]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/xen/mmu.c
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
d2cb2145 45#include <linux/vmalloc.h>
44408ad7 46#include <linux/module.h>
5a0e3ad6 47#include <linux/gfp.h>
a9ce6bc1 48#include <linux/memblock.h>
2222e71b 49#include <linux/seq_file.h>
3b827c1b 50
84708807
JF
51#include <trace/events/xen.h>
52
3b827c1b
JF
53#include <asm/pgtable.h>
54#include <asm/tlbflush.h>
5deb30d1 55#include <asm/fixmap.h>
3b827c1b 56#include <asm/mmu_context.h>
319f3ba5 57#include <asm/setup.h>
f4f97b3e 58#include <asm/paravirt.h>
7347b408 59#include <asm/e820.h>
cbcd79c2 60#include <asm/linkage.h>
08bbc9da 61#include <asm/page.h>
fef5ba79 62#include <asm/init.h>
41f2e477 63#include <asm/pat.h>
900cba88 64#include <asm/smp.h>
3b827c1b
JF
65
66#include <asm/xen/hypercall.h>
f4f97b3e 67#include <asm/xen/hypervisor.h>
3b827c1b 68
c0011dbf 69#include <xen/xen.h>
3b827c1b
JF
70#include <xen/page.h>
71#include <xen/interface/xen.h>
59151001 72#include <xen/interface/hvm/hvm_op.h>
319f3ba5 73#include <xen/interface/version.h>
c0011dbf 74#include <xen/interface/memory.h>
319f3ba5 75#include <xen/hvc-console.h>
3b827c1b 76
f4f97b3e 77#include "multicalls.h"
3b827c1b 78#include "mmu.h"
994025ca
JF
79#include "debugfs.h"
80
19001c8c
AN
81/*
82 * Protects atomic reservation decrease/increase against concurrent increases.
06f521d5 83 * Also protects non-atomic updates of current_pages and balloon lists.
19001c8c
AN
84 */
85DEFINE_SPINLOCK(xen_reservation_lock);
86
caaf9ecf 87#ifdef CONFIG_X86_32
319f3ba5
JF
88/*
89 * Identity map, in addition to plain kernel map. This needs to be
90 * large enough to allocate page table pages to allocate the rest.
91 * Each page can map 2MB.
92 */
764f0138
JF
93#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
94static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
caaf9ecf 95#endif
319f3ba5
JF
96#ifdef CONFIG_X86_64
97/* l3 pud for userspace vsyscall mapping */
98static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
99#endif /* CONFIG_X86_64 */
100
101/*
102 * Note about cr3 (pagetable base) values:
103 *
104 * xen_cr3 contains the current logical cr3 value; it contains the
105 * last set cr3. This may not be the current effective cr3, because
106 * its update may be being lazily deferred. However, a vcpu looking
107 * at its own cr3 can use this value knowing that it everything will
108 * be self-consistent.
109 *
110 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
111 * hypercall to set the vcpu cr3 is complete (so it may be a little
112 * out of date, but it will never be set early). If one vcpu is
113 * looking at another vcpu's cr3 value, it should use this variable.
114 */
115DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
116DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
117
118
d6182fbf
JF
119/*
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
122 */
123#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124
9976b39b
JF
125unsigned long arbitrary_virt_to_mfn(void *vaddr)
126{
127 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
128
129 return PFN_DOWN(maddr.maddr);
130}
131
ce803e70 132xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 133{
ce803e70 134 unsigned long address = (unsigned long)vaddr;
da7bfc50 135 unsigned int level;
9f32d21c
CL
136 pte_t *pte;
137 unsigned offset;
3b827c1b 138
9f32d21c
CL
139 /*
140 * if the PFN is in the linear mapped vaddr range, we can just use
141 * the (quick) virt_to_machine() p2m lookup
142 */
143 if (virt_addr_valid(vaddr))
144 return virt_to_machine(vaddr);
145
146 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 147
9f32d21c
CL
148 pte = lookup_address(address, &level);
149 BUG_ON(pte == NULL);
150 offset = address & ~PAGE_MASK;
ebd879e3 151 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b 152}
de23be5f 153EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
3b827c1b
JF
154
155void make_lowmem_page_readonly(void *vaddr)
156{
157 pte_t *pte, ptev;
158 unsigned long address = (unsigned long)vaddr;
da7bfc50 159 unsigned int level;
3b827c1b 160
f0646e43 161 pte = lookup_address(address, &level);
fef5ba79
JF
162 if (pte == NULL)
163 return; /* vaddr missing */
3b827c1b
JF
164
165 ptev = pte_wrprotect(*pte);
166
167 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
168 BUG();
169}
170
171void make_lowmem_page_readwrite(void *vaddr)
172{
173 pte_t *pte, ptev;
174 unsigned long address = (unsigned long)vaddr;
da7bfc50 175 unsigned int level;
3b827c1b 176
f0646e43 177 pte = lookup_address(address, &level);
fef5ba79
JF
178 if (pte == NULL)
179 return; /* vaddr missing */
3b827c1b
JF
180
181 ptev = pte_mkwrite(*pte);
182
183 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
184 BUG();
185}
186
187
7708ad64 188static bool xen_page_pinned(void *ptr)
e2426cf8
JF
189{
190 struct page *page = virt_to_page(ptr);
191
192 return PagePinned(page);
193}
194
eba3ff8b 195void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
c0011dbf
JF
196{
197 struct multicall_space mcs;
198 struct mmu_update *u;
199
84708807
JF
200 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
201
c0011dbf
JF
202 mcs = xen_mc_entry(sizeof(*u));
203 u = mcs.args;
204
205 /* ptep might be kmapped when using 32-bit HIGHPTE */
d5108316 206 u->ptr = virt_to_machine(ptep).maddr;
c0011dbf
JF
207 u->val = pte_val_ma(pteval);
208
eba3ff8b 209 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
c0011dbf
JF
210
211 xen_mc_issue(PARAVIRT_LAZY_MMU);
212}
eba3ff8b
JF
213EXPORT_SYMBOL_GPL(xen_set_domain_pte);
214
7708ad64 215static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 216{
d66bf8fc
JF
217 struct multicall_space mcs;
218 struct mmu_update *u;
3b827c1b 219
400d3494
JF
220 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
221
994025ca 222 if (mcs.mc != NULL) {
400d3494 223 mcs.mc->args[1]++;
994025ca 224 } else {
400d3494
JF
225 mcs = __xen_mc_entry(sizeof(*u));
226 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
227 }
d66bf8fc 228
d66bf8fc 229 u = mcs.args;
400d3494
JF
230 *u = *update;
231}
232
dcf7435c
JF
233static void xen_extend_mmuext_op(const struct mmuext_op *op)
234{
235 struct multicall_space mcs;
236 struct mmuext_op *u;
237
238 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
239
240 if (mcs.mc != NULL) {
241 mcs.mc->args[1]++;
242 } else {
243 mcs = __xen_mc_entry(sizeof(*u));
244 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
245 }
246
247 u = mcs.args;
248 *u = *op;
249}
250
4c13629f 251static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
400d3494
JF
252{
253 struct mmu_update u;
254
255 preempt_disable();
256
257 xen_mc_batch();
258
ce803e70
JF
259 /* ptr may be ioremapped for 64-bit pagetable setup */
260 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 261 u.val = pmd_val_ma(val);
7708ad64 262 xen_extend_mmu_update(&u);
d66bf8fc
JF
263
264 xen_mc_issue(PARAVIRT_LAZY_MMU);
265
266 preempt_enable();
3b827c1b
JF
267}
268
4c13629f 269static void xen_set_pmd(pmd_t *ptr, pmd_t val)
e2426cf8 270{
84708807
JF
271 trace_xen_mmu_set_pmd(ptr, val);
272
e2426cf8
JF
273 /* If page is not pinned, we can just update the entry
274 directly */
7708ad64 275 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
276 *ptr = val;
277 return;
278 }
279
280 xen_set_pmd_hyper(ptr, val);
281}
282
3b827c1b
JF
283/*
284 * Associate a virtual page frame with a given physical page frame
285 * and protection flags for that frame.
286 */
287void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
288{
836fe2f2 289 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
290}
291
4a35c13c 292static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
3b827c1b 293{
4a35c13c 294 struct mmu_update u;
c0011dbf 295
4a35c13c
JF
296 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
297 return false;
994025ca 298
4a35c13c 299 xen_mc_batch();
d66bf8fc 300
4a35c13c
JF
301 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
302 u.val = pte_val_ma(pteval);
303 xen_extend_mmu_update(&u);
a99ac5e8 304
4a35c13c 305 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 306
4a35c13c
JF
307 return true;
308}
309
84708807 310static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
4a35c13c 311{
4a35c13c 312 if (!xen_batched_set_pte(ptep, pteval))
a99ac5e8 313 native_set_pte(ptep, pteval);
3b827c1b
JF
314}
315
84708807
JF
316static void xen_set_pte(pte_t *ptep, pte_t pteval)
317{
318 trace_xen_mmu_set_pte(ptep, pteval);
319 __xen_set_pte(ptep, pteval);
320}
321
4c13629f 322static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
4a35c13c
JF
323 pte_t *ptep, pte_t pteval)
324{
84708807
JF
325 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
326 __xen_set_pte(ptep, pteval);
3b827c1b
JF
327}
328
f63c2f24
T
329pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
330 unsigned long addr, pte_t *ptep)
947a69c9 331{
e57778a1 332 /* Just return the pte as-is. We preserve the bits on commit */
84708807 333 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
e57778a1
JF
334 return *ptep;
335}
336
337void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
338 pte_t *ptep, pte_t pte)
339{
400d3494 340 struct mmu_update u;
e57778a1 341
84708807 342 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
400d3494 343 xen_mc_batch();
947a69c9 344
d5108316 345 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 346 u.val = pte_val_ma(pte);
7708ad64 347 xen_extend_mmu_update(&u);
947a69c9 348
e57778a1 349 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
350}
351
ebb9cfe2
JF
352/* Assume pteval_t is equivalent to all the other *val_t types. */
353static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 354{
ebb9cfe2 355 if (val & _PAGE_PRESENT) {
59438c9f 356 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
b7e5ffe5
KRW
357 unsigned long pfn = mfn_to_pfn(mfn);
358
77be1fab 359 pteval_t flags = val & PTE_FLAGS_MASK;
b7e5ffe5
KRW
360 if (unlikely(pfn == ~0))
361 val = flags & ~_PAGE_PRESENT;
362 else
363 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
ebb9cfe2 364 }
947a69c9 365
ebb9cfe2 366 return val;
947a69c9
JF
367}
368
ebb9cfe2 369static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 370{
ebb9cfe2 371 if (val & _PAGE_PRESENT) {
59438c9f 372 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 373 pteval_t flags = val & PTE_FLAGS_MASK;
fb38923e 374 unsigned long mfn;
cfd8951e 375
fb38923e
KRW
376 if (!xen_feature(XENFEAT_auto_translated_physmap))
377 mfn = get_phys_to_machine(pfn);
378 else
379 mfn = pfn;
cfd8951e
JF
380 /*
381 * If there's no mfn for the pfn, then just create an
382 * empty non-present pte. Unfortunately this loses
383 * information about the original pfn, so
384 * pte_mfn_to_pfn is asymmetric.
