]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/xen/mmu.c
xen: Delay remapping memory of pv-domain
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
d2cb2145 45#include <linux/vmalloc.h>
44408ad7 46#include <linux/module.h>
5a0e3ad6 47#include <linux/gfp.h>
a9ce6bc1 48#include <linux/memblock.h>
2222e71b 49#include <linux/seq_file.h>
34b6f01a 50#include <linux/crash_dump.h>
3b827c1b 51
84708807
JF
52#include <trace/events/xen.h>
53
3b827c1b
JF
54#include <asm/pgtable.h>
55#include <asm/tlbflush.h>
5deb30d1 56#include <asm/fixmap.h>
3b827c1b 57#include <asm/mmu_context.h>
319f3ba5 58#include <asm/setup.h>
f4f97b3e 59#include <asm/paravirt.h>
7347b408 60#include <asm/e820.h>
cbcd79c2 61#include <asm/linkage.h>
08bbc9da 62#include <asm/page.h>
fef5ba79 63#include <asm/init.h>
41f2e477 64#include <asm/pat.h>
900cba88 65#include <asm/smp.h>
3b827c1b
JF
66
67#include <asm/xen/hypercall.h>
f4f97b3e 68#include <asm/xen/hypervisor.h>
3b827c1b 69
c0011dbf 70#include <xen/xen.h>
3b827c1b
JF
71#include <xen/page.h>
72#include <xen/interface/xen.h>
59151001 73#include <xen/interface/hvm/hvm_op.h>
319f3ba5 74#include <xen/interface/version.h>
c0011dbf 75#include <xen/interface/memory.h>
319f3ba5 76#include <xen/hvc-console.h>
3b827c1b 77
f4f97b3e 78#include "multicalls.h"
3b827c1b 79#include "mmu.h"
994025ca
JF
80#include "debugfs.h"
81
19001c8c
AN
82/*
83 * Protects atomic reservation decrease/increase against concurrent increases.
06f521d5 84 * Also protects non-atomic updates of current_pages and balloon lists.
19001c8c
AN
85 */
86DEFINE_SPINLOCK(xen_reservation_lock);
87
caaf9ecf 88#ifdef CONFIG_X86_32
319f3ba5
JF
89/*
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
764f0138
JF
94#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
caaf9ecf 96#endif
319f3ba5
JF
97#ifdef CONFIG_X86_64
98/* l3 pud for userspace vsyscall mapping */
99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100#endif /* CONFIG_X86_64 */
101
102/*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
118
119
d6182fbf
JF
120/*
121 * Just beyond the highest usermode address. STACK_TOP_MAX has a
122 * redzone above it, so round it up to a PGD boundary.
123 */
124#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125
9976b39b
JF
126unsigned long arbitrary_virt_to_mfn(void *vaddr)
127{
128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129
130 return PFN_DOWN(maddr.maddr);
131}
132
ce803e70 133xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 134{
ce803e70 135 unsigned long address = (unsigned long)vaddr;
da7bfc50 136 unsigned int level;
9f32d21c
CL
137 pte_t *pte;
138 unsigned offset;
3b827c1b 139
9f32d21c
CL
140 /*
141 * if the PFN is in the linear mapped vaddr range, we can just use
142 * the (quick) virt_to_machine() p2m lookup
143 */
144 if (virt_addr_valid(vaddr))
145 return virt_to_machine(vaddr);
146
147 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 148
9f32d21c
CL
149 pte = lookup_address(address, &level);
150 BUG_ON(pte == NULL);
151 offset = address & ~PAGE_MASK;
ebd879e3 152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b 153}
de23be5f 154EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
3b827c1b
JF
155
156void make_lowmem_page_readonly(void *vaddr)
157{
158 pte_t *pte, ptev;
159 unsigned long address = (unsigned long)vaddr;
da7bfc50 160 unsigned int level;
3b827c1b 161
f0646e43 162 pte = lookup_address(address, &level);
fef5ba79
JF
163 if (pte == NULL)
164 return; /* vaddr missing */
3b827c1b
JF
165
166 ptev = pte_wrprotect(*pte);
167
168 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 BUG();
170}
171
172void make_lowmem_page_readwrite(void *vaddr)
173{
174 pte_t *pte, ptev;
175 unsigned long address = (unsigned long)vaddr;
da7bfc50 176 unsigned int level;
3b827c1b 177
f0646e43 178 pte = lookup_address(address, &level);
fef5ba79
JF
179 if (pte == NULL)
180 return; /* vaddr missing */
3b827c1b
JF
181
182 ptev = pte_mkwrite(*pte);
183
184 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 BUG();
186}
187
188
7708ad64 189static bool xen_page_pinned(void *ptr)
e2426cf8
JF
190{
191 struct page *page = virt_to_page(ptr);
192
193 return PagePinned(page);
194}
195
eba3ff8b 196void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
c0011dbf
JF
197{
198 struct multicall_space mcs;
199 struct mmu_update *u;
200
84708807
JF
201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202
c0011dbf
JF
203 mcs = xen_mc_entry(sizeof(*u));
204 u = mcs.args;
205
206 /* ptep might be kmapped when using 32-bit HIGHPTE */
d5108316 207 u->ptr = virt_to_machine(ptep).maddr;
c0011dbf
JF
208 u->val = pte_val_ma(pteval);
209
eba3ff8b 210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
c0011dbf
JF
211
212 xen_mc_issue(PARAVIRT_LAZY_MMU);
213}
eba3ff8b
JF
214EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215
7708ad64 216static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 217{
d66bf8fc
JF
218 struct multicall_space mcs;
219 struct mmu_update *u;
3b827c1b 220
400d3494
JF
221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222
994025ca 223 if (mcs.mc != NULL) {
400d3494 224 mcs.mc->args[1]++;
994025ca 225 } else {
400d3494
JF
226 mcs = __xen_mc_entry(sizeof(*u));
227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 }
d66bf8fc 229
d66bf8fc 230 u = mcs.args;
400d3494
JF
231 *u = *update;
232}
233
dcf7435c
JF
234static void xen_extend_mmuext_op(const struct mmuext_op *op)
235{
236 struct multicall_space mcs;
237 struct mmuext_op *u;
238
239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240
241 if (mcs.mc != NULL) {
242 mcs.mc->args[1]++;
243 } else {
244 mcs = __xen_mc_entry(sizeof(*u));
245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 }
247
248 u = mcs.args;
249 *u = *op;
250}
251
4c13629f 252static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
400d3494
JF
253{
254 struct mmu_update u;
255
256 preempt_disable();
257
258 xen_mc_batch();
259
ce803e70
JF
260 /* ptr may be ioremapped for 64-bit pagetable setup */
261 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 262 u.val = pmd_val_ma(val);
7708ad64 263 xen_extend_mmu_update(&u);
d66bf8fc
JF
264
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
266
267 preempt_enable();
3b827c1b
JF
268}
269
4c13629f 270static void xen_set_pmd(pmd_t *ptr, pmd_t val)
e2426cf8 271{
84708807
JF
272 trace_xen_mmu_set_pmd(ptr, val);
273
e2426cf8
JF
274 /* If page is not pinned, we can just update the entry
275 directly */
7708ad64 276 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
277 *ptr = val;
278 return;
279 }
280
281 xen_set_pmd_hyper(ptr, val);
282}
283
3b827c1b
JF
284/*
285 * Associate a virtual page frame with a given physical page frame
286 * and protection flags for that frame.
287 */
288void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289{
836fe2f2 290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
291}
292
4a35c13c 293static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
3b827c1b 294{
4a35c13c 295 struct mmu_update u;
c0011dbf 296
4a35c13c
JF
297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 return false;
994025ca 299
4a35c13c 300 xen_mc_batch();
d66bf8fc 301
4a35c13c
JF
302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 u.val = pte_val_ma(pteval);
304 xen_extend_mmu_update(&u);
a99ac5e8 305
4a35c13c 306 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 307
4a35c13c
JF
308 return true;
309}
310
84708807 311static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
4a35c13c 312{
d095d43e
DV
313 if (!xen_batched_set_pte(ptep, pteval)) {
314 /*
315 * Could call native_set_pte() here and trap and
316 * emulate the PTE write but with 32-bit guests this
317 * needs two traps (one for each of the two 32-bit
318 * words in the PTE) so do one hypercall directly
319 * instead.
320 */
321 struct mmu_update u;
322
323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 u.val = pte_val_ma(pteval);
325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 }
3b827c1b
JF
327}
328
84708807
JF
329static void xen_set_pte(pte_t *ptep, pte_t pteval)
330{
331 trace_xen_mmu_set_pte(ptep, pteval);
332 __xen_set_pte(ptep, pteval);
333}
334
4c13629f 335static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
4a35c13c
JF
336 pte_t *ptep, pte_t pteval)
337{
84708807
JF
338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 __xen_set_pte(ptep, pteval);
3b827c1b
JF
340}
341
f63c2f24
T
342pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 unsigned long addr, pte_t *ptep)
947a69c9 344{
e57778a1 345 /* Just return the pte as-is. We preserve the bits on commit */
84708807 346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
e57778a1
JF
347 return *ptep;
348}
349
350void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 pte_t *ptep, pte_t pte)
352{
400d3494 353 struct mmu_update u;
e57778a1 354
84708807 355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
400d3494 356 xen_mc_batch();
947a69c9 357
d5108316 358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 359 u.val = pte_val_ma(pte);
7708ad64 360 xen_extend_mmu_update(&u);
947a69c9 361
e57778a1 362 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
363}
364
ebb9cfe2
JF
365/* Assume pteval_t is equivalent to all the other *val_t types. */
366static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 367{
5926f87f 368 if (val & _PAGE_PRESENT) {
59438c9f 369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
b7e5ffe5
KRW
370 unsigned long pfn = mfn_to_pfn(mfn);
371
77be1fab 372 pteval_t flags = val & PTE_FLAGS_MASK;
b7e5ffe5
KRW
373 if (unlikely(pfn == ~0))
374 val = flags & ~_PAGE_PRESENT;
375 else
376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
ebb9cfe2 377 }
947a69c9 378
ebb9cfe2 379 return val;
947a69c9
JF
380}
381
ebb9cfe2 382static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 383{
5926f87f 384 if (val & _PAGE_PRESENT) {
59438c9f 385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 386 pteval_t flags = val & PTE_FLAGS_MASK;
fb38923e 387 unsigned long mfn;
cfd8951e 388
fb38923e
KRW
389 if (!xen_feature(XENFEAT_auto_translated_physmap))
390 mfn = get_phys_to_machine(pfn);
391 else
392 mfn = pfn;
cfd8951e
JF
393 /*
394 * If there's no mfn for the pfn, then just create an
395 * empty non-present pte. Unfortunately this loses
396 * information about the original pfn, so
397 * pte_mfn_to_pfn is asymmetric.
