]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/xen/mmu.c
xen64: save lots of registers
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
3b827c1b 43#include <linux/bug.h>
3b827c1b
JF
44
45#include <asm/pgtable.h>
46#include <asm/tlbflush.h>
5deb30d1 47#include <asm/fixmap.h>
3b827c1b 48#include <asm/mmu_context.h>
f4f97b3e 49#include <asm/paravirt.h>
cbcd79c2 50#include <asm/linkage.h>
3b827c1b
JF
51
52#include <asm/xen/hypercall.h>
f4f97b3e 53#include <asm/xen/hypervisor.h>
3b827c1b
JF
54
55#include <xen/page.h>
56#include <xen/interface/xen.h>
57
f4f97b3e 58#include "multicalls.h"
3b827c1b
JF
59#include "mmu.h"
60
d451bb7a 61#define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
cf0923ea 62#define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
d451bb7a 63
cf0923ea 64/* Placeholder for holes in the address space */
cbcd79c2 65static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
cf0923ea
JF
66 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
67
68 /* Array of pointers to pages containing p2m entries */
cbcd79c2 69static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
cf0923ea 70 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
d451bb7a 71
d5edbc1f 72/* Arrays of p2m arrays expressed in mfns used for save/restore */
cbcd79c2 73static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
d5edbc1f 74
cbcd79c2
JF
75static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
76 __page_aligned_bss;
d5edbc1f 77
d451bb7a
JF
78static inline unsigned p2m_top_index(unsigned long pfn)
79{
8006ec3e 80 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
d451bb7a
JF
81 return pfn / P2M_ENTRIES_PER_PAGE;
82}
83
84static inline unsigned p2m_index(unsigned long pfn)
85{
86 return pfn % P2M_ENTRIES_PER_PAGE;
87}
88
d5edbc1f
JF
89/* Build the parallel p2m_top_mfn structures */
90void xen_setup_mfn_list_list(void)
91{
92 unsigned pfn, idx;
93
94 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
95 unsigned topidx = p2m_top_index(pfn);
96
97 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
98 }
99
100 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
101 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
102 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
103 }
104
105 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
106
107 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
108 virt_to_mfn(p2m_top_mfn_list);
109 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
110}
111
112/* Set up p2m_top to point to the domain-builder provided p2m pages */
d451bb7a
JF
113void __init xen_build_dynamic_phys_to_machine(void)
114{
d451bb7a 115 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
8006ec3e 116 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
d5edbc1f 117 unsigned pfn;
d451bb7a 118
8006ec3e 119 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
d451bb7a
JF
120 unsigned topidx = p2m_top_index(pfn);
121
122 p2m_top[topidx] = &mfn_list[pfn];
123 }
124}
125
126unsigned long get_phys_to_machine(unsigned long pfn)
127{
128 unsigned topidx, idx;
129
8006ec3e
JF
130 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
131 return INVALID_P2M_ENTRY;
132
d451bb7a 133 topidx = p2m_top_index(pfn);
d451bb7a
JF
134 idx = p2m_index(pfn);
135 return p2m_top[topidx][idx];
136}
15ce6005 137EXPORT_SYMBOL_GPL(get_phys_to_machine);
d451bb7a 138
d5edbc1f 139static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
d451bb7a
JF
140{
141 unsigned long *p;
142 unsigned i;
143
144 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
