]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/xen/enlighten_pv.c
x86/fpu: Use bitfield accessors for desc_struct
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / enlighten_pv.c
CommitLineData
e1dab14c
VK
1/*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14#include <linux/cpu.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/smp.h>
18#include <linux/preempt.h>
19#include <linux/hardirq.h>
20#include <linux/percpu.h>
21#include <linux/delay.h>
22#include <linux/start_kernel.h>
23#include <linux/sched.h>
24#include <linux/kprobes.h>
25#include <linux/bootmem.h>
26#include <linux/export.h>
27#include <linux/mm.h>
28#include <linux/page-flags.h>
29#include <linux/highmem.h>
30#include <linux/console.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/memblock.h>
34#include <linux/edd.h>
35#include <linux/frame.h>
36
37#include <xen/xen.h>
38#include <xen/events.h>
39#include <xen/interface/xen.h>
40#include <xen/interface/version.h>
41#include <xen/interface/physdev.h>
42#include <xen/interface/vcpu.h>
43#include <xen/interface/memory.h>
44#include <xen/interface/nmi.h>
45#include <xen/interface/xen-mca.h>
46#include <xen/features.h>
47#include <xen/page.h>
48#include <xen/hvc-console.h>
49#include <xen/acpi.h>
50
51#include <asm/paravirt.h>
52#include <asm/apic.h>
53#include <asm/page.h>
54#include <asm/xen/pci.h>
55#include <asm/xen/hypercall.h>
56#include <asm/xen/hypervisor.h>
57#include <asm/xen/cpuid.h>
58#include <asm/fixmap.h>
59#include <asm/processor.h>
60#include <asm/proto.h>
61#include <asm/msr-index.h>
62#include <asm/traps.h>
63#include <asm/setup.h>
64#include <asm/desc.h>
65#include <asm/pgalloc.h>
66#include <asm/pgtable.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/stackprotector.h>
70#include <asm/hypervisor.h>
71#include <asm/mach_traps.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75
76#ifdef CONFIG_ACPI
77#include <linux/acpi.h>
78#include <asm/acpi.h>
79#include <acpi/pdc_intel.h>
80#include <acpi/processor.h>
81#include <xen/interface/platform.h>
82#endif
83
84#include "xen-ops.h"
85#include "mmu.h"
86#include "smp.h"
87#include "multicalls.h"
88#include "pmu.h"
89
90void *xen_initial_gdt;
91
e1dab14c
VK
92static int xen_cpu_up_prepare_pv(unsigned int cpu);
93static int xen_cpu_dead_pv(unsigned int cpu);
94
95struct tls_descs {
96 struct desc_struct desc[3];
97};
98
99/*
100 * Updating the 3 TLS descriptors in the GDT on every task switch is
101 * surprisingly expensive so we avoid updating them if they haven't
102 * changed. Since Xen writes different descriptors than the one
103 * passed in the update_descriptor hypercall we keep shadow copies to
104 * compare against.
105 */
106static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
107
e1dab14c
VK
108static void __init xen_banner(void)
109{
110 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
111 struct xen_extraversion extra;
112 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
113
989513a7 114 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
e1dab14c
VK
115 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
116 version >> 16, version & 0xffff, extra.extraversion,
117 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
118}
119/* Check if running on Xen version (major, minor) or later */
120bool
121xen_running_on_version_or_later(unsigned int major, unsigned int minor)
122{
123 unsigned int version;
124
125 if (!xen_domain())
126 return false;
127
128 version = HYPERVISOR_xen_version(XENVER_version, NULL);
129 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
130 ((version >> 16) > major))
131 return true;
132 return false;
133}
134
e1dab14c
VK
135static __read_mostly unsigned int cpuid_leaf5_ecx_val;
136static __read_mostly unsigned int cpuid_leaf5_edx_val;
137
138static void xen_cpuid(unsigned int *ax, unsigned int *bx,
139 unsigned int *cx, unsigned int *dx)
140{
141 unsigned maskebx = ~0;
6807cf65 142
e1dab14c
VK
143 /*
144 * Mask out inconvenient features, to try and disable as many
145 * unsupported kernel subsystems as possible.
146 */
147 switch (*ax) {
e1dab14c
VK
148 case CPUID_MWAIT_LEAF:
149 /* Synthesize the values.. */
150 *ax = 0;
151 *bx = 0;
152 *cx = cpuid_leaf5_ecx_val;
153 *dx = cpuid_leaf5_edx_val;
154 return;
155
e1dab14c
VK
156 case 0xb:
157 /* Suppress extended topology stuff */
158 maskebx = 0;
159 break;
160 }
161
162 asm(XEN_EMULATE_PREFIX "cpuid"
163 : "=a" (*ax),
164 "=b" (*bx),
165 "=c" (*cx),
166 "=d" (*dx)
167 : "0" (*ax), "2" (*cx));
168
169 *bx &= maskebx;
e1dab14c
VK
170}
171STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
172
173static bool __init xen_check_mwait(void)
174{
175#ifdef CONFIG_ACPI
176 struct xen_platform_op op = {
177 .cmd = XENPF_set_processor_pminfo,
178 .u.set_pminfo.id = -1,
179 .u.set_pminfo.type = XEN_PM_PDC,
180 };
181 uint32_t buf[3];
182 unsigned int ax, bx, cx, dx;
183 unsigned int mwait_mask;
184
185 /* We need to determine whether it is OK to expose the MWAIT
186 * capability to the kernel to harvest deeper than C3 states from ACPI
187 * _CST using the processor_harvest_xen.c module. For this to work, we
188 * need to gather the MWAIT_LEAF values (which the cstate.c code
189 * checks against). The hypervisor won't expose the MWAIT flag because
190 * it would break backwards compatibility; so we will find out directly
191 * from the hardware and hypercall.