398 */
399 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 mfn = 0;
401 flags = 0;
7f2f8822
DV
402 } else
403 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
cfd8951e 404 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
947a69c9
JF
405 }
406
ebb9cfe2 407 return val;
947a69c9
JF
408}
409
a2e7f0e3 410__visible pteval_t xen_pte_val(pte_t pte)
947a69c9 411{
41f2e477 412 pteval_t pteval = pte.pte;
8eaffa67 413#if 0
41f2e477
JF
414 /* If this is a WC pte, convert back from Xen WC to Linux WC */
415 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
416 WARN_ON(!pat_enabled);
417 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
418 }
8eaffa67 419#endif
41f2e477 420 return pte_mfn_to_pfn(pteval);
947a69c9 421}
da5de7c2 422PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
947a69c9 423
a2e7f0e3 424__visible pgdval_t xen_pgd_val(pgd_t pgd)
947a69c9 425{
ebb9cfe2 426 return pte_mfn_to_pfn(pgd.pgd);
947a69c9 427}
da5de7c2 428PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
947a69c9 429
41f2e477
JF
430/*
431 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
432 * are reserved for now, to correspond to the Intel-reserved PAT
433 * types.
434 *
435 * We expect Linux's PAT set as follows:
436 *
437 * Idx PTE flags Linux Xen Default
438 * 0 WB WB WB
439 * 1 PWT WC WT WT
440 * 2 PCD UC- UC- UC-
441 * 3 PCD PWT UC UC UC
442 * 4 PAT WB WC WB
443 * 5 PAT PWT WC WP WT
b1922a51
KRW
444 * 6 PAT PCD UC- rsv UC-
445 * 7 PAT PCD PWT UC rsv UC
41f2e477
JF
446 */
447
448void xen_set_pat(u64 pat)
449{
450 /* We expect Linux to use a PAT setting of
451 * UC UC- WC WB (ignoring the PAT flag) */
452 WARN_ON(pat != 0x0007010600070106ull);
453}
454
a2e7f0e3 455__visible pte_t xen_make_pte(pteval_t pte)
947a69c9 456{
8eaffa67 457#if 0
41f2e477
JF
458 /* If Linux is trying to set a WC pte, then map to the Xen WC.
459 * If _PAGE_PAT is set, then it probably means it is really
460 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
461 * things work out OK...
462 *
463 * (We should never see kernel mappings with _PAGE_PSE set,
464 * but we could see hugetlbfs mappings, I think.).
465 */
466 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
467 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
468 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
469 }
8eaffa67 470#endif
7f2f8822 471 pte = pte_pfn_to_mfn(pte);
c0011dbf 472
ebb9cfe2 473 return native_make_pte(pte);
947a69c9 474}
da5de7c2 475PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
947a69c9 476
a2e7f0e3 477__visible pgd_t xen_make_pgd(pgdval_t pgd)
947a69c9 478{
ebb9cfe2
JF
479 pgd = pte_pfn_to_mfn(pgd);
480 return native_make_pgd(pgd);
947a69c9 481}
da5de7c2 482PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
947a69c9 483
a2e7f0e3 484__visible pmdval_t xen_pmd_val(pmd_t pmd)
947a69c9 485{
ebb9cfe2 486 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 487}
da5de7c2 488PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
28499143 489
4c13629f 490static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 491{
400d3494 492 struct mmu_update u;
f4f97b3e 493
d66bf8fc
JF
494 preempt_disable();
495
400d3494
JF
496 xen_mc_batch();
497
ce803e70
JF
498 /* ptr may be ioremapped for 64-bit pagetable setup */
499 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 500 u.val = pud_val_ma(val);
7708ad64 501 xen_extend_mmu_update(&u);
d66bf8fc
JF
502
503 xen_mc_issue(PARAVIRT_LAZY_MMU);
504
505 preempt_enable();
f4f97b3e
JF
506}
507
4c13629f 508static void xen_set_pud(pud_t *ptr, pud_t val)
e2426cf8 509{
84708807
JF
510 trace_xen_mmu_set_pud(ptr, val);
511
e2426cf8
JF
512 /* If page is not pinned, we can just update the entry
513 directly */
7708ad64 514 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
515 *ptr = val;
516 return;
517 }
518
519 xen_set_pud_hyper(ptr, val);
520}
521
f6e58732 522#ifdef CONFIG_X86_PAE
4c13629f 523static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
3b827c1b 524{
84708807 525 trace_xen_mmu_set_pte_atomic(ptep, pte);
f6e58732 526 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
527}
528
4c13629f 529static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
3b827c1b 530{
84708807 531 trace_xen_mmu_pte_clear(mm, addr, ptep);
4a35c13c
JF
532 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
533 native_pte_clear(mm, addr, ptep);
3b827c1b
JF
534}
535
4c13629f 536static void xen_pmd_clear(pmd_t *pmdp)
3b827c1b 537{
84708807 538 trace_xen_mmu_pmd_clear(pmdp);
e2426cf8 539 set_pmd(pmdp, __pmd(0));
3b827c1b 540}
f6e58732 541#endif /* CONFIG_X86_PAE */
3b827c1b 542
a2e7f0e3 543__visible pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 544{
ebb9cfe2 545 pmd = pte_pfn_to_mfn(pmd);
947a69c9 546 return native_make_pmd(pmd);
3b827c1b 547}
da5de7c2 548PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
3b827c1b 549
f6e58732 550#if PAGETABLE_LEVELS == 4
a2e7f0e3 551__visible pudval_t xen_pud_val(pud_t pud)
f6e58732
JF
552{
553 return pte_mfn_to_pfn(pud.pud);
554}
da5de7c2 555PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
f6e58732 556
a2e7f0e3 557__visible pud_t xen_make_pud(pudval_t pud)
f6e58732
JF
558{
559 pud = pte_pfn_to_mfn(pud);
560
561 return native_make_pud(pud);
562}
da5de7c2 563PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
f6e58732 564
4c13629f 565static pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 566{
d6182fbf
JF
567 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
568 unsigned offset = pgd - pgd_page;
569 pgd_t *user_ptr = NULL;
f6e58732 570
d6182fbf
JF
571 if (offset < pgd_index(USER_LIMIT)) {
572 struct page *page = virt_to_page(pgd_page);
573 user_ptr = (pgd_t *)page->private;
574 if (user_ptr)
575 user_ptr += offset;
576 }
f6e58732 577
d6182fbf
JF
578 return user_ptr;
579}
580
581static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
582{
583 struct mmu_update u;
f6e58732
JF
584
585 u.ptr = virt_to_machine(ptr).maddr;
586 u.val = pgd_val_ma(val);
7708ad64 587 xen_extend_mmu_update(&u);
d6182fbf
JF
588}
589
590/*
591 * Raw hypercall-based set_pgd, intended for in early boot before
592 * there's a page structure. This implies:
593 * 1. The only existing pagetable is the kernel's
594 * 2. It is always pinned
595 * 3. It has no user pagetable attached to it
596 */
4c13629f 597static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
d6182fbf
JF
598{
599 preempt_disable();
600
601 xen_mc_batch();
602
603 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
604
605 xen_mc_issue(PARAVIRT_LAZY_MMU);
606
607 preempt_enable();
608}
609
4c13629f 610static void xen_set_pgd(pgd_t *ptr, pgd_t val)
f6e58732 611{
d6182fbf
JF
612 pgd_t *user_ptr = xen_get_user_pgd(ptr);
613
84708807
JF
614 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
615
f6e58732
JF
616 /* If page is not pinned, we can just update the entry
617 directly */
7708ad64 618 if (!xen_page_pinned(ptr)) {
f6e58732 619 *ptr = val;
d6182fbf 620 if (user_ptr) {
7708ad64 621 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
622 *user_ptr = val;
623 }
f6e58732
JF
624 return;
625 }
626
d6182fbf
JF
627 /* If it's pinned, then we can at least batch the kernel and
628 user updates together. */
629 xen_mc_batch();
630
631 __xen_set_pgd_hyper(ptr, val);
632 if (user_ptr)
633 __xen_set_pgd_hyper(user_ptr, val);
634
635 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
636}
637#endif /* PAGETABLE_LEVELS == 4 */
638
f4f97b3e 639/*
5deb30d1
JF
640 * (Yet another) pagetable walker. This one is intended for pinning a
641 * pagetable. This means that it walks a pagetable and calls the
642 * callback function on each page it finds making up the page table,
643 * at every level. It walks the entire pagetable, but it only bothers
644 * pinning pte pages which are below limit. In the normal case this
645 * will be STACK_TOP_MAX, but at boot we need to pin up to
646 * FIXADDR_TOP.
647 *
648 * For 32-bit the important bit is that we don't pin beyond there,
649 * because then we start getting into Xen's ptes.
650 *
651 * For 64-bit, we must skip the Xen hole in the middle of the address
652 * space, just after the big x86-64 virtual hole.
653 */
86bbc2c2
IC
654static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
655 int (*func)(struct mm_struct *mm, struct page *,
656 enum pt_level),
657 unsigned long limit)
3b827c1b 658{
f4f97b3e 659 int flush = 0;
5deb30d1
JF
660 unsigned hole_low, hole_high;
661 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
662 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 663
5deb30d1
JF
664 /* The limit is the last byte to be touched */
665 limit--;
666 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
667
668 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
669 return 0;
670
5deb30d1
JF
671 /*
672 * 64-bit has a great big hole in the middle of the address
673 * space, which contains the Xen mappings. On 32-bit these
674 * will end up making a zero-sized hole and so is a no-op.