385 */
386 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
387 mfn = 0;
388 flags = 0;
fb38923e
KRW
389 } else {
390 /*
391 * Paramount to do this test _after_ the
392 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
393 * IDENTITY_FRAME_BIT resolves to true.
394 */
395 mfn &= ~FOREIGN_FRAME_BIT;
396 if (mfn & IDENTITY_FRAME_BIT) {
397 mfn &= ~IDENTITY_FRAME_BIT;
398 flags |= _PAGE_IOMAP;
399 }
cfd8951e 400 }
cfd8951e 401 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
947a69c9
JF
402 }
403
ebb9cfe2 404 return val;
947a69c9
JF
405}
406
c0011dbf
JF
407static pteval_t iomap_pte(pteval_t val)
408{
409 if (val & _PAGE_PRESENT) {
410 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
411 pteval_t flags = val & PTE_FLAGS_MASK;
412
413 /* We assume the pte frame number is a MFN, so
414 just use it as-is. */
415 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
416 }
417
418 return val;
419}
420
4c13629f 421static pteval_t xen_pte_val(pte_t pte)
947a69c9 422{
41f2e477 423 pteval_t pteval = pte.pte;
8eaffa67 424#if 0
41f2e477
JF
425 /* If this is a WC pte, convert back from Xen WC to Linux WC */
426 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
427 WARN_ON(!pat_enabled);
428 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
429 }
8eaffa67 430#endif
41f2e477
JF
431 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
432 return pteval;
433
434 return pte_mfn_to_pfn(pteval);
947a69c9 435}
da5de7c2 436PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
947a69c9 437
4c13629f 438static pgdval_t xen_pgd_val(pgd_t pgd)
947a69c9 439{
ebb9cfe2 440 return pte_mfn_to_pfn(pgd.pgd);
947a69c9 441}
da5de7c2 442PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
947a69c9 443
41f2e477
JF
444/*
445 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
446 * are reserved for now, to correspond to the Intel-reserved PAT
447 * types.
448 *
449 * We expect Linux's PAT set as follows:
450 *
451 * Idx PTE flags Linux Xen Default
452 * 0 WB WB WB
453 * 1 PWT WC WT WT
454 * 2 PCD UC- UC- UC-
455 * 3 PCD PWT UC UC UC
456 * 4 PAT WB WC WB
457 * 5 PAT PWT WC WP WT
458 * 6 PAT PCD UC- UC UC-
459 * 7 PAT PCD PWT UC UC UC
460 */
461
462void xen_set_pat(u64 pat)
463{
464 /* We expect Linux to use a PAT setting of
465 * UC UC- WC WB (ignoring the PAT flag) */
466 WARN_ON(pat != 0x0007010600070106ull);
467}
468
4c13629f 469static pte_t xen_make_pte(pteval_t pte)
947a69c9 470{
7347b408 471 phys_addr_t addr = (pte & PTE_PFN_MASK);
8eaffa67 472#if 0
41f2e477
JF
473 /* If Linux is trying to set a WC pte, then map to the Xen WC.
474 * If _PAGE_PAT is set, then it probably means it is really
475 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
476 * things work out OK...
477 *
478 * (We should never see kernel mappings with _PAGE_PSE set,
479 * but we could see hugetlbfs mappings, I think.).
480 */
481 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
482 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
483 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
484 }
8eaffa67 485#endif
7347b408
AN
486 /*
487 * Unprivileged domains are allowed to do IOMAPpings for
488 * PCI passthrough, but not map ISA space. The ISA
489 * mappings are just dummy local mappings to keep other
490 * parts of the kernel happy.
491 */
492 if (unlikely(pte & _PAGE_IOMAP) &&
493 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
c0011dbf 494 pte = iomap_pte(pte);
7347b408
AN
495 } else {
496 pte &= ~_PAGE_IOMAP;
c0011dbf 497 pte = pte_pfn_to_mfn(pte);
7347b408 498 }
c0011dbf 499
ebb9cfe2 500 return native_make_pte(pte);
947a69c9 501}
da5de7c2 502PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
947a69c9 503
4c13629f 504static pgd_t xen_make_pgd(pgdval_t pgd)
947a69c9 505{
ebb9cfe2
JF
506 pgd = pte_pfn_to_mfn(pgd);
507 return native_make_pgd(pgd);
947a69c9 508}
da5de7c2 509PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
947a69c9 510
4c13629f 511static pmdval_t xen_pmd_val(pmd_t pmd)
947a69c9 512{
ebb9cfe2 513 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 514}
da5de7c2 515PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
28499143 516
4c13629f 517static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 518{
400d3494 519 struct mmu_update u;
f4f97b3e 520
d66bf8fc
JF
521 preempt_disable();
522
400d3494
JF
523 xen_mc_batch();
524
ce803e70
JF
525 /* ptr may be ioremapped for 64-bit pagetable setup */
526 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 527 u.val = pud_val_ma(val);
7708ad64 528 xen_extend_mmu_update(&u);
d66bf8fc
JF
529
530 xen_mc_issue(PARAVIRT_LAZY_MMU);
531
532 preempt_enable();
f4f97b3e
JF
533}
534
4c13629f 535static void xen_set_pud(pud_t *ptr, pud_t val)
e2426cf8 536{
84708807
JF
537 trace_xen_mmu_set_pud(ptr, val);
538
e2426cf8
JF
539 /* If page is not pinned, we can just update the entry
540 directly */
7708ad64 541 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
542 *ptr = val;
543 return;
544 }
545
546 xen_set_pud_hyper(ptr, val);
547}
548
f6e58732 549#ifdef CONFIG_X86_PAE
4c13629f 550static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
3b827c1b 551{
84708807 552 trace_xen_mmu_set_pte_atomic(ptep, pte);
f6e58732 553 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
554}
555
4c13629f 556static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
3b827c1b 557{
84708807 558 trace_xen_mmu_pte_clear(mm, addr, ptep);
4a35c13c
JF
559 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
560 native_pte_clear(mm, addr, ptep);
3b827c1b
JF
561}
562
4c13629f 563static void xen_pmd_clear(pmd_t *pmdp)
3b827c1b 564{
84708807 565 trace_xen_mmu_pmd_clear(pmdp);
e2426cf8 566 set_pmd(pmdp, __pmd(0));
3b827c1b 567}
f6e58732 568#endif /* CONFIG_X86_PAE */
3b827c1b 569
4c13629f 570static pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 571{
ebb9cfe2 572 pmd = pte_pfn_to_mfn(pmd);
947a69c9 573 return native_make_pmd(pmd);
3b827c1b 574}
da5de7c2 575PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
3b827c1b 576
f6e58732 577#if PAGETABLE_LEVELS == 4
4c13629f 578static pudval_t xen_pud_val(pud_t pud)
f6e58732
JF
579{
580 return pte_mfn_to_pfn(pud.pud);
581}
da5de7c2 582PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
f6e58732 583
4c13629f 584static pud_t xen_make_pud(pudval_t pud)
f6e58732
JF
585{
586 pud = pte_pfn_to_mfn(pud);
587
588 return native_make_pud(pud);
589}
da5de7c2 590PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
f6e58732 591
4c13629f 592static pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 593{
d6182fbf
JF
594 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
595 unsigned offset = pgd - pgd_page;
596 pgd_t *user_ptr = NULL;
f6e58732 597
d6182fbf
JF
598 if (offset < pgd_index(USER_LIMIT)) {
599 struct page *page = virt_to_page(pgd_page);
600 user_ptr = (pgd_t *)page->private;
601 if (user_ptr)
602 user_ptr += offset;
603 }
f6e58732 604
d6182fbf
JF
605 return user_ptr;
606}
607
608static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
609{
610 struct mmu_update u;
f6e58732
JF
611
612 u.ptr = virt_to_machine(ptr).maddr;
613 u.val = pgd_val_ma(val);
7708ad64 614 xen_extend_mmu_update(&u);
d6182fbf
JF
615}
616
617/*
618 * Raw hypercall-based set_pgd, intended for in early boot before
619 * there's a page structure. This implies:
620 * 1. The only existing pagetable is the kernel's
621 * 2. It is always pinned
622 * 3. It has no user pagetable attached to it
623 */
4c13629f 624static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
d6182fbf
JF
625{
626 preempt_disable();
627
628 xen_mc_batch();
629
630 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
631
632 xen_mc_issue(PARAVIRT_LAZY_MMU);
633
634 preempt_enable();
635}
636
4c13629f 637static void xen_set_pgd(pgd_t *ptr, pgd_t val)
f6e58732 638{
d6182fbf
JF
639 pgd_t *user_ptr = xen_get_user_pgd(ptr);
640
84708807
JF
641 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
642
f6e58732
JF
643 /* If page is not pinned, we can just update the entry
644 directly */
7708ad64 645 if (!xen_page_pinned(ptr)) {
f6e58732 646 *ptr = val;
d6182fbf 647 if (user_ptr) {
7708ad64 648 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
649 *user_ptr = val;
650 }
f6e58732
JF
651 return;
652 }
653
d6182fbf
JF
654 /* If it's pinned, then we can at least batch the kernel and
655 user updates together. */
656 xen_mc_batch();
657
658 __xen_set_pgd_hyper(ptr, val);
659 if (user_ptr)
660 __xen_set_pgd_hyper(user_ptr, val);
661
662 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
663}
664#endif /* PAGETABLE_LEVELS == 4 */
665
f4f97b3e 666/*
5deb30d1
JF
667 * (Yet another) pagetable walker. This one is intended for pinning a
668 * pagetable. This means that it walks a pagetable and calls the
669 * callback function on each page it finds making up the page table,
670 * at every level. It walks the entire pagetable, but it only bothers
671 * pinning pte pages which are below limit. In the normal case this
672 * will be STACK_TOP_MAX, but at boot we need to pin up to
673 * FIXADDR_TOP.