192 */
193 if (!xen_initial_domain())
194 return false;
195
196 /*
197 * When running under platform earlier than Xen4.2, do not expose
198 * mwait, to avoid the risk of loading native acpi pad driver
199 */
200 if (!xen_running_on_version_or_later(4, 2))
201 return false;
202
203 ax = 1;
204 cx = 0;
205
206 native_cpuid(&ax, &bx, &cx, &dx);
207
208 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
209 (1 << (X86_FEATURE_MWAIT % 32));
210
211 if ((cx & mwait_mask) != mwait_mask)
212 return false;
213
214 /* We need to emulate the MWAIT_LEAF and for that we need both
215 * ecx and edx. The hypercall provides only partial information.
216 */
217
218 ax = CPUID_MWAIT_LEAF;
219 bx = 0;
220 cx = 0;
221 dx = 0;
222
223 native_cpuid(&ax, &bx, &cx, &dx);
224
225 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
226 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
227 */
228 buf[0] = ACPI_PDC_REVISION_ID;
229 buf[1] = 1;
230 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
231
232 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
233
234 if ((HYPERVISOR_platform_op(&op) == 0) &&
235 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
236 cpuid_leaf5_ecx_val = cx;
237 cpuid_leaf5_edx_val = dx;
238 }
239 return true;
240#else
241 return false;
242#endif
243}
e1dab14c 244
6807cf65
JG
245static bool __init xen_check_xsave(void)
246{
40f4ac0b 247 unsigned int cx, xsave_mask;
e1dab14c 248
40f4ac0b
JG
249 cx = cpuid_ecx(1);
250
251 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
252 (1 << (X86_FEATURE_OSXSAVE % 32));
253
254 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
255 return (cx & xsave_mask) == xsave_mask;
e1dab14c
VK
256}
257
0808e80c
JG
258static void __init xen_init_capabilities(void)
259{
0808e80c 260 setup_force_cpu_cap(X86_FEATURE_XENPV);
3ee99df3 261 setup_clear_cpu_cap(X86_FEATURE_DCA);
fd9145fd 262 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
88f3256f 263 setup_clear_cpu_cap(X86_FEATURE_MTRR);
aa107156 264 setup_clear_cpu_cap(X86_FEATURE_ACC);
e657fccb 265 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
b778d6bf
JG
266
267 if (!xen_initial_domain())
268 setup_clear_cpu_cap(X86_FEATURE_ACPI);
ea01598b
JG
269
270 if (xen_check_mwait())
271 setup_force_cpu_cap(X86_FEATURE_MWAIT);
272 else
273 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
6807cf65 274
40f4ac0b 275 if (!xen_check_xsave()) {
6807cf65
JG
276 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
277 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
278 }
0808e80c
JG
279}
280
e1dab14c
VK
281static void xen_set_debugreg(int reg, unsigned long val)
282{
283 HYPERVISOR_set_debugreg(reg, val);
284}
285
286static unsigned long xen_get_debugreg(int reg)
287{
288 return HYPERVISOR_get_debugreg(reg);
289}
290
291static void xen_end_context_switch(struct task_struct *next)
292{
293 xen_mc_flush();
294 paravirt_end_context_switch(next);
295}
296
297static unsigned long xen_store_tr(void)
298{
299 return 0;
300}
301
302/*
303 * Set the page permissions for a particular virtual address. If the
304 * address is a vmalloc mapping (or other non-linear mapping), then
305 * find the linear mapping of the page and also set its protections to
306 * match.
307 */
308static void set_aliased_prot(void *v, pgprot_t prot)
309{
310 int level;
311 pte_t *ptep;
312 pte_t pte;
313 unsigned long pfn;
314 struct page *page;
315 unsigned char dummy;
316
317 ptep = lookup_address((unsigned long)v, &level);
318 BUG_ON(ptep == NULL);
319
320 pfn = pte_pfn(*ptep);
321 page = pfn_to_page(pfn);
322
323 pte = pfn_pte(pfn, prot);
324
325 /*
326 * Careful: update_va_mapping() will fail if the virtual address
327 * we're poking isn't populated in the page tables. We don't
328 * need to worry about the direct map (that's always in the page
329 * tables), but we need to be careful about vmap space. In
330 * particular, the top level page table can lazily propagate
331 * entries between processes, so if we've switched mms since we
332 * vmapped the target in the first place, we might not have the
333 * top-level page table entry populated.
334 *
335 * We disable preemption because we want the same mm active when
336 * we probe the target and when we issue the hypercall. We'll
337 * have the same nominal mm, but if we're a kernel thread, lazy
338 * mm dropping could change our pgd.
339 *
340 * Out of an abundance of caution, this uses __get_user() to fault
341 * in the target address just in case there's some obscure case
342 * in which the target address isn't readable.