675 */
d6182fbf 676 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
677 hole_high = pgd_index(PAGE_OFFSET);
678
679 pgdidx_limit = pgd_index(limit);
680#if PTRS_PER_PUD > 1
681 pudidx_limit = pud_index(limit);
682#else
683 pudidx_limit = 0;
684#endif
685#if PTRS_PER_PMD > 1
686 pmdidx_limit = pmd_index(limit);
687#else
688 pmdidx_limit = 0;
689#endif
690
5deb30d1 691 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 692 pud_t *pud;
3b827c1b 693
5deb30d1
JF
694 if (pgdidx >= hole_low && pgdidx < hole_high)
695 continue;
f4f97b3e 696
5deb30d1 697 if (!pgd_val(pgd[pgdidx]))
3b827c1b 698 continue;
f4f97b3e 699
5deb30d1 700 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
701
702 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 703 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 704
5deb30d1 705 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 706 pmd_t *pmd;
f4f97b3e 707
5deb30d1
JF
708 if (pgdidx == pgdidx_limit &&
709 pudidx > pudidx_limit)
710 goto out;
3b827c1b 711
5deb30d1 712 if (pud_none(pud[pudidx]))
3b827c1b 713 continue;
f4f97b3e 714
5deb30d1 715 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
716
717 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 718 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 719
5deb30d1
JF
720 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
721 struct page *pte;
722
723 if (pgdidx == pgdidx_limit &&
724 pudidx == pudidx_limit &&
725 pmdidx > pmdidx_limit)
726 goto out;
3b827c1b 727
5deb30d1 728 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
729 continue;
730
5deb30d1 731 pte = pmd_page(pmd[pmdidx]);
eefb47f6 732 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
733 }
734 }
735 }
11ad93e5 736
5deb30d1 737out:
11ad93e5
JF
738 /* Do the top level last, so that the callbacks can use it as
739 a cue to do final things like tlb flushes. */
eefb47f6 740 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
741
742 return flush;
3b827c1b
JF
743}
744
86bbc2c2
IC
745static int xen_pgd_walk(struct mm_struct *mm,
746 int (*func)(struct mm_struct *mm, struct page *,
747 enum pt_level),
748 unsigned long limit)
749{
750 return __xen_pgd_walk(mm, mm->pgd, func, limit);
751}
752
7708ad64
JF
753/* If we're using split pte locks, then take the page's lock and
754 return a pointer to it. Otherwise return NULL. */
eefb47f6 755static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
756{
757 spinlock_t *ptl = NULL;
758
57c1ffce 759#if USE_SPLIT_PTE_PTLOCKS
49076ec2 760 ptl = ptlock_ptr(page);
eefb47f6 761 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
762#endif
763
764 return ptl;
765}
766
7708ad64 767static void xen_pte_unlock(void *v)
74260714
JF
768{
769 spinlock_t *ptl = v;
770 spin_unlock(ptl);
771}
772
773static void xen_do_pin(unsigned level, unsigned long pfn)
774{
dcf7435c 775 struct mmuext_op op;
74260714 776
dcf7435c
JF
777 op.cmd = level;
778 op.arg1.mfn = pfn_to_mfn(pfn);
779
780 xen_extend_mmuext_op(&op);
74260714
JF
781}
782
eefb47f6
JF
783static int xen_pin_page(struct mm_struct *mm, struct page *page,
784 enum pt_level level)
f4f97b3e 785{
d60cd46b 786 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
787 int flush;
788
789 if (pgfl)
790 flush = 0; /* already pinned */
791 else if (PageHighMem(page))
792 /* kmaps need flushing if we found an unpinned
793 highpage */
794 flush = 1;
795 else {
796 void *pt = lowmem_page_address(page);
797 unsigned long pfn = page_to_pfn(page);
798 struct multicall_space mcs = __xen_mc_entry(0);
74260714 799 spinlock_t *ptl;
f4f97b3e
JF
800
801 flush = 0;
802
11ad93e5
JF
803 /*
804 * We need to hold the pagetable lock between the time
805 * we make the pagetable RO and when we actually pin
806 * it. If we don't, then other users may come in and
807 * attempt to update the pagetable by writing it,
808 * which will fail because the memory is RO but not
809 * pinned, so Xen won't do the trap'n'emulate.
810 *
811 * If we're using split pte locks, we can't hold the
812 * entire pagetable's worth of locks during the
813 * traverse, because we may wrap the preempt count (8
814 * bits). The solution is to mark RO and pin each PTE
815 * page while holding the lock. This means the number
816 * of locks we end up holding is never more than a
817 * batch size (~32 entries, at present).
818 *
819 * If we're not using split pte locks, we needn't pin
820 * the PTE pages independently, because we're
821 * protected by the overall pagetable lock.
822 */
74260714
JF
823 ptl = NULL;
824 if (level == PT_PTE)
eefb47f6 825 ptl = xen_pte_lock(page, mm);
74260714 826
f4f97b3e
JF
827 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
828 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
829 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
830
11ad93e5 831 if (ptl) {
74260714
JF
832 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
833
74260714
JF
834 /* Queue a deferred unlock for when this batch
835 is completed. */
7708ad64 836 xen_mc_callback(xen_pte_unlock, ptl);
74260714 837 }
f4f97b3e
JF
838 }
839
840 return flush;
841}
3b827c1b 842
f4f97b3e
JF
843/* This is called just after a mm has been created, but it has not
844 been used yet. We need to make sure that its pagetable is all
845 read-only, and can be pinned. */
eefb47f6 846static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 847{
5f94fb5b
JF
848 trace_xen_mmu_pgd_pin(mm, pgd);
849
f4f97b3e 850 xen_mc_batch();
3b827c1b 851
86bbc2c2 852 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
d05fdf31 853 /* re-enable interrupts for flushing */
f87e4cac 854 xen_mc_issue(0);
d05fdf31 855
f4f97b3e 856 kmap_flush_unused();
d05fdf31 857
f87e4cac
JF
858 xen_mc_batch();
859 }
f4f97b3e 860
d6182fbf
JF
861#ifdef CONFIG_X86_64
862 {
863 pgd_t *user_pgd = xen_get_user_pgd(pgd);
864
865 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
866
867 if (user_pgd) {
eefb47f6 868 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
f63c2f24
T
869 xen_do_pin(MMUEXT_PIN_L4_TABLE,
870 PFN_DOWN(__pa(user_pgd)));
d6182fbf
JF
871 }
872 }
873#else /* CONFIG_X86_32 */
5deb30d1
JF
874#ifdef CONFIG_X86_PAE
875 /* Need to make sure unshared kernel PMD is pinnable */
47cb2ed9 876 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 877 PT_PMD);
5deb30d1 878#endif
28499143 879 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 880#endif /* CONFIG_X86_64 */
f4f97b3e 881 xen_mc_issue(0);
3b827c1b
JF
882}
883
eefb47f6
JF
884static void xen_pgd_pin(struct mm_struct *mm)
885{
886 __xen_pgd_pin(mm, mm->pgd);
887}
888
0e91398f
JF
889/*
890 * On save, we need to pin all pagetables to make sure they get their
891 * mfns turned into pfns. Search the list for any unpinned pgds and pin
892 * them (unpinned pgds are not currently in use, probably because the
893 * process is under construction or destruction).
eefb47f6
JF
894 *
895 * Expected to be called in stop_machine() ("equivalent to taking
896 * every spinlock in the system"), so the locking doesn't really
897 * matter all that much.
0e91398f
JF
898 */
899void xen_mm_pin_all(void)
900{
0e91398f 901 struct page *page;
74260714 902
a79e53d8 903 spin_lock(&pgd_lock);
f4f97b3e 904
0e91398f
JF
905 list_for_each_entry(page, &pgd_list, lru) {
906 if (!PagePinned(page)) {
eefb47f6 907 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
908 SetPageSavePinned(page);
909 }
910 }
911
a79e53d8 912 spin_unlock(&pgd_lock);
3b827c1b
JF
913}
914
c1f2f09e
EH
915/*
916 * The init_mm pagetable is really pinned as soon as its created, but
917 * that's before we have page structures to store the bits. So do all
918 * the book-keeping now.
919 */
3f508953 920static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
eefb47f6 921 enum pt_level level)
3b827c1b 922{
f4f97b3e
JF
923 SetPagePinned(page);
924 return 0;
925}
3b827c1b 926
b96229b5 927static void __init xen_mark_init_mm_pinned(void)
f4f97b3e 928{
eefb47f6 929 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 930}
3b827c1b 931
eefb47f6
JF
932static int xen_unpin_page(struct mm_struct *mm, struct page *page,
933 enum pt_level level)
f4f97b3e 934{
d60cd46b 935 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 936
f4f97b3e
JF
937 if (pgfl && !PageHighMem(page)) {
938 void *pt = lowmem_page_address(page);
939 unsigned long pfn = page_to_pfn(page);
74260714
JF
940 spinlock_t *ptl = NULL;
941 struct multicall_space mcs;
942
11ad93e5
JF
943 /*
944 * Do the converse to pin_page. If we're using split
945 * pte locks, we must be holding the lock for while
946 * the pte page is unpinned but still RO to prevent
947 * concurrent updates from seeing it in this
948 * partially-pinned state.
949 */
74260714 950 if (level == PT_PTE) {
eefb47f6 951 ptl = xen_pte_lock(page, mm);
74260714 952
11ad93e5
JF
953 if (ptl)
954 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
955 }
956
957 mcs = __xen_mc_entry(0);
f4f97b3e
JF
958
959 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
960 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
961 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
962
963 if (ptl) {
964 /* unlock when batch completed */
7708ad64 965 xen_mc_callback(xen_pte_unlock, ptl);
74260714 966 }
f4f97b3e
JF
967 }
968
969 return 0; /* never need to flush on unpin */
3b827c1b
JF
970}
971
f4f97b3e 972/* Release a pagetables pages back as normal RW */
eefb47f6 973static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 974{
5f94fb5b
JF
975 trace_xen_mmu_pgd_unpin(mm, pgd);
976
f4f97b3e
JF
977 xen_mc_batch();
978
74260714 979 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 980
d6182fbf
JF
981#ifdef CONFIG_X86_64
982 {
983 pgd_t *user_pgd = xen_get_user_pgd(pgd);
984
985 if (user_pgd) {
f63c2f24
T
986 xen_do_pin(MMUEXT_UNPIN_TABLE,
987 PFN_DOWN(__pa(user_pgd)));
eefb47f6 988 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
989 }
990 }
991#endif
992
5deb30d1
JF
993#ifdef CONFIG_X86_PAE
994 /* Need to make sure unshared kernel PMD is unpinned */
47cb2ed9 995 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 996 PT_PMD);
5deb30d1 997#endif
d6182fbf 998
86bbc2c2 999 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
1000
1001 xen_mc_issue(0);
1002}
3b827c1b 1003
eefb47f6
JF
1004static void xen_pgd_unpin(struct mm_struct *mm)
1005{
1006 __xen_pgd_unpin(mm, mm->pgd);
1007}
1008
0e91398f
JF
1009/*
1010 * On resume, undo any pinning done at save, so that the rest of the
1011 * kernel doesn't see any unexpected pinned pagetables.
