]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/xen/mmu.c
xen: allocate p2m size based on actual max size
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
d2cb2145 45#include <linux/vmalloc.h>
44408ad7 46#include <linux/module.h>
5a0e3ad6 47#include <linux/gfp.h>
3b827c1b
JF
48
49#include <asm/pgtable.h>
50#include <asm/tlbflush.h>
5deb30d1 51#include <asm/fixmap.h>
3b827c1b 52#include <asm/mmu_context.h>
319f3ba5 53#include <asm/setup.h>
f4f97b3e 54#include <asm/paravirt.h>
7347b408 55#include <asm/e820.h>
cbcd79c2 56#include <asm/linkage.h>
08bbc9da 57#include <asm/page.h>
3b827c1b
JF
58
59#include <asm/xen/hypercall.h>
f4f97b3e 60#include <asm/xen/hypervisor.h>
3b827c1b 61
c0011dbf 62#include <xen/xen.h>
3b827c1b
JF
63#include <xen/page.h>
64#include <xen/interface/xen.h>
59151001 65#include <xen/interface/hvm/hvm_op.h>
319f3ba5 66#include <xen/interface/version.h>
c0011dbf 67#include <xen/interface/memory.h>
319f3ba5 68#include <xen/hvc-console.h>
3b827c1b 69
f4f97b3e 70#include "multicalls.h"
3b827c1b 71#include "mmu.h"
994025ca
JF
72#include "debugfs.h"
73
74#define MMU_UPDATE_HISTO 30
75
19001c8c
AN
76/*
77 * Protects atomic reservation decrease/increase against concurrent increases.
78 * Also protects non-atomic updates of current_pages and driver_pages, and
79 * balloon lists.
80 */
81DEFINE_SPINLOCK(xen_reservation_lock);
82
994025ca
JF
83#ifdef CONFIG_XEN_DEBUG_FS
84
85static struct {
86 u32 pgd_update;
87 u32 pgd_update_pinned;
88 u32 pgd_update_batched;
89
90 u32 pud_update;
91 u32 pud_update_pinned;
92 u32 pud_update_batched;
93
94 u32 pmd_update;
95 u32 pmd_update_pinned;
96 u32 pmd_update_batched;
97
98 u32 pte_update;
99 u32 pte_update_pinned;
100 u32 pte_update_batched;
101
102 u32 mmu_update;
103 u32 mmu_update_extended;
104 u32 mmu_update_histo[MMU_UPDATE_HISTO];
105
106 u32 prot_commit;
107 u32 prot_commit_batched;
108
109 u32 set_pte_at;
110 u32 set_pte_at_batched;
111 u32 set_pte_at_pinned;
112 u32 set_pte_at_current;
113 u32 set_pte_at_kernel;
114} mmu_stats;
115
116static u8 zero_stats;
117
118static inline void check_zero(void)
119{
120 if (unlikely(zero_stats)) {
121 memset(&mmu_stats, 0, sizeof(mmu_stats));
122 zero_stats = 0;
123 }
124}
125
126#define ADD_STATS(elem, val) \
127 do { check_zero(); mmu_stats.elem += (val); } while(0)
128
129#else /* !CONFIG_XEN_DEBUG_FS */
130
131#define ADD_STATS(elem, val) do { (void)(val); } while(0)
132
133#endif /* CONFIG_XEN_DEBUG_FS */
3b827c1b 134
319f3ba5
JF
135
136/*
137 * Identity map, in addition to plain kernel map. This needs to be
138 * large enough to allocate page table pages to allocate the rest.
139 * Each page can map 2MB.
140 */
141static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
142
143#ifdef CONFIG_X86_64
144/* l3 pud for userspace vsyscall mapping */
145static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
146#endif /* CONFIG_X86_64 */
147
148/*
149 * Note about cr3 (pagetable base) values:
150 *
151 * xen_cr3 contains the current logical cr3 value; it contains the
152 * last set cr3. This may not be the current effective cr3, because
153 * its update may be being lazily deferred. However, a vcpu looking
154 * at its own cr3 can use this value knowing that it everything will
155 * be self-consistent.
156 *
157 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
158 * hypercall to set the vcpu cr3 is complete (so it may be a little
159 * out of date, but it will never be set early). If one vcpu is
160 * looking at another vcpu's cr3 value, it should use this variable.
161 */
162DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
163DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
164
165
d6182fbf
JF
166/*
167 * Just beyond the highest usermode address. STACK_TOP_MAX has a
168 * redzone above it, so round it up to a PGD boundary.
169 */
170#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
171
a2e87529 172static unsigned long max_p2m_pfn __read_mostly = MAX_DOMAIN_PAGES;
d6182fbf 173
a2e87529
JF
174#define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
175#define TOP_ENTRIES(pages) ((pages) / P2M_ENTRIES_PER_PAGE)
176#define MAX_TOP_ENTRIES TOP_ENTRIES(MAX_DOMAIN_PAGES)
d451bb7a 177
cf0923ea 178/* Placeholder for holes in the address space */
a171ce6e 179static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_ENTRIES_PER_PAGE);
cf0923ea
JF
180
181 /* Array of pointers to pages containing p2m entries */
a2e87529 182static RESERVE_BRK_ARRAY(unsigned long *, p2m_top, MAX_TOP_ENTRIES);
d451bb7a 183
d5edbc1f 184/* Arrays of p2m arrays expressed in mfns used for save/restore */
a2e87529 185static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, MAX_TOP_ENTRIES);
d5edbc1f 186
a171ce6e 187static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn_list,
a2e87529 188 (MAX_TOP_ENTRIES / P2M_ENTRIES_PER_PAGE));
d5edbc1f 189
d451bb7a
JF
190static inline unsigned p2m_top_index(unsigned long pfn)
191{
a2e87529 192 BUG_ON(pfn >= max_p2m_pfn);
d451bb7a
JF
193 return pfn / P2M_ENTRIES_PER_PAGE;
194}
195
196static inline unsigned p2m_index(unsigned long pfn)
197{
198 return pfn % P2M_ENTRIES_PER_PAGE;
199}
200
d5edbc1f 201/* Build the parallel p2m_top_mfn structures */
fa24ba62 202void xen_build_mfn_list_list(void)
d5edbc1f
JF
203{
204 unsigned pfn, idx;
205
a2e87529 206 for (pfn = 0; pfn < max_p2m_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
d5edbc1f
JF
207 unsigned topidx = p2m_top_index(pfn);
208
209 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
210 }
211
a2e87529
JF
212 for (idx = 0;
213 idx < TOP_ENTRIES(max_p2m_pfn)/P2M_ENTRIES_PER_PAGE;
214 idx++) {
d5edbc1f
JF
215 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
216 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
217 }
cdaead6b 218}
d5edbc1f 219
cdaead6b
JF
220void xen_setup_mfn_list_list(void)
221{
d5edbc1f
JF
222 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
223
224 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
225 virt_to_mfn(p2m_top_mfn_list);
226 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
227}
228
229/* Set up p2m_top to point to the domain-builder provided p2m pages */
d451bb7a
JF
230void __init xen_build_dynamic_phys_to_machine(void)
231{
d451bb7a 232 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
8006ec3e 233 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
d5edbc1f 234 unsigned pfn;
a171ce6e
JF
235 unsigned i;
236
a2e87529
JF
237 max_p2m_pfn = max_pfn;
238
a171ce6e
JF
239 p2m_missing = extend_brk(sizeof(*p2m_missing) * P2M_ENTRIES_PER_PAGE,
240 PAGE_SIZE);
241 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
242 p2m_missing[i] = ~0UL;
243
a2e87529 244 p2m_top = extend_brk(sizeof(*p2m_top) * TOP_ENTRIES(max_pfn),
a171ce6e 245 PAGE_SIZE);
a2e87529 246 for (i = 0; i < TOP_ENTRIES(max_pfn); i++)
a171ce6e
JF
247 p2m_top[i] = p2m_missing;
248
a2e87529
JF
249 p2m_top_mfn = extend_brk(sizeof(*p2m_top_mfn) * TOP_ENTRIES(max_pfn),
250 PAGE_SIZE);
a171ce6e 251 p2m_top_mfn_list = extend_brk(sizeof(*p2m_top_mfn_list) *
a2e87529 252 (TOP_ENTRIES(max_pfn) / P2M_ENTRIES_PER_PAGE),
a171ce6e 253 PAGE_SIZE);
d451bb7a 254
f63c2f24 255 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
d451bb7a
JF
256 unsigned topidx = p2m_top_index(pfn);
257
258 p2m_top[topidx] = &mfn_list[pfn];
259 }
cdaead6b
JF
260
261 xen_build_mfn_list_list();
d451bb7a
JF
262}
263
264unsigned long get_phys_to_machine(unsigned long pfn)
265{
266 unsigned topidx, idx;
267
a2e87529 268 if (unlikely(pfn >= max_p2m_pfn))
8006ec3e
JF
269 return INVALID_P2M_ENTRY;
270
d451bb7a 271 topidx = p2m_top_index(pfn);
d451bb7a
JF
272 idx = p2m_index(pfn);
273 return p2m_top[topidx][idx];
274}
15ce6005 275EXPORT_SYMBOL_GPL(get_phys_to_machine);
d451bb7a 276
e791ca0f
JF
277/* install a new p2m_top page */
278bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
d451bb7a 279{
e791ca0f
JF
280 unsigned topidx = p2m_top_index(pfn);
281 unsigned long **pfnp, *mfnp;
d451bb7a
JF
282 unsigned i;
283
e791ca0f
JF
284 pfnp = &p2m_top[topidx];
285 mfnp = &p2m_top_mfn[topidx];
d451bb7a 286
f63c2f24 287 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
d451bb7a
JF
288 p[i] = INVALID_P2M_ENTRY;
289
e791ca0f 290 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
d5edbc1f 291 *mfnp = virt_to_mfn(p);
e791ca0f
JF
292 return true;
293 }
294
295 return false;
d451bb7a
JF
296}
297
e791ca0f 298static void alloc_p2m(unsigned long pfn)
d451bb7a 299{
e791ca0f 300 unsigned long *p;
d451bb7a 301
e791ca0f
JF
302 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
303 BUG_ON(p == NULL);
304
305 if (!install_p2mtop_page(pfn, p))
306 free_page((unsigned long)p);
307}
308
309/* Try to install p2m mapping; fail if intermediate bits missing */
310bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
311{
312 unsigned topidx, idx;
8006ec3e 313
a2e87529 314 if (unlikely(pfn >= max_p2m_pfn)) {
8006ec3e 315 BUG_ON(mfn != INVALID_P2M_ENTRY);
