]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/xen/mmu.c
xen: use appropriate pte types
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
3b827c1b 43#include <linux/bug.h>
3b827c1b
JF
44
45#include <asm/pgtable.h>
46#include <asm/tlbflush.h>
47#include <asm/mmu_context.h>
f4f97b3e 48#include <asm/paravirt.h>
3b827c1b
JF
49
50#include <asm/xen/hypercall.h>
f4f97b3e 51#include <asm/xen/hypervisor.h>
3b827c1b
JF
52
53#include <xen/page.h>
54#include <xen/interface/xen.h>
55
f4f97b3e 56#include "multicalls.h"
3b827c1b
JF
57#include "mmu.h"
58
59xmaddr_t arbitrary_virt_to_machine(unsigned long address)
60{
da7bfc50 61 unsigned int level;
f0646e43 62 pte_t *pte = lookup_address(address, &level);
3b827c1b
JF
63 unsigned offset = address & PAGE_MASK;
64
65 BUG_ON(pte == NULL);
66
67 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
68}
69
70void make_lowmem_page_readonly(void *vaddr)
71{
72 pte_t *pte, ptev;
73 unsigned long address = (unsigned long)vaddr;
da7bfc50 74 unsigned int level;
3b827c1b 75
f0646e43 76 pte = lookup_address(address, &level);
3b827c1b
JF
77 BUG_ON(pte == NULL);
78
79 ptev = pte_wrprotect(*pte);
80
81 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
82 BUG();
83}
84
85void make_lowmem_page_readwrite(void *vaddr)
86{
87 pte_t *pte, ptev;
88 unsigned long address = (unsigned long)vaddr;
da7bfc50 89 unsigned int level;
3b827c1b 90
f0646e43 91 pte = lookup_address(address, &level);
3b827c1b
JF
92 BUG_ON(pte == NULL);
93
94 ptev = pte_mkwrite(*pte);
95
96 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
97 BUG();
98}
99
100
3b827c1b
JF
101void xen_set_pmd(pmd_t *ptr, pmd_t val)
102{
d66bf8fc
JF
103 struct multicall_space mcs;
104 struct mmu_update *u;
3b827c1b 105
d66bf8fc
JF
106 preempt_disable();
107
108 mcs = xen_mc_entry(sizeof(*u));
109 u = mcs.args;
110 u->ptr = virt_to_machine(ptr).maddr;
111 u->val = pmd_val_ma(val);
112 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
113
114 xen_mc_issue(PARAVIRT_LAZY_MMU);
115
116 preempt_enable();
3b827c1b
JF
117}
118
3b827c1b
JF
119/*
120 * Associate a virtual page frame with a given physical page frame
121 * and protection flags for that frame.
122 */
123void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
124{
125 pgd_t *pgd;
126 pud_t *pud;
127 pmd_t *pmd;
128 pte_t *pte;
129
130 pgd = swapper_pg_dir + pgd_index(vaddr);
131 if (pgd_none(*pgd)) {
132 BUG();
133 return;
134 }
135 pud = pud_offset(pgd, vaddr);
136 if (pud_none(*pud)) {
137 BUG();
138 return;
139 }
140 pmd = pmd_offset(pud, vaddr);
141 if (pmd_none(*pmd)) {
142 BUG();
143 return;
144 }
145 pte = pte_offset_kernel(pmd, vaddr);
146 /* <mfn,flags> stored as-is, to permit clearing entries */
147 xen_set_pte(pte, mfn_pte(mfn, flags));
148
149 /*
150 * It's enough to flush this one mapping.
