen_smp_intr_free_pv(cpu);
e1dab14c
VK
1503
1504 xen_teardown_timer(cpu);
1505
1506 return 0;
1507}
1508
1509static uint32_t __init xen_platform_pv(void)
1510{
1511 if (xen_pv_domain())
1512 return xen_cpuid_base();
1513
1514 return 0;
1515}
1516
e1dab14c
VK
1517const struct hypervisor_x86 x86_hyper_xen_pv = {
1518 .name = "Xen PV",
1519 .detect = xen_platform_pv,
e1dab14c
VK
1520 .pin_vcpu = xen_pin_vcpu,
1521};
1522EXPORT_SYMBOL(x86_hyper_xen_pv);