e791ca0f 316 return true;
d451bb7a
JF
317 }
318
319 topidx = p2m_top_index(pfn);
cf0923ea 320 if (p2m_top[topidx] == p2m_missing) {
d451bb7a 321 if (mfn == INVALID_P2M_ENTRY)
e791ca0f
JF
322 return true;
323 return false;
d451bb7a
JF
324 }
325
326 idx = p2m_index(pfn);
327 p2m_top[topidx][idx] = mfn;
e791ca0f
JF
328
329 return true;
330}
331
332void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
333{
334 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
335 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
336 return;
337 }
338
339 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
340 alloc_p2m(pfn);
341
342 if (!__set_phys_to_machine(pfn, mfn))
343 BUG();
344 }
d451bb7a
JF
345}
346
9976b39b
JF
347unsigned long arbitrary_virt_to_mfn(void *vaddr)
348{
349 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
350
351 return PFN_DOWN(maddr.maddr);
352}
353
ce803e70 354xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 355{
ce803e70 356 unsigned long address = (unsigned long)vaddr;
da7bfc50 357 unsigned int level;
9f32d21c
CL
358 pte_t *pte;
359 unsigned offset;
3b827c1b 360
9f32d21c
CL
361 /*
362 * if the PFN is in the linear mapped vaddr range, we can just use
363 * the (quick) virt_to_machine() p2m lookup
364 */
365 if (virt_addr_valid(vaddr))
366 return virt_to_machine(vaddr);
367
368 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 369
9f32d21c
CL
370 pte = lookup_address(address, &level);
371 BUG_ON(pte == NULL);
372 offset = address & ~PAGE_MASK;
ebd879e3 373 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b
JF
374}
375
376void make_lowmem_page_readonly(void *vaddr)
377{
378 pte_t *pte, ptev;
379 unsigned long address = (unsigned long)vaddr;
da7bfc50 380 unsigned int level;
3b827c1b 381
f0646e43 382 pte = lookup_address(address, &level);
3b827c1b
JF
383 BUG_ON(pte == NULL);
384
385 ptev = pte_wrprotect(*pte);
386
387 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
388 BUG();
389}
390
391void make_lowmem_page_readwrite(void *vaddr)
392{
393 pte_t *pte, ptev;
394 unsigned long address = (unsigned long)vaddr;
da7bfc50 395 unsigned int level;
3b827c1b 396
f0646e43 397 pte = lookup_address(address, &level);
3b827c1b
JF
398 BUG_ON(pte == NULL);
399
400 ptev = pte_mkwrite(*pte);
401
402 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
403 BUG();
404}
405
406
7708ad64 407static bool xen_page_pinned(void *ptr)
e2426cf8
JF
408{
409 struct page *page = virt_to_page(ptr);
410
411 return PagePinned(page);
412}
413
c0011dbf
JF
414static bool xen_iomap_pte(pte_t pte)
415{
7347b408 416 return pte_flags(pte) & _PAGE_IOMAP;
c0011dbf
JF
417}
418
419static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
420{
421 struct multicall_space mcs;
422 struct mmu_update *u;
423
424 mcs = xen_mc_entry(sizeof(*u));
425 u = mcs.args;
426
427 /* ptep might be kmapped when using 32-bit HIGHPTE */
428 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
429 u->val = pte_val_ma(pteval);
430
431 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_IO);
432
433 xen_mc_issue(PARAVIRT_LAZY_MMU);
434}
435
7708ad64 436static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 437{
d66bf8fc
JF
438 struct multicall_space mcs;
439 struct mmu_update *u;
3b827c1b 440
400d3494
JF
441 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
442
994025ca
JF
443 if (mcs.mc != NULL) {
444 ADD_STATS(mmu_update_extended, 1);
445 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
446
400d3494 447 mcs.mc->args[1]++;
994025ca
JF
448
449 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
450 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
451 else
452 ADD_STATS(mmu_update_histo[0], 1);
453 } else {
454 ADD_STATS(mmu_update, 1);
400d3494
JF
455 mcs = __xen_mc_entry(sizeof(*u));
456 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
994025ca 457 ADD_STATS(mmu_update_histo[1], 1);
400d3494 458 }
d66bf8fc 459
d66bf8fc 460 u = mcs.args;
400d3494
JF
461 *u = *update;
462}
463
464void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
465{
466 struct mmu_update u;
467
468 preempt_disable();
469
470 xen_mc_batch();
471
ce803e70
JF
472 /* ptr may be ioremapped for 64-bit pagetable setup */
473 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 474 u.val = pmd_val_ma(val);
7708ad64 475 xen_extend_mmu_update(&u);
d66bf8fc 476
994025ca
JF
477 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
478
d66bf8fc
JF
479 xen_mc_issue(PARAVIRT_LAZY_MMU);
480
481 preempt_enable();
3b827c1b
JF
482}
483
e2426cf8
JF
484void xen_set_pmd(pmd_t *ptr, pmd_t val)
485{
994025ca
JF
486 ADD_STATS(pmd_update, 1);
487
e2426cf8
JF
488 /* If page is not pinned, we can just update the entry
489 directly */
7708ad64 490 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
491 *ptr = val;
492 return;
493 }
494
994025ca
JF
495 ADD_STATS(pmd_update_pinned, 1);
496
e2426cf8
JF
497 xen_set_pmd_hyper(ptr, val);
498}
499
3b827c1b
JF
500/*
501 * Associate a virtual page frame with a given physical page frame
502 * and protection flags for that frame.
503 */
504void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
505{
836fe2f2 506 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
507}
508
509void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
510 pte_t *ptep, pte_t pteval)
511{
c0011dbf
JF
512 if (xen_iomap_pte(pteval)) {
513 xen_set_iomap_pte(ptep, pteval);
514 goto out;
515 }
516
994025ca
JF
517 ADD_STATS(set_pte_at, 1);
518// ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
519 ADD_STATS(set_pte_at_current, mm == current->mm);
520 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
521
d66bf8fc 522 if (mm == current->mm || mm == &init_mm) {
8965c1c0 523 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
524 struct multicall_space mcs;
525 mcs = xen_mc_entry(0);
526
527 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
994025ca 528 ADD_STATS(set_pte_at_batched, 1);
d66bf8fc 529 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 530 goto out;
d66bf8fc
JF
531 } else
532 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 533 goto out;
d66bf8fc
JF
534 }
535 xen_set_pte(ptep, pteval);
2bd50036 536
2829b449 537out: return;
3b827c1b
JF
538}
539
f63c2f24
T
540pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
541 unsigned long addr, pte_t *ptep)
947a69c9 542{
e57778a1
JF
543 /* Just return the pte as-is. We preserve the bits on commit */
544 return *ptep;
545}
546
547void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
548 pte_t *ptep, pte_t pte)
549{
400d3494 550 struct mmu_update u;
e57778a1 551
400d3494 552 xen_mc_batch();
947a69c9 553
9f32d21c 554 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 555 u.val = pte_val_ma(pte);
7708ad64 556 xen_extend_mmu_update(&u);
947a69c9 557
994025ca
JF
558 ADD_STATS(prot_commit, 1);
559 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
560
e57778a1 561 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
562}
563
ebb9cfe2
JF
564/* Assume pteval_t is equivalent to all the other *val_t types. */
565static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 566{
ebb9cfe2 567 if (val & _PAGE_PRESENT) {
59438c9f 568 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 569 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 570 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
ebb9cfe2 571 }
947a69c9 572
ebb9cfe2 573 return val;
947a69c9
JF
574}
575
ebb9cfe2 576static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 577{
ebb9cfe2 578 if (val & _PAGE_PRESENT) {
59438c9f 579 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 580 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 581 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
947a69c9
JF
582 }
583
ebb9cfe2 584 return val;
947a69c9
JF
585}
586
c0011dbf
JF
587static pteval_t iomap_pte(pteval_t val)
588{
589 if (val & _PAGE_PRESENT) {
590 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
591 pteval_t flags = val & PTE_FLAGS_MASK;
592
593 /* We assume the pte frame number is a MFN, so
594 just use it as-is. */
595 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
596 }
597
598 return val;
599}
600
ebb9cfe2 601pteval_t xen_pte_val(pte_t pte)
947a69c9 602{
c0011dbf
JF
603 if (xen_initial_domain() && (pte.pte & _PAGE_IOMAP))
604 return pte.pte;
605
ebb9cfe2 606 return pte_mfn_to_pfn(pte.pte);
947a69c9 607}
da5de7c2 608PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
947a69c9 609
947a69c9
JF
610pgdval_t xen_pgd_val(pgd_t pgd)
611{
ebb9cfe2 612 return pte_mfn_to_pfn(pgd.pgd);
947a69c9 613}
da5de7c2 614PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
947a69c9
JF
615
616pte_t xen_make_pte(pteval_t pte)
617{
7347b408
AN
618 phys_addr_t addr = (pte & PTE_PFN_MASK);
619
620 /*
621 * Unprivileged domains are allowed to do IOMAPpings for
622 * PCI passthrough, but not map ISA space. The ISA
623 * mappings are just dummy local mappings to keep other
624 * parts of the kernel happy.