674 *
675 * For 32-bit the important bit is that we don't pin beyond there,
676 * because then we start getting into Xen's ptes.
677 *
678 * For 64-bit, we must skip the Xen hole in the middle of the address
679 * space, just after the big x86-64 virtual hole.
680 */
86bbc2c2
IC
681static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
682 int (*func)(struct mm_struct *mm, struct page *,
683 enum pt_level),
684 unsigned long limit)
3b827c1b 685{
f4f97b3e 686 int flush = 0;
5deb30d1
JF
687 unsigned hole_low, hole_high;
688 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
689 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 690
5deb30d1
JF
691 /* The limit is the last byte to be touched */
692 limit--;
693 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
694
695 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
696 return 0;
697
5deb30d1
JF
698 /*
699 * 64-bit has a great big hole in the middle of the address
700 * space, which contains the Xen mappings. On 32-bit these
701 * will end up making a zero-sized hole and so is a no-op.
702 */
d6182fbf 703 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
704 hole_high = pgd_index(PAGE_OFFSET);
705
706 pgdidx_limit = pgd_index(limit);
707#if PTRS_PER_PUD > 1
708 pudidx_limit = pud_index(limit);
709#else
710 pudidx_limit = 0;
711#endif
712#if PTRS_PER_PMD > 1
713 pmdidx_limit = pmd_index(limit);
714#else
715 pmdidx_limit = 0;
716#endif
717
5deb30d1 718 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 719 pud_t *pud;
3b827c1b 720
5deb30d1
JF
721 if (pgdidx >= hole_low && pgdidx < hole_high)
722 continue;
f4f97b3e 723
5deb30d1 724 if (!pgd_val(pgd[pgdidx]))
3b827c1b 725 continue;
f4f97b3e 726
5deb30d1 727 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
728
729 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 730 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 731
5deb30d1 732 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 733 pmd_t *pmd;
f4f97b3e 734
5deb30d1
JF
735 if (pgdidx == pgdidx_limit &&
736 pudidx > pudidx_limit)
737 goto out;
3b827c1b 738
5deb30d1 739 if (pud_none(pud[pudidx]))
3b827c1b 740 continue;
f4f97b3e 741
5deb30d1 742 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
743
744 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 745 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 746
5deb30d1
JF
747 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
748 struct page *pte;
749
750 if (pgdidx == pgdidx_limit &&
751 pudidx == pudidx_limit &&
752 pmdidx > pmdidx_limit)
753 goto out;
3b827c1b 754
5deb30d1 755 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
756 continue;
757
5deb30d1 758 pte = pmd_page(pmd[pmdidx]);
eefb47f6 759 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
760 }
761 }
762 }
11ad93e5 763
5deb30d1 764out:
11ad93e5
JF
765 /* Do the top level last, so that the callbacks can use it as
766 a cue to do final things like tlb flushes. */
eefb47f6 767 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
768
769 return flush;
3b827c1b
JF
770}
771
86bbc2c2
IC
772static int xen_pgd_walk(struct mm_struct *mm,
773 int (*func)(struct mm_struct *mm, struct page *,
774 enum pt_level),
775 unsigned long limit)
776{
777 return __xen_pgd_walk(mm, mm->pgd, func, limit);
778}
779
7708ad64
JF
780/* If we're using split pte locks, then take the page's lock and
781 return a pointer to it. Otherwise return NULL. */
eefb47f6 782static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
783{
784 spinlock_t *ptl = NULL;
785
f7d0b926 786#if USE_SPLIT_PTLOCKS
74260714 787 ptl = __pte_lockptr(page);
eefb47f6 788 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
789#endif
790
791 return ptl;
792}
793
7708ad64 794static void xen_pte_unlock(void *v)
74260714
JF
795{
796 spinlock_t *ptl = v;
797 spin_unlock(ptl);
798}
799
800static void xen_do_pin(unsigned level, unsigned long pfn)
801{
dcf7435c 802 struct mmuext_op op;
74260714 803
dcf7435c
JF
804 op.cmd = level;
805 op.arg1.mfn = pfn_to_mfn(pfn);
806
807 xen_extend_mmuext_op(&op);
74260714
JF
808}
809
eefb47f6
JF
810static int xen_pin_page(struct mm_struct *mm, struct page *page,
811 enum pt_level level)
f4f97b3e 812{
d60cd46b 813 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
814 int flush;
815
816 if (pgfl)
817 flush = 0; /* already pinned */
818 else if (PageHighMem(page))
819 /* kmaps need flushing if we found an unpinned
820 highpage */
821 flush = 1;
822 else {
823 void *pt = lowmem_page_address(page);
824 unsigned long pfn = page_to_pfn(page);
825 struct multicall_space mcs = __xen_mc_entry(0);
74260714 826 spinlock_t *ptl;
f4f97b3e
JF
827
828 flush = 0;
829
11ad93e5
JF
830 /*
831 * We need to hold the pagetable lock between the time
832 * we make the pagetable RO and when we actually pin
833 * it. If we don't, then other users may come in and
834 * attempt to update the pagetable by writing it,
835 * which will fail because the memory is RO but not
836 * pinned, so Xen won't do the trap'n'emulate.
837 *
838 * If we're using split pte locks, we can't hold the
839 * entire pagetable's worth of locks during the
840 * traverse, because we may wrap the preempt count (8
841 * bits). The solution is to mark RO and pin each PTE
842 * page while holding the lock. This means the number
843 * of locks we end up holding is never more than a
844 * batch size (~32 entries, at present).
845 *
846 * If we're not using split pte locks, we needn't pin
847 * the PTE pages independently, because we're
848 * protected by the overall pagetable lock.
849 */
74260714
JF
850 ptl = NULL;
851 if (level == PT_PTE)
eefb47f6 852 ptl = xen_pte_lock(page, mm);
74260714 853
f4f97b3e
JF
854 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
855 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
856 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
857
11ad93e5 858 if (ptl) {
74260714
JF
859 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
860
74260714
JF
861 /* Queue a deferred unlock for when this batch
862 is completed. */
7708ad64 863 xen_mc_callback(xen_pte_unlock, ptl);
74260714 864 }
f4f97b3e
JF
865 }
866
867 return flush;
868}
3b827c1b 869
f4f97b3e
JF
870/* This is called just after a mm has been created, but it has not
871 been used yet. We need to make sure that its pagetable is all
872 read-only, and can be pinned. */
eefb47f6 873static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 874{
5f94fb5b
JF
875 trace_xen_mmu_pgd_pin(mm, pgd);
876
f4f97b3e 877 xen_mc_batch();
3b827c1b 878
86bbc2c2 879 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
d05fdf31 880 /* re-enable interrupts for flushing */
f87e4cac 881 xen_mc_issue(0);
d05fdf31 882
f4f97b3e 883 kmap_flush_unused();
d05fdf31 884
f87e4cac
JF
885 xen_mc_batch();
886 }
f4f97b3e 887
d6182fbf
JF
888#ifdef CONFIG_X86_64
889 {
890 pgd_t *user_pgd = xen_get_user_pgd(pgd);
891
892 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
893
894 if (user_pgd) {
eefb47f6 895 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
f63c2f24
T
896 xen_do_pin(MMUEXT_PIN_L4_TABLE,
897 PFN_DOWN(__pa(user_pgd)));
d6182fbf
JF
898 }
899 }
900#else /* CONFIG_X86_32 */
5deb30d1
JF
901#ifdef CONFIG_X86_PAE
902 /* Need to make sure unshared kernel PMD is pinnable */
47cb2ed9 903 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 904 PT_PMD);
5deb30d1 905#endif
28499143 906 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 907#endif /* CONFIG_X86_64 */
f4f97b3e 908 xen_mc_issue(0);
3b827c1b
JF
909}
910
eefb47f6
JF
911static void xen_pgd_pin(struct mm_struct *mm)
912{
913 __xen_pgd_pin(mm, mm->pgd);
914}
915
0e91398f
JF
916/*
917 * On save, we need to pin all pagetables to make sure they get their
918 * mfns turned into pfns. Search the list for any unpinned pgds and pin
919 * them (unpinned pgds are not currently in use, probably because the
920 * process is under construction or destruction).
eefb47f6
JF
921 *
922 * Expected to be called in stop_machine() ("equivalent to taking
923 * every spinlock in the system"), so the locking doesn't really
924 * matter all that much.