343 */
344
345 preempt_disable();
346
347 probe_kernel_read(&dummy, v, 1);
348
349 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
350 BUG();
351
352 if (!PageHighMem(page)) {
353 void *av = __va(PFN_PHYS(pfn));
354
355 if (av != v)
356 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
357 BUG();
358 } else
359 kmap_flush_unused();
360
361 preempt_enable();
362}
363
364static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
365{
366 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
367 int i;
368
369 /*
370 * We need to mark the all aliases of the LDT pages RO. We
371 * don't need to call vm_flush_aliases(), though, since that's
372 * only responsible for flushing aliases out the TLBs, not the
373 * page tables, and Xen will flush the TLB for us if needed.
374 *
375 * To avoid confusing future readers: none of this is necessary
376 * to load the LDT. The hypervisor only checks this when the
377 * LDT is faulted in due to subsequent descriptor access.
378 */
379
380 for (i = 0; i < entries; i += entries_per_page)
381 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
382}
383
384static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
385{
386 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
387 int i;
388
389 for (i = 0; i < entries; i += entries_per_page)
390 set_aliased_prot(ldt + i, PAGE_KERNEL);
391}
392
393static void xen_set_ldt(const void *addr, unsigned entries)
394{
395 struct mmuext_op *op;
396 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
397
398 trace_xen_cpu_set_ldt(addr, entries);
399
400 op = mcs.args;
401 op->cmd = MMUEXT_SET_LDT;
402 op->arg1.linear_addr = (unsigned long)addr;
403 op->arg2.nr_ents = entries;
404
405 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
406
407 xen_mc_issue(PARAVIRT_LAZY_CPU);
408}
409
410static void xen_load_gdt(const struct desc_ptr *dtr)
411{
412 unsigned long va = dtr->address;
413 unsigned int size = dtr->size + 1;
414 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
415 unsigned long frames[pages];
416 int f;
417
418 /*
419 * A GDT can be up to 64k in size, which corresponds to 8192
420 * 8-byte entries, or 16 4k pages..
421 */
422
423 BUG_ON(size > 65536);
424 BUG_ON(va & ~PAGE_MASK);
425
426 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
427 int level;
428 pte_t *ptep;
429 unsigned long pfn, mfn;
430 void *virt;
431
432 /*
433 * The GDT is per-cpu and is in the percpu data area.
434 * That can be virtually mapped, so we need to do a
435 * page-walk to get the underlying MFN for the
436 * hypercall. The page can also be in the kernel's
437 * linear range, so we need to RO that mapping too.
438 */
439 ptep = lookup_address(va, &level);
440 BUG_ON(ptep == NULL);
441
442 pfn = pte_pfn(*ptep);
443 mfn = pfn_to_mfn(pfn);
444 virt = __va(PFN_PHYS(pfn));
445
446 frames[f] = mfn;
447
448 make_lowmem_page_readonly((void *)va);
449 make_lowmem_page_readonly(virt);
450 }
451
452 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
453 BUG();
454}
455
456/*
457 * load_gdt for early boot, when the gdt is only mapped once
458 */
459static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
460{
461 unsigned long va = dtr->address;
462 unsigned int size = dtr->size + 1;
463 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
464 unsigned long frames[pages];
465 int f;
466
467 /*
468 * A GDT can be up to 64k in size, which corresponds to 8192
469 * 8-byte entries, or 16 4k pages..
470 */
471
472 BUG_ON(size > 65536);
473 BUG_ON(va & ~PAGE_MASK);
474
475 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
476 pte_t pte;
477 unsigned long pfn, mfn;
478
479 pfn = virt_to_pfn(va);
480 mfn = pfn_to_mfn(pfn);
481
482 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
483
484 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
485 BUG();
486
487 frames[f] = mfn;
488 }
489
490 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
491 BUG();
492}
493
494static inline bool desc_equal(const struct desc_struct *d1,
495 const struct desc_struct *d2)
496{
497 return d1->a == d2->a && d1->b == d2->b;
498}
499
500static void load_TLS_descriptor(struct thread_struct *t,
501 unsigned int cpu, unsigned int i)
502{
503 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
504 struct desc_struct *gdt;
505 xmaddr_t maddr;
506 struct multicall_space mc;
507
508 if (desc_equal(shadow, &t->tls_array[i]))
509 return;
510
511 *shadow = t->tls_array[i];
512
513 gdt = get_cpu_gdt_rw(cpu);
514 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
515 mc = __xen_mc_entry(0);
516
517 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
518}
519
520static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
521{
522 /*
523 * XXX sleazy hack: If we're being called in a lazy-cpu zone
524 * and lazy gs handling is enabled, it means we're in a
525 * context switch, and %gs has just been saved. This means we
526 * can zero it out to prevent faults on exit from the
527 * hypervisor if the next process has no %gs. Either way, it
528 * has been saved, and the new value will get loaded properly.
529 * This will go away as soon as Xen has been modified to not
530 * save/restore %gs for normal hypercalls.
531 *
532 * On x86_64, this hack is not used for %gs, because gs points
533 * to KERNEL_GS_BASE (and uses it for PDA references), so we
534 * must not zero %gs on x86_64
535 *
536 * For x86_64, we need to zero %fs, otherwise we may get an
537 * exception between the new %fs descriptor being loaded and
538 * %fs being effectively cleared at __switch_to().