625 */
626 if (unlikely(pte & _PAGE_IOMAP) &&
627 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
c0011dbf 628 pte = iomap_pte(pte);
7347b408
AN
629 } else {
630 pte &= ~_PAGE_IOMAP;
c0011dbf 631 pte = pte_pfn_to_mfn(pte);
7347b408 632 }
c0011dbf 633
ebb9cfe2 634 return native_make_pte(pte);
947a69c9 635}
da5de7c2 636PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
947a69c9
JF
637
638pgd_t xen_make_pgd(pgdval_t pgd)
639{
ebb9cfe2
JF
640 pgd = pte_pfn_to_mfn(pgd);
641 return native_make_pgd(pgd);
947a69c9 642}
da5de7c2 643PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
947a69c9
JF
644
645pmdval_t xen_pmd_val(pmd_t pmd)
646{
ebb9cfe2 647 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 648}
da5de7c2 649PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
28499143 650
e2426cf8 651void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 652{
400d3494 653 struct mmu_update u;
f4f97b3e 654
d66bf8fc
JF
655 preempt_disable();
656
400d3494
JF
657 xen_mc_batch();
658
ce803e70
JF
659 /* ptr may be ioremapped for 64-bit pagetable setup */
660 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 661 u.val = pud_val_ma(val);
7708ad64 662 xen_extend_mmu_update(&u);
d66bf8fc 663
994025ca
JF
664 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
665
d66bf8fc
JF
666 xen_mc_issue(PARAVIRT_LAZY_MMU);
667
668 preempt_enable();
f4f97b3e
JF
669}
670
e2426cf8
JF
671void xen_set_pud(pud_t *ptr, pud_t val)
672{
994025ca
JF
673 ADD_STATS(pud_update, 1);
674
e2426cf8
JF
675 /* If page is not pinned, we can just update the entry
676 directly */
7708ad64 677 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
678 *ptr = val;
679 return;
680 }
681
994025ca
JF
682 ADD_STATS(pud_update_pinned, 1);
683
e2426cf8
JF
684 xen_set_pud_hyper(ptr, val);
685}
686
f4f97b3e
JF
687void xen_set_pte(pte_t *ptep, pte_t pte)
688{
c0011dbf
JF
689 if (xen_iomap_pte(pte)) {
690 xen_set_iomap_pte(ptep, pte);
691 return;
692 }
693
994025ca
JF
694 ADD_STATS(pte_update, 1);
695// ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
696 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
697
f6e58732 698#ifdef CONFIG_X86_PAE
f4f97b3e
JF
699 ptep->pte_high = pte.pte_high;
700 smp_wmb();
701 ptep->pte_low = pte.pte_low;
f6e58732
JF
702#else
703 *ptep = pte;
704#endif
f4f97b3e
JF
705}
706
f6e58732 707#ifdef CONFIG_X86_PAE
3b827c1b
JF
708void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
709{
c0011dbf
JF
710 if (xen_iomap_pte(pte)) {
711 xen_set_iomap_pte(ptep, pte);
712 return;
713 }
714
f6e58732 715 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
716}
717
718void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
719{
720 ptep->pte_low = 0;
721 smp_wmb(); /* make sure low gets written first */
722 ptep->pte_high = 0;
723}
724
725void xen_pmd_clear(pmd_t *pmdp)
726{
e2426cf8 727 set_pmd(pmdp, __pmd(0));
3b827c1b 728}
f6e58732 729#endif /* CONFIG_X86_PAE */
3b827c1b 730
abf33038 731pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 732{
ebb9cfe2 733 pmd = pte_pfn_to_mfn(pmd);
947a69c9 734 return native_make_pmd(pmd);
3b827c1b 735}
da5de7c2 736PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
3b827c1b 737
f6e58732
JF
738#if PAGETABLE_LEVELS == 4
739pudval_t xen_pud_val(pud_t pud)
740{
741 return pte_mfn_to_pfn(pud.pud);
742}
da5de7c2 743PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
f6e58732
JF
744
745pud_t xen_make_pud(pudval_t pud)
746{
747 pud = pte_pfn_to_mfn(pud);
748
749 return native_make_pud(pud);
750}
da5de7c2 751PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
f6e58732 752
d6182fbf 753pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 754{
d6182fbf
JF
755 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
756 unsigned offset = pgd - pgd_page;
757 pgd_t *user_ptr = NULL;
f6e58732 758
d6182fbf
JF
759 if (offset < pgd_index(USER_LIMIT)) {
760 struct page *page = virt_to_page(pgd_page);
761 user_ptr = (pgd_t *)page->private;
762 if (user_ptr)
763 user_ptr += offset;
764 }
f6e58732 765
d6182fbf
JF
766 return user_ptr;
767}
768
769static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
770{
771 struct mmu_update u;
f6e58732
JF
772
773 u.ptr = virt_to_machine(ptr).maddr;
774 u.val = pgd_val_ma(val);
7708ad64 775 xen_extend_mmu_update(&u);
d6182fbf
JF
776}
777
778/*
779 * Raw hypercall-based set_pgd, intended for in early boot before
780 * there's a page structure. This implies:
781 * 1. The only existing pagetable is the kernel's
782 * 2. It is always pinned
783 * 3. It has no user pagetable attached to it
784 */
785void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
786{
787 preempt_disable();
788
789 xen_mc_batch();
790
791 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
792
793 xen_mc_issue(PARAVIRT_LAZY_MMU);
794
795 preempt_enable();
796}
797
798void xen_set_pgd(pgd_t *ptr, pgd_t val)
799{
d6182fbf
JF
800 pgd_t *user_ptr = xen_get_user_pgd(ptr);
801
994025ca
JF
802 ADD_STATS(pgd_update, 1);
803
f6e58732
JF
804 /* If page is not pinned, we can just update the entry
805 directly */
7708ad64 806 if (!xen_page_pinned(ptr)) {
f6e58732 807 *ptr = val;
d6182fbf 808 if (user_ptr) {
7708ad64 809 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
810 *user_ptr = val;
811 }
f6e58732
JF
812 return;
813 }
814
994025ca
JF
815 ADD_STATS(pgd_update_pinned, 1);
816 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
817
d6182fbf
JF
818 /* If it's pinned, then we can at least batch the kernel and
819 user updates together. */
820 xen_mc_batch();
821
822 __xen_set_pgd_hyper(ptr, val);
823 if (user_ptr)
824 __xen_set_pgd_hyper(user_ptr, val);
825
826 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
827}
828#endif /* PAGETABLE_LEVELS == 4 */
829
f4f97b3e 830/*
5deb30d1
JF
831 * (Yet another) pagetable walker. This one is intended for pinning a
832 * pagetable. This means that it walks a pagetable and calls the
833 * callback function on each page it finds making up the page table,
834 * at every level. It walks the entire pagetable, but it only bothers
835 * pinning pte pages which are below limit. In the normal case this
836 * will be STACK_TOP_MAX, but at boot we need to pin up to
837 * FIXADDR_TOP.
838 *
839 * For 32-bit the important bit is that we don't pin beyond there,
840 * because then we start getting into Xen's ptes.
841 *
842 * For 64-bit, we must skip the Xen hole in the middle of the address
843 * space, just after the big x86-64 virtual hole.
844 */
86bbc2c2
IC
845static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
846 int (*func)(struct mm_struct *mm, struct page *,
847 enum pt_level),
848 unsigned long limit)
3b827c1b 849{
f4f97b3e 850 int flush = 0;
5deb30d1
JF
851 unsigned hole_low, hole_high;
852 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
853 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 854
5deb30d1
JF
855 /* The limit is the last byte to be touched */
856 limit--;
857 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
858
859 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
860 return 0;
861
5deb30d1
JF
862 /*
863 * 64-bit has a great big hole in the middle of the address
864 * space, which contains the Xen mappings. On 32-bit these
865 * will end up making a zero-sized hole and so is a no-op.