145 BUG_ON(p == NULL);
146
147 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
148 p[i] = INVALID_P2M_ENTRY;
149
cf0923ea 150 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
d451bb7a 151 free_page((unsigned long)p);
d5edbc1f
JF
152 else
153 *mfnp = virt_to_mfn(p);
d451bb7a
JF
154}
155
156void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
157{
158 unsigned topidx, idx;
159
160 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
161 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
8006ec3e
JF
162 return;
163 }
164
165 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
166 BUG_ON(mfn != INVALID_P2M_ENTRY);
d451bb7a
JF
167 return;
168 }
169
170 topidx = p2m_top_index(pfn);
cf0923ea 171 if (p2m_top[topidx] == p2m_missing) {
d451bb7a
JF
172 /* no need to allocate a page to store an invalid entry */
173 if (mfn == INVALID_P2M_ENTRY)
174 return;
d5edbc1f 175 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
d451bb7a
JF
176 }
177
178 idx = p2m_index(pfn);
179 p2m_top[topidx][idx] = mfn;
180}
181
ce803e70 182xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 183{
ce803e70 184 unsigned long address = (unsigned long)vaddr;
da7bfc50 185 unsigned int level;
f0646e43 186 pte_t *pte = lookup_address(address, &level);
de067814 187 unsigned offset = address & ~PAGE_MASK;
3b827c1b
JF
188
189 BUG_ON(pte == NULL);
190
ebd879e3 191 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b
JF
192}
193
194void make_lowmem_page_readonly(void *vaddr)
195{
196 pte_t *pte, ptev;
197 unsigned long address = (unsigned long)vaddr;
da7bfc50 198 unsigned int level;
3b827c1b 199
f0646e43 200 pte = lookup_address(address, &level);
3b827c1b
JF
201 BUG_ON(pte == NULL);
202
203 ptev = pte_wrprotect(*pte);
204
205 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
206 BUG();
207}
208
209void make_lowmem_page_readwrite(void *vaddr)
210{
211 pte_t *pte, ptev;
212 unsigned long address = (unsigned long)vaddr;
da7bfc50 213 unsigned int level;
3b827c1b 214
f0646e43 215 pte = lookup_address(address, &level);
3b827c1b
JF
216 BUG_ON(pte == NULL);
217
218 ptev = pte_mkwrite(*pte);
219
220 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
221 BUG();
222}
223
224
e2426cf8
JF
225static bool page_pinned(void *ptr)
226{
227 struct page *page = virt_to_page(ptr);
228
229 return PagePinned(page);
230}
231
400d3494 232static void extend_mmu_update(const struct mmu_update *update)
3b827c1b 233{
d66bf8fc
JF
234 struct multicall_space mcs;
235 struct mmu_update *u;
3b827c1b 236
400d3494
JF
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
238
239 if (mcs.mc != NULL)
240 mcs.mc->args[1]++;
241 else {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
244 }
d66bf8fc 245
d66bf8fc 246 u = mcs.args;
400d3494
JF
247 *u = *update;
248}
249
250void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
251{
252 struct mmu_update u;
253
254 preempt_disable();
255
256 xen_mc_batch();
257
ce803e70
JF
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494
JF
260 u.val = pmd_val_ma(val);
261 extend_mmu_update(&u);
d66bf8fc
JF
262
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
264
265 preempt_enable();
3b827c1b
JF
266}
267
e2426cf8
JF
268void xen_set_pmd(pmd_t *ptr, pmd_t val)
269{
270 /* If page is not pinned, we can just update the entry
271 directly */
272 if (!page_pinned(ptr)) {
273 *ptr = val;
274 return;
275 }
276
277 xen_set_pmd_hyper(ptr, val);
278}
279
3b827c1b
JF
280/*
281 * Associate a virtual page frame with a given physical page frame
282 * and protection flags for that frame.