0e91398f
JF
925 */
926void xen_mm_pin_all(void)
927{
0e91398f 928 struct page *page;
74260714 929
a79e53d8 930 spin_lock(&pgd_lock);
f4f97b3e 931
0e91398f
JF
932 list_for_each_entry(page, &pgd_list, lru) {
933 if (!PagePinned(page)) {
eefb47f6 934 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
935 SetPageSavePinned(page);
936 }
937 }
938
a79e53d8 939 spin_unlock(&pgd_lock);
3b827c1b
JF
940}
941
c1f2f09e
EH
942/*
943 * The init_mm pagetable is really pinned as soon as its created, but
944 * that's before we have page structures to store the bits. So do all
945 * the book-keeping now.
946 */
3f508953 947static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
eefb47f6 948 enum pt_level level)
3b827c1b 949{
f4f97b3e
JF
950 SetPagePinned(page);
951 return 0;
952}
3b827c1b 953
b96229b5 954static void __init xen_mark_init_mm_pinned(void)
f4f97b3e 955{
eefb47f6 956 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 957}
3b827c1b 958
eefb47f6
JF
959static int xen_unpin_page(struct mm_struct *mm, struct page *page,
960 enum pt_level level)
f4f97b3e 961{
d60cd46b 962 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 963
f4f97b3e
JF
964 if (pgfl && !PageHighMem(page)) {
965 void *pt = lowmem_page_address(page);
966 unsigned long pfn = page_to_pfn(page);
74260714
JF
967 spinlock_t *ptl = NULL;
968 struct multicall_space mcs;
969
11ad93e5
JF
970 /*
971 * Do the converse to pin_page. If we're using split
972 * pte locks, we must be holding the lock for while
973 * the pte page is unpinned but still RO to prevent
974 * concurrent updates from seeing it in this
975 * partially-pinned state.
976 */
74260714 977 if (level == PT_PTE) {
eefb47f6 978 ptl = xen_pte_lock(page, mm);
74260714 979
11ad93e5
JF
980 if (ptl)
981 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
982 }
983
984 mcs = __xen_mc_entry(0);
f4f97b3e
JF
985
986 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
987 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
988 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
989
990 if (ptl) {
991 /* unlock when batch completed */
7708ad64 992 xen_mc_callback(xen_pte_unlock, ptl);
74260714 993 }
f4f97b3e
JF
994 }
995
996 return 0; /* never need to flush on unpin */
3b827c1b
JF
997}
998
f4f97b3e 999/* Release a pagetables pages back as normal RW */
eefb47f6 1000static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 1001{
5f94fb5b
JF
1002 trace_xen_mmu_pgd_unpin(mm, pgd);
1003
f4f97b3e
JF
1004 xen_mc_batch();
1005
74260714 1006 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 1007
d6182fbf
JF
1008#ifdef CONFIG_X86_64
1009 {
1010 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1011
1012 if (user_pgd) {
f63c2f24
T
1013 xen_do_pin(MMUEXT_UNPIN_TABLE,
1014 PFN_DOWN(__pa(user_pgd)));
eefb47f6 1015 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
1016 }
1017 }
1018#endif
1019
5deb30d1
JF
1020#ifdef CONFIG_X86_PAE
1021 /* Need to make sure unshared kernel PMD is unpinned */
47cb2ed9 1022 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1023 PT_PMD);
5deb30d1 1024#endif
d6182fbf 1025
86bbc2c2 1026 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
1027
1028 xen_mc_issue(0);
1029}
3b827c1b 1030
eefb47f6
JF
1031static void xen_pgd_unpin(struct mm_struct *mm)
1032{
1033 __xen_pgd_unpin(mm, mm->pgd);
1034}
1035
0e91398f
JF
1036/*
1037 * On resume, undo any pinning done at save, so that the rest of the
1038 * kernel doesn't see any unexpected pinned pagetables.
1039 */
1040void xen_mm_unpin_all(void)
1041{
0e91398f
JF
1042 struct page *page;
1043
a79e53d8 1044 spin_lock(&pgd_lock);
0e91398f
JF
1045
1046 list_for_each_entry(page, &pgd_list, lru) {
1047 if (PageSavePinned(page)) {
1048 BUG_ON(!PagePinned(page));
eefb47f6 1049 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1050 ClearPageSavePinned(page);
1051 }
1052 }
1053
a79e53d8 1054 spin_unlock(&pgd_lock);
0e91398f
JF
1055}
1056
4c13629f 1057static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
3b827c1b 1058{
f4f97b3e 1059 spin_lock(&next->page_table_lock);
eefb47f6 1060 xen_pgd_pin(next);
f4f97b3e 1061 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1062}
1063
4c13629f 1064static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
3b827c1b 1065{
f4f97b3e 1066 spin_lock(&mm->page_table_lock);
eefb47f6 1067 xen_pgd_pin(mm);
f4f97b3e 1068 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1069}
1070
3b827c1b 1071
f87e4cac
JF
1072#ifdef CONFIG_SMP
1073/* Another cpu may still have their %cr3 pointing at the pagetable, so
1074 we need to repoint it somewhere else before we can unpin it. */
1075static void drop_other_mm_ref(void *info)
1076{
1077 struct mm_struct *mm = info;
ce87b3d3 1078 struct mm_struct *active_mm;
3b827c1b 1079
2113f469 1080 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
ce87b3d3 1081
2113f469 1082 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
f87e4cac 1083 leave_mm(smp_processor_id());
9f79991d
JF
1084
1085 /* If this cpu still has a stale cr3 reference, then make sure
1086 it has been flushed. */
2113f469 1087 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
9f79991d 1088 load_cr3(swapper_pg_dir);
f87e4cac 1089}
3b827c1b 1090
7708ad64 1091static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1092{
e4d98207 1093 cpumask_var_t mask;
9f79991d
JF
1094 unsigned cpu;
1095
f87e4cac
JF
1096 if (current->active_mm == mm) {
1097 if (current->mm == mm)
1098 load_cr3(swapper_pg_dir);
1099 else
1100 leave_mm(smp_processor_id());
9f79991d
JF
1101 }
1102
1103 /* Get the "official" set of cpus referring to our pagetable. */
e4d98207
MT
1104 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1105 for_each_online_cpu(cpu) {
78f1c4d6 1106 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
e4d98207
MT
1107 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1108 continue;
1109 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1110 }
1111 return;
1112 }
78f1c4d6 1113 cpumask_copy(mask, mm_cpumask(mm));
9f79991d
JF
1114
1115 /* It's possible that a vcpu may have a stale reference to our
1116 cr3, because its in lazy mode, and it hasn't yet flushed
1117 its set of pending hypercalls yet. In this case, we can
1118 look at its actual current cr3 value, and force it to flush
1119 if needed. */
1120 for_each_online_cpu(cpu) {
1121 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
e4d98207 1122 cpumask_set_cpu(cpu, mask);
3b827c1b
JF
1123 }
1124
e4d98207
MT
1125 if (!cpumask_empty(mask))
1126 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1127 free_cpumask_var(mask);
f87e4cac
JF
1128}
1129#else
7708ad64 1130static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1131{
1132 if (current->active_mm == mm)
1133 load_cr3(swapper_pg_dir);
1134}
1135#endif
1136
1137/*
1138 * While a process runs, Xen pins its pagetables, which means that the
1139 * hypervisor forces it to be read-only, and it controls all updates
1140 * to it. This means that all pagetable updates have to go via the
1141 * hypervisor, which is moderately expensive.
1142 *
1143 * Since we're pulling the pagetable down, we switch to use init_mm,
1144 * unpin old process pagetable and mark it all read-write, which
1145 * allows further operations on it to be simple memory accesses.
1146 *
1147 * The only subtle point is that another CPU may be still using the
1148 * pagetable because of lazy tlb flushing. This means we need need to
1149 * switch all CPUs off this pagetable before we can unpin it.