866 */
d6182fbf 867 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
868 hole_high = pgd_index(PAGE_OFFSET);
869
870 pgdidx_limit = pgd_index(limit);
871#if PTRS_PER_PUD > 1
872 pudidx_limit = pud_index(limit);
873#else
874 pudidx_limit = 0;
875#endif
876#if PTRS_PER_PMD > 1
877 pmdidx_limit = pmd_index(limit);
878#else
879 pmdidx_limit = 0;
880#endif
881
5deb30d1 882 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 883 pud_t *pud;
3b827c1b 884
5deb30d1
JF
885 if (pgdidx >= hole_low && pgdidx < hole_high)
886 continue;
f4f97b3e 887
5deb30d1 888 if (!pgd_val(pgd[pgdidx]))
3b827c1b 889 continue;
f4f97b3e 890
5deb30d1 891 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
892
893 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 894 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 895
5deb30d1 896 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 897 pmd_t *pmd;
f4f97b3e 898
5deb30d1
JF
899 if (pgdidx == pgdidx_limit &&
900 pudidx > pudidx_limit)
901 goto out;
3b827c1b 902
5deb30d1 903 if (pud_none(pud[pudidx]))
3b827c1b 904 continue;
f4f97b3e 905
5deb30d1 906 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
907
908 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 909 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 910
5deb30d1
JF
911 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
912 struct page *pte;
913
914 if (pgdidx == pgdidx_limit &&
915 pudidx == pudidx_limit &&
916 pmdidx > pmdidx_limit)
917 goto out;
3b827c1b 918
5deb30d1 919 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
920 continue;
921
5deb30d1 922 pte = pmd_page(pmd[pmdidx]);
eefb47f6 923 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
924 }
925 }
926 }
11ad93e5 927
5deb30d1 928out:
11ad93e5
JF
929 /* Do the top level last, so that the callbacks can use it as
930 a cue to do final things like tlb flushes. */
eefb47f6 931 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
932
933 return flush;
3b827c1b
JF
934}
935
86bbc2c2
IC
936static int xen_pgd_walk(struct mm_struct *mm,
937 int (*func)(struct mm_struct *mm, struct page *,
938 enum pt_level),
939 unsigned long limit)
940{
941 return __xen_pgd_walk(mm, mm->pgd, func, limit);
942}
943
7708ad64
JF
944/* If we're using split pte locks, then take the page's lock and
945 return a pointer to it. Otherwise return NULL. */
eefb47f6 946static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
947{
948 spinlock_t *ptl = NULL;
949
f7d0b926 950#if USE_SPLIT_PTLOCKS
74260714 951 ptl = __pte_lockptr(page);
eefb47f6 952 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
953#endif
954
955 return ptl;
956}
957
7708ad64 958static void xen_pte_unlock(void *v)
74260714
JF
959{
960 spinlock_t *ptl = v;
961 spin_unlock(ptl);
962}
963
964static void xen_do_pin(unsigned level, unsigned long pfn)
965{
966 struct mmuext_op *op;
967 struct multicall_space mcs;
968
969 mcs = __xen_mc_entry(sizeof(*op));
970 op = mcs.args;
971 op->cmd = level;
972 op->arg1.mfn = pfn_to_mfn(pfn);
973 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
974}
975
eefb47f6
JF
976static int xen_pin_page(struct mm_struct *mm, struct page *page,
977 enum pt_level level)
f4f97b3e 978{
d60cd46b 979 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
980 int flush;
981
982 if (pgfl)
983 flush = 0; /* already pinned */
984 else if (PageHighMem(page))
985 /* kmaps need flushing if we found an unpinned
986 highpage */
987 flush = 1;
988 else {
989 void *pt = lowmem_page_address(page);
990 unsigned long pfn = page_to_pfn(page);
991 struct multicall_space mcs = __xen_mc_entry(0);
74260714 992 spinlock_t *ptl;
f4f97b3e
JF
993
994 flush = 0;
995
11ad93e5
JF
996 /*
997 * We need to hold the pagetable lock between the time
998 * we make the pagetable RO and when we actually pin
999 * it. If we don't, then other users may come in and
1000 * attempt to update the pagetable by writing it,
1001 * which will fail because the memory is RO but not
1002 * pinned, so Xen won't do the trap'n'emulate.
1003 *
1004 * If we're using split pte locks, we can't hold the
1005 * entire pagetable's worth of locks during the
1006 * traverse, because we may wrap the preempt count (8
1007 * bits). The solution is to mark RO and pin each PTE
1008 * page while holding the lock. This means the number
1009 * of locks we end up holding is never more than a
1010 * batch size (~32 entries, at present).
1011 *
1012 * If we're not using split pte locks, we needn't pin
1013 * the PTE pages independently, because we're
1014 * protected by the overall pagetable lock.
1015 */
74260714
JF
1016 ptl = NULL;
1017 if (level == PT_PTE)
eefb47f6 1018 ptl = xen_pte_lock(page, mm);
74260714 1019
f4f97b3e
JF
1020 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1021 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
1022 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1023
11ad93e5 1024 if (ptl) {
74260714
JF
1025 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1026
74260714
JF
1027 /* Queue a deferred unlock for when this batch
1028 is completed. */
7708ad64 1029 xen_mc_callback(xen_pte_unlock, ptl);
74260714 1030 }
f4f97b3e
JF
1031 }
1032
1033 return flush;
1034}
3b827c1b 1035
f4f97b3e
JF
1036/* This is called just after a mm has been created, but it has not
1037 been used yet. We need to make sure that its pagetable is all
1038 read-only, and can be pinned. */
eefb47f6 1039static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 1040{
f4f97b3e 1041 xen_mc_batch();
3b827c1b 1042
86bbc2c2 1043 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
d05fdf31 1044 /* re-enable interrupts for flushing */
f87e4cac 1045 xen_mc_issue(0);
d05fdf31 1046
f4f97b3e 1047 kmap_flush_unused();
d05fdf31 1048
f87e4cac
JF
1049 xen_mc_batch();
1050 }
f4f97b3e 1051
d6182fbf
JF
1052#ifdef CONFIG_X86_64
1053 {
1054 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1055
1056 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1057
1058 if (user_pgd) {
eefb47f6 1059 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
f63c2f24
T
1060 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1061 PFN_DOWN(__pa(user_pgd)));
d6182fbf
JF
1062 }
1063 }
1064#else /* CONFIG_X86_32 */
5deb30d1
JF
1065#ifdef CONFIG_X86_PAE
1066 /* Need to make sure unshared kernel PMD is pinnable */
47cb2ed9 1067 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1068 PT_PMD);
5deb30d1 1069#endif
28499143 1070 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 1071#endif /* CONFIG_X86_64 */
f4f97b3e 1072 xen_mc_issue(0);
3b827c1b
JF
1073}
1074
eefb47f6
JF
1075static void xen_pgd_pin(struct mm_struct *mm)
1076{
1077 __xen_pgd_pin(mm, mm->pgd);
1078}
1079
0e91398f
JF
1080/*
1081 * On save, we need to pin all pagetables to make sure they get their
1082 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1083 * them (unpinned pgds are not currently in use, probably because the
1084 * process is under construction or destruction).
eefb47f6
JF
1085 *
1086 * Expected to be called in stop_machine() ("equivalent to taking
1087 * every spinlock in the system"), so the locking doesn't really
1088 * matter all that much.
0e91398f
JF
1089 */
1090void xen_mm_pin_all(void)
1091{
1092 unsigned long flags;
1093 struct page *page;
74260714 1094
0e91398f 1095 spin_lock_irqsave(&pgd_lock, flags);
f4f97b3e 1096
0e91398f
JF
1097 list_for_each_entry(page, &pgd_list, lru) {
1098 if (!PagePinned(page)) {
eefb47f6 1099 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1100 SetPageSavePinned(page);
1101 }
1102 }
1103
1104 spin_unlock_irqrestore(&pgd_lock, flags);
3b827c1b
JF
1105}
1106
c1f2f09e
EH
1107/*
1108 * The init_mm pagetable is really pinned as soon as its created, but
1109 * that's before we have page structures to store the bits. So do all
1110 * the book-keeping now.
1111 */
eefb47f6
JF
1112static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1113 enum pt_level level)
3b827c1b 1114{
f4f97b3e
JF
1115 SetPagePinned(page);
1116 return 0;
1117}
3b827c1b 1118
b96229b5 1119static void __init xen_mark_init_mm_pinned(void)
f4f97b3e 1120{
eefb47f6 1121 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 1122}
3b827c1b 1123
eefb47f6
JF
1124static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1125 enum pt_level level)
f4f97b3e 1126{
d60cd46b 1127 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 1128
f4f97b3e
JF
1129 if (pgfl && !PageHighMem(page)) {
1130 void *pt = lowmem_page_address(page);
1131 unsigned long pfn = page_to_pfn(page);
74260714
JF
1132 spinlock_t *ptl = NULL;
1133 struct multicall_space mcs;
1134
11ad93e5
JF
1135 /*
1136 * Do the converse to pin_page. If we're using split
1137 * pte locks, we must be holding the lock for while
1138 * the pte page is unpinned but still RO to prevent
1139 * concurrent updates from seeing it in this
1140 * partially-pinned state.