539 */
540 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
541#ifdef CONFIG_X86_32
542 lazy_load_gs(0);
543#else
544 loadsegment(fs, 0);
545#endif
546 }
547
548 xen_mc_batch();
549
550 load_TLS_descriptor(t, cpu, 0);
551 load_TLS_descriptor(t, cpu, 1);
552 load_TLS_descriptor(t, cpu, 2);
553
554 xen_mc_issue(PARAVIRT_LAZY_CPU);
555}
556
557#ifdef CONFIG_X86_64
558static void xen_load_gs_index(unsigned int idx)
559{
560 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
561 BUG();
562}
563#endif
564
565static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
566 const void *ptr)
567{
568 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
569 u64 entry = *(u64 *)ptr;
570
571 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
572
573 preempt_disable();
574
575 xen_mc_flush();
576 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
577 BUG();
578
579 preempt_enable();
580}
581
582static int cvt_gate_to_trap(int vector, const gate_desc *val,
583 struct trap_info *info)
584{
585 unsigned long addr;
586
64b163fa 587 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
e1dab14c
VK
588 return 0;
589
590 info->vector = vector;
591
64b163fa 592 addr = gate_offset(val);
e1dab14c
VK
593#ifdef CONFIG_X86_64
594 /*
595 * Look for known traps using IST, and substitute them
596 * appropriately. The debugger ones are the only ones we care
597 * about. Xen will handle faults like double_fault,
598 * so we should never see them. Warn if
599 * there's an unexpected IST-using fault handler.
600 */
601 if (addr == (unsigned long)debug)
602 addr = (unsigned long)xen_debug;
603 else if (addr == (unsigned long)int3)
604 addr = (unsigned long)xen_int3;
605 else if (addr == (unsigned long)stack_segment)
606 addr = (unsigned long)xen_stack_segment;
607 else if (addr == (unsigned long)double_fault) {
608 /* Don't need to handle these */
609 return 0;
610#ifdef CONFIG_X86_MCE
611 } else if (addr == (unsigned long)machine_check) {
612 /*
613 * when xen hypervisor inject vMCE to guest,
614 * use native mce handler to handle it
615 */
616 ;
617#endif
618 } else if (addr == (unsigned long)nmi)
619 /*
620 * Use the native version as well.
621 */
622 ;
623 else {
624 /* Some other trap using IST? */
64b163fa 625 if (WARN_ON(val->bits.ist != 0))
e1dab14c
VK
626 return 0;
627 }
628#endif /* CONFIG_X86_64 */
629 info->address = addr;
630
64b163fa
TG
631 info->cs = gate_segment(val);
632 info->flags = val->bits.dpl;
e1dab14c 633 /* interrupt gates clear IF */
64b163fa 634 if (val->bits.type == GATE_INTERRUPT)
e1dab14c
VK
635 info->flags |= 1 << 2;
636
637 return 1;
638}
639
640/* Locations of each CPU's IDT */
641static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
642
643/* Set an IDT entry. If the entry is part of the current IDT, then
644 also update Xen. */
645static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
646{
647 unsigned long p = (unsigned long)&dt[entrynum];
648 unsigned long start, end;
649
650 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
651
652 preempt_disable();
653
654 start = __this_cpu_read(idt_desc.address);
655 end = start + __this_cpu_read(idt_desc.size) + 1;
656
657 xen_mc_flush();
658
659 native_write_idt_entry(dt, entrynum, g);
660
661 if (p >= start && (p + 8) <= end) {
662 struct trap_info info[2];
663
664 info[1].address = 0;
665
666 if (cvt_gate_to_trap(entrynum, g, &info[0]))
667 if (HYPERVISOR_set_trap_table(info))
668 BUG();
669 }
670
671 preempt_enable();
672}
673
674static void xen_convert_trap_info(const struct desc_ptr *desc,
675 struct trap_info *traps)
676{
677 unsigned in, out, count;
678
679 count = (desc->size+1) / sizeof(gate_desc);
680 BUG_ON(count > 256);
681
682 for (in = out = 0; in < count; in++) {
683 gate_desc *entry = (gate_desc *)(desc->address) + in;
684
685 if (cvt_gate_to_trap(in, entry, &traps[out]))
686 out++;
687 }
688 traps[out].address = 0;
689}
690
691void xen_copy_trap_info(struct trap_info *traps)
692{
693 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
694
695 xen_convert_trap_info(desc, traps);
696}
697
698/* Load a new IDT into Xen. In principle this can be per-CPU, so we
699 hold a spinlock to protect the static traps[] array (static because
700 it avoids allocation, and saves stack space). */
701static void xen_load_idt(const struct desc_ptr *desc)
702{
703 static DEFINE_SPINLOCK(lock);
704 static struct trap_info traps[257];
705
706 trace_xen_cpu_load_idt(desc);
707
708 spin_lock(&lock);
709
710 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
711
712 xen_convert_trap_info(desc, traps);
713
714 xen_mc_flush();
715 if (HYPERVISOR_set_trap_table(traps))
716 BUG();
717
718 spin_unlock(&lock);
719}
720
721/* Write a GDT descriptor entry. Ignore LDT descriptors, since
722 they're handled differently. */
723static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
724 const void *desc, int type)
725{
726 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
727
728 preempt_disable();
729
730 switch (type) {
731 case DESC_LDT:
732 case DESC_TSS:
733 /* ignore */
734 break;
735
736 default: {
737 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
738
739 xen_mc_flush();
740 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
741 BUG();
742 }
743
744 }
745
746 preempt_enable();
747}
748
749/*
750 * Version of write_gdt_entry for use at early boot-time needed to
751 * update an entry as simply as possible.