1012 */
1013void xen_mm_unpin_all(void)
1014{
0e91398f
JF
1015 struct page *page;
1016
a79e53d8 1017 spin_lock(&pgd_lock);
0e91398f
JF
1018
1019 list_for_each_entry(page, &pgd_list, lru) {
1020 if (PageSavePinned(page)) {
1021 BUG_ON(!PagePinned(page));
eefb47f6 1022 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1023 ClearPageSavePinned(page);
1024 }
1025 }
1026
a79e53d8 1027 spin_unlock(&pgd_lock);
0e91398f
JF
1028}
1029
4c13629f 1030static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
3b827c1b 1031{
f4f97b3e 1032 spin_lock(&next->page_table_lock);
eefb47f6 1033 xen_pgd_pin(next);
f4f97b3e 1034 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1035}
1036
4c13629f 1037static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
3b827c1b 1038{
f4f97b3e 1039 spin_lock(&mm->page_table_lock);
eefb47f6 1040 xen_pgd_pin(mm);
f4f97b3e 1041 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1042}
1043
3b827c1b 1044
f87e4cac
JF
1045#ifdef CONFIG_SMP
1046/* Another cpu may still have their %cr3 pointing at the pagetable, so
1047 we need to repoint it somewhere else before we can unpin it. */
1048static void drop_other_mm_ref(void *info)
1049{
1050 struct mm_struct *mm = info;
ce87b3d3 1051 struct mm_struct *active_mm;
3b827c1b 1052
2113f469 1053 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
ce87b3d3 1054
2113f469 1055 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
f87e4cac 1056 leave_mm(smp_processor_id());
9f79991d
JF
1057
1058 /* If this cpu still has a stale cr3 reference, then make sure
1059 it has been flushed. */
2113f469 1060 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
9f79991d 1061 load_cr3(swapper_pg_dir);
f87e4cac 1062}
3b827c1b 1063
7708ad64 1064static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1065{
e4d98207 1066 cpumask_var_t mask;
9f79991d
JF
1067 unsigned cpu;
1068
f87e4cac
JF
1069 if (current->active_mm == mm) {
1070 if (current->mm == mm)
1071 load_cr3(swapper_pg_dir);
1072 else
1073 leave_mm(smp_processor_id());
9f79991d
JF
1074 }
1075
1076 /* Get the "official" set of cpus referring to our pagetable. */
e4d98207
MT
1077 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1078 for_each_online_cpu(cpu) {
78f1c4d6 1079 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
e4d98207
MT
1080 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1081 continue;
1082 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1083 }
1084 return;
1085 }
78f1c4d6 1086 cpumask_copy(mask, mm_cpumask(mm));
9f79991d
JF
1087
1088 /* It's possible that a vcpu may have a stale reference to our
1089 cr3, because its in lazy mode, and it hasn't yet flushed
1090 its set of pending hypercalls yet. In this case, we can
1091 look at its actual current cr3 value, and force it to flush
1092 if needed. */
1093 for_each_online_cpu(cpu) {
1094 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
e4d98207 1095 cpumask_set_cpu(cpu, mask);
3b827c1b
JF
1096 }
1097
e4d98207
MT
1098 if (!cpumask_empty(mask))
1099 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1100 free_cpumask_var(mask);
f87e4cac
JF
1101}
1102#else
7708ad64 1103static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1104{
1105 if (current->active_mm == mm)
1106 load_cr3(swapper_pg_dir);
1107}
1108#endif
1109
1110/*
1111 * While a process runs, Xen pins its pagetables, which means that the
1112 * hypervisor forces it to be read-only, and it controls all updates
1113 * to it. This means that all pagetable updates have to go via the
1114 * hypervisor, which is moderately expensive.
1115 *
1116 * Since we're pulling the pagetable down, we switch to use init_mm,
1117 * unpin old process pagetable and mark it all read-write, which
1118 * allows further operations on it to be simple memory accesses.
1119 *
1120 * The only subtle point is that another CPU may be still using the
1121 * pagetable because of lazy tlb flushing. This means we need need to
1122 * switch all CPUs off this pagetable before we can unpin it.
1123 */
4c13629f 1124static void xen_exit_mmap(struct mm_struct *mm)
f87e4cac
JF
1125{
1126 get_cpu(); /* make sure we don't move around */
7708ad64 1127 xen_drop_mm_ref(mm);
f87e4cac 1128 put_cpu();
3b827c1b 1129
f120f13e 1130 spin_lock(&mm->page_table_lock);
df912ea4
JF
1131
1132 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1133 if (xen_page_pinned(mm->pgd))
eefb47f6 1134 xen_pgd_unpin(mm);
74260714 1135
f120f13e 1136 spin_unlock(&mm->page_table_lock);
3b827c1b 1137}
994025ca 1138
c7112887
AR
1139static void xen_post_allocator_init(void);
1140
7f914062
KRW
1141#ifdef CONFIG_X86_64
1142static void __init xen_cleanhighmap(unsigned long vaddr,
1143 unsigned long vaddr_end)
1144{
1145 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1146 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1147
1148 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1149 * We include the PMD passed in on _both_ boundaries. */
1150 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1151 pmd++, vaddr += PMD_SIZE) {
1152 if (pmd_none(*pmd))
1153 continue;
1154 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1155 set_pmd(pmd, __pmd(0));
1156 }
1157 /* In case we did something silly, we should crash in this function
1158 * instead of somewhere later and be confusing. */
1159 xen_mc_flush();
1160}
32df75cd 1161static void __init xen_pagetable_p2m_copy(void)
319f3ba5 1162{
7f914062
KRW
1163 unsigned long size;
1164 unsigned long addr;
32df75cd
KRW
1165 unsigned long new_mfn_list;
1166
1167 if (xen_feature(XENFEAT_auto_translated_physmap))
1168 return;
1169
1170 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1171
32df75cd 1172 new_mfn_list = xen_revector_p2m_tree();
b621e157
KRW
1173 /* No memory or already called. */
1174 if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
32df75cd 1175 return;
7f914062 1176
b621e157
KRW
1177 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1178 memset((void *)xen_start_info->mfn_list, 0xff, size);
1179
1180 /* We should be in __ka space. */
1181 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1182 addr = xen_start_info->mfn_list;
1183 /* We roundup to the PMD, which means that if anybody at this stage is
1184 * using the __ka address of xen_start_info or xen_start_info->shared_info
1185 * they are in going to crash. Fortunatly we have already revectored
1186 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1187 size = roundup(size, PMD_SIZE);
1188 xen_cleanhighmap(addr, addr + size);
1189
1190 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1191 memblock_free(__pa(xen_start_info->mfn_list), size);
1192 /* And revector! Bye bye old array */
1193 xen_start_info->mfn_list = new_mfn_list;
1194
3aca7fbc
KRW
1195 /* At this stage, cleanup_highmap has already cleaned __ka space
1196 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1197 * the ramdisk). We continue on, erasing PMD entries that point to page
1198 * tables - do note that they are accessible at this stage via __va.
1199 * For good measure we also round up to the PMD - which means that if
1200 * anybody is using __ka address to the initial boot-stack - and try
1201 * to use it - they are going to crash. The xen_start_info has been
1202 * taken care of already in xen_setup_kernel_pagetable. */
1203 addr = xen_start_info->pt_base;
1204 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1205
1206 xen_cleanhighmap(addr, addr + size);
1207 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1208#ifdef DEBUG
1209 /* This is superflous and is not neccessary, but you know what
1210 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1211 * anything at this stage. */
1212 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1213#endif
32df75cd
KRW
1214}
1215#endif
1216
1217static void __init xen_pagetable_init(void)
1218{
1219 paging_init();
32df75cd
KRW
1220#ifdef CONFIG_X86_64
1221 xen_pagetable_p2m_copy();
7108c9ce
JG
1222#else
1223 xen_revector_p2m_tree();
7f914062 1224#endif
2c185687
JG
1225 /* Allocate and initialize top and mid mfn levels for p2m structure */
1226 xen_build_mfn_list_list();
1227
1f3ac86b
JG
1228 /* Remap memory freed due to conflicts with E820 map */
1229 if (!xen_feature(XENFEAT_auto_translated_physmap))
1230 xen_remap_memory();
1231
2c185687 1232 xen_setup_shared_info();
f1d7062a 1233 xen_post_allocator_init();
319f3ba5 1234}
319f3ba5
JF
1235static void xen_write_cr2(unsigned long cr2)
1236{
2113f469 1237 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
319f3ba5
JF
1238}
1239
1240static unsigned long xen_read_cr2(void)
1241{
2113f469 1242 return this_cpu_read(xen_vcpu)->arch.cr2;
319f3ba5
JF
1243}
1244
1245unsigned long xen_read_cr2_direct(void)
1246{
2113f469 1247 return this_cpu_read(xen_vcpu_info.arch.cr2);
319f3ba5
JF
1248}
1249
95a7d768
KRW
1250void xen_flush_tlb_all(void)
1251{
1252 struct mmuext_op *op;
1253 struct multicall_space mcs;
1254
1255 trace_xen_mmu_flush_tlb_all(0);
1256
1257 preempt_disable();
1258
1259 mcs = xen_mc_entry(sizeof(*op));
1260
1261 op = mcs.args;
1262 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1263 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1264
1265 xen_mc_issue(PARAVIRT_LAZY_MMU);
1266
1267 preempt_enable();
1268}
319f3ba5
JF
1269static void xen_flush_tlb(void)
1270{
1271 struct mmuext_op *op;
1272 struct multicall_space mcs;
1273
c8eed171
JF
1274 trace_xen_mmu_flush_tlb(0);
1275
319f3ba5
JF
1276 preempt_disable();
1277
1278 mcs = xen_mc_entry(sizeof(*op));
1279
1280 op = mcs.args;
1281 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1282 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1283
1284 xen_mc_issue(PARAVIRT_LAZY_MMU);
1285
1286 preempt_enable();
1287}
1288
1289static void xen_flush_tlb_single(unsigned long addr)
1290{
1291 struct mmuext_op *op;
1292 struct multicall_space mcs;
1293
c8eed171
JF
1294 trace_xen_mmu_flush_tlb_single(addr);
1295
319f3ba5
JF
1296 preempt_disable();
1297
1298 mcs = xen_mc_entry(sizeof(*op));
1299 op = mcs.args;
1300 op->cmd = MMUEXT_INVLPG_LOCAL;
1301 op->arg1.linear_addr = addr & PAGE_MASK;
1302 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1303
1304 xen_mc_issue(PARAVIRT_LAZY_MMU);
1305
1306 preempt_enable();
1307}
1308
1309static void xen_flush_tlb_others(const struct cpumask *cpus,
e7b52ffd
AS
1310 struct mm_struct *mm, unsigned long start,
1311 unsigned long end)
319f3ba5
JF
1312{
1313 struct {
1314 struct mmuext_op op;
32dd1194 1315#ifdef CONFIG_SMP
900cba88 1316 DECLARE_BITMAP(mask, num_processors);
32dd1194
KRW
1317#else
1318 DECLARE_BITMAP(mask, NR_CPUS);
1319#endif
319f3ba5
JF
1320 } *args;
1321 struct multicall_space mcs;
1322
e7b52ffd 1323 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
c8eed171 1324
e3f8a74e
JF
1325 if (cpumask_empty(cpus))
1326 return; /* nothing to do */
319f3ba5
JF
1327
1328 mcs = xen_mc_entry(sizeof(*args));
1329 args = mcs.args;
1330 args->op.arg2.vcpumask = to_cpumask(args->mask);
1331
1332 /* Remove us, and any offline CPUS. */
1333 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1334 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
319f3ba5 1335
e7b52ffd 1336 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
ce7184bd 1337 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
319f3ba5 1338 args->op.cmd = MMUEXT_INVLPG_MULTI;
e7b52ffd 1339 args->op.arg1.linear_addr = start;
319f3ba5
JF
1340 }
1341
1342 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1343
319f3ba5
JF
1344 xen_mc_issue(PARAVIRT_LAZY_MMU);
1345}
1346
1347static unsigned long xen_read_cr3(void)
1348{
2113f469 1349 return this_cpu_read(xen_cr3);
319f3ba5
JF
1350}
1351
1352static void set_current_cr3(void *v)
1353{
2113f469 1354 this_cpu_write(xen_current_cr3, (unsigned long)v);
319f3ba5
JF
1355}
1356
1357static void __xen_write_cr3(bool kernel, unsigned long cr3)
1358{
dcf7435c 1359 struct mmuext_op op;
319f3ba5
JF
1360 unsigned long mfn;
1361
c8eed171
JF
1362 trace_xen_mmu_write_cr3(kernel, cr3);
1363
319f3ba5
JF
1364 if (cr3)
1365 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1366 else
1367 mfn = 0;
1368
1369 WARN_ON(mfn == 0 && kernel);
1370
dcf7435c
JF
1371 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1372 op.arg1.mfn = mfn;
319f3ba5 1373
dcf7435c 1374 xen_extend_mmuext_op(&op);
319f3ba5
JF
1375
1376 if (kernel) {
2113f469 1377 this_cpu_write(xen_cr3, cr3);
319f3ba5
JF
1378
1379 /* Update xen_current_cr3 once the batch has actually
1380 been submitted. */
1381 xen_mc_callback(set_current_cr3, (void *)cr3);
1382 }
1383}
319f3ba5
JF
1384static void xen_write_cr3(unsigned long cr3)
1385{
1386 BUG_ON(preemptible());
1387
1388 xen_mc_batch(); /* disables interrupts */
1389
1390 /* Update while interrupts are disabled, so its atomic with
1391 respect to ipis */
2113f469 1392 this_cpu_write(xen_cr3, cr3);
319f3ba5
JF
1393
1394 __xen_write_cr3(true, cr3);
1395
1396#ifdef CONFIG_X86_64
1397 {
1398 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1399 if (user_pgd)
1400 __xen_write_cr3(false, __pa(user_pgd));
1401 else
1402 __xen_write_cr3(false, 0);
1403 }
1404#endif
1405
1406 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1407}
1408
0cc9129d
KRW
1409#ifdef CONFIG_X86_64
1410/*
1411 * At the start of the day - when Xen launches a guest, it has already
1412 * built pagetables for the guest. We diligently look over them
1413 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1414 * init_level4_pgt and its friends. Then when we are happy we load
1415 * the new init_level4_pgt - and continue on.