1141 */
74260714 1142 if (level == PT_PTE) {
eefb47f6 1143 ptl = xen_pte_lock(page, mm);
74260714 1144
11ad93e5
JF
1145 if (ptl)
1146 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
1147 }
1148
1149 mcs = __xen_mc_entry(0);
f4f97b3e
JF
1150
1151 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1152 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
1153 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1154
1155 if (ptl) {
1156 /* unlock when batch completed */
7708ad64 1157 xen_mc_callback(xen_pte_unlock, ptl);
74260714 1158 }
f4f97b3e
JF
1159 }
1160
1161 return 0; /* never need to flush on unpin */
3b827c1b
JF
1162}
1163
f4f97b3e 1164/* Release a pagetables pages back as normal RW */
eefb47f6 1165static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 1166{
f4f97b3e
JF
1167 xen_mc_batch();
1168
74260714 1169 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 1170
d6182fbf
JF
1171#ifdef CONFIG_X86_64
1172 {
1173 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1174
1175 if (user_pgd) {
f63c2f24
T
1176 xen_do_pin(MMUEXT_UNPIN_TABLE,
1177 PFN_DOWN(__pa(user_pgd)));
eefb47f6 1178 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
1179 }
1180 }
1181#endif
1182
5deb30d1
JF
1183#ifdef CONFIG_X86_PAE
1184 /* Need to make sure unshared kernel PMD is unpinned */
47cb2ed9 1185 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1186 PT_PMD);
5deb30d1 1187#endif
d6182fbf 1188
86bbc2c2 1189 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
1190
1191 xen_mc_issue(0);
1192}
3b827c1b 1193
eefb47f6
JF
1194static void xen_pgd_unpin(struct mm_struct *mm)
1195{
1196 __xen_pgd_unpin(mm, mm->pgd);
1197}
1198
0e91398f
JF
1199/*
1200 * On resume, undo any pinning done at save, so that the rest of the
1201 * kernel doesn't see any unexpected pinned pagetables.
1202 */
1203void xen_mm_unpin_all(void)
1204{
1205 unsigned long flags;
1206 struct page *page;
1207
1208 spin_lock_irqsave(&pgd_lock, flags);
1209
1210 list_for_each_entry(page, &pgd_list, lru) {
1211 if (PageSavePinned(page)) {
1212 BUG_ON(!PagePinned(page));
eefb47f6 1213 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1214 ClearPageSavePinned(page);
1215 }
1216 }
1217
1218 spin_unlock_irqrestore(&pgd_lock, flags);
1219}
1220
3b827c1b
JF
1221void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1222{
f4f97b3e 1223 spin_lock(&next->page_table_lock);
eefb47f6 1224 xen_pgd_pin(next);
f4f97b3e 1225 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1226}
1227
1228void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1229{
f4f97b3e 1230 spin_lock(&mm->page_table_lock);
eefb47f6 1231 xen_pgd_pin(mm);
f4f97b3e 1232 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1233}
1234
3b827c1b 1235
f87e4cac
JF
1236#ifdef CONFIG_SMP
1237/* Another cpu may still have their %cr3 pointing at the pagetable, so
1238 we need to repoint it somewhere else before we can unpin it. */
1239static void drop_other_mm_ref(void *info)
1240{
1241 struct mm_struct *mm = info;
ce87b3d3 1242 struct mm_struct *active_mm;
3b827c1b 1243
9eb912d1 1244 active_mm = percpu_read(cpu_tlbstate.active_mm);
ce87b3d3
JF
1245
1246 if (active_mm == mm)
f87e4cac 1247 leave_mm(smp_processor_id());
9f79991d
JF
1248
1249 /* If this cpu still has a stale cr3 reference, then make sure
1250 it has been flushed. */
7fd7d83d 1251 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
9f79991d 1252 load_cr3(swapper_pg_dir);
f87e4cac 1253}
3b827c1b 1254
7708ad64 1255static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1256{
e4d98207 1257 cpumask_var_t mask;
9f79991d
JF
1258 unsigned cpu;
1259
f87e4cac
JF
1260 if (current->active_mm == mm) {
1261 if (current->mm == mm)
1262 load_cr3(swapper_pg_dir);
1263 else
1264 leave_mm(smp_processor_id());
9f79991d
JF
1265 }
1266
1267 /* Get the "official" set of cpus referring to our pagetable. */
e4d98207
MT
1268 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1269 for_each_online_cpu(cpu) {
78f1c4d6 1270 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
e4d98207
MT
1271 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1272 continue;
1273 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1274 }
1275 return;
1276 }
78f1c4d6 1277 cpumask_copy(mask, mm_cpumask(mm));
9f79991d
JF
1278
1279 /* It's possible that a vcpu may have a stale reference to our
1280 cr3, because its in lazy mode, and it hasn't yet flushed
1281 its set of pending hypercalls yet. In this case, we can
1282 look at its actual current cr3 value, and force it to flush
1283 if needed. */
1284 for_each_online_cpu(cpu) {
1285 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
e4d98207 1286 cpumask_set_cpu(cpu, mask);
3b827c1b
JF
1287 }
1288
e4d98207
MT
1289 if (!cpumask_empty(mask))
1290 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1291 free_cpumask_var(mask);
f87e4cac
JF
1292}
1293#else
7708ad64 1294static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1295{
1296 if (current->active_mm == mm)
1297 load_cr3(swapper_pg_dir);
1298}
1299#endif
1300
1301/*
1302 * While a process runs, Xen pins its pagetables, which means that the
1303 * hypervisor forces it to be read-only, and it controls all updates
1304 * to it. This means that all pagetable updates have to go via the
1305 * hypervisor, which is moderately expensive.
1306 *
1307 * Since we're pulling the pagetable down, we switch to use init_mm,
1308 * unpin old process pagetable and mark it all read-write, which
1309 * allows further operations on it to be simple memory accesses.
1310 *
1311 * The only subtle point is that another CPU may be still using the
1312 * pagetable because of lazy tlb flushing. This means we need need to
1313 * switch all CPUs off this pagetable before we can unpin it.
1314 */
1315void xen_exit_mmap(struct mm_struct *mm)
1316{
1317 get_cpu(); /* make sure we don't move around */
7708ad64 1318 xen_drop_mm_ref(mm);
f87e4cac 1319 put_cpu();
3b827c1b 1320
f120f13e 1321 spin_lock(&mm->page_table_lock);
df912ea4
JF
1322
1323 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1324 if (xen_page_pinned(mm->pgd))
eefb47f6 1325 xen_pgd_unpin(mm);
74260714 1326
f120f13e 1327 spin_unlock(&mm->page_table_lock);
3b827c1b 1328}
994025ca 1329
319f3ba5
JF
1330static __init void xen_pagetable_setup_start(pgd_t *base)
1331{
1332}
1333
f1d7062a
TG
1334static void xen_post_allocator_init(void);
1335
319f3ba5
JF
1336static __init void xen_pagetable_setup_done(pgd_t *base)
1337{
1338 xen_setup_shared_info();
f1d7062a 1339 xen_post_allocator_init();
319f3ba5
JF
1340}
1341
1342static void xen_write_cr2(unsigned long cr2)
1343{
1344 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1345}
1346
1347static unsigned long xen_read_cr2(void)
1348{
1349 return percpu_read(xen_vcpu)->arch.cr2;
1350}
1351
1352unsigned long xen_read_cr2_direct(void)
1353{
1354 return percpu_read(xen_vcpu_info.arch.cr2);
1355}
1356
1357static void xen_flush_tlb(void)
1358{
1359 struct mmuext_op *op;
1360 struct multicall_space mcs;
1361
1362 preempt_disable();
1363
1364 mcs = xen_mc_entry(sizeof(*op));
1365
1366 op = mcs.args;
1367 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1368 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1369
1370 xen_mc_issue(PARAVIRT_LAZY_MMU);
1371
1372 preempt_enable();
1373}
1374
1375static void xen_flush_tlb_single(unsigned long addr)
1376{
1377 struct mmuext_op *op;
1378 struct multicall_space mcs;
1379
1380 preempt_disable();
1381
1382 mcs = xen_mc_entry(sizeof(*op));
1383 op = mcs.args;
1384 op->cmd = MMUEXT_INVLPG_LOCAL;
1385 op->arg1.linear_addr = addr & PAGE_MASK;
1386 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1387
1388 xen_mc_issue(PARAVIRT_LAZY_MMU);
1389
1390 preempt_enable();
1391}
1392
1393static void xen_flush_tlb_others(const struct cpumask *cpus,
1394 struct mm_struct *mm, unsigned long va)
1395{
1396 struct {
1397 struct mmuext_op op;
1398 DECLARE_BITMAP(mask, NR_CPUS);
1399 } *args;
1400 struct multicall_space mcs;
1401
e3f8a74e
JF
1402 if (cpumask_empty(cpus))
1403 return; /* nothing to do */
319f3ba5
JF
1404
1405 mcs = xen_mc_entry(sizeof(*args));
1406 args = mcs.args;
1407 args->op.arg2.vcpumask = to_cpumask(args->mask);
1408
1409 /* Remove us, and any offline CPUS. */
1410 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1411 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
319f3ba5
JF
1412
1413 if (va == TLB_FLUSH_ALL) {
1414 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1415 } else {
1416 args->op.cmd = MMUEXT_INVLPG_MULTI;
1417 args->op.arg1.linear_addr = va;
1418 }
1419
1420 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1421
319f3ba5
JF
1422 xen_mc_issue(PARAVIRT_LAZY_MMU);
1423}
1424
1425static unsigned long xen_read_cr3(void)
1426{
1427 return percpu_read(xen_cr3);
1428}
1429
1430static void set_current_cr3(void *v)
1431{
1432 percpu_write(xen_current_cr3, (unsigned long)v);
1433}
1434
1435static void __xen_write_cr3(bool kernel, unsigned long cr3)
1436{
1437 struct mmuext_op *op;