752 */
753static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
754 const void *desc, int type)
755{
756 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
757
758 switch (type) {
759 case DESC_LDT:
760 case DESC_TSS:
761 /* ignore */
762 break;
763
764 default: {
765 xmaddr_t maddr = virt_to_machine(&dt[entry]);
766
767 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
768 dt[entry] = *(struct desc_struct *)desc;
769 }
770
771 }
772}
773
774static void xen_load_sp0(struct tss_struct *tss,
775 struct thread_struct *thread)
776{
777 struct multicall_space mcs;
778
779 mcs = xen_mc_entry(0);
780 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
781 xen_mc_issue(PARAVIRT_LAZY_CPU);
782 tss->x86_tss.sp0 = thread->sp0;
783}
784
785void xen_set_iopl_mask(unsigned mask)
786{
787 struct physdev_set_iopl set_iopl;
788
789 /* Force the change at ring 0. */
790 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
791 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
792}
793
794static void xen_io_delay(void)
795{
796}
797
798static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
799
800static unsigned long xen_read_cr0(void)
801{
802 unsigned long cr0 = this_cpu_read(xen_cr0_value);
803
804 if (unlikely(cr0 == 0)) {
805 cr0 = native_read_cr0();
806 this_cpu_write(xen_cr0_value, cr0);
807 }
808
809 return cr0;
810}
811
812static void xen_write_cr0(unsigned long cr0)
813{
814 struct multicall_space mcs;
815
816 this_cpu_write(xen_cr0_value, cr0);
817
818 /* Only pay attention to cr0.TS; everything else is
819 ignored. */
820 mcs = xen_mc_entry(0);
821
822 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
823
824 xen_mc_issue(PARAVIRT_LAZY_CPU);
825}
826
827static void xen_write_cr4(unsigned long cr4)
828{
829 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
830
831 native_write_cr4(cr4);
832}
833#ifdef CONFIG_X86_64
834static inline unsigned long xen_read_cr8(void)
835{
836 return 0;
837}
838static inline void xen_write_cr8(unsigned long val)
839{
840 BUG_ON(val);
841}
842#endif
843
844static u64 xen_read_msr_safe(unsigned int msr, int *err)
845{
846 u64 val;
847
848 if (pmu_msr_read(msr, &val, err))
849 return val;
850
851 val = native_read_msr_safe(msr, err);
852 switch (msr) {
853 case MSR_IA32_APICBASE:
854#ifdef CONFIG_X86_X2APIC
855 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
856#endif
857 val &= ~X2APIC_ENABLE;
858 break;
859 }
860 return val;
861}
862
863static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
864{
865 int ret;
866
867 ret = 0;
868
869 switch (msr) {
870#ifdef CONFIG_X86_64
871 unsigned which;
872 u64 base;
873
874 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
875 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
876 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
877
878 set:
879 base = ((u64)high << 32) | low;
880 if (HYPERVISOR_set_segment_base(which, base) != 0)
881 ret = -EIO;
882 break;
883#endif
884
885 case MSR_STAR:
886 case MSR_CSTAR:
887 case MSR_LSTAR:
888 case MSR_SYSCALL_MASK:
889 case MSR_IA32_SYSENTER_CS:
890 case MSR_IA32_SYSENTER_ESP:
891 case MSR_IA32_SYSENTER_EIP:
892 /* Fast syscall setup is all done in hypercalls, so
893 these are all ignored. Stub them out here to stop
894 Xen console noise. */
895 break;
896
897 default:
898 if (!pmu_msr_write(msr, low, high, &ret))
899 ret = native_write_msr_safe(msr, low, high);
900 }
901
902 return ret;
903}
904
905static u64 xen_read_msr(unsigned int msr)
906{
907 /*
908 * This will silently swallow a #GP from RDMSR. It may be worth
909 * changing that.
910 */
911 int err;
912
913 return xen_read_msr_safe(msr, &err);
914}
915
916static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
917{
918 /*
919 * This will silently swallow a #GP from WRMSR. It may be worth
920 * changing that.
921 */
922 xen_write_msr_safe(msr, low, high);
923}
924
925void xen_setup_shared_info(void)
926{
989513a7 927 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
e1dab14c 928
989513a7
JG
929 HYPERVISOR_shared_info =
930 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
e1dab14c 931
e1dab14c 932 xen_setup_mfn_list_list();
d162809f 933
0e4d5837
AA
934 if (system_state == SYSTEM_BOOTING) {
935#ifndef CONFIG_SMP
936 /*
937 * In UP this is as good a place as any to set up shared info.
938 * Limit this to boot only, at restore vcpu setup is done via
939 * xen_vcpu_restore().
940 */
941 xen_setup_vcpu_info_placement();
942#endif
943 /*
944 * Now that shared info is set up we can start using routines
945 * that point to pvclock area.