1416 *
1417 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1418 * up the rest of the pagetables. When it has completed it loads the cr3.
1419 * N.B. that baremetal would start at 'start_kernel' (and the early
1420 * #PF handler would create bootstrap pagetables) - so we are running
1421 * with the same assumptions as what to do when write_cr3 is executed
1422 * at this point.
1423 *
1424 * Since there are no user-page tables at all, we have two variants
1425 * of xen_write_cr3 - the early bootup (this one), and the late one
1426 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1427 * the Linux kernel and user-space are both in ring 3 while the
1428 * hypervisor is in ring 0.
1429 */
1430static void __init xen_write_cr3_init(unsigned long cr3)
1431{
1432 BUG_ON(preemptible());
1433
1434 xen_mc_batch(); /* disables interrupts */
1435
1436 /* Update while interrupts are disabled, so its atomic with
1437 respect to ipis */
1438 this_cpu_write(xen_cr3, cr3);
1439
1440 __xen_write_cr3(true, cr3);
1441
1442 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
0cc9129d
KRW
1443}
1444#endif
1445
319f3ba5
JF
1446static int xen_pgd_alloc(struct mm_struct *mm)
1447{
1448 pgd_t *pgd = mm->pgd;
1449 int ret = 0;
1450
1451 BUG_ON(PagePinned(virt_to_page(pgd)));
1452
1453#ifdef CONFIG_X86_64
1454 {
1455 struct page *page = virt_to_page(pgd);
1456 pgd_t *user_pgd;
1457
1458 BUG_ON(page->private != 0);
1459
1460 ret = -ENOMEM;
1461
1462 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1463 page->private = (unsigned long)user_pgd;
1464
1465 if (user_pgd != NULL) {
f40c3300 1466 user_pgd[pgd_index(VSYSCALL_ADDR)] =
319f3ba5
JF
1467 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1468 ret = 0;
1469 }
1470
1471 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1472 }
1473#endif
1474
1475 return ret;
1476}
1477
1478static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1479{
1480#ifdef CONFIG_X86_64
1481 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1482
1483 if (user_pgd)
1484 free_page((unsigned long)user_pgd);
1485#endif
1486}
1487
ee176455 1488#ifdef CONFIG_X86_32
3f508953 1489static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1f4f9315
JF
1490{
1491 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1492 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1493 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1494 pte_val_ma(pte));
ee176455
SS
1495
1496 return pte;
1497}
1498#else /* CONFIG_X86_64 */
3f508953 1499static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
ee176455 1500{
1f4f9315
JF
1501 return pte;
1502}
ee176455 1503#endif /* CONFIG_X86_64 */
1f4f9315 1504
d095d43e
DV
1505/*
1506 * Init-time set_pte while constructing initial pagetables, which
1507 * doesn't allow RO page table pages to be remapped RW.
1508 *
66a27dde
DV
1509 * If there is no MFN for this PFN then this page is initially
1510 * ballooned out so clear the PTE (as in decrease_reservation() in
1511 * drivers/xen/balloon.c).
1512 *
d095d43e
DV
1513 * Many of these PTE updates are done on unpinned and writable pages
1514 * and doing a hypercall for these is unnecessary and expensive. At
1515 * this point it is not possible to tell if a page is pinned or not,
1516 * so always write the PTE directly and rely on Xen trapping and
1517 * emulating any updates as necessary.
1518 */
3f508953 1519static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1f4f9315 1520{
66a27dde
DV
1521 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1522 pte = mask_rw_pte(ptep, pte);
1523 else
1524 pte = __pte_ma(0);
1f4f9315 1525
d095d43e 1526 native_set_pte(ptep, pte);
1f4f9315 1527}
319f3ba5 1528
b96229b5
JF
1529static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1530{
1531 struct mmuext_op op;
1532 op.cmd = cmd;
1533 op.arg1.mfn = pfn_to_mfn(pfn);
1534 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1535 BUG();
1536}
1537
319f3ba5
JF
1538/* Early in boot, while setting up the initial pagetable, assume
1539 everything is pinned. */
3f508953 1540static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
319f3ba5 1541{
b96229b5
JF
1542#ifdef CONFIG_FLATMEM
1543 BUG_ON(mem_map); /* should only be used early */
1544#endif
1545 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1546 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1547}
1548
1549/* Used for pmd and pud */
3f508953 1550static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
b96229b5 1551{
319f3ba5
JF
1552#ifdef CONFIG_FLATMEM
1553 BUG_ON(mem_map); /* should only be used early */
1554#endif
1555 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1556}
1557
1558/* Early release_pte assumes that all pts are pinned, since there's
1559 only init_mm and anything attached to that is pinned. */
3f508953 1560static void __init xen_release_pte_init(unsigned long pfn)
319f3ba5 1561{
b96229b5 1562 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
319f3ba5
JF
1563 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1564}
1565
3f508953 1566static void __init xen_release_pmd_init(unsigned long pfn)
319f3ba5 1567{
b96229b5 1568 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
319f3ba5
JF
1569}
1570
bc7fe1d9
JF
1571static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1572{
1573 struct multicall_space mcs;
1574 struct mmuext_op *op;
1575
1576 mcs = __xen_mc_entry(sizeof(*op));
1577 op = mcs.args;
1578 op->cmd = cmd;
1579 op->arg1.mfn = pfn_to_mfn(pfn);
1580
1581 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1582}
1583
1584static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1585{
1586 struct multicall_space mcs;
1587 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1588
1589 mcs = __xen_mc_entry(0);
1590 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1591 pfn_pte(pfn, prot), 0);
1592}
1593
319f3ba5
JF
1594/* This needs to make sure the new pte page is pinned iff its being
1595 attached to a pinned pagetable. */
bc7fe1d9
JF
1596static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1597 unsigned level)
319f3ba5 1598{
bc7fe1d9
JF
1599 bool pinned = PagePinned(virt_to_page(mm->pgd));
1600
c2ba050d 1601 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
319f3ba5 1602
c2ba050d 1603 if (pinned) {
bc7fe1d9 1604 struct page *page = pfn_to_page(pfn);
319f3ba5 1605
319f3ba5
JF
1606 SetPagePinned(page);
1607
319f3ba5 1608 if (!PageHighMem(page)) {
bc7fe1d9
JF
1609 xen_mc_batch();
1610
1611 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1612
57c1ffce 1613 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
bc7fe1d9
JF
1614 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1615
1616 xen_mc_issue(PARAVIRT_LAZY_MMU);
319f3ba5
JF
1617 } else {
1618 /* make sure there are no stray mappings of
1619 this page */
1620 kmap_flush_unused();
1621 }
1622 }
1623}
1624
1625static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1626{
1627 xen_alloc_ptpage(mm, pfn, PT_PTE);
1628}
1629
1630static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1631{
1632 xen_alloc_ptpage(mm, pfn, PT_PMD);
1633}
1634
1635/* This should never happen until we're OK to use struct page */
bc7fe1d9 1636static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
319f3ba5
JF
1637{
1638 struct page *page = pfn_to_page(pfn);
c2ba050d 1639 bool pinned = PagePinned(page);
319f3ba5 1640
c2ba050d 1641 trace_xen_mmu_release_ptpage(pfn, level, pinned);
319f3ba5 1642
c2ba050d 1643 if (pinned) {
319f3ba5 1644 if (!PageHighMem(page)) {
bc7fe1d9
JF
1645 xen_mc_batch();
1646
57c1ffce 1647 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
bc7fe1d9
JF
1648 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1649
1650 __set_pfn_prot(pfn, PAGE_KERNEL);
1651
1652 xen_mc_issue(PARAVIRT_LAZY_MMU);
319f3ba5
JF
1653 }
1654 ClearPagePinned(page);
1655 }
1656}
1657
1658static void xen_release_pte(unsigned long pfn)
1659{
1660 xen_release_ptpage(pfn, PT_PTE);
1661}
1662
1663static void xen_release_pmd(unsigned long pfn)
1664{
1665 xen_release_ptpage(pfn, PT_PMD);
1666}
1667
1668#if PAGETABLE_LEVELS == 4
1669static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1670{
1671 xen_alloc_ptpage(mm, pfn, PT_PUD);
1672}
1673
1674static void xen_release_pud(unsigned long pfn)
1675{
1676 xen_release_ptpage(pfn, PT_PUD);
1677}
1678#endif
1679
1680void __init xen_reserve_top(void)
1681{
1682#ifdef CONFIG_X86_32
1683 unsigned long top = HYPERVISOR_VIRT_START;
1684 struct xen_platform_parameters pp;
1685
1686 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1687 top = pp.virt_start;
1688
1689 reserve_top_address(-top);
1690#endif /* CONFIG_X86_32 */
1691}
1692
1693/*
1694 * Like __va(), but returns address in the kernel mapping (which is
1695 * all we have until the physical memory mapping has been set up.