1438 struct multicall_space mcs;
1439 unsigned long mfn;
1440
1441 if (cr3)
1442 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1443 else
1444 mfn = 0;
1445
1446 WARN_ON(mfn == 0 && kernel);
1447
1448 mcs = __xen_mc_entry(sizeof(*op));
1449
1450 op = mcs.args;
1451 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1452 op->arg1.mfn = mfn;
1453
1454 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1455
1456 if (kernel) {
1457 percpu_write(xen_cr3, cr3);
1458
1459 /* Update xen_current_cr3 once the batch has actually
1460 been submitted. */
1461 xen_mc_callback(set_current_cr3, (void *)cr3);
1462 }
1463}
1464
1465static void xen_write_cr3(unsigned long cr3)
1466{
1467 BUG_ON(preemptible());
1468
1469 xen_mc_batch(); /* disables interrupts */
1470
1471 /* Update while interrupts are disabled, so its atomic with
1472 respect to ipis */
1473 percpu_write(xen_cr3, cr3);
1474
1475 __xen_write_cr3(true, cr3);
1476
1477#ifdef CONFIG_X86_64
1478 {
1479 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1480 if (user_pgd)
1481 __xen_write_cr3(false, __pa(user_pgd));
1482 else
1483 __xen_write_cr3(false, 0);
1484 }
1485#endif
1486
1487 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1488}
1489
1490static int xen_pgd_alloc(struct mm_struct *mm)
1491{
1492 pgd_t *pgd = mm->pgd;
1493 int ret = 0;
1494
1495 BUG_ON(PagePinned(virt_to_page(pgd)));
1496
1497#ifdef CONFIG_X86_64
1498 {
1499 struct page *page = virt_to_page(pgd);
1500 pgd_t *user_pgd;
1501
1502 BUG_ON(page->private != 0);
1503
1504 ret = -ENOMEM;
1505
1506 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1507 page->private = (unsigned long)user_pgd;
1508
1509 if (user_pgd != NULL) {
1510 user_pgd[pgd_index(VSYSCALL_START)] =
1511 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1512 ret = 0;
1513 }
1514
1515 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1516 }
1517#endif
1518
1519 return ret;
1520}
1521
1522static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1523{
1524#ifdef CONFIG_X86_64
1525 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1526
1527 if (user_pgd)
1528 free_page((unsigned long)user_pgd);
1529#endif
1530}
1531
1f4f9315
JF
1532#ifdef CONFIG_X86_32
1533static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1534{
1535 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1536 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1537 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1538 pte_val_ma(pte));
1539
1540 return pte;
1541}
1542
1543/* Init-time set_pte while constructing initial pagetables, which
1544 doesn't allow RO pagetable pages to be remapped RW */
1545static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1546{
1547 pte = mask_rw_pte(ptep, pte);
1548
1549 xen_set_pte(ptep, pte);
1550}
1551#endif
319f3ba5 1552
b96229b5
JF
1553static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1554{
1555 struct mmuext_op op;
1556 op.cmd = cmd;
1557 op.arg1.mfn = pfn_to_mfn(pfn);
1558 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1559 BUG();
1560}
1561
319f3ba5
JF
1562/* Early in boot, while setting up the initial pagetable, assume
1563 everything is pinned. */
1564static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1565{
b96229b5
JF
1566#ifdef CONFIG_FLATMEM
1567 BUG_ON(mem_map); /* should only be used early */
1568#endif
1569 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1570 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1571}
1572
1573/* Used for pmd and pud */
1574static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1575{
319f3ba5
JF
1576#ifdef CONFIG_FLATMEM
1577 BUG_ON(mem_map); /* should only be used early */
1578#endif
1579 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1580}
1581
1582/* Early release_pte assumes that all pts are pinned, since there's
1583 only init_mm and anything attached to that is pinned. */
b96229b5 1584static __init void xen_release_pte_init(unsigned long pfn)
319f3ba5 1585{
b96229b5 1586 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
319f3ba5
JF
1587 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1588}
1589
b96229b5 1590static __init void xen_release_pmd_init(unsigned long pfn)
319f3ba5 1591{
b96229b5 1592 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
319f3ba5
JF
1593}
1594
1595/* This needs to make sure the new pte page is pinned iff its being
1596 attached to a pinned pagetable. */
1597static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1598{
1599 struct page *page = pfn_to_page(pfn);
1600
1601 if (PagePinned(virt_to_page(mm->pgd))) {
1602 SetPagePinned(page);
1603
319f3ba5
JF
1604 if (!PageHighMem(page)) {
1605 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1606 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1607 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1608 } else {
1609 /* make sure there are no stray mappings of
1610 this page */
1611 kmap_flush_unused();
1612 }
1613 }
1614}
1615
1616static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1617{
1618 xen_alloc_ptpage(mm, pfn, PT_PTE);
1619}
1620
1621static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1622{
1623 xen_alloc_ptpage(mm, pfn, PT_PMD);
1624}
1625
1626/* This should never happen until we're OK to use struct page */
1627static void xen_release_ptpage(unsigned long pfn, unsigned level)
1628{
1629 struct page *page = pfn_to_page(pfn);
1630
1631 if (PagePinned(page)) {
1632 if (!PageHighMem(page)) {
1633 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1634 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1635 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1636 }
1637 ClearPagePinned(page);
1638 }
1639}
1640
1641static void xen_release_pte(unsigned long pfn)
1642{
1643 xen_release_ptpage(pfn, PT_PTE);
1644}
1645
1646static void xen_release_pmd(unsigned long pfn)
1647{
1648 xen_release_ptpage(pfn, PT_PMD);
1649}
1650
1651#if PAGETABLE_LEVELS == 4
1652static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1653{
1654 xen_alloc_ptpage(mm, pfn, PT_PUD);
1655}
1656
1657static void xen_release_pud(unsigned long pfn)
1658{
1659 xen_release_ptpage(pfn, PT_PUD);
1660}
1661#endif
1662
1663void __init xen_reserve_top(void)
1664{
1665#ifdef CONFIG_X86_32
1666 unsigned long top = HYPERVISOR_VIRT_START;
1667 struct xen_platform_parameters pp;
1668
1669 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1670 top = pp.virt_start;
1671
1672 reserve_top_address(-top);
1673#endif /* CONFIG_X86_32 */
1674}
1675
1676/*
1677 * Like __va(), but returns address in the kernel mapping (which is
1678 * all we have until the physical memory mapping has been set up.
1679 */
1680static void *__ka(phys_addr_t paddr)
1681{
1682#ifdef CONFIG_X86_64
1683 return (void *)(paddr + __START_KERNEL_map);
1684#else
1685 return __va(paddr);
1686#endif
1687}
1688
1689/* Convert a machine address to physical address */
1690static unsigned long m2p(phys_addr_t maddr)
1691{
1692 phys_addr_t paddr;
1693
1694 maddr &= PTE_PFN_MASK;
1695 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1696
1697 return paddr;
1698}
1699
1700/* Convert a machine address to kernel virtual */
1701static void *m2v(phys_addr_t maddr)
1702{
1703 return __ka(m2p(maddr));
1704}
1705
1706static void set_page_prot(void *addr, pgprot_t prot)
1707{
1708 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1709 pte_t pte = pfn_pte(pfn, prot);
1710
1711 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1712 BUG();
1713}
1714
1715static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1716{
1717 unsigned pmdidx, pteidx;
1718 unsigned ident_pte;
1719 unsigned long pfn;
1720
1721 ident_pte = 0;
1722 pfn = 0;
1723 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1724 pte_t *pte_page;
1725
1726 /* Reuse or allocate a page of ptes */
1727 if (pmd_present(pmd[pmdidx]))
1728 pte_page = m2v(pmd[pmdidx].pmd);
1729 else {
1730 /* Check for free pte pages */
1731 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1732 break;
1733
1734 pte_page = &level1_ident_pgt[ident_pte];
1735 ident_pte += PTRS_PER_PTE;
1736
1737 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1738 }
1739
1740 /* Install mappings */
1741 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1742 pte_t pte;
1743
1744 if (pfn > max_pfn_mapped)
1745 max_pfn_mapped = pfn;
1746
1747 if (!pte_none(pte_page[pteidx]))
1748 continue;
1749
1750 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1751 pte_page[pteidx] = pte;
1752 }
1753 }
1754
1755 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1756 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1757
1758 set_page_prot(pmd, PAGE_KERNEL_RO);
1759}
1760
1761#ifdef CONFIG_X86_64
1762static void convert_pfn_mfn(void *v)
1763{
1764 pte_t *pte = v;
1765 int i;
1766
1767 /* All levels are converted the same way, so just treat them
1768 as ptes. */
1769 for (i = 0; i < PTRS_PER_PTE; i++)
1770 pte[i] = xen_make_pte(pte[i].pte);
1771}
1772
1773/*
1774 * Set up the inital kernel pagetable.