151 * (PGE mappings get flushed as well)
152 */
153 __flush_tlb_one(vaddr);
154}
155
156void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
157 pte_t *ptep, pte_t pteval)
158{
d66bf8fc 159 if (mm == current->mm || mm == &init_mm) {
8965c1c0 160 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
161 struct multicall_space mcs;
162 mcs = xen_mc_entry(0);
163
164 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
165 xen_mc_issue(PARAVIRT_LAZY_MMU);
166 return;
167 } else
168 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
169 return;
170 }
171 xen_set_pte(ptep, pteval);
3b827c1b
JF
172}
173
174#ifdef CONFIG_X86_PAE
f4f97b3e
JF
175void xen_set_pud(pud_t *ptr, pud_t val)
176{
d66bf8fc
JF
177 struct multicall_space mcs;
178 struct mmu_update *u;
f4f97b3e 179
d66bf8fc
JF
180 preempt_disable();
181
182 mcs = xen_mc_entry(sizeof(*u));
183 u = mcs.args;
184 u->ptr = virt_to_machine(ptr).maddr;
185 u->val = pud_val_ma(val);
186 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
187
188 xen_mc_issue(PARAVIRT_LAZY_MMU);
189
190 preempt_enable();
f4f97b3e
JF
191}
192
193void xen_set_pte(pte_t *ptep, pte_t pte)
194{
195 ptep->pte_high = pte.pte_high;
196 smp_wmb();
197 ptep->pte_low = pte.pte_low;
198}
199
3b827c1b
JF
200void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
201{
202 set_64bit((u64 *)ptep, pte_val_ma(pte));
203}
204
205void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
206{
207 ptep->pte_low = 0;
208 smp_wmb(); /* make sure low gets written first */
209 ptep->pte_high = 0;
210}
211
212void xen_pmd_clear(pmd_t *pmdp)
213{
214 xen_set_pmd(pmdp, __pmd(0));
215}
216
abf33038 217pteval_t xen_pte_val(pte_t pte)
3b827c1b 218{
abf33038 219 pteval_t ret = 0;
3b827c1b
JF
220
221 if (pte.pte_low) {
abf33038 222 ret = ((pteval_t)pte.pte_high << 32) | pte.pte_low;
3b827c1b
JF
223 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
224 }
225
226 return ret;
227}
228
abf33038 229pmdval_t xen_pmd_val(pmd_t pmd)
3b827c1b 230{
abf33038 231 pmdval_t ret = pmd.pmd;
3b827c1b
JF
232 if (ret)
233 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
234 return ret;
235}
236
abf33038 237pgdval_t xen_pgd_val(pgd_t pgd)
3b827c1b 238{
abf33038 239 pgdval_t ret = pgd.pgd;
3b827c1b
JF
240 if (ret)
241 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
242 return ret;
243}
244
abf33038 245pte_t xen_make_pte(pteval_t pte)
3b827c1b 246{
a89780f3 247 if (pte & _PAGE_PRESENT) {
3b827c1b 248 pte = phys_to_machine(XPADDR(pte)).maddr;
a89780f3
JF
249 pte &= ~(_PAGE_PCD | _PAGE_PWT);
250 }
3b827c1b 251
c8e5393a 252 return (pte_t){ .pte = pte };
3b827c1b
JF
253}
254
abf33038 255pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b
JF
256{
257 if (pmd & 1)
258 pmd = phys_to_machine(XPADDR(pmd)).maddr;
259
260 return (pmd_t){ pmd };
261}
262
abf33038 263pgd_t xen_make_pgd(pgdval_t pgd)
3b827c1b
JF
264{
265 if (pgd & _PAGE_PRESENT)
266 pgd = phys_to_machine(XPADDR(pgd)).maddr;
267
268 return (pgd_t){ pgd };
269}
270#else /* !PAE */
f4f97b3e
JF
271void xen_set_pte(pte_t *ptep, pte_t pte)
272{
273 *ptep = pte;
274}
275
abf33038 276pteval_t xen_pte_val(pte_t pte)
3b827c1b 277{
abf33038 278 pteval_t ret = pte.pte_low;
3b827c1b
JF
279
280 if (ret & _PAGE_PRESENT)
281 ret = machine_to_phys(XMADDR(ret)).paddr;
282
283 return ret;
284}
285
abf33038 286pgdval_t xen_pgd_val(pgd_t pgd)
3b827c1b 287{
abf33038 288 pteval_t ret = pgd.pgd;
3b827c1b
JF
289 if (ret)
290 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