1696 */
1697static void *__ka(phys_addr_t paddr)
1698{
1699#ifdef CONFIG_X86_64
1700 return (void *)(paddr + __START_KERNEL_map);
1701#else
1702 return __va(paddr);
1703#endif
1704}
1705
1706/* Convert a machine address to physical address */
1707static unsigned long m2p(phys_addr_t maddr)
1708{
1709 phys_addr_t paddr;
1710
1711 maddr &= PTE_PFN_MASK;
1712 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1713
1714 return paddr;
1715}
1716
1717/* Convert a machine address to kernel virtual */
1718static void *m2v(phys_addr_t maddr)
1719{
1720 return __ka(m2p(maddr));
1721}
1722
4ec5387c 1723/* Set the page permissions on an identity-mapped pages */
b2222794 1724static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
319f3ba5
JF
1725{
1726 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1727 pte_t pte = pfn_pte(pfn, prot);
1728
4e44e44b
MR
1729 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1730 if (xen_feature(XENFEAT_auto_translated_physmap))
1731 return;
1732
b2222794 1733 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
319f3ba5
JF
1734 BUG();
1735}
b2222794
KRW
1736static void set_page_prot(void *addr, pgprot_t prot)
1737{
1738 return set_page_prot_flags(addr, prot, UVMF_NONE);
1739}
caaf9ecf 1740#ifdef CONFIG_X86_32
3f508953 1741static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
319f3ba5
JF
1742{
1743 unsigned pmdidx, pteidx;
1744 unsigned ident_pte;
1745 unsigned long pfn;
1746
764f0138
JF
1747 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1748 PAGE_SIZE);
1749
319f3ba5
JF
1750 ident_pte = 0;
1751 pfn = 0;
1752 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1753 pte_t *pte_page;
1754
1755 /* Reuse or allocate a page of ptes */
1756 if (pmd_present(pmd[pmdidx]))
1757 pte_page = m2v(pmd[pmdidx].pmd);
1758 else {
1759 /* Check for free pte pages */
764f0138 1760 if (ident_pte == LEVEL1_IDENT_ENTRIES)
319f3ba5
JF
1761 break;
1762
1763 pte_page = &level1_ident_pgt[ident_pte];
1764 ident_pte += PTRS_PER_PTE;
1765
1766 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1767 }
1768
1769 /* Install mappings */
1770 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1771 pte_t pte;
1772
a91d9287
SS
1773#ifdef CONFIG_X86_32
1774 if (pfn > max_pfn_mapped)
1775 max_pfn_mapped = pfn;
1776#endif
1777
319f3ba5
JF
1778 if (!pte_none(pte_page[pteidx]))
1779 continue;
1780
1781 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1782 pte_page[pteidx] = pte;
1783 }
1784 }
1785
1786 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1787 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1788
1789 set_page_prot(pmd, PAGE_KERNEL_RO);
1790}
caaf9ecf 1791#endif
7e77506a
IC
1792void __init xen_setup_machphys_mapping(void)
1793{
1794 struct xen_machphys_mapping mapping;
7e77506a
IC
1795
1796 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1797 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
ccbcdf7c 1798 machine_to_phys_nr = mapping.max_mfn + 1;
7e77506a 1799 } else {
ccbcdf7c 1800 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
7e77506a 1801 }
ccbcdf7c 1802#ifdef CONFIG_X86_32
61cca2fa
JB
1803 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1804 < machine_to_phys_mapping);
ccbcdf7c 1805#endif
7e77506a
IC
1806}
1807
319f3ba5
JF
1808#ifdef CONFIG_X86_64
1809static void convert_pfn_mfn(void *v)
1810{
1811 pte_t *pte = v;
1812 int i;
1813
1814 /* All levels are converted the same way, so just treat them
1815 as ptes. */
1816 for (i = 0; i < PTRS_PER_PTE; i++)
1817 pte[i] = xen_make_pte(pte[i].pte);
1818}
488f046d
KRW
1819static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1820 unsigned long addr)
1821{
1822 if (*pt_base == PFN_DOWN(__pa(addr))) {
b2222794 1823 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
488f046d
KRW
1824 clear_page((void *)addr);
1825 (*pt_base)++;
1826 }
1827 if (*pt_end == PFN_DOWN(__pa(addr))) {
b2222794 1828 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
488f046d
KRW
1829 clear_page((void *)addr);
1830 (*pt_end)--;
1831 }
1832}
319f3ba5 1833/*
0d2eb44f 1834 * Set up the initial kernel pagetable.
319f3ba5
JF
1835 *
1836 * We can construct this by grafting the Xen provided pagetable into
1837 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
0b5a5063
SB
1838 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1839 * kernel has a physical mapping to start with - but that's enough to
1840 * get __va working. We need to fill in the rest of the physical
1841 * mapping once some sort of allocator has been set up. NOTE: for
1842 * PVH, the page tables are native.
319f3ba5 1843 */
3699aad0 1844void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
319f3ba5
JF
1845{
1846 pud_t *l3;
1847 pmd_t *l2;
488f046d
KRW
1848 unsigned long addr[3];
1849 unsigned long pt_base, pt_end;
1850 unsigned i;
319f3ba5 1851
14988a4d
SS
1852 /* max_pfn_mapped is the last pfn mapped in the initial memory
1853 * mappings. Considering that on Xen after the kernel mappings we
1854 * have the mappings of some pages that don't exist in pfn space, we
1855 * set max_pfn_mapped to the last real pfn mapped. */
1856 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1857
488f046d
KRW
1858 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1859 pt_end = pt_base + xen_start_info->nr_pt_frames;
1860
319f3ba5
JF
1861 /* Zap identity mapping */
1862 init_level4_pgt[0] = __pgd(0);
1863
4e44e44b
MR
1864 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1865 /* Pre-constructed entries are in pfn, so convert to mfn */
1866 /* L4[272] -> level3_ident_pgt
1867 * L4[511] -> level3_kernel_pgt */
1868 convert_pfn_mfn(init_level4_pgt);
1869
1870 /* L3_i[0] -> level2_ident_pgt */
1871 convert_pfn_mfn(level3_ident_pgt);
1872 /* L3_k[510] -> level2_kernel_pgt
0b5a5063 1873 * L3_k[511] -> level2_fixmap_pgt */
4e44e44b 1874 convert_pfn_mfn(level3_kernel_pgt);
0b5a5063
SB
1875
1876 /* L3_k[511][506] -> level1_fixmap_pgt */
1877 convert_pfn_mfn(level2_fixmap_pgt);
4e44e44b 1878 }
4fac153a 1879 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
319f3ba5
JF
1880 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1881 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1882
488f046d
KRW
1883 addr[0] = (unsigned long)pgd;
1884 addr[1] = (unsigned long)l3;
1885 addr[2] = (unsigned long)l2;
4fac153a 1886 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
0b5a5063 1887 * Both L4[272][0] and L4[511][510] have entries that point to the same
4fac153a
KRW
1888 * L2 (PMD) tables. Meaning that if you modify it in __va space
1889 * it will be also modified in the __ka space! (But if you just
1890 * modify the PMD table to point to other PTE's or none, then you
1891 * are OK - which is what cleanup_highmap does) */
ae895ed7 1892 copy_page(level2_ident_pgt, l2);
0b5a5063 1893 /* Graft it onto L4[511][510] */
ae895ed7 1894 copy_page(level2_kernel_pgt, l2);
319f3ba5 1895
4e44e44b
MR
1896 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1897 /* Make pagetable pieces RO */
1898 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1899 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1900 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1901 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1902 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1903 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1904 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
0b5a5063 1905 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
4e44e44b
MR
1906
1907 /* Pin down new L4 */
1908 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1909 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1910
1911 /* Unpin Xen-provided one */
1912 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
319f3ba5 1913
4e44e44b
MR
1914 /*
1915 * At this stage there can be no user pgd, and no page
1916 * structure to attach it to, so make sure we just set kernel
1917 * pgd.
1918 */
1919 xen_mc_batch();
1920 __xen_write_cr3(true, __pa(init_level4_pgt));
1921 xen_mc_issue(PARAVIRT_LAZY_CPU);
1922 } else
1923 native_write_cr3(__pa(init_level4_pgt));
319f3ba5 1924
488f046d
KRW
1925 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1926 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1927 * the initial domain. For guests using the toolstack, they are in:
1928 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1929 * rip out the [L4] (pgd), but for guests we shave off three pages.
1930 */
1931 for (i = 0; i < ARRAY_SIZE(addr); i++)
1932 check_pt_base(&pt_base, &pt_end, addr[i]);
319f3ba5 1933
488f046d
KRW
1934 /* Our (by three pages) smaller Xen pagetable that we are using */
1935 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
7f914062
KRW
1936 /* Revector the xen_start_info */
1937 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
319f3ba5
JF
1938}
1939#else /* !CONFIG_X86_64 */
5b5c1af1
IC
1940static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1941static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1942
3f508953 1943static void __init xen_write_cr3_init(unsigned long cr3)
5b5c1af1
IC
1944{
1945 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1946
1947 BUG_ON(read_cr3() != __pa(initial_page_table));
1948 BUG_ON(cr3 != __pa(swapper_pg_dir));
1949
1950 /*
1951 * We are switching to swapper_pg_dir for the first time (from
1952 * initial_page_table) and therefore need to mark that page
1953 * read-only and then pin it.
1954 *
1955 * Xen disallows sharing of kernel PMDs for PAE
1956 * guests. Therefore we must copy the kernel PMD from
1957 * initial_page_table into a new kernel PMD to be used in
1958 * swapper_pg_dir.