1150 */
4c13629f 1151static void xen_exit_mmap(struct mm_struct *mm)
f87e4cac
JF
1152{
1153 get_cpu(); /* make sure we don't move around */
7708ad64 1154 xen_drop_mm_ref(mm);
f87e4cac 1155 put_cpu();
3b827c1b 1156
f120f13e 1157 spin_lock(&mm->page_table_lock);
df912ea4
JF
1158
1159 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1160 if (xen_page_pinned(mm->pgd))
eefb47f6 1161 xen_pgd_unpin(mm);
74260714 1162
f120f13e 1163 spin_unlock(&mm->page_table_lock);
3b827c1b 1164}
994025ca 1165
3f508953 1166static void __init xen_pagetable_setup_start(pgd_t *base)
319f3ba5
JF
1167{
1168}
1169
279b706b
SS
1170static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1171{
1172 /* reserve the range used */
1173 native_pagetable_reserve(start, end);
1174
1175 /* set as RW the rest */
1176 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1177 PFN_PHYS(pgt_buf_top));
1178 while (end < PFN_PHYS(pgt_buf_top)) {
1179 make_lowmem_page_readwrite(__va(end));
1180 end += PAGE_SIZE;
1181 }
1182}
1183
f1d7062a
TG
1184static void xen_post_allocator_init(void);
1185
3f508953 1186static void __init xen_pagetable_setup_done(pgd_t *base)
319f3ba5
JF
1187{
1188 xen_setup_shared_info();
f1d7062a 1189 xen_post_allocator_init();
319f3ba5
JF
1190}
1191
1192static void xen_write_cr2(unsigned long cr2)
1193{
2113f469 1194 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
319f3ba5
JF
1195}
1196
1197static unsigned long xen_read_cr2(void)
1198{
2113f469 1199 return this_cpu_read(xen_vcpu)->arch.cr2;
319f3ba5
JF
1200}
1201
1202unsigned long xen_read_cr2_direct(void)
1203{
2113f469 1204 return this_cpu_read(xen_vcpu_info.arch.cr2);
319f3ba5
JF
1205}
1206
1207static void xen_flush_tlb(void)
1208{
1209 struct mmuext_op *op;
1210 struct multicall_space mcs;
1211
c8eed171
JF
1212 trace_xen_mmu_flush_tlb(0);
1213
319f3ba5
JF
1214 preempt_disable();
1215
1216 mcs = xen_mc_entry(sizeof(*op));
1217
1218 op = mcs.args;
1219 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1220 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1221
1222 xen_mc_issue(PARAVIRT_LAZY_MMU);
1223
1224 preempt_enable();
1225}
1226
1227static void xen_flush_tlb_single(unsigned long addr)
1228{
1229 struct mmuext_op *op;
1230 struct multicall_space mcs;
1231
c8eed171
JF
1232 trace_xen_mmu_flush_tlb_single(addr);
1233
319f3ba5
JF
1234 preempt_disable();
1235
1236 mcs = xen_mc_entry(sizeof(*op));
1237 op = mcs.args;
1238 op->cmd = MMUEXT_INVLPG_LOCAL;
1239 op->arg1.linear_addr = addr & PAGE_MASK;
1240 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1241
1242 xen_mc_issue(PARAVIRT_LAZY_MMU);
1243
1244 preempt_enable();
1245}
1246
1247static void xen_flush_tlb_others(const struct cpumask *cpus,
1248 struct mm_struct *mm, unsigned long va)
1249{
1250 struct {
1251 struct mmuext_op op;
32dd1194 1252#ifdef CONFIG_SMP
900cba88 1253 DECLARE_BITMAP(mask, num_processors);
32dd1194
KRW
1254#else
1255 DECLARE_BITMAP(mask, NR_CPUS);
1256#endif
319f3ba5
JF
1257 } *args;
1258 struct multicall_space mcs;
1259
c8eed171
JF
1260 trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1261
e3f8a74e
JF
1262 if (cpumask_empty(cpus))
1263 return; /* nothing to do */
319f3ba5
JF
1264
1265 mcs = xen_mc_entry(sizeof(*args));
1266 args = mcs.args;
1267 args->op.arg2.vcpumask = to_cpumask(args->mask);
1268
1269 /* Remove us, and any offline CPUS. */
1270 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1271 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
319f3ba5
JF
1272
1273 if (va == TLB_FLUSH_ALL) {
1274 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1275 } else {
1276 args->op.cmd = MMUEXT_INVLPG_MULTI;
1277 args->op.arg1.linear_addr = va;
1278 }
1279
1280 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1281
319f3ba5
JF
1282 xen_mc_issue(PARAVIRT_LAZY_MMU);
1283}
1284
1285static unsigned long xen_read_cr3(void)
1286{
2113f469 1287 return this_cpu_read(xen_cr3);
319f3ba5
JF
1288}
1289
1290static void set_current_cr3(void *v)
1291{
2113f469 1292 this_cpu_write(xen_current_cr3, (unsigned long)v);
319f3ba5
JF
1293}
1294
1295static void __xen_write_cr3(bool kernel, unsigned long cr3)
1296{
dcf7435c 1297 struct mmuext_op op;
319f3ba5
JF
1298 unsigned long mfn;
1299
c8eed171
JF
1300 trace_xen_mmu_write_cr3(kernel, cr3);
1301
319f3ba5
JF
1302 if (cr3)
1303 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1304 else
1305 mfn = 0;
1306
1307 WARN_ON(mfn == 0 && kernel);
1308
dcf7435c
JF
1309 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1310 op.arg1.mfn = mfn;
319f3ba5 1311
dcf7435c 1312 xen_extend_mmuext_op(&op);
319f3ba5
JF
1313
1314 if (kernel) {
2113f469 1315 this_cpu_write(xen_cr3, cr3);
319f3ba5
JF
1316
1317 /* Update xen_current_cr3 once the batch has actually
1318 been submitted. */
1319 xen_mc_callback(set_current_cr3, (void *)cr3);
1320 }
1321}
1322
1323static void xen_write_cr3(unsigned long cr3)
1324{
1325 BUG_ON(preemptible());
1326
1327 xen_mc_batch(); /* disables interrupts */
1328
1329 /* Update while interrupts are disabled, so its atomic with
1330 respect to ipis */
2113f469 1331 this_cpu_write(xen_cr3, cr3);
319f3ba5
JF
1332
1333 __xen_write_cr3(true, cr3);
1334
1335#ifdef CONFIG_X86_64
1336 {
1337 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1338 if (user_pgd)
1339 __xen_write_cr3(false, __pa(user_pgd));
1340 else
1341 __xen_write_cr3(false, 0);
1342 }
1343#endif
1344
1345 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1346}
1347
1348static int xen_pgd_alloc(struct mm_struct *mm)
1349{
1350 pgd_t *pgd = mm->pgd;
1351 int ret = 0;
1352
1353 BUG_ON(PagePinned(virt_to_page(pgd)));
1354
1355#ifdef CONFIG_X86_64
1356 {
1357 struct page *page = virt_to_page(pgd);
1358 pgd_t *user_pgd;
1359
1360 BUG_ON(page->private != 0);
1361
1362 ret = -ENOMEM;
1363
1364 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1365 page->private = (unsigned long)user_pgd;
1366
1367 if (user_pgd != NULL) {
1368 user_pgd[pgd_index(VSYSCALL_START)] =
1369 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1370 ret = 0;
1371 }
1372
1373 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1374 }
1375#endif
1376
1377 return ret;
1378}
1379
1380static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1381{
1382#ifdef CONFIG_X86_64
1383 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1384
1385 if (user_pgd)
1386 free_page((unsigned long)user_pgd);
1387#endif
1388}
1389
ee176455 1390#ifdef CONFIG_X86_32
3f508953 1391static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1f4f9315
JF
1392{
1393 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1394 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1395 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1396 pte_val_ma(pte));
ee176455
SS
1397
1398 return pte;
1399}
1400#else /* CONFIG_X86_64 */
3f508953 1401static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
ee176455
SS
1402{
1403 unsigned long pfn = pte_pfn(pte);
fef5ba79
JF
1404
1405 /*
1406 * If the new pfn is within the range of the newly allocated
1407 * kernel pagetable, and it isn't being mapped into an
d8aa5ec3
SS
1408 * early_ioremap fixmap slot as a freshly allocated page, make sure
1409 * it is RO.
fef5ba79 1410 */
d8aa5ec3 1411 if (((!is_early_ioremap_ptep(ptep) &&
b9269dc7 1412 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
d8aa5ec3 1413 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
fef5ba79 1414 pte = pte_wrprotect(pte);
1f4f9315
JF
1415
1416 return pte;
1417}
ee176455 1418#endif /* CONFIG_X86_64 */
1f4f9315
JF
1419
1420/* Init-time set_pte while constructing initial pagetables, which
1421 doesn't allow RO pagetable pages to be remapped RW */
3f508953 1422static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1f4f9315
JF
1423{
1424 pte = mask_rw_pte(ptep, pte);
1425
1426 xen_set_pte(ptep, pte);
1427}
319f3ba5 1428
b96229b5
JF
1429static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1430{
1431 struct mmuext_op op;
1432 op.cmd = cmd;
1433 op.arg1.mfn = pfn_to_mfn(pfn);
1434 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1435 BUG();
1436}
1437
319f3ba5
JF
1438/* Early in boot, while setting up the initial pagetable, assume
1439 everything is pinned. */
3f508953 1440static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
319f3ba5 1441{
b96229b5
JF
1442#ifdef CONFIG_FLATMEM
1443 BUG_ON(mem_map); /* should only be used early */
1444#endif
1445 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1446 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1447}
1448
1449/* Used for pmd and pud */
3f508953 1450static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
b96229b5 1451{
319f3ba5
JF
1452#ifdef CONFIG_FLATMEM
1453 BUG_ON(mem_map); /* should only be used early */
1454#endif
1455 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1456}
1457
1458/* Early release_pte assumes that all pts are pinned, since there's
1459 only init_mm and anything attached to that is pinned. */
3f508953 1460static void __init xen_release_pte_init(unsigned long pfn)
319f3ba5 1461{
b96229b5 1462 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
319f3ba5
JF
1463 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1464}
1465
3f508953 1466static void __init xen_release_pmd_init(unsigned long pfn)
319f3ba5 1467{
b96229b5 1468 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
319f3ba5
JF
1469}
1470
bc7fe1d9
JF
1471static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1472{
1473 struct multicall_space mcs;
1474 struct mmuext_op *op;
1475
1476 mcs = __xen_mc_entry(sizeof(*op));
1477 op = mcs.args;
1478 op->cmd = cmd;
1479 op->arg1.mfn = pfn_to_mfn(pfn);
1480
1481 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1482}
1483
1484static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1485{
1486 struct multicall_space mcs;
1487 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1488
1489 mcs = __xen_mc_entry(0);
1490 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1491 pfn_pte(pfn, prot), 0);
1492}
1493
319f3ba5
JF
1494/* This needs to make sure the new pte page is pinned iff its being
1495 attached to a pinned pagetable. */
bc7fe1d9
JF
1496static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1497 unsigned level)
319f3ba5 1498{
bc7fe1d9
JF
1499 bool pinned = PagePinned(virt_to_page(mm->pgd));
1500
c2ba050d 1501 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
319f3ba5 1502
c2ba050d 1503 if (pinned) {
bc7fe1d9 1504 struct page *page = pfn_to_page(pfn);
319f3ba5 1505
319f3ba5
JF
1506 SetPagePinned(page);
1507
319f3ba5 1508 if (!PageHighMem(page)) {
bc7fe1d9
JF
1509 xen_mc_batch();
1510
1511 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1512
319f3ba5 1513 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
bc7fe1d9
JF
1514 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1515
1516 xen_mc_issue(PARAVIRT_LAZY_MMU);
319f3ba5
JF
1517 } else {
1518 /* make sure there are no stray mappings of
1519 this page */
1520 kmap_flush_unused();
1521 }
1522 }
1523}
1524
1525static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1526{
1527 xen_alloc_ptpage(mm, pfn, PT_PTE);
1528}
1529
1530static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1531{
1532 xen_alloc_ptpage(mm, pfn, PT_PMD);
1533}
1534
1535/* This should never happen until we're OK to use struct page */
bc7fe1d9 1536static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
319f3ba5
JF
1537{
1538 struct page *page = pfn_to_page(pfn);
c2ba050d 1539 bool pinned = PagePinned(page);
319f3ba5 1540
c2ba050d 1541 trace_xen_mmu_release_ptpage(pfn, level, pinned);
319f3ba5 1542
c2ba050d 1543 if (pinned) {
319f3ba5 1544 if (!PageHighMem(page)) {
bc7fe1d9
JF
1545 xen_mc_batch();
1546
319f3ba5 1547 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
bc7fe1d9
JF
1548 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1549
1550 __set_pfn_prot(pfn, PAGE_KERNEL);
1551
1552 xen_mc_issue(PARAVIRT_LAZY_MMU);
319f3ba5
JF
1553 }
1554 ClearPagePinned(page);
1555 }
1556}
1557
1558static void xen_release_pte(unsigned long pfn)
1559{
1560 xen_release_ptpage(pfn, PT_PTE);
1561}
1562
1563static void xen_release_pmd(unsigned long pfn)
1564{
1565 xen_release_ptpage(pfn, PT_PMD);
1566}
1567
1568#if PAGETABLE_LEVELS == 4
1569static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1570{
1571 xen_alloc_ptpage(mm, pfn, PT_PUD);
1572}
1573
1574static void xen_release_pud(unsigned long pfn)
1575{
1576 xen_release_ptpage(pfn, PT_PUD);
1577}
1578#endif
1579
1580void __init xen_reserve_top(void)
1581{
1582#ifdef CONFIG_X86_32
1583 unsigned long top = HYPERVISOR_VIRT_START;
1584 struct xen_platform_parameters pp;
1585
1586 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1587 top = pp.virt_start;
1588
1589 reserve_top_address(-top);
1590#endif /* CONFIG_X86_32 */
1591}
1592
1593/*
1594 * Like __va(), but returns address in the kernel mapping (which is
1595 * all we have until the physical memory mapping has been set up.