946 */
d162809f 947 xen_init_time_ops();
0e4d5837 948 }
e1dab14c
VK
949}
950
951/* This is called once we have the cpu_possible_mask */
0e4d5837 952void __ref xen_setup_vcpu_info_placement(void)
e1dab14c
VK
953{
954 int cpu;
955
956 for_each_possible_cpu(cpu) {
957 /* Set up direct vCPU id mapping for PV guests. */
958 per_cpu(xen_vcpu_id, cpu) = cpu;
c9b5d98b
AA
959
960 /*
961 * xen_vcpu_setup(cpu) can fail -- in which case it
962 * falls back to the shared_info version for cpus
963 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
964 *
965 * xen_cpu_up_prepare_pv() handles the rest by failing
966 * them in hotplug.
967 */
968 (void) xen_vcpu_setup(cpu);
e1dab14c
VK
969 }
970
971 /*
972 * xen_vcpu_setup managed to place the vcpu_info within the
973 * percpu area for all cpus, so make use of it.
974 */
975 if (xen_have_vcpu_info_placement) {
976 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
977 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
978 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
979 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
980 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
981 }
982}
983
e1dab14c
VK
984static const struct pv_info xen_info __initconst = {
985 .shared_kernel_pmd = 0,
986
987#ifdef CONFIG_X86_64
988 .extra_user_64bit_cs = FLAT_USER_CS64,
989#endif
990 .name = "Xen",
991};
992
e1dab14c
VK
993static const struct pv_cpu_ops xen_cpu_ops __initconst = {
994 .cpuid = xen_cpuid,
995
996 .set_debugreg = xen_set_debugreg,
997 .get_debugreg = xen_get_debugreg,
998
999 .read_cr0 = xen_read_cr0,
1000 .write_cr0 = xen_write_cr0,
1001
1002 .read_cr4 = native_read_cr4,
1003 .write_cr4 = xen_write_cr4,
1004
1005#ifdef CONFIG_X86_64
1006 .read_cr8 = xen_read_cr8,
1007 .write_cr8 = xen_write_cr8,
1008#endif
1009
1010 .wbinvd = native_wbinvd,
1011
1012 .read_msr = xen_read_msr,
1013 .write_msr = xen_write_msr,
1014
1015 .read_msr_safe = xen_read_msr_safe,
1016 .write_msr_safe = xen_write_msr_safe,
1017
1018 .read_pmc = xen_read_pmc,
1019
1020 .iret = xen_iret,
1021#ifdef CONFIG_X86_64
1022 .usergs_sysret64 = xen_sysret64,
1023#endif
1024
1025 .load_tr_desc = paravirt_nop,
1026 .set_ldt = xen_set_ldt,
1027 .load_gdt = xen_load_gdt,
1028 .load_idt = xen_load_idt,
1029 .load_tls = xen_load_tls,
1030#ifdef CONFIG_X86_64
1031 .load_gs_index = xen_load_gs_index,
1032#endif
1033
1034 .alloc_ldt = xen_alloc_ldt,
1035 .free_ldt = xen_free_ldt,
1036
1037 .store_idt = native_store_idt,
1038 .store_tr = xen_store_tr,
1039
1040 .write_ldt_entry = xen_write_ldt_entry,
1041 .write_gdt_entry = xen_write_gdt_entry,
1042 .write_idt_entry = xen_write_idt_entry,
1043 .load_sp0 = xen_load_sp0,
1044
1045 .set_iopl_mask = xen_set_iopl_mask,
1046 .io_delay = xen_io_delay,
1047
1048 /* Xen takes care of %gs when switching to usermode for us */
1049 .swapgs = paravirt_nop,
1050
1051 .start_context_switch = paravirt_start_context_switch,
1052 .end_context_switch = xen_end_context_switch,
1053};
1054
1055static void xen_restart(char *msg)
1056{
1057 xen_reboot(SHUTDOWN_reboot);
1058}
1059
1060static void xen_machine_halt(void)
1061{
1062 xen_reboot(SHUTDOWN_poweroff);
1063}
1064
1065static void xen_machine_power_off(void)
1066{
1067 if (pm_power_off)
1068 pm_power_off();
1069 xen_reboot(SHUTDOWN_poweroff);
1070}
1071
1072static void xen_crash_shutdown(struct pt_regs *regs)
1073{
1074 xen_reboot(SHUTDOWN_crash);
1075}
1076
1077static const struct machine_ops xen_machine_ops __initconst = {
1078 .restart = xen_restart,
1079 .halt = xen_machine_halt,
1080 .power_off = xen_machine_power_off,
1081 .shutdown = xen_machine_halt,
1082 .crash_shutdown = xen_crash_shutdown,
1083 .emergency_restart = xen_emergency_restart,
1084};
1085
1086static unsigned char xen_get_nmi_reason(void)
1087{
1088 unsigned char reason = 0;
1089
1090 /* Construct a value which looks like it came from port 0x61. */
1091 if (test_bit(_XEN_NMIREASON_io_error,
1092 &HYPERVISOR_shared_info->arch.nmi_reason))
1093 reason |= NMI_REASON_IOCHK;
1094 if (test_bit(_XEN_NMIREASON_pci_serr,
1095 &HYPERVISOR_shared_info->arch.nmi_reason))
1096 reason |= NMI_REASON_SERR;
1097
1098 return reason;
1099}
1100
1101static void __init xen_boot_params_init_edd(void)
1102{
1103#if IS_ENABLED(CONFIG_EDD)
1104 struct xen_platform_op op;
1105 struct edd_info *edd_info;
1106 u32 *mbr_signature;
1107 unsigned nr;
1108 int ret;
1109
1110 edd_info = boot_params.eddbuf;