1959 */
1960 swapper_kernel_pmd =
1961 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
ae895ed7 1962 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
5b5c1af1
IC
1963 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1964 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1965 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1966
1967 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1968 xen_write_cr3(cr3);
1969 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1970
1971 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1972 PFN_DOWN(__pa(initial_page_table)));
1973 set_page_prot(initial_page_table, PAGE_KERNEL);
1974 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1975
1976 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1977}
319f3ba5 1978
3699aad0 1979void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
319f3ba5
JF
1980{
1981 pmd_t *kernel_pmd;
1982
5b5c1af1
IC
1983 initial_kernel_pmd =
1984 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
f0991802 1985
a91d9287
SS
1986 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1987 xen_start_info->nr_pt_frames * PAGE_SIZE +
1988 512*1024);
319f3ba5
JF
1989
1990 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
ae895ed7 1991 copy_page(initial_kernel_pmd, kernel_pmd);
319f3ba5 1992
5b5c1af1 1993 xen_map_identity_early(initial_kernel_pmd, max_pfn);
319f3ba5 1994
ae895ed7 1995 copy_page(initial_page_table, pgd);
5b5c1af1
IC
1996 initial_page_table[KERNEL_PGD_BOUNDARY] =
1997 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
319f3ba5 1998
5b5c1af1
IC
1999 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2000 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
319f3ba5
JF
2001 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2002
2003 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2004
5b5c1af1
IC
2005 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2006 PFN_DOWN(__pa(initial_page_table)));
2007 xen_write_cr3(__pa(initial_page_table));
319f3ba5 2008
24aa0788 2009 memblock_reserve(__pa(xen_start_info->pt_base),
dc6821e0 2010 xen_start_info->nr_pt_frames * PAGE_SIZE);
319f3ba5
JF
2011}
2012#endif /* CONFIG_X86_64 */
2013
98511f35
JF
2014static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2015
3b3809ac 2016static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
319f3ba5
JF
2017{
2018 pte_t pte;
2019
2020 phys >>= PAGE_SHIFT;
2021
2022 switch (idx) {
2023 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
4eefbe79 2024 case FIX_RO_IDT:
319f3ba5
JF
2025#ifdef CONFIG_X86_32
2026 case FIX_WP_TEST:
319f3ba5
JF
2027# ifdef CONFIG_HIGHMEM
2028 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2029# endif
2030#else
f40c3300 2031 case VSYSCALL_PAGE:
319f3ba5 2032#endif
3ecb1b7d
JF
2033 case FIX_TEXT_POKE0:
2034 case FIX_TEXT_POKE1:
2035 /* All local page mappings */
319f3ba5
JF
2036 pte = pfn_pte(phys, prot);
2037 break;
2038
98511f35
JF
2039#ifdef CONFIG_X86_LOCAL_APIC
2040 case FIX_APIC_BASE: /* maps dummy local APIC */
2041 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2042 break;
2043#endif
2044
2045#ifdef CONFIG_X86_IO_APIC
2046 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2047 /*
2048 * We just don't map the IO APIC - all access is via
2049 * hypercalls. Keep the address in the pte for reference.
2050 */
27abd14b 2051 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
98511f35
JF
2052 break;
2053#endif
2054
c0011dbf
JF
2055 case FIX_PARAVIRT_BOOTMAP:
2056 /* This is an MFN, but it isn't an IO mapping from the
2057 IO domain */
319f3ba5
JF
2058 pte = mfn_pte(phys, prot);
2059 break;
c0011dbf
JF
2060
2061 default:
2062 /* By default, set_fixmap is used for hardware mappings */
7f2f8822 2063 pte = mfn_pte(phys, prot);
c0011dbf 2064 break;
319f3ba5
JF
2065 }
2066
2067 __native_set_fixmap(idx, pte);
2068
2069#ifdef CONFIG_X86_64
2070 /* Replicate changes to map the vsyscall page into the user
2071 pagetable vsyscall mapping. */
f40c3300 2072 if (idx == VSYSCALL_PAGE) {
319f3ba5
JF
2073 unsigned long vaddr = __fix_to_virt(idx);
2074 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2075 }
2076#endif
2077}
2078
3f508953 2079static void __init xen_post_allocator_init(void)
319f3ba5 2080{
4e44e44b
MR
2081 if (xen_feature(XENFEAT_auto_translated_physmap))
2082 return;
2083
319f3ba5
JF
2084 pv_mmu_ops.set_pte = xen_set_pte;
2085 pv_mmu_ops.set_pmd = xen_set_pmd;
2086 pv_mmu_ops.set_pud = xen_set_pud;
2087#if PAGETABLE_LEVELS == 4
2088 pv_mmu_ops.set_pgd = xen_set_pgd;
2089#endif
2090
2091 /* This will work as long as patching hasn't happened yet
2092 (which it hasn't) */
2093 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2094 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2095 pv_mmu_ops.release_pte = xen_release_pte;
2096 pv_mmu_ops.release_pmd = xen_release_pmd;
2097#if PAGETABLE_LEVELS == 4
2098 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2099 pv_mmu_ops.release_pud = xen_release_pud;
2100#endif
2101
2102#ifdef CONFIG_X86_64
d3eb2c89 2103 pv_mmu_ops.write_cr3 = &xen_write_cr3;
319f3ba5
JF
2104 SetPagePinned(virt_to_page(level3_user_vsyscall));
2105#endif
2106 xen_mark_init_mm_pinned();
2107}
2108
b407fc57
JF
2109static void xen_leave_lazy_mmu(void)
2110{
5caecb94 2111 preempt_disable();
b407fc57
JF
2112 xen_mc_flush();
2113 paravirt_leave_lazy_mmu();
5caecb94 2114 preempt_enable();
b407fc57 2115}
319f3ba5 2116
3f508953 2117static const struct pv_mmu_ops xen_mmu_ops __initconst = {
319f3ba5
JF
2118 .read_cr2 = xen_read_cr2,
2119 .write_cr2 = xen_write_cr2,
2120
2121 .read_cr3 = xen_read_cr3,
5b5c1af1 2122 .write_cr3 = xen_write_cr3_init,
319f3ba5
JF
2123
2124 .flush_tlb_user = xen_flush_tlb,
2125 .flush_tlb_kernel = xen_flush_tlb,
2126 .flush_tlb_single = xen_flush_tlb_single,
2127 .flush_tlb_others = xen_flush_tlb_others,
2128
2129 .pte_update = paravirt_nop,
2130 .pte_update_defer = paravirt_nop,
2131
2132 .pgd_alloc = xen_pgd_alloc,
2133 .pgd_free = xen_pgd_free,
2134
2135 .alloc_pte = xen_alloc_pte_init,
2136 .release_pte = xen_release_pte_init,
b96229b5 2137 .alloc_pmd = xen_alloc_pmd_init,
b96229b5 2138 .release_pmd = xen_release_pmd_init,
319f3ba5 2139
319f3ba5 2140 .set_pte = xen_set_pte_init,
319f3ba5
JF
2141 .set_pte_at = xen_set_pte_at,
2142 .set_pmd = xen_set_pmd_hyper,
2143
2144 .ptep_modify_prot_start = __ptep_modify_prot_start,
2145 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2146
da5de7c2
JF
2147 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2148 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
319f3ba5 2149
da5de7c2
JF
2150 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2151 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
319f3ba5
JF
2152
2153#ifdef CONFIG_X86_PAE
2154 .set_pte_atomic = xen_set_pte_atomic,
319f3ba5
JF
2155 .pte_clear = xen_pte_clear,
2156 .pmd_clear = xen_pmd_clear,
2157#endif /* CONFIG_X86_PAE */
2158 .set_pud = xen_set_pud_hyper,
2159
da5de7c2
JF
2160 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2161 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
319f3ba5
JF
2162
2163#if PAGETABLE_LEVELS == 4
da5de7c2
JF
2164 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2165 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
319f3ba5
JF
2166 .set_pgd = xen_set_pgd_hyper,
2167
b96229b5
JF
2168 .alloc_pud = xen_alloc_pmd_init,
2169 .release_pud = xen_release_pmd_init,
319f3ba5
JF
2170#endif /* PAGETABLE_LEVELS == 4 */
2171
2172 .activate_mm = xen_activate_mm,
2173 .dup_mmap = xen_dup_mmap,
2174 .exit_mmap = xen_exit_mmap,
2175
2176 .lazy_mode = {
2177 .enter = paravirt_enter_lazy_mmu,
b407fc57 2178 .leave = xen_leave_lazy_mmu,
511ba86e 2179 .flush = paravirt_flush_lazy_mmu,
319f3ba5
JF
2180 },
2181
2182 .set_fixmap = xen_set_fixmap,
2183};
2184
030cb6c0
TG
2185void __init xen_init_mmu_ops(void)
2186{
7737b215 2187 x86_init.paging.pagetable_init = xen_pagetable_init;
76bcceff
MR
2188
2189 /* Optimization - we can use the HVM one but it has no idea which
2190 * VCPUs are descheduled - which means that it will needlessly IPI
2191 * them. Xen knows so let it do the job.
2192 */
2193 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2194 pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2195 return;
2196 }
030cb6c0 2197 pv_mmu_ops = xen_mmu_ops;
d2cb2145 2198
98511f35 2199 memset(dummy_mapping, 0xff, PAGE_SIZE);
030cb6c0 2200}
319f3ba5 2201
08bbc9da
AN
2202/* Protected by xen_reservation_lock. */
2203#define MAX_CONTIG_ORDER 9 /* 2MB */
2204static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2205
2206#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2207static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2208 unsigned long *in_frames,
2209 unsigned long *out_frames)
2210{
2211 int i;
2212 struct multicall_space mcs;
2213
2214 xen_mc_batch();
2215 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2216 mcs = __xen_mc_entry(0);
2217
2218 if (in_frames)
2219 in_frames[i] = virt_to_mfn(vaddr);
2220
2221 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
6eaa412f 2222 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
08bbc9da
AN
2223
2224 if (out_frames)
2225 out_frames[i] = virt_to_pfn(vaddr);
2226 }
2227 xen_mc_issue(0);
2228}
2229
2230/*
2231 * Update the pfn-to-mfn mappings for a virtual address range, either to
2232 * point to an array of mfns, or contiguously from a single starting
2233 * mfn.
2234 */
2235static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2236 unsigned long *mfns,
2237 unsigned long first_mfn)
2238{
2239 unsigned i, limit;
2240 unsigned long mfn;
2241
2242 xen_mc_batch();
2243
2244 limit = 1u << order;
2245 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2246 struct multicall_space mcs;
2247 unsigned flags;
2248
2249 mcs = __xen_mc_entry(0);
2250 if (mfns)
2251 mfn = mfns[i];
2252 else
2253 mfn = first_mfn + i;
2254
2255 if (i < (limit - 1))
2256 flags = 0;
2257 else {
2258 if (order == 0)
2259 flags = UVMF_INVLPG | UVMF_ALL;
2260 else
2261 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2262 }
2263
2264 MULTI_update_va_mapping(mcs.mc, vaddr,
2265 mfn_pte(mfn, PAGE_KERNEL), flags);
2266
2267 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2268 }
2269
2270 xen_mc_issue(0);
2271}
2272
2273/*
2274 * Perform the hypercall to exchange a region of our pfns to point to
2275 * memory with the required contiguous alignment. Takes the pfns as
2276 * input, and populates mfns as output.
2277 *
2278 * Returns a success code indicating whether the hypervisor was able to
2279 * satisfy the request or not.
2280 */
2281static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2282 unsigned long *pfns_in,
2283 unsigned long extents_out,
2284 unsigned int order_out,
2285 unsigned long *mfns_out,
2286 unsigned int address_bits)
2287{
2288 long rc;
2289 int success;
2290
2291 struct xen_memory_exchange exchange = {
2292 .in = {
2293 .nr_extents = extents_in,
2294 .extent_order = order_in,
2295 .extent_start = pfns_in,
2296 .domid = DOMID_SELF
2297 },
2298 .out = {
2299 .nr_extents = extents_out,
2300 .extent_order = order_out,
2301 .extent_start = mfns_out,
2302 .address_bits = address_bits,
2303 .domid = DOMID_SELF
2304 }
2305 };
2306
2307 BUG_ON(extents_in << order_in != extents_out << order_out);
2308
2309 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2310 success = (exchange.nr_exchanged == extents_in);
2311
2312 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2313 BUG_ON(success && (rc != 0));
2314
2315 return success;
2316}
2317
1b65c4e5 2318int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
69908907
SS
2319 unsigned int address_bits,
2320 dma_addr_t *dma_handle)
08bbc9da
AN
2321{
2322 unsigned long *in_frames = discontig_frames, out_frame;
2323 unsigned long flags;
2324 int success;
1b65c4e5 2325 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
08bbc9da
AN
2326
2327 /*
2328 * Currently an auto-translated guest will not perform I/O, nor will
2329 * it require PAE page directories below 4GB. Therefore any calls to
2330 * this function are redundant and can be ignored.