1596 */
1597static void *__ka(phys_addr_t paddr)
1598{
1599#ifdef CONFIG_X86_64
1600 return (void *)(paddr + __START_KERNEL_map);
1601#else
1602 return __va(paddr);
1603#endif
1604}
1605
1606/* Convert a machine address to physical address */
1607static unsigned long m2p(phys_addr_t maddr)
1608{
1609 phys_addr_t paddr;
1610
1611 maddr &= PTE_PFN_MASK;
1612 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1613
1614 return paddr;
1615}
1616
1617/* Convert a machine address to kernel virtual */
1618static void *m2v(phys_addr_t maddr)
1619{
1620 return __ka(m2p(maddr));
1621}
1622
4ec5387c 1623/* Set the page permissions on an identity-mapped pages */
319f3ba5
JF
1624static void set_page_prot(void *addr, pgprot_t prot)
1625{
1626 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1627 pte_t pte = pfn_pte(pfn, prot);
1628
1629 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1630 BUG();
1631}
caaf9ecf 1632#ifdef CONFIG_X86_32
3f508953 1633static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
319f3ba5
JF
1634{
1635 unsigned pmdidx, pteidx;
1636 unsigned ident_pte;
1637 unsigned long pfn;
1638
764f0138
JF
1639 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1640 PAGE_SIZE);
1641
319f3ba5
JF
1642 ident_pte = 0;
1643 pfn = 0;
1644 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1645 pte_t *pte_page;
1646
1647 /* Reuse or allocate a page of ptes */
1648 if (pmd_present(pmd[pmdidx]))
1649 pte_page = m2v(pmd[pmdidx].pmd);
1650 else {
1651 /* Check for free pte pages */
764f0138 1652 if (ident_pte == LEVEL1_IDENT_ENTRIES)
319f3ba5
JF
1653 break;
1654
1655 pte_page = &level1_ident_pgt[ident_pte];
1656 ident_pte += PTRS_PER_PTE;
1657
1658 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1659 }
1660
1661 /* Install mappings */
1662 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1663 pte_t pte;
1664
a91d9287
SS
1665#ifdef CONFIG_X86_32
1666 if (pfn > max_pfn_mapped)
1667 max_pfn_mapped = pfn;
1668#endif
1669
319f3ba5
JF
1670 if (!pte_none(pte_page[pteidx]))
1671 continue;
1672
1673 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1674 pte_page[pteidx] = pte;
1675 }
1676 }
1677
1678 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1679 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1680
1681 set_page_prot(pmd, PAGE_KERNEL_RO);
1682}
caaf9ecf 1683#endif
7e77506a
IC
1684void __init xen_setup_machphys_mapping(void)
1685{
1686 struct xen_machphys_mapping mapping;
7e77506a
IC
1687
1688 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1689 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
ccbcdf7c 1690 machine_to_phys_nr = mapping.max_mfn + 1;
7e77506a 1691 } else {
ccbcdf7c 1692 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
7e77506a 1693 }
ccbcdf7c 1694#ifdef CONFIG_X86_32
61cca2fa
JB
1695 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1696 < machine_to_phys_mapping);
ccbcdf7c 1697#endif
7e77506a
IC
1698}
1699
319f3ba5
JF
1700#ifdef CONFIG_X86_64
1701static void convert_pfn_mfn(void *v)
1702{
1703 pte_t *pte = v;
1704 int i;
1705
1706 /* All levels are converted the same way, so just treat them
1707 as ptes. */
1708 for (i = 0; i < PTRS_PER_PTE; i++)
1709 pte[i] = xen_make_pte(pte[i].pte);
1710}
488f046d
KRW
1711static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1712 unsigned long addr)
1713{
1714 if (*pt_base == PFN_DOWN(__pa(addr))) {
1715 set_page_prot((void *)addr, PAGE_KERNEL);
1716 clear_page((void *)addr);
1717 (*pt_base)++;
1718 }
1719 if (*pt_end == PFN_DOWN(__pa(addr))) {
1720 set_page_prot((void *)addr, PAGE_KERNEL);
1721 clear_page((void *)addr);
1722 (*pt_end)--;
1723 }
1724}
319f3ba5 1725/*
0d2eb44f 1726 * Set up the initial kernel pagetable.
319f3ba5
JF
1727 *
1728 * We can construct this by grafting the Xen provided pagetable into
1729 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1730 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1731 * means that only the kernel has a physical mapping to start with -
1732 * but that's enough to get __va working. We need to fill in the rest
1733 * of the physical mapping once some sort of allocator has been set
1734 * up.
1735 */
3699aad0 1736void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
319f3ba5
JF
1737{
1738 pud_t *l3;
1739 pmd_t *l2;
488f046d
KRW
1740 unsigned long addr[3];
1741 unsigned long pt_base, pt_end;
1742 unsigned i;
319f3ba5 1743
14988a4d
SS
1744 /* max_pfn_mapped is the last pfn mapped in the initial memory
1745 * mappings. Considering that on Xen after the kernel mappings we
1746 * have the mappings of some pages that don't exist in pfn space, we
1747 * set max_pfn_mapped to the last real pfn mapped. */
1748 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1749
488f046d
KRW
1750 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1751 pt_end = pt_base + xen_start_info->nr_pt_frames;
1752
319f3ba5
JF
1753 /* Zap identity mapping */
1754 init_level4_pgt[0] = __pgd(0);
1755
1756 /* Pre-constructed entries are in pfn, so convert to mfn */
4fac153a
KRW
1757 /* L4[272] -> level3_ident_pgt
1758 * L4[511] -> level3_kernel_pgt */
319f3ba5 1759 convert_pfn_mfn(init_level4_pgt);
4fac153a
KRW
1760
1761 /* L3_i[0] -> level2_ident_pgt */
319f3ba5 1762 convert_pfn_mfn(level3_ident_pgt);
4fac153a
KRW
1763 /* L3_k[510] -> level2_kernel_pgt
1764 * L3_i[511] -> level2_fixmap_pgt */
319f3ba5
JF
1765 convert_pfn_mfn(level3_kernel_pgt);
1766
4fac153a 1767 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
319f3ba5
JF
1768 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1769 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1770
488f046d
KRW
1771 addr[0] = (unsigned long)pgd;
1772 addr[1] = (unsigned long)l3;
1773 addr[2] = (unsigned long)l2;
4fac153a
KRW
1774 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1775 * Both L4[272][0] and L4[511][511] have entries that point to the same
1776 * L2 (PMD) tables. Meaning that if you modify it in __va space
1777 * it will be also modified in the __ka space! (But if you just
1778 * modify the PMD table to point to other PTE's or none, then you
1779 * are OK - which is what cleanup_highmap does) */
ae895ed7 1780 copy_page(level2_ident_pgt, l2);
4fac153a 1781 /* Graft it onto L4[511][511] */
ae895ed7 1782 copy_page(level2_kernel_pgt, l2);
319f3ba5 1783
4fac153a 1784 /* Get [511][510] and graft that in level2_fixmap_pgt */
319f3ba5
JF
1785 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1786 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
ae895ed7 1787 copy_page(level2_fixmap_pgt, l2);
4fac153a
KRW
1788 /* Note that we don't do anything with level1_fixmap_pgt which
1789 * we don't need. */
319f3ba5 1790
319f3ba5
JF
1791 /* Make pagetable pieces RO */
1792 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1793 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1794 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1795 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
caaf9ecf 1796 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
319f3ba5
JF
1797 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1798 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1799
1800 /* Pin down new L4 */
1801 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1802 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1803
1804 /* Unpin Xen-provided one */
1805 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1806
319f3ba5
JF
1807 /*
1808 * At this stage there can be no user pgd, and no page
1809 * structure to attach it to, so make sure we just set kernel
1810 * pgd.