283 */
284void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
285{
836fe2f2 286 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
287}
288
289void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
290 pte_t *ptep, pte_t pteval)
291{
2bd50036
JF
292 /* updates to init_mm may be done without lock */
293 if (mm == &init_mm)
294 preempt_disable();
295
d66bf8fc 296 if (mm == current->mm || mm == &init_mm) {
8965c1c0 297 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
298 struct multicall_space mcs;
299 mcs = xen_mc_entry(0);
300
301 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
302 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 303 goto out;
d66bf8fc
JF
304 } else
305 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 306 goto out;
d66bf8fc
JF
307 }
308 xen_set_pte(ptep, pteval);
2bd50036
JF
309
310out:
311 if (mm == &init_mm)
312 preempt_enable();
3b827c1b
JF
313}
314
e57778a1 315pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
947a69c9 316{
e57778a1
JF
317 /* Just return the pte as-is. We preserve the bits on commit */
318 return *ptep;
319}
320
321void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pte)
323{
400d3494 324 struct mmu_update u;
e57778a1 325
400d3494 326 xen_mc_batch();
947a69c9 327
400d3494
JF
328 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
329 u.val = pte_val_ma(pte);
330 extend_mmu_update(&u);
947a69c9 331
e57778a1 332 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
333}
334
ebb9cfe2
JF
335/* Assume pteval_t is equivalent to all the other *val_t types. */
336static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 337{
ebb9cfe2
JF
338 if (val & _PAGE_PRESENT) {
339 unsigned long mfn = (val & PTE_MASK) >> PAGE_SHIFT;
340 pteval_t flags = val & ~PTE_MASK;
d8355aca 341 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
ebb9cfe2 342 }
947a69c9 343
ebb9cfe2 344 return val;
947a69c9
JF
345}
346
ebb9cfe2 347static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 348{
ebb9cfe2
JF
349 if (val & _PAGE_PRESENT) {
350 unsigned long pfn = (val & PTE_MASK) >> PAGE_SHIFT;
351 pteval_t flags = val & ~PTE_MASK;
d8355aca 352 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
947a69c9
JF
353 }
354
ebb9cfe2 355 return val;
947a69c9
JF
356}
357
ebb9cfe2 358pteval_t xen_pte_val(pte_t pte)
947a69c9 359{
ebb9cfe2 360 return pte_mfn_to_pfn(pte.pte);
947a69c9 361}
947a69c9 362
947a69c9
JF
363pgdval_t xen_pgd_val(pgd_t pgd)
364{
ebb9cfe2 365 return pte_mfn_to_pfn(pgd.pgd);
947a69c9
JF
366}
367
368pte_t xen_make_pte(pteval_t pte)
369{
ebb9cfe2
JF
370 pte = pte_pfn_to_mfn(pte);
371 return native_make_pte(pte);
947a69c9
JF
372}
373
374pgd_t xen_make_pgd(pgdval_t pgd)
375{
ebb9cfe2
JF
376 pgd = pte_pfn_to_mfn(pgd);
377 return native_make_pgd(pgd);
947a69c9
JF
378}
379
380pmdval_t xen_pmd_val(pmd_t pmd)
381{
ebb9cfe2 382 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 383}
28499143 384
e2426cf8 385void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 386{
400d3494 387 struct mmu_update u;
f4f97b3e 388
d66bf8fc
JF
389 preempt_disable();
390
400d3494
JF
391 xen_mc_batch();
392
ce803e70
JF
393 /* ptr may be ioremapped for 64-bit pagetable setup */
394 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494
JF
395 u.val = pud_val_ma(val);
396 extend_mmu_update(&u);
d66bf8fc
JF
397
398 xen_mc_issue(PARAVIRT_LAZY_MMU);
399
400 preempt_enable();
f4f97b3e
JF
401}
402
e2426cf8
JF
403void xen_set_pud(pud_t *ptr, pud_t val)