291 return ret;
292}
293
abf33038 294pte_t xen_make_pte(pteval_t pte)
3b827c1b 295{
a89780f3 296 if (pte & _PAGE_PRESENT) {
3b827c1b 297 pte = phys_to_machine(XPADDR(pte)).maddr;
a89780f3
JF
298 pte &= ~(_PAGE_PCD | _PAGE_PWT);
299 }
2c80b01b 300
3b827c1b
JF
301 return (pte_t){ pte };
302}
303
abf33038 304pgd_t xen_make_pgd(pgdval_t pgd)
3b827c1b
JF
305{
306 if (pgd & _PAGE_PRESENT)
307 pgd = phys_to_machine(XPADDR(pgd)).maddr;
308
309 return (pgd_t){ pgd };
310}
311#endif /* CONFIG_X86_PAE */
312
f4f97b3e
JF
313/*
314 (Yet another) pagetable walker. This one is intended for pinning a
315 pagetable. This means that it walks a pagetable and calls the
316 callback function on each page it finds making up the page table,
317 at every level. It walks the entire pagetable, but it only bothers
318 pinning pte pages which are below pte_limit. In the normal case
319 this will be TASK_SIZE, but at boot we need to pin up to
320 FIXADDR_TOP. But the important bit is that we don't pin beyond
321 there, because then we start getting into Xen's ptes.
322*/
74260714 323static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
f4f97b3e 324 unsigned long limit)
3b827c1b
JF
325{
326 pgd_t *pgd = pgd_base;
f4f97b3e
JF
327 int flush = 0;
328 unsigned long addr = 0;
329 unsigned long pgd_next;
330
331 BUG_ON(limit > FIXADDR_TOP);
3b827c1b
JF
332
333 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
334 return 0;
335
336 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
337 pud_t *pud;
338 unsigned long pud_limit, pud_next;
3b827c1b 339
f4f97b3e
JF
340 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
341
342 if (!pgd_val(*pgd))
3b827c1b 343 continue;
f4f97b3e 344
3b827c1b
JF
345 pud = pud_offset(pgd, 0);
346
347 if (PTRS_PER_PUD > 1) /* not folded */
74260714 348 flush |= (*func)(virt_to_page(pud), PT_PUD);
f4f97b3e
JF
349
350 for (; addr != pud_limit; pud++, addr = pud_next) {
351 pmd_t *pmd;
352 unsigned long pmd_limit;
353
354 pud_next = pud_addr_end(addr, pud_limit);
355
356 if (pud_next < limit)
357 pmd_limit = pud_next;
358 else
359 pmd_limit = limit;
3b827c1b 360
3b827c1b
JF
361 if (pud_none(*pud))
362 continue;
f4f97b3e 363
3b827c1b
JF
364 pmd = pmd_offset(pud, 0);
365
366 if (PTRS_PER_PMD > 1) /* not folded */
74260714 367 flush |= (*func)(virt_to_page(pmd), PT_PMD);
f4f97b3e
JF
368
369 for (; addr != pmd_limit; pmd++) {
370 addr += (PAGE_SIZE * PTRS_PER_PTE);
371 if ((pmd_limit-1) < (addr-1)) {
372 addr = pmd_limit;
373 break;
374 }
3b827c1b 375
3b827c1b
JF
376 if (pmd_none(*pmd))
377 continue;
378
74260714 379 flush |= (*func)(pmd_page(*pmd), PT_PTE);
3b827c1b
JF
380 }
381 }
382 }
383
74260714 384 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
f4f97b3e
JF
385
386 return flush;
3b827c1b
JF
387}
388
74260714
JF
389static spinlock_t *lock_pte(struct page *page)
390{
391 spinlock_t *ptl = NULL;
392
393#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
394 ptl = __pte_lockptr(page);
395 spin_lock(ptl);
396#endif
397
398 return ptl;
399}
400
401static void do_unlock(void *v)
402{
403 spinlock_t *ptl = v;
404 spin_unlock(ptl);
405}
406
407static void xen_do_pin(unsigned level, unsigned long pfn)
408{
409 struct mmuext_op *op;
410 struct multicall_space mcs;
411
412 mcs = __xen_mc_entry(sizeof(*op));
413 op = mcs.args;
414 op->cmd = level;
415 op->arg1.mfn = pfn_to_mfn(pfn);
416 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
417}
418