1111 mbr_signature = boot_params.edd_mbr_sig_buffer;
1112
1113 op.cmd = XENPF_firmware_info;
1114
1115 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1116 for (nr = 0; nr < EDDMAXNR; nr++) {
1117 struct edd_info *info = edd_info + nr;
1118
1119 op.u.firmware_info.index = nr;
1120 info->params.length = sizeof(info->params);
1121 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1122 &info->params);
1123 ret = HYPERVISOR_platform_op(&op);
1124 if (ret)
1125 break;
1126
1127#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1128 C(device);
1129 C(version);
1130 C(interface_support);
1131 C(legacy_max_cylinder);
1132 C(legacy_max_head);
1133 C(legacy_sectors_per_track);
1134#undef C
1135 }
1136 boot_params.eddbuf_entries = nr;
1137
1138 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1139 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1140 op.u.firmware_info.index = nr;
1141 ret = HYPERVISOR_platform_op(&op);
1142 if (ret)
1143 break;
1144 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1145 }
1146 boot_params.edd_mbr_sig_buf_entries = nr;
1147#endif
1148}
1149
1150/*
1151 * Set up the GDT and segment registers for -fstack-protector. Until
1152 * we do this, we have to be careful not to call any stack-protected
1153 * function, which is most of the kernel.
1154 */
1155static void xen_setup_gdt(int cpu)
1156{
1157 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1158 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1159
1160 setup_stack_canary_segment(0);
1161 switch_to_new_gdt(0);
1162
1163 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1164 pv_cpu_ops.load_gdt = xen_load_gdt;
1165}
1166
1167static void __init xen_dom0_set_legacy_features(void)
1168{
1169 x86_platform.legacy.rtc = 1;
1170}
1171
1172/* First C function to be called on Xen boot */
1173asmlinkage __visible void __init xen_start_kernel(void)
1174{
1175 struct physdev_set_iopl set_iopl;
1176 unsigned long initrd_start = 0;
1177 int rc;
1178
1179 if (!xen_start_info)
1180 return;
1181
1182 xen_domain_type = XEN_PV_DOMAIN;
1183
1184 xen_setup_features();
1185
1186 xen_setup_machphys_mapping();
1187
1188 /* Install Xen paravirt ops */
1189 pv_info = xen_info;
edcb5cf8 1190 pv_init_ops.patch = paravirt_patch_default;
e1dab14c
VK
1191 pv_cpu_ops = xen_cpu_ops;
1192
1193 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1194
1195 x86_init.resources.memory_setup = xen_memory_setup;
1196 x86_init.oem.arch_setup = xen_arch_setup;
1197 x86_init.oem.banner = xen_banner;
1198
e1dab14c
VK
1199 /*
1200 * Set up some pagetable state before starting to set any ptes.
1201 */
1202
1203 xen_init_mmu_ops();
1204
1205 /* Prevent unwanted bits from being set in PTEs. */
1206 __supported_pte_mask &= ~_PAGE_GLOBAL;
1207
1208 /*
1209 * Prevent page tables from being allocated in highmem, even
1210 * if CONFIG_HIGHPTE is enabled.
1211 */
1212 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1213
1214 /* Work out if we support NX */
1215 x86_configure_nx();
1216
1217 /* Get mfn list */
1218 xen_build_dynamic_phys_to_machine();
1219
1220 /*
1221 * Set up kernel GDT and segment registers, mainly so that
1222 * -fstack-protector code can be executed.
1223 */
1224 xen_setup_gdt(0);
1225
1226 xen_init_irq_ops();
0808e80c 1227 xen_init_capabilities();
e1dab14c
VK
1228
1229#ifdef CONFIG_X86_LOCAL_APIC
1230 /*
1231 * set up the basic apic ops.
1232 */
1233 xen_init_apic();
1234#endif
1235
1236 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1237 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1238 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1239 }
1240
1241 machine_ops = xen_machine_ops;
1242
1243 /*
1244 * The only reliable way to retain the initial address of the
1245 * percpu gdt_page is to remember it here, so we can go and
1246 * mark it RW later, when the initial percpu area is freed.
1247 */
1248 xen_initial_gdt = &per_cpu(gdt_page, 0);
1249
1250 xen_smp_init();
1251
1252#ifdef CONFIG_ACPI_NUMA
1253 /*
1254 * The pages we from Xen are not related to machine pages, so
1255 * any NUMA information the kernel tries to get from ACPI will
1256 * be meaningless. Prevent it from trying.
1257 */
1258 acpi_numa = -1;
1259#endif
ad73fd59
AA
1260 /* Let's presume PV guests always boot on vCPU with id 0. */
1261 per_cpu(xen_vcpu_id, 0) = 0;
1262
1263 /*
1264 * Setup xen_vcpu early because start_kernel needs it for
1265 * local_irq_disable(), irqs_disabled().