1775 *
1776 * We can construct this by grafting the Xen provided pagetable into
1777 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1778 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1779 * means that only the kernel has a physical mapping to start with -
1780 * but that's enough to get __va working. We need to fill in the rest
1781 * of the physical mapping once some sort of allocator has been set
1782 * up.
1783 */
1784__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1785 unsigned long max_pfn)
1786{
1787 pud_t *l3;
1788 pmd_t *l2;
1789
1790 /* Zap identity mapping */
1791 init_level4_pgt[0] = __pgd(0);
1792
1793 /* Pre-constructed entries are in pfn, so convert to mfn */
1794 convert_pfn_mfn(init_level4_pgt);
1795 convert_pfn_mfn(level3_ident_pgt);
1796 convert_pfn_mfn(level3_kernel_pgt);
1797
1798 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1799 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1800
1801 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1802 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1803
1804 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1805 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1806 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1807
1808 /* Set up identity map */
1809 xen_map_identity_early(level2_ident_pgt, max_pfn);
1810
1811 /* Make pagetable pieces RO */
1812 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1813 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1814 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1815 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1816 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1817 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1818
1819 /* Pin down new L4 */
1820 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1821 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1822
1823 /* Unpin Xen-provided one */
1824 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1825
1826 /* Switch over */
1827 pgd = init_level4_pgt;
1828
1829 /*
1830 * At this stage there can be no user pgd, and no page
1831 * structure to attach it to, so make sure we just set kernel
1832 * pgd.
1833 */
1834 xen_mc_batch();
1835 __xen_write_cr3(true, __pa(pgd));
1836 xen_mc_issue(PARAVIRT_LAZY_CPU);
1837
1838 reserve_early(__pa(xen_start_info->pt_base),
1839 __pa(xen_start_info->pt_base +
1840 xen_start_info->nr_pt_frames * PAGE_SIZE),
1841 "XEN PAGETABLES");
1842
1843 return pgd;
1844}
1845#else /* !CONFIG_X86_64 */
1846static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1847
1848__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1849 unsigned long max_pfn)
1850{
1851 pmd_t *kernel_pmd;
1852
93dbda7c
JF
1853 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1854 xen_start_info->nr_pt_frames * PAGE_SIZE +
1855 512*1024);
319f3ba5
JF
1856
1857 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1858 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1859
1860 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1861
1862 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1863 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1864 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1865
1866 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1867 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1868 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1869
1870 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1871
1872 xen_write_cr3(__pa(swapper_pg_dir));
1873
1874 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1875
33df4db0
JF
1876 reserve_early(__pa(xen_start_info->pt_base),
1877 __pa(xen_start_info->pt_base +
1878 xen_start_info->nr_pt_frames * PAGE_SIZE),
1879 "XEN PAGETABLES");
1880
319f3ba5
JF
1881 return swapper_pg_dir;
1882}
1883#endif /* CONFIG_X86_64 */
1884
3b3809ac 1885static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
319f3ba5
JF
1886{
1887 pte_t pte;
1888
1889 phys >>= PAGE_SHIFT;
1890
1891 switch (idx) {
1892 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1893#ifdef CONFIG_X86_F00F_BUG
1894 case FIX_F00F_IDT:
1895#endif
1896#ifdef CONFIG_X86_32
1897 case FIX_WP_TEST:
1898 case FIX_VDSO:
1899# ifdef CONFIG_HIGHMEM
1900 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1901# endif
1902#else
1903 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1904#endif
1905#ifdef CONFIG_X86_LOCAL_APIC
1906 case FIX_APIC_BASE: /* maps dummy local APIC */
1907#endif
3ecb1b7d
JF
1908 case FIX_TEXT_POKE0:
1909 case FIX_TEXT_POKE1:
1910 /* All local page mappings */
319f3ba5
JF
1911 pte = pfn_pte(phys, prot);
1912 break;
1913
c0011dbf
JF
1914 case FIX_PARAVIRT_BOOTMAP:
1915 /* This is an MFN, but it isn't an IO mapping from the
1916 IO domain */
319f3ba5
JF
1917 pte = mfn_pte(phys, prot);
1918 break;
c0011dbf
JF
1919
1920 default:
1921 /* By default, set_fixmap is used for hardware mappings */
1922 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1923 break;
319f3ba5
JF
1924 }
1925
1926 __native_set_fixmap(idx, pte);
1927
1928#ifdef CONFIG_X86_64
1929 /* Replicate changes to map the vsyscall page into the user
1930 pagetable vsyscall mapping. */
1931 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1932 unsigned long vaddr = __fix_to_virt(idx);
1933 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1934 }
1935#endif
1936}
1937
f1d7062a 1938static __init void xen_post_allocator_init(void)
319f3ba5
JF
1939{
1940 pv_mmu_ops.set_pte = xen_set_pte;
1941 pv_mmu_ops.set_pmd = xen_set_pmd;
1942 pv_mmu_ops.set_pud = xen_set_pud;
1943#if PAGETABLE_LEVELS == 4
1944 pv_mmu_ops.set_pgd = xen_set_pgd;
1945#endif
1946
1947 /* This will work as long as patching hasn't happened yet
1948 (which it hasn't) */
1949 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1950 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1951 pv_mmu_ops.release_pte = xen_release_pte;
1952 pv_mmu_ops.release_pmd = xen_release_pmd;
1953#if PAGETABLE_LEVELS == 4
1954 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1955 pv_mmu_ops.release_pud = xen_release_pud;
1956#endif
1957
1958#ifdef CONFIG_X86_64
1959 SetPagePinned(virt_to_page(level3_user_vsyscall));
1960#endif
1961 xen_mark_init_mm_pinned();
1962}
1963
b407fc57
JF
1964static void xen_leave_lazy_mmu(void)
1965{
5caecb94 1966 preempt_disable();
b407fc57
JF
1967 xen_mc_flush();
1968 paravirt_leave_lazy_mmu();
5caecb94 1969 preempt_enable();
b407fc57 1970}
319f3ba5 1971
030cb6c0 1972static const struct pv_mmu_ops xen_mmu_ops __initdata = {
319f3ba5
JF
1973 .read_cr2 = xen_read_cr2,
1974 .write_cr2 = xen_write_cr2,
1975
1976 .read_cr3 = xen_read_cr3,
1977 .write_cr3 = xen_write_cr3,
1978
1979 .flush_tlb_user = xen_flush_tlb,
1980 .flush_tlb_kernel = xen_flush_tlb,
1981 .flush_tlb_single = xen_flush_tlb_single,
1982 .flush_tlb_others = xen_flush_tlb_others,
1983
1984 .pte_update = paravirt_nop,
1985 .pte_update_defer = paravirt_nop,
1986
1987 .pgd_alloc = xen_pgd_alloc,
1988 .pgd_free = xen_pgd_free,
1989
1990 .alloc_pte = xen_alloc_pte_init,
1991 .release_pte = xen_release_pte_init,
b96229b5 1992 .alloc_pmd = xen_alloc_pmd_init,
319f3ba5 1993 .alloc_pmd_clone = paravirt_nop,
b96229b5 1994 .release_pmd = xen_release_pmd_init,
319f3ba5 1995
319f3ba5
JF
1996#ifdef CONFIG_X86_64
1997 .set_pte = xen_set_pte,
1998#else
1999 .set_pte = xen_set_pte_init,
2000#endif
2001 .set_pte_at = xen_set_pte_at,
2002 .set_pmd = xen_set_pmd_hyper,
2003
2004 .ptep_modify_prot_start = __ptep_modify_prot_start,
2005 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2006
da5de7c2
JF
2007 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2008 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
319f3ba5 2009
da5de7c2
JF
2010 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2011 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
319f3ba5
JF
2012
2013#ifdef CONFIG_X86_PAE
2014 .set_pte_atomic = xen_set_pte_atomic,
319f3ba5
JF
2015 .pte_clear = xen_pte_clear,
2016 .pmd_clear = xen_pmd_clear,
2017#endif /* CONFIG_X86_PAE */
2018 .set_pud = xen_set_pud_hyper,
2019
da5de7c2
JF
2020 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2021 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
319f3ba5
JF
2022
2023#if PAGETABLE_LEVELS == 4
da5de7c2
JF
2024 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2025 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
319f3ba5
JF
2026 .set_pgd = xen_set_pgd_hyper,
2027
b96229b5
JF
2028 .alloc_pud = xen_alloc_pmd_init,
2029 .release_pud = xen_release_pmd_init,
319f3ba5
JF
2030#endif /* PAGETABLE_LEVELS == 4 */
2031
2032 .activate_mm = xen_activate_mm,
2033 .dup_mmap = xen_dup_mmap,
2034 .exit_mmap = xen_exit_mmap,
2035
2036 .lazy_mode = {
2037 .enter = paravirt_enter_lazy_mmu,
b407fc57 2038 .leave = xen_leave_lazy_mmu,
319f3ba5
JF
2039 },
2040
2041 .set_fixmap = xen_set_fixmap,
2042};
2043
030cb6c0
TG
2044void __init xen_init_mmu_ops(void)
2045{
2046 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2047 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2048 pv_mmu_ops = xen_mmu_ops;
d2cb2145
JF
2049
2050 vmap_lazy_unmap = false;
030cb6c0 2051}
319f3ba5 2052
08bbc9da
AN
2053/* Protected by xen_reservation_lock. */
2054#define MAX_CONTIG_ORDER 9 /* 2MB */
2055static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2056
2057#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2058static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2059 unsigned long *in_frames,
2060 unsigned long *out_frames)
2061{
2062 int i;
2063 struct multicall_space mcs;
2064
2065 xen_mc_batch();
2066 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2067 mcs = __xen_mc_entry(0);
2068
2069 if (in_frames)
2070 in_frames[i] = virt_to_mfn(vaddr);
2071
2072 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2073 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2074
2075 if (out_frames)
2076 out_frames[i] = virt_to_pfn(vaddr);
2077 }
2078 xen_mc_issue(0);
2079}
2080
2081/*
2082 * Update the pfn-to-mfn mappings for a virtual address range, either to
2083 * point to an array of mfns, or contiguously from a single starting
2084 * mfn.