419static int pin_page(struct page *page, enum pt_level level)
f4f97b3e
JF
420{
421 unsigned pgfl = test_and_set_bit(PG_pinned, &page->flags);
422 int flush;
423
424 if (pgfl)
425 flush = 0; /* already pinned */
426 else if (PageHighMem(page))
427 /* kmaps need flushing if we found an unpinned
428 highpage */
429 flush = 1;
430 else {
431 void *pt = lowmem_page_address(page);
432 unsigned long pfn = page_to_pfn(page);
433 struct multicall_space mcs = __xen_mc_entry(0);
74260714 434 spinlock_t *ptl;
f4f97b3e
JF
435
436 flush = 0;
437
74260714
JF
438 ptl = NULL;
439 if (level == PT_PTE)
440 ptl = lock_pte(page);
441
f4f97b3e
JF
442 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
443 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
444 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
445
446 if (level == PT_PTE)
447 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
448
449 if (ptl) {
450 /* Queue a deferred unlock for when this batch
451 is completed. */
452 xen_mc_callback(do_unlock, ptl);
453 }
f4f97b3e
JF
454 }
455
456 return flush;
457}
3b827c1b 458
f4f97b3e
JF
459/* This is called just after a mm has been created, but it has not
460 been used yet. We need to make sure that its pagetable is all
461 read-only, and can be pinned. */
3b827c1b
JF
462void xen_pgd_pin(pgd_t *pgd)
463{
74260714 464 unsigned level;
3b827c1b 465
f4f97b3e 466 xen_mc_batch();
3b827c1b 467
f87e4cac
JF
468 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
469 /* re-enable interrupts for kmap_flush_unused */
470 xen_mc_issue(0);
f4f97b3e 471 kmap_flush_unused();
f87e4cac
JF
472 xen_mc_batch();
473 }
f4f97b3e 474
f4f97b3e 475#ifdef CONFIG_X86_PAE
74260714 476 level = MMUEXT_PIN_L3_TABLE;
3b827c1b 477#else
74260714 478 level = MMUEXT_PIN_L2_TABLE;
3b827c1b 479#endif
74260714
JF
480
481 xen_do_pin(level, PFN_DOWN(__pa(pgd)));
f4f97b3e
JF
482
483 xen_mc_issue(0);
3b827c1b
JF
484}
485
f4f97b3e
JF
486/* The init_mm pagetable is really pinned as soon as its created, but
487 that's before we have page structures to store the bits. So do all
488 the book-keeping now. */
74260714 489static __init int mark_pinned(struct page *page, enum pt_level level)
3b827c1b 490{
f4f97b3e
JF
491 SetPagePinned(page);
492 return 0;
493}
3b827c1b 494
f4f97b3e
JF
495void __init xen_mark_init_mm_pinned(void)
496{
497 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
498}
3b827c1b 499
74260714 500static int unpin_page(struct page *page, enum pt_level level)
f4f97b3e
JF
501{
502 unsigned pgfl = test_and_clear_bit(PG_pinned, &page->flags);
3b827c1b 503
f4f97b3e
JF
504 if (pgfl && !PageHighMem(page)) {
505 void *pt = lowmem_page_address(page);
506 unsigned long pfn = page_to_pfn(page);
74260714
JF
507 spinlock_t *ptl = NULL;
508 struct multicall_space mcs;
509
510 if (level == PT_PTE) {
511 ptl = lock_pte(page);
512
513 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
514 }
515
516 mcs = __xen_mc_entry(0);
f4f97b3e
JF
517
518 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
519 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
520 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
521
522 if (ptl) {
523 /* unlock when batch completed */
524 xen_mc_callback(do_unlock, ptl);
525 }
f4f97b3e
JF
526 }
527
528 return 0; /* never need to flush on unpin */
3b827c1b
JF
529}
530
f4f97b3e
JF
531/* Release a pagetables pages back as normal RW */
532static void xen_pgd_unpin(pgd_t *pgd)
533{
f4f97b3e
JF
534 xen_mc_batch();
535