1266 *
1267 * Don't do the full vcpu_info placement stuff until we have
1268 * the cpu_possible_mask and a non-dummy shared_info.
1269 */
1270 xen_vcpu_info_reset(0);
e1dab14c
VK
1271
1272 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1273
1274 local_irq_disable();
1275 early_boot_irqs_disabled = true;
1276
1277 xen_raw_console_write("mapping kernel into physical memory\n");
1278 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1279 xen_start_info->nr_pages);
1280 xen_reserve_special_pages();
1281
1282 /* keep using Xen gdt for now; no urgent need to change it */
1283
1284#ifdef CONFIG_X86_32
1285 pv_info.kernel_rpl = 1;
1286 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1287 pv_info.kernel_rpl = 0;
1288#else
1289 pv_info.kernel_rpl = 0;
1290#endif
1291 /* set the limit of our address space */
1292 xen_reserve_top();
1293
1294 /*
1295 * We used to do this in xen_arch_setup, but that is too late
1296 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1297 * early_amd_init which pokes 0xcf8 port.
1298 */
1299 set_iopl.iopl = 1;
1300 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1301 if (rc != 0)
1302 xen_raw_printk("physdev_op failed %d\n", rc);
1303
1304#ifdef CONFIG_X86_32
1305 /* set up basic CPUID stuff */
1306 cpu_detect(&new_cpu_data);
1307 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1308 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1309#endif
1310
1311 if (xen_start_info->mod_start) {
1312 if (xen_start_info->flags & SIF_MOD_START_PFN)
1313 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1314 else
1315 initrd_start = __pa(xen_start_info->mod_start);
1316 }
1317
1318 /* Poke various useful things into boot_params */
1319 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1320 boot_params.hdr.ramdisk_image = initrd_start;
1321 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1322 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1323 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1324
1325 if (!xen_initial_domain()) {
1326 add_preferred_console("xenboot", 0, NULL);
1327 add_preferred_console("tty", 0, NULL);
1328 add_preferred_console("hvc", 0, NULL);
1329 if (pci_xen)
1330 x86_init.pci.arch_init = pci_xen_init;
1331 } else {
1332 const struct dom0_vga_console_info *info =
1333 (void *)((char *)xen_start_info +
1334 xen_start_info->console.dom0.info_off);
1335 struct xen_platform_op op = {
1336 .cmd = XENPF_firmware_info,
1337 .interface_version = XENPF_INTERFACE_VERSION,
1338 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1339 };
1340
1341 x86_platform.set_legacy_features =
1342 xen_dom0_set_legacy_features;
1343 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1344 xen_start_info->console.domU.mfn = 0;
1345 xen_start_info->console.domU.evtchn = 0;
1346
1347 if (HYPERVISOR_platform_op(&op) == 0)
1348 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1349
1350 /* Make sure ACS will be enabled */
1351 pci_request_acs();
1352
1353 xen_acpi_sleep_register();
1354
1355 /* Avoid searching for BIOS MP tables */
1356 x86_init.mpparse.find_smp_config = x86_init_noop;
1357 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1358
1359 xen_boot_params_init_edd();
1360 }
1361#ifdef CONFIG_PCI
1362 /* PCI BIOS service won't work from a PV guest. */
1363 pci_probe &= ~PCI_PROBE_BIOS;
1364#endif
1365 xen_raw_console_write("about to get started...\n");
1366
ad73fd59 1367 /* We need this for printk timestamps */
e1dab14c
VK
1368 xen_setup_runstate_info(0);
1369
1370 xen_efi_init();
1371
1372 /* Start the world */
1373#ifdef CONFIG_X86_32
1374 i386_start_kernel();
1375#else
1376 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1377 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1378#endif
1379}
1380
1381static int xen_cpu_up_prepare_pv(unsigned int cpu)
1382{
1383 int rc;
1384
c9b5d98b
AA
1385 if (per_cpu(xen_vcpu, cpu) == NULL)
1386 return -ENODEV;
1387
e1dab14c
VK
1388 xen_setup_timer(cpu);
1389
1390 rc = xen_smp_intr_init(cpu);
1391 if (rc) {
1392 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1393 cpu, rc);
1394 return rc;
1395 }
04e95761
VK
1396
1397 rc = xen_smp_intr_init_pv(cpu);
1398 if (rc) {
1399 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1400 cpu, rc);
1401 return rc;
1402 }
1403
e1dab14c
VK
1404 return 0;
1405}
1406
1407static int xen_cpu_dead_pv(unsigned int cpu)
1408{
1409 xen_smp_intr_free(cpu);
04e95761 1410 xen_smp_intr_free_pv(cpu);
e1dab14c
VK
1411
1412 xen_teardown_timer(cpu);
1413
1414 return 0;
1415}
1416
1417static uint32_t __init xen_platform_pv(void)
1418{
1419 if (xen_pv_domain())
1420 return xen_cpuid_base();
1421
1422 return 0;
1423}
1424
e1dab14c
VK
1425const struct hypervisor_x86 x86_hyper_xen_pv = {
1426 .name = "Xen PV",
1427 .detect = xen_platform_pv,
e1dab14c
VK
1428 .pin_vcpu = xen_pin_vcpu,
1429};
1430EXPORT_SYMBOL(x86_hyper_xen_pv);