2085 */
2086static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2087 unsigned long *mfns,
2088 unsigned long first_mfn)
2089{
2090 unsigned i, limit;
2091 unsigned long mfn;
2092
2093 xen_mc_batch();
2094
2095 limit = 1u << order;
2096 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2097 struct multicall_space mcs;
2098 unsigned flags;
2099
2100 mcs = __xen_mc_entry(0);
2101 if (mfns)
2102 mfn = mfns[i];
2103 else
2104 mfn = first_mfn + i;
2105
2106 if (i < (limit - 1))
2107 flags = 0;
2108 else {
2109 if (order == 0)
2110 flags = UVMF_INVLPG | UVMF_ALL;
2111 else
2112 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2113 }
2114
2115 MULTI_update_va_mapping(mcs.mc, vaddr,
2116 mfn_pte(mfn, PAGE_KERNEL), flags);
2117
2118 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2119 }
2120
2121 xen_mc_issue(0);
2122}
2123
2124/*
2125 * Perform the hypercall to exchange a region of our pfns to point to
2126 * memory with the required contiguous alignment. Takes the pfns as
2127 * input, and populates mfns as output.
2128 *
2129 * Returns a success code indicating whether the hypervisor was able to
2130 * satisfy the request or not.
2131 */
2132static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2133 unsigned long *pfns_in,
2134 unsigned long extents_out,
2135 unsigned int order_out,
2136 unsigned long *mfns_out,
2137 unsigned int address_bits)
2138{
2139 long rc;
2140 int success;
2141
2142 struct xen_memory_exchange exchange = {
2143 .in = {
2144 .nr_extents = extents_in,
2145 .extent_order = order_in,
2146 .extent_start = pfns_in,
2147 .domid = DOMID_SELF
2148 },
2149 .out = {
2150 .nr_extents = extents_out,
2151 .extent_order = order_out,
2152 .extent_start = mfns_out,
2153 .address_bits = address_bits,
2154 .domid = DOMID_SELF
2155 }
2156 };
2157
2158 BUG_ON(extents_in << order_in != extents_out << order_out);
2159
2160 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2161 success = (exchange.nr_exchanged == extents_in);
2162
2163 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2164 BUG_ON(success && (rc != 0));
2165
2166 return success;
2167}
2168
2169int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2170 unsigned int address_bits)
2171{
2172 unsigned long *in_frames = discontig_frames, out_frame;
2173 unsigned long flags;
2174 int success;
2175
2176 /*
2177 * Currently an auto-translated guest will not perform I/O, nor will
2178 * it require PAE page directories below 4GB. Therefore any calls to
2179 * this function are redundant and can be ignored.
2180 */
2181
2182 if (xen_feature(XENFEAT_auto_translated_physmap))
2183 return 0;
2184
2185 if (unlikely(order > MAX_CONTIG_ORDER))
2186 return -ENOMEM;
2187
2188 memset((void *) vstart, 0, PAGE_SIZE << order);
2189
08bbc9da
AN
2190 spin_lock_irqsave(&xen_reservation_lock, flags);
2191
2192 /* 1. Zap current PTEs, remembering MFNs. */
2193 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2194
2195 /* 2. Get a new contiguous memory extent. */
2196 out_frame = virt_to_pfn(vstart);
2197 success = xen_exchange_memory(1UL << order, 0, in_frames,
2198 1, order, &out_frame,
2199 address_bits);
2200
2201 /* 3. Map the new extent in place of old pages. */
2202 if (success)
2203 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2204 else
2205 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2206
2207 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2208
2209 return success ? 0 : -ENOMEM;
2210}
2211EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2212
2213void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2214{
2215 unsigned long *out_frames = discontig_frames, in_frame;
2216 unsigned long flags;
2217 int success;
2218
2219 if (xen_feature(XENFEAT_auto_translated_physmap))
2220 return;
2221
2222 if (unlikely(order > MAX_CONTIG_ORDER))
2223 return;
2224
2225 memset((void *) vstart, 0, PAGE_SIZE << order);
2226
08bbc9da
AN
2227 spin_lock_irqsave(&xen_reservation_lock, flags);
2228
2229 /* 1. Find start MFN of contiguous extent. */
2230 in_frame = virt_to_mfn(vstart);
2231
2232 /* 2. Zap current PTEs. */
2233 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2234
2235 /* 3. Do the exchange for non-contiguous MFNs. */
2236 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2237 0, out_frames, 0);
2238
2239 /* 4. Map new pages in place of old pages. */
2240 if (success)
2241 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2242 else
2243 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2244
2245 spin_unlock_irqrestore(&xen_reservation_lock, flags);
030cb6c0 2246}
08bbc9da 2247EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
319f3ba5 2248
ca65f9fc 2249#ifdef CONFIG_XEN_PVHVM
59151001
SS
2250static void xen_hvm_exit_mmap(struct mm_struct *mm)
2251{
2252 struct xen_hvm_pagetable_dying a;
2253 int rc;
2254
2255 a.domid = DOMID_SELF;
2256 a.gpa = __pa(mm->pgd);
2257 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2258 WARN_ON_ONCE(rc < 0);
2259}
2260
2261static int is_pagetable_dying_supported(void)
2262{
2263 struct xen_hvm_pagetable_dying a;
2264 int rc = 0;
2265
2266 a.domid = DOMID_SELF;
2267 a.gpa = 0x00;
2268 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2269 if (rc < 0) {
2270 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2271 return 0;
2272 }
2273 return 1;
2274}
2275
2276void __init xen_hvm_init_mmu_ops(void)
2277{
2278 if (is_pagetable_dying_supported())
2279 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2280}
ca65f9fc 2281#endif
59151001 2282
994025ca
JF
2283#ifdef CONFIG_XEN_DEBUG_FS
2284
2285static struct dentry *d_mmu_debug;
2286
2287static int __init xen_mmu_debugfs(void)
2288{
2289 struct dentry *d_xen = xen_init_debugfs();
2290
2291 if (d_xen == NULL)
2292 return -ENOMEM;
2293
2294 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2295
2296 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2297
2298 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2299 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2300 &mmu_stats.pgd_update_pinned);
2301 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2302 &mmu_stats.pgd_update_pinned);
2303
2304 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2305 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2306 &mmu_stats.pud_update_pinned);
2307 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2308 &mmu_stats.pud_update_pinned);
2309
2310 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2311 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2312 &mmu_stats.pmd_update_pinned);
2313 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2314 &mmu_stats.pmd_update_pinned);
2315
2316 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2317// debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2318// &mmu_stats.pte_update_pinned);
2319 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2320 &mmu_stats.pte_update_pinned);
2321
2322 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2323 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2324 &mmu_stats.mmu_update_extended);
2325 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2326 mmu_stats.mmu_update_histo, 20);
2327
2328 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2329 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2330 &mmu_stats.set_pte_at_batched);
2331 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2332 &mmu_stats.set_pte_at_current);
2333 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2334 &mmu_stats.set_pte_at_kernel);
2335
2336 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2337 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2338 &mmu_stats.prot_commit_batched);
2339
2340 return 0;
2341}
2342fs_initcall(xen_mmu_debugfs);
2343
2344#endif /* CONFIG_XEN_DEBUG_FS */