74260714 536 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e
JF
537
538 pgd_walk(pgd, unpin_page, TASK_SIZE);
539
540 xen_mc_issue(0);
541}
3b827c1b
JF
542
543void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
544{
f4f97b3e 545 spin_lock(&next->page_table_lock);
3b827c1b 546 xen_pgd_pin(next->pgd);
f4f97b3e 547 spin_unlock(&next->page_table_lock);
3b827c1b
JF
548}
549
550void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
551{
f4f97b3e 552 spin_lock(&mm->page_table_lock);
3b827c1b 553 xen_pgd_pin(mm->pgd);
f4f97b3e 554 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
555}
556
3b827c1b 557
f87e4cac
JF
558#ifdef CONFIG_SMP
559/* Another cpu may still have their %cr3 pointing at the pagetable, so
560 we need to repoint it somewhere else before we can unpin it. */
561static void drop_other_mm_ref(void *info)
562{
563 struct mm_struct *mm = info;
3b827c1b 564
f87e4cac
JF
565 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
566 leave_mm(smp_processor_id());
9f79991d
JF
567
568 /* If this cpu still has a stale cr3 reference, then make sure
569 it has been flushed. */
570 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
571 load_cr3(swapper_pg_dir);
572 arch_flush_lazy_cpu_mode();
573 }
f87e4cac 574}
3b827c1b 575
f87e4cac
JF
576static void drop_mm_ref(struct mm_struct *mm)
577{
9f79991d
JF
578 cpumask_t mask;
579 unsigned cpu;
580
f87e4cac
JF
581 if (current->active_mm == mm) {
582 if (current->mm == mm)
583 load_cr3(swapper_pg_dir);
584 else
585 leave_mm(smp_processor_id());
9f79991d
JF
586 arch_flush_lazy_cpu_mode();
587 }
588
589 /* Get the "official" set of cpus referring to our pagetable. */
590 mask = mm->cpu_vm_mask;
591
592 /* It's possible that a vcpu may have a stale reference to our
593 cr3, because its in lazy mode, and it hasn't yet flushed
594 its set of pending hypercalls yet. In this case, we can
595 look at its actual current cr3 value, and force it to flush
596 if needed. */
597 for_each_online_cpu(cpu) {
598 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
599 cpu_set(cpu, mask);
3b827c1b
JF
600 }
601
9f79991d
JF
602 if (!cpus_empty(mask))
603 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
f87e4cac
JF
604}
605#else
606static void drop_mm_ref(struct mm_struct *mm)
607{
608 if (current->active_mm == mm)
609 load_cr3(swapper_pg_dir);
610}
611#endif
612
613/*
614 * While a process runs, Xen pins its pagetables, which means that the
615 * hypervisor forces it to be read-only, and it controls all updates
616 * to it. This means that all pagetable updates have to go via the
617 * hypervisor, which is moderately expensive.
618 *
619 * Since we're pulling the pagetable down, we switch to use init_mm,
620 * unpin old process pagetable and mark it all read-write, which
621 * allows further operations on it to be simple memory accesses.
622 *
623 * The only subtle point is that another CPU may be still using the
624 * pagetable because of lazy tlb flushing. This means we need need to
625 * switch all CPUs off this pagetable before we can unpin it.
626 */
627void xen_exit_mmap(struct mm_struct *mm)
628{
629 get_cpu(); /* make sure we don't move around */
630 drop_mm_ref(mm);
631 put_cpu();
3b827c1b 632
f120f13e 633 spin_lock(&mm->page_table_lock);
df912ea4
JF
634
635 /* pgd may not be pinned in the error exit path of execve */
636 if (PagePinned(virt_to_page(mm->pgd)))
637 xen_pgd_unpin(mm->pgd);
74260714 638
f120f13e 639 spin_unlock(&mm->page_table_lock);
3b827c1b 640}