1811 */
1812 xen_mc_batch();
488f046d 1813 __xen_write_cr3(true, __pa(init_level4_pgt));
319f3ba5
JF
1814 xen_mc_issue(PARAVIRT_LAZY_CPU);
1815
488f046d
KRW
1816 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1817 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1818 * the initial domain. For guests using the toolstack, they are in:
1819 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1820 * rip out the [L4] (pgd), but for guests we shave off three pages.
1821 */
1822 for (i = 0; i < ARRAY_SIZE(addr); i++)
1823 check_pt_base(&pt_base, &pt_end, addr[i]);
1824
1825 /* Our (by three pages) smaller Xen pagetable that we are using */
1826 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
319f3ba5
JF
1827}
1828#else /* !CONFIG_X86_64 */
5b5c1af1
IC
1829static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1830static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1831
3f508953 1832static void __init xen_write_cr3_init(unsigned long cr3)
5b5c1af1
IC
1833{
1834 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1835
1836 BUG_ON(read_cr3() != __pa(initial_page_table));
1837 BUG_ON(cr3 != __pa(swapper_pg_dir));
1838
1839 /*
1840 * We are switching to swapper_pg_dir for the first time (from
1841 * initial_page_table) and therefore need to mark that page
1842 * read-only and then pin it.
1843 *
1844 * Xen disallows sharing of kernel PMDs for PAE
1845 * guests. Therefore we must copy the kernel PMD from
1846 * initial_page_table into a new kernel PMD to be used in
1847 * swapper_pg_dir.
1848 */
1849 swapper_kernel_pmd =
1850 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
ae895ed7 1851 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
5b5c1af1
IC
1852 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1853 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1854 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1855
1856 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1857 xen_write_cr3(cr3);
1858 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1859
1860 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1861 PFN_DOWN(__pa(initial_page_table)));
1862 set_page_prot(initial_page_table, PAGE_KERNEL);
1863 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1864
1865 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1866}
319f3ba5 1867
3699aad0 1868void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
319f3ba5
JF
1869{
1870 pmd_t *kernel_pmd;
1871
5b5c1af1
IC
1872 initial_kernel_pmd =
1873 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
f0991802 1874
a91d9287
SS
1875 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1876 xen_start_info->nr_pt_frames * PAGE_SIZE +
1877 512*1024);
319f3ba5
JF
1878
1879 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
ae895ed7 1880 copy_page(initial_kernel_pmd, kernel_pmd);
319f3ba5 1881
5b5c1af1 1882 xen_map_identity_early(initial_kernel_pmd, max_pfn);
319f3ba5 1883
ae895ed7 1884 copy_page(initial_page_table, pgd);
5b5c1af1
IC
1885 initial_page_table[KERNEL_PGD_BOUNDARY] =
1886 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
319f3ba5 1887
5b5c1af1
IC
1888 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1889 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
319f3ba5
JF
1890 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1891
1892 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1893
5b5c1af1
IC
1894 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1895 PFN_DOWN(__pa(initial_page_table)));
1896 xen_write_cr3(__pa(initial_page_table));
319f3ba5 1897
24aa0788 1898 memblock_reserve(__pa(xen_start_info->pt_base),
dc6821e0 1899 xen_start_info->nr_pt_frames * PAGE_SIZE);
319f3ba5
JF
1900}
1901#endif /* CONFIG_X86_64 */
1902
98511f35
JF
1903static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1904
3b3809ac 1905static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
319f3ba5
JF
1906{
1907 pte_t pte;
1908
1909 phys >>= PAGE_SHIFT;
1910
1911 switch (idx) {
1912 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1913#ifdef CONFIG_X86_F00F_BUG
1914 case FIX_F00F_IDT:
1915#endif
1916#ifdef CONFIG_X86_32
1917 case FIX_WP_TEST:
1918 case FIX_VDSO:
1919# ifdef CONFIG_HIGHMEM
1920 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1921# endif
1922#else
1923 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
5d5791af 1924 case VVAR_PAGE:
319f3ba5 1925#endif
3ecb1b7d
JF
1926 case FIX_TEXT_POKE0:
1927 case FIX_TEXT_POKE1:
1928 /* All local page mappings */
319f3ba5
JF
1929 pte = pfn_pte(phys, prot);
1930 break;
1931
98511f35
JF
1932#ifdef CONFIG_X86_LOCAL_APIC
1933 case FIX_APIC_BASE: /* maps dummy local APIC */
1934 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1935 break;
1936#endif
1937
1938#ifdef CONFIG_X86_IO_APIC
1939 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1940 /*
1941 * We just don't map the IO APIC - all access is via
1942 * hypercalls. Keep the address in the pte for reference.
1943 */
27abd14b 1944 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
98511f35
JF
1945 break;
1946#endif
1947
c0011dbf
JF
1948 case FIX_PARAVIRT_BOOTMAP:
1949 /* This is an MFN, but it isn't an IO mapping from the
1950 IO domain */
319f3ba5
JF
1951 pte = mfn_pte(phys, prot);
1952 break;
c0011dbf
JF
1953
1954 default:
1955 /* By default, set_fixmap is used for hardware mappings */
1956 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1957 break;
319f3ba5
JF
1958 }
1959
1960 __native_set_fixmap(idx, pte);
1961
1962#ifdef CONFIG_X86_64
1963 /* Replicate changes to map the vsyscall page into the user
1964 pagetable vsyscall mapping. */
5d5791af
AL
1965 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1966 idx == VVAR_PAGE) {
319f3ba5
JF
1967 unsigned long vaddr = __fix_to_virt(idx);
1968 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1969 }
1970#endif
1971}
1972
3f508953 1973static void __init xen_post_allocator_init(void)
319f3ba5
JF
1974{
1975 pv_mmu_ops.set_pte = xen_set_pte;
1976 pv_mmu_ops.set_pmd = xen_set_pmd;
1977 pv_mmu_ops.set_pud = xen_set_pud;
1978#if PAGETABLE_LEVELS == 4
1979 pv_mmu_ops.set_pgd = xen_set_pgd;
1980#endif
1981
1982 /* This will work as long as patching hasn't happened yet
1983 (which it hasn't) */
1984 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1985 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1986 pv_mmu_ops.release_pte = xen_release_pte;
1987 pv_mmu_ops.release_pmd = xen_release_pmd;
1988#if PAGETABLE_LEVELS == 4
1989 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1990 pv_mmu_ops.release_pud = xen_release_pud;
1991#endif
1992
1993#ifdef CONFIG_X86_64
1994 SetPagePinned(virt_to_page(level3_user_vsyscall));
1995#endif
1996 xen_mark_init_mm_pinned();
1997}
1998
b407fc57
JF
1999static void xen_leave_lazy_mmu(void)
2000{
5caecb94 2001 preempt_disable();
b407fc57
JF
2002 xen_mc_flush();
2003 paravirt_leave_lazy_mmu();
5caecb94 2004 preempt_enable();
b407fc57 2005}
319f3ba5 2006
3f508953 2007static const struct pv_mmu_ops xen_mmu_ops __initconst = {
319f3ba5
JF
2008 .read_cr2 = xen_read_cr2,
2009 .write_cr2 = xen_write_cr2,
2010
2011 .read_cr3 = xen_read_cr3,
5b5c1af1
IC
2012#ifdef CONFIG_X86_32
2013 .write_cr3 = xen_write_cr3_init,
2014#else
319f3ba5 2015 .write_cr3 = xen_write_cr3,
5b5c1af1 2016#endif
319f3ba5
JF
2017
2018 .flush_tlb_user = xen_flush_tlb,
2019 .flush_tlb_kernel = xen_flush_tlb,
2020 .flush_tlb_single = xen_flush_tlb_single,
2021 .flush_tlb_others = xen_flush_tlb_others,
2022
2023 .pte_update = paravirt_nop,
2024 .pte_update_defer = paravirt_nop,
2025
2026 .pgd_alloc = xen_pgd_alloc,
2027 .pgd_free = xen_pgd_free,
2028
2029 .alloc_pte = xen_alloc_pte_init,
2030 .release_pte = xen_release_pte_init,
b96229b5 2031 .alloc_pmd = xen_alloc_pmd_init,
b96229b5 2032 .release_pmd = xen_release_pmd_init,
319f3ba5 2033
319f3ba5 2034 .set_pte = xen_set_pte_init,
319f3ba5
JF
2035 .set_pte_at = xen_set_pte_at,
2036 .set_pmd = xen_set_pmd_hyper,
2037
2038 .ptep_modify_prot_start = __ptep_modify_prot_start,
2039 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2040
da5de7c2
JF
2041 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2042 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
319f3ba5 2043
da5de7c2
JF
2044 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2045 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
319f3ba5
JF
2046
2047#ifdef CONFIG_X86_PAE
2048 .set_pte_atomic = xen_set_pte_atomic,
319f3ba5
JF
2049 .pte_clear = xen_pte_clear,
2050 .pmd_clear = xen_pmd_clear,
2051#endif /* CONFIG_X86_PAE */
2052 .set_pud = xen_set_pud_hyper,
2053
da5de7c2
JF
2054 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2055 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
319f3ba5
JF
2056
2057#if PAGETABLE_LEVELS == 4
da5de7c2
JF
2058 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2059 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
319f3ba5
JF
2060 .set_pgd = xen_set_pgd_hyper,
2061
b96229b5
JF
2062 .alloc_pud = xen_alloc_pmd_init,
2063 .release_pud = xen_release_pmd_init,
319f3ba5
JF
2064#endif /* PAGETABLE_LEVELS == 4 */
2065
2066 .activate_mm = xen_activate_mm,
2067 .dup_mmap = xen_dup_mmap,
2068 .exit_mmap = xen_exit_mmap,
2069
2070 .lazy_mode = {
2071 .enter = paravirt_enter_lazy_mmu,
b407fc57 2072 .leave = xen_leave_lazy_mmu,
319f3ba5
JF
2073 },
2074
2075 .set_fixmap = xen_set_fixmap,
2076};
2077
030cb6c0
TG
2078void __init xen_init_mmu_ops(void)
2079{
279b706b 2080 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
030cb6c0
TG
2081 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2082 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2083 pv_mmu_ops = xen_mmu_ops;
d2cb2145 2084
98511f35 2085 memset(dummy_mapping, 0xff, PAGE_SIZE);
030cb6c0 2086}
319f3ba5 2087
08bbc9da
AN
2088/* Protected by xen_reservation_lock. */
2089#define MAX_CONTIG_ORDER 9 /* 2MB */
2090static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2091
2092#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2093static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2094 unsigned long *in_frames,
2095 unsigned long *out_frames)
2096{
2097 int i;
2098 struct multicall_space mcs;
2099
2100 xen_mc_batch();
2101 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2102 mcs = __xen_mc_entry(0);
2103
2104 if (in_frames)
2105 in_frames[i] = virt_to_mfn(vaddr);
2106
2107 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
6eaa412f 2108 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
08bbc9da
AN
2109
2110 if (out_frames)
2111 out_frames[i] = virt_to_pfn(vaddr);
2112 }
2113 xen_mc_issue(0);
2114}
2115
2116/*
2117 * Update the pfn-to-mfn mappings for a virtual address range, either to
2118 * point to an array of mfns, or contiguously from a single starting
2119 * mfn.