2331 */
2332
2333 if (xen_feature(XENFEAT_auto_translated_physmap))
2334 return 0;
2335
2336 if (unlikely(order > MAX_CONTIG_ORDER))
2337 return -ENOMEM;
2338
2339 memset((void *) vstart, 0, PAGE_SIZE << order);
2340
08bbc9da
AN
2341 spin_lock_irqsave(&xen_reservation_lock, flags);
2342
2343 /* 1. Zap current PTEs, remembering MFNs. */
2344 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2345
2346 /* 2. Get a new contiguous memory extent. */
2347 out_frame = virt_to_pfn(vstart);
2348 success = xen_exchange_memory(1UL << order, 0, in_frames,
2349 1, order, &out_frame,
2350 address_bits);
2351
2352 /* 3. Map the new extent in place of old pages. */
2353 if (success)
2354 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2355 else
2356 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2357
2358 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2359
69908907 2360 *dma_handle = virt_to_machine(vstart).maddr;
08bbc9da
AN
2361 return success ? 0 : -ENOMEM;
2362}
2363EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2364
1b65c4e5 2365void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
08bbc9da
AN
2366{
2367 unsigned long *out_frames = discontig_frames, in_frame;
2368 unsigned long flags;
2369 int success;
1b65c4e5 2370 unsigned long vstart;
08bbc9da
AN
2371
2372 if (xen_feature(XENFEAT_auto_translated_physmap))
2373 return;
2374
2375 if (unlikely(order > MAX_CONTIG_ORDER))
2376 return;
2377
1b65c4e5 2378 vstart = (unsigned long)phys_to_virt(pstart);
08bbc9da
AN
2379 memset((void *) vstart, 0, PAGE_SIZE << order);
2380
08bbc9da
AN
2381 spin_lock_irqsave(&xen_reservation_lock, flags);
2382
2383 /* 1. Find start MFN of contiguous extent. */
2384 in_frame = virt_to_mfn(vstart);
2385
2386 /* 2. Zap current PTEs. */
2387 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2388
2389 /* 3. Do the exchange for non-contiguous MFNs. */
2390 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2391 0, out_frames, 0);
2392
2393 /* 4. Map new pages in place of old pages. */
2394 if (success)
2395 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2396 else
2397 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2398
2399 spin_unlock_irqrestore(&xen_reservation_lock, flags);
030cb6c0 2400}
08bbc9da 2401EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
319f3ba5 2402
ca65f9fc 2403#ifdef CONFIG_XEN_PVHVM
34b6f01a
OH
2404#ifdef CONFIG_PROC_VMCORE
2405/*
2406 * This function is used in two contexts:
2407 * - the kdump kernel has to check whether a pfn of the crashed kernel
2408 * was a ballooned page. vmcore is using this function to decide
2409 * whether to access a pfn of the crashed kernel.
2410 * - the kexec kernel has to check whether a pfn was ballooned by the
2411 * previous kernel. If the pfn is ballooned, handle it properly.
2412 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2413 * handle the pfn special in this case.
2414 */
2415static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2416{
2417 struct xen_hvm_get_mem_type a = {
2418 .domid = DOMID_SELF,
2419 .pfn = pfn,
2420 };
2421 int ram;
2422
2423 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2424 return -ENXIO;
2425
2426 switch (a.mem_type) {
2427 case HVMMEM_mmio_dm:
2428 ram = 0;
2429 break;
2430 case HVMMEM_ram_rw:
2431 case HVMMEM_ram_ro:
2432 default:
2433 ram = 1;
2434 break;
2435 }
2436
2437 return ram;
2438}
2439#endif
2440
59151001
SS
2441static void xen_hvm_exit_mmap(struct mm_struct *mm)
2442{
2443 struct xen_hvm_pagetable_dying a;
2444 int rc;
2445
2446 a.domid = DOMID_SELF;
2447 a.gpa = __pa(mm->pgd);
2448 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2449 WARN_ON_ONCE(rc < 0);
2450}
2451
2452static int is_pagetable_dying_supported(void)
2453{
2454 struct xen_hvm_pagetable_dying a;
2455 int rc = 0;
2456
2457 a.domid = DOMID_SELF;
2458 a.gpa = 0x00;
2459 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2460 if (rc < 0) {
2461 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2462 return 0;
2463 }
2464 return 1;
2465}
2466
2467void __init xen_hvm_init_mmu_ops(void)
2468{
2469 if (is_pagetable_dying_supported())
2470 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
34b6f01a
OH
2471#ifdef CONFIG_PROC_VMCORE
2472 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2473#endif
59151001 2474}
ca65f9fc 2475#endif
59151001 2476
77945ca7
MR
2477#ifdef CONFIG_XEN_PVH
2478/*
2479 * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user
2480 * space creating new guest on pvh dom0 and needing to map domU pages.
2481 */
2482static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn,
2483 unsigned int domid)
2484{
2485 int rc, err = 0;
2486 xen_pfn_t gpfn = lpfn;
2487 xen_ulong_t idx = fgfn;
2488
2489 struct xen_add_to_physmap_range xatp = {
2490 .domid = DOMID_SELF,
2491 .foreign_domid = domid,
2492 .size = 1,
2493 .space = XENMAPSPACE_gmfn_foreign,
2494 };
2495 set_xen_guest_handle(xatp.idxs, &idx);
2496 set_xen_guest_handle(xatp.gpfns, &gpfn);
2497 set_xen_guest_handle(xatp.errs, &err);
2498
2499 rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp);
2500 if (rc < 0)
2501 return rc;
2502 return err;
2503}
2504
2505static int xlate_remove_from_p2m(unsigned long spfn, int count)
2506{
2507 struct xen_remove_from_physmap xrp;
2508 int i, rc;
2509
2510 for (i = 0; i < count; i++) {
2511 xrp.domid = DOMID_SELF;
2512 xrp.gpfn = spfn+i;
2513 rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp);
2514 if (rc)
2515 break;
2516 }
2517 return rc;
2518}
2519
2520struct xlate_remap_data {
2521 unsigned long fgfn; /* foreign domain's gfn */
2522 pgprot_t prot;
2523 domid_t domid;
2524 int index;
2525 struct page **pages;
2526};
2527
2528static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr,
2529 void *data)
2530{
2531 int rc;
2532 struct xlate_remap_data *remap = data;
2533 unsigned long pfn = page_to_pfn(remap->pages[remap->index++]);
2534 pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot));
2535
2536 rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid);
2537 if (rc)
2538 return rc;
2539 native_set_pte(ptep, pteval);
2540
2541 return 0;
2542}
2543
2544static int xlate_remap_gfn_range(struct vm_area_struct *vma,
2545 unsigned long addr, unsigned long mfn,
2546 int nr, pgprot_t prot, unsigned domid,
2547 struct page **pages)
2548{
2549 int err;
2550 struct xlate_remap_data pvhdata;
2551
2552 BUG_ON(!pages);
2553
2554 pvhdata.fgfn = mfn;
2555 pvhdata.prot = prot;
2556 pvhdata.domid = domid;
2557 pvhdata.index = 0;
2558 pvhdata.pages = pages;
2559 err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT,
2560 xlate_map_pte_fn, &pvhdata);
2561 flush_tlb_all();
2562 return err;
2563}
2564#endif
2565
de1ef206
IC
2566#define REMAP_BATCH_SIZE 16
2567
2568struct remap_data {
2569 unsigned long mfn;
2570 pgprot_t prot;
2571 struct mmu_update *mmu_update;
2572};
2573
2574static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2575 unsigned long addr, void *data)
2576{
2577 struct remap_data *rmd = data;
f59c5145 2578 pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
de1ef206 2579
d5108316 2580 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
de1ef206
IC
2581 rmd->mmu_update->val = pte_val_ma(pte);
2582 rmd->mmu_update++;
2583
2584 return 0;
2585}
2586
2587int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2588 unsigned long addr,
7892f692 2589 xen_pfn_t mfn, int nr,
9a032e39
IC
2590 pgprot_t prot, unsigned domid,
2591 struct page **pages)
2592
de1ef206
IC
2593{
2594 struct remap_data rmd;
2595 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2596 int batch;
2597 unsigned long range;
2598 int err = 0;
2599
314e51b9 2600 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
de1ef206 2601
77945ca7
MR
2602 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2603#ifdef CONFIG_XEN_PVH
2604 /* We need to update the local page tables and the xen HAP */
2605 return xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
2606 domid, pages);
2607#else
2608 return -EINVAL;
2609#endif
2610 }
2611
de1ef206
IC
2612 rmd.mfn = mfn;
2613 rmd.prot = prot;
2614
2615 while (nr) {
2616 batch = min(REMAP_BATCH_SIZE, nr);
2617 range = (unsigned long)batch << PAGE_SHIFT;
2618
2619 rmd.mmu_update = mmu_update;
2620 err = apply_to_page_range(vma->vm_mm, addr, range,
2621 remap_area_mfn_pte_fn, &rmd);
2622 if (err)
2623 goto out;
2624
69870a84
DV
2625 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2626 if (err < 0)
de1ef206
IC
2627 goto out;
2628
2629 nr -= batch;
2630 addr += range;
2631 }
2632
2633 err = 0;
2634out:
2635
95a7d768 2636 xen_flush_tlb_all();
de1ef206
IC
2637
2638 return err;
2639}
2640EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
9a032e39
IC
2641
2642/* Returns: 0 success */
2643int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2644 int numpgs, struct page **pages)
2645{
2646 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2647 return 0;
2648
77945ca7
MR
2649#ifdef CONFIG_XEN_PVH
2650 while (numpgs--) {
2651 /*
2652 * The mmu has already cleaned up the process mmu
2653 * resources at this point (lookup_address will return
2654 * NULL).
2655 */
2656 unsigned long pfn = page_to_pfn(pages[numpgs]);
2657
2658 xlate_remove_from_p2m(pfn, 1);
2659 }
2660 /*
2661 * We don't need to flush tlbs because as part of
2662 * xlate_remove_from_p2m, the hypervisor will do tlb flushes
2663 * after removing the p2m entries from the EPT/NPT
2664 */
2665 return 0;
2666#else
9a032e39 2667 return -EINVAL;
77945ca7 2668#endif
9a032e39
IC
2669}
2670EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);