404{
405 /* If page is not pinned, we can just update the entry
406 directly */
407 if (!page_pinned(ptr)) {
408 *ptr = val;
409 return;
410 }
411
412 xen_set_pud_hyper(ptr, val);
413}
414
f4f97b3e
JF
415void xen_set_pte(pte_t *ptep, pte_t pte)
416{
f6e58732 417#ifdef CONFIG_X86_PAE
f4f97b3e
JF
418 ptep->pte_high = pte.pte_high;
419 smp_wmb();
420 ptep->pte_low = pte.pte_low;
f6e58732
JF
421#else
422 *ptep = pte;
423#endif
f4f97b3e
JF
424}
425
f6e58732 426#ifdef CONFIG_X86_PAE
3b827c1b
JF
427void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
428{
f6e58732 429 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
430}
431
432void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
433{
434 ptep->pte_low = 0;
435 smp_wmb(); /* make sure low gets written first */
436 ptep->pte_high = 0;
437}
438
439void xen_pmd_clear(pmd_t *pmdp)
440{
e2426cf8 441 set_pmd(pmdp, __pmd(0));
3b827c1b 442}
f6e58732 443#endif /* CONFIG_X86_PAE */
3b827c1b 444
abf33038 445pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 446{
ebb9cfe2 447 pmd = pte_pfn_to_mfn(pmd);
947a69c9 448 return native_make_pmd(pmd);
3b827c1b 449}
3b827c1b 450
f6e58732
JF
451#if PAGETABLE_LEVELS == 4
452pudval_t xen_pud_val(pud_t pud)
453{
454 return pte_mfn_to_pfn(pud.pud);
455}
456
457pud_t xen_make_pud(pudval_t pud)
458{
459 pud = pte_pfn_to_mfn(pud);
460
461 return native_make_pud(pud);
462}
463
464void xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
465{
466 struct mmu_update u;
467
468 preempt_disable();
469
470 xen_mc_batch();
471
472 u.ptr = virt_to_machine(ptr).maddr;
473 u.val = pgd_val_ma(val);
474 extend_mmu_update(&u);
475
476 xen_mc_issue(PARAVIRT_LAZY_MMU);
477
478 preempt_enable();
479}
480
481void xen_set_pgd(pgd_t *ptr, pgd_t val)
482{
483 /* If page is not pinned, we can just update the entry
484 directly */
485 if (!page_pinned(ptr)) {
486 *ptr = val;
487 return;
488 }
489
490 xen_set_pgd_hyper(ptr, val);
491}
492#endif /* PAGETABLE_LEVELS == 4 */
493
f4f97b3e 494/*
5deb30d1
JF
495 * (Yet another) pagetable walker. This one is intended for pinning a
496 * pagetable. This means that it walks a pagetable and calls the
497 * callback function on each page it finds making up the page table,
498 * at every level. It walks the entire pagetable, but it only bothers
499 * pinning pte pages which are below limit. In the normal case this
500 * will be STACK_TOP_MAX, but at boot we need to pin up to
501 * FIXADDR_TOP.
502 *
503 * For 32-bit the important bit is that we don't pin beyond there,
504 * because then we start getting into Xen's ptes.
505 *
506 * For 64-bit, we must skip the Xen hole in the middle of the address
507 * space, just after the big x86-64 virtual hole.
508 */
509static int pgd_walk(pgd_t *pgd, int (*func)(struct page *, enum pt_level),
f4f97b3e 510 unsigned long limit)
3b827c1b 511{
f4f97b3e 512 int flush = 0;
5deb30d1
JF
513 unsigned hole_low, hole_high;
514 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
515 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 516
5deb30d1
JF
517 /* The limit is the last byte to be touched */
518 limit--;
519 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
520
521 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
522 return 0;
523
5deb30d1
JF
524 /*
525 * 64-bit has a great big hole in the middle of the address
526 * space, which contains the Xen mappings. On 32-bit these
527 * will end up making a zero-sized hole and so is a no-op.