2120 */
2121static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2122 unsigned long *mfns,
2123 unsigned long first_mfn)
2124{
2125 unsigned i, limit;
2126 unsigned long mfn;
2127
2128 xen_mc_batch();
2129
2130 limit = 1u << order;
2131 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2132 struct multicall_space mcs;
2133 unsigned flags;
2134
2135 mcs = __xen_mc_entry(0);
2136 if (mfns)
2137 mfn = mfns[i];
2138 else
2139 mfn = first_mfn + i;
2140
2141 if (i < (limit - 1))
2142 flags = 0;
2143 else {
2144 if (order == 0)
2145 flags = UVMF_INVLPG | UVMF_ALL;
2146 else
2147 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2148 }
2149
2150 MULTI_update_va_mapping(mcs.mc, vaddr,
2151 mfn_pte(mfn, PAGE_KERNEL), flags);
2152
2153 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2154 }
2155
2156 xen_mc_issue(0);
2157}
2158
2159/*
2160 * Perform the hypercall to exchange a region of our pfns to point to
2161 * memory with the required contiguous alignment. Takes the pfns as
2162 * input, and populates mfns as output.
2163 *
2164 * Returns a success code indicating whether the hypervisor was able to
2165 * satisfy the request or not.
2166 */
2167static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2168 unsigned long *pfns_in,
2169 unsigned long extents_out,
2170 unsigned int order_out,
2171 unsigned long *mfns_out,
2172 unsigned int address_bits)
2173{
2174 long rc;
2175 int success;
2176
2177 struct xen_memory_exchange exchange = {
2178 .in = {
2179 .nr_extents = extents_in,
2180 .extent_order = order_in,
2181 .extent_start = pfns_in,
2182 .domid = DOMID_SELF
2183 },
2184 .out = {
2185 .nr_extents = extents_out,
2186 .extent_order = order_out,
2187 .extent_start = mfns_out,
2188 .address_bits = address_bits,
2189 .domid = DOMID_SELF
2190 }
2191 };
2192
2193 BUG_ON(extents_in << order_in != extents_out << order_out);
2194
2195 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2196 success = (exchange.nr_exchanged == extents_in);
2197
2198 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2199 BUG_ON(success && (rc != 0));
2200
2201 return success;
2202}
2203
2204int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2205 unsigned int address_bits)
2206{
2207 unsigned long *in_frames = discontig_frames, out_frame;
2208 unsigned long flags;
2209 int success;
2210
2211 /*
2212 * Currently an auto-translated guest will not perform I/O, nor will
2213 * it require PAE page directories below 4GB. Therefore any calls to
2214 * this function are redundant and can be ignored.
2215 */
2216
2217 if (xen_feature(XENFEAT_auto_translated_physmap))
2218 return 0;
2219
2220 if (unlikely(order > MAX_CONTIG_ORDER))
2221 return -ENOMEM;
2222
2223 memset((void *) vstart, 0, PAGE_SIZE << order);
2224
08bbc9da
AN
2225 spin_lock_irqsave(&xen_reservation_lock, flags);
2226
2227 /* 1. Zap current PTEs, remembering MFNs. */
2228 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2229
2230 /* 2. Get a new contiguous memory extent. */
2231 out_frame = virt_to_pfn(vstart);
2232 success = xen_exchange_memory(1UL << order, 0, in_frames,
2233 1, order, &out_frame,
2234 address_bits);
2235
2236 /* 3. Map the new extent in place of old pages. */
2237 if (success)
2238 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2239 else
2240 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2241
2242 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2243
2244 return success ? 0 : -ENOMEM;
2245}
2246EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2247
2248void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2249{
2250 unsigned long *out_frames = discontig_frames, in_frame;
2251 unsigned long flags;
2252 int success;
2253
2254 if (xen_feature(XENFEAT_auto_translated_physmap))
2255 return;
2256
2257 if (unlikely(order > MAX_CONTIG_ORDER))
2258 return;
2259
2260 memset((void *) vstart, 0, PAGE_SIZE << order);
2261
08bbc9da
AN
2262 spin_lock_irqsave(&xen_reservation_lock, flags);
2263
2264 /* 1. Find start MFN of contiguous extent. */
2265 in_frame = virt_to_mfn(vstart);
2266
2267 /* 2. Zap current PTEs. */
2268 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2269
2270 /* 3. Do the exchange for non-contiguous MFNs. */
2271 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2272 0, out_frames, 0);
2273
2274 /* 4. Map new pages in place of old pages. */
2275 if (success)
2276 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2277 else
2278 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2279
2280 spin_unlock_irqrestore(&xen_reservation_lock, flags);
030cb6c0 2281}
08bbc9da 2282EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
319f3ba5 2283
ca65f9fc 2284#ifdef CONFIG_XEN_PVHVM
59151001
SS
2285static void xen_hvm_exit_mmap(struct mm_struct *mm)
2286{
2287 struct xen_hvm_pagetable_dying a;
2288 int rc;
2289
2290 a.domid = DOMID_SELF;
2291 a.gpa = __pa(mm->pgd);
2292 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2293 WARN_ON_ONCE(rc < 0);
2294}
2295
2296static int is_pagetable_dying_supported(void)
2297{
2298 struct xen_hvm_pagetable_dying a;
2299 int rc = 0;
2300
2301 a.domid = DOMID_SELF;
2302 a.gpa = 0x00;
2303 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2304 if (rc < 0) {
2305 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2306 return 0;
2307 }
2308 return 1;
2309}
2310
2311void __init xen_hvm_init_mmu_ops(void)
2312{
2313 if (is_pagetable_dying_supported())
2314 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2315}
ca65f9fc 2316#endif
59151001 2317
de1ef206
IC
2318#define REMAP_BATCH_SIZE 16
2319
2320struct remap_data {
2321 unsigned long mfn;
2322 pgprot_t prot;
2323 struct mmu_update *mmu_update;
2324};
2325
2326static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2327 unsigned long addr, void *data)
2328{
2329 struct remap_data *rmd = data;
2330 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2331
d5108316 2332 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
de1ef206
IC
2333 rmd->mmu_update->val = pte_val_ma(pte);
2334 rmd->mmu_update++;
2335
2336 return 0;
2337}
2338
2339int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2340 unsigned long addr,
2341 unsigned long mfn, int nr,
2342 pgprot_t prot, unsigned domid)
2343{
2344 struct remap_data rmd;
2345 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2346 int batch;
2347 unsigned long range;
2348 int err = 0;
2349
2350 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2351
e060e7af
SS
2352 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2353 (VM_PFNMAP | VM_RESERVED | VM_IO)));
de1ef206
IC
2354
2355 rmd.mfn = mfn;
2356 rmd.prot = prot;
2357
2358 while (nr) {
2359 batch = min(REMAP_BATCH_SIZE, nr);
2360 range = (unsigned long)batch << PAGE_SHIFT;
2361
2362 rmd.mmu_update = mmu_update;
2363 err = apply_to_page_range(vma->vm_mm, addr, range,
2364 remap_area_mfn_pte_fn, &rmd);
2365 if (err)
2366 goto out;
2367
2368 err = -EFAULT;
2369 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2370 goto out;
2371
2372 nr -= batch;
2373 addr += range;
2374 }
2375
2376 err = 0;
2377out:
2378
2379 flush_tlb_all();
2380
2381 return err;
2382}
2383EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);