528 */
529 hole_low = pgd_index(STACK_TOP_MAX + PGDIR_SIZE - 1);
530 hole_high = pgd_index(PAGE_OFFSET);
531
532 pgdidx_limit = pgd_index(limit);
533#if PTRS_PER_PUD > 1
534 pudidx_limit = pud_index(limit);
535#else
536 pudidx_limit = 0;
537#endif
538#if PTRS_PER_PMD > 1
539 pmdidx_limit = pmd_index(limit);
540#else
541 pmdidx_limit = 0;
542#endif
543
544 flush |= (*func)(virt_to_page(pgd), PT_PGD);
545
546 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 547 pud_t *pud;
3b827c1b 548
5deb30d1
JF
549 if (pgdidx >= hole_low && pgdidx < hole_high)
550 continue;
f4f97b3e 551
5deb30d1 552 if (!pgd_val(pgd[pgdidx]))
3b827c1b 553 continue;
f4f97b3e 554
5deb30d1 555 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
556
557 if (PTRS_PER_PUD > 1) /* not folded */
74260714 558 flush |= (*func)(virt_to_page(pud), PT_PUD);
f4f97b3e 559
5deb30d1 560 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 561 pmd_t *pmd;
f4f97b3e 562
5deb30d1
JF
563 if (pgdidx == pgdidx_limit &&
564 pudidx > pudidx_limit)
565 goto out;
3b827c1b 566
5deb30d1 567 if (pud_none(pud[pudidx]))
3b827c1b 568 continue;
f4f97b3e 569
5deb30d1 570 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
571
572 if (PTRS_PER_PMD > 1) /* not folded */
74260714 573 flush |= (*func)(virt_to_page(pmd), PT_PMD);
f4f97b3e 574
5deb30d1
JF
575 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
576 struct page *pte;
577
578 if (pgdidx == pgdidx_limit &&
579 pudidx == pudidx_limit &&
580 pmdidx > pmdidx_limit)
581 goto out;
3b827c1b 582
5deb30d1 583 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
584 continue;
585
5deb30d1
JF
586 pte = pmd_page(pmd[pmdidx]);
587 flush |= (*func)(pte, PT_PTE);
3b827c1b
JF
588 }
589 }
590 }
5deb30d1 591out:
f4f97b3e
JF
592
593 return flush;
3b827c1b
JF
594}
595
74260714
JF
596static spinlock_t *lock_pte(struct page *page)
597{
598 spinlock_t *ptl = NULL;
599
600#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
601 ptl = __pte_lockptr(page);
602 spin_lock(ptl);
603#endif
604
605 return ptl;
606}
607
608static void do_unlock(void *v)
609{
610 spinlock_t *ptl = v;
611 spin_unlock(ptl);
612}
613
614static void xen_do_pin(unsigned level, unsigned long pfn)
615{
616 struct mmuext_op *op;
617 struct multicall_space mcs;
618
619 mcs = __xen_mc_entry(sizeof(*op));
620 op = mcs.args;
621 op->cmd = level;
622 op->arg1.mfn = pfn_to_mfn(pfn);
623 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
624}
625
626static int pin_page(struct page *page, enum pt_level level)
f4f97b3e 627{
d60cd46b 628 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
629 int flush;
630
631 if (pgfl)
632 flush = 0; /* already pinned */
633 else if (PageHighMem(page))
634 /* kmaps need flushing if we found an unpinned
635 highpage */
636 flush = 1;
637 else {
638 void *pt = lowmem_page_address(page);
639 unsigned long pfn = page_to_pfn(page);
640 struct multicall_space mcs = __xen_mc_entry(0);
74260714 641 spinlock_t *ptl;
f4f97b3e
JF
642
643 flush = 0;
644
74260714
JF
645 ptl = NULL;
646 if (level == PT_PTE)
647 ptl = lock_pte(page);
648
f4f97b3e
JF
649 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
650 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
651 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
652
653 if (level == PT_PTE)
654 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
655
656 if (ptl) {
657 /* Queue a deferred unlock for when this batch
658 is completed. */
659 xen_mc_callback(do_unlock, ptl);
660 }
f4f97b3e
JF
661 }
662
663 return flush;
664}
3b827c1b 665
f4f97b3e
JF
666/* This is called just after a mm has been created, but it has not
667 been used yet. We need to make sure that its pagetable is all
668 read-only, and can be pinned. */
3b827c1b
JF
669void xen_pgd_pin(pgd_t *pgd)
670{
f4f97b3e 671 xen_mc_batch();
3b827c1b 672
f87e4cac
JF
673 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
674 /* re-enable interrupts for kmap_flush_unused */
675 xen_mc_issue(0);
f4f97b3e 676 kmap_flush_unused();
f87e4cac
JF
677 xen_mc_batch();
678 }
f4f97b3e 679
5deb30d1
JF
680#ifdef CONFIG_X86_PAE
681 /* Need to make sure unshared kernel PMD is pinnable */
682 pin_page(virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])), PT_PMD);
683#endif
684
28499143 685 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 686 xen_mc_issue(0);
3b827c1b
JF
687}
688
0e91398f
JF
689/*
690 * On save, we need to pin all pagetables to make sure they get their
691 * mfns turned into pfns. Search the list for any unpinned pgds and pin
692 * them (unpinned pgds are not currently in use, probably because the
693 * process is under construction or destruction).
694 */
695void xen_mm_pin_all(void)
696{
697 unsigned long flags;
698 struct page *page;
74260714 699
0e91398f 700 spin_lock_irqsave(&pgd_lock, flags);
f4f97b3e 701
0e91398f
JF
702 list_for_each_entry(page, &pgd_list, lru) {
703 if (!PagePinned(page)) {
704 xen_pgd_pin((pgd_t *)page_address(page));
705 SetPageSavePinned(page);
706 }
707 }
708
709 spin_unlock_irqrestore(&pgd_lock, flags);
3b827c1b
JF
710}
711
c1f2f09e
EH
712/*
713 * The init_mm pagetable is really pinned as soon as its created, but
714 * that's before we have page structures to store the bits. So do all
715 * the book-keeping now.
716 */
74260714 717static __init int mark_pinned(struct page *page, enum pt_level level)
3b827c1b 718{
f4f97b3e
JF
719 SetPagePinned(page);
720 return 0;
721}
3b827c1b 722
f4f97b3e
JF
723void __init xen_mark_init_mm_pinned(void)
724{
725 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
726}
3b827c1b 727
74260714 728static int unpin_page(struct page *page, enum pt_level level)
f4f97b3e 729{
d60cd46b 730 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 731
f4f97b3e
JF
732 if (pgfl && !PageHighMem(page)) {
733 void *pt = lowmem_page_address(page);
734 unsigned long pfn = page_to_pfn(page);
74260714
JF
735 spinlock_t *ptl = NULL;
736 struct multicall_space mcs;
737
738 if (level == PT_PTE) {
739 ptl = lock_pte(page);
740
741 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
742 }
743
744 mcs = __xen_mc_entry(0);
f4f97b3e
JF
745
746 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
747 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
748 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
749
750 if (ptl) {
751 /* unlock when batch completed */
752 xen_mc_callback(do_unlock, ptl);
753 }
f4f97b3e
JF
754 }
755
756 return 0; /* never need to flush on unpin */
3b827c1b
JF
757}
758
f4f97b3e
JF
759/* Release a pagetables pages back as normal RW */
760static void xen_pgd_unpin(pgd_t *pgd)
761{
f4f97b3e
JF
762 xen_mc_batch();
763
74260714 764 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 765
5deb30d1
JF
766#ifdef CONFIG_X86_PAE
767 /* Need to make sure unshared kernel PMD is unpinned */
768 pin_page(virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])), PT_PMD);
769#endif
f4f97b3e
JF
770 pgd_walk(pgd, unpin_page, TASK_SIZE);
771
772 xen_mc_issue(0);
773}
3b827c1b 774
0e91398f
JF
775/*
776 * On resume, undo any pinning done at save, so that the rest of the
777 * kernel doesn't see any unexpected pinned pagetables.
778 */
779void xen_mm_unpin_all(void)
780{
781 unsigned long flags;
782 struct page *page;
783
784 spin_lock_irqsave(&pgd_lock, flags);
785
786 list_for_each_entry(page, &pgd_list, lru) {
787 if (PageSavePinned(page)) {
788 BUG_ON(!PagePinned(page));
0e91398f
JF
789 xen_pgd_unpin((pgd_t *)page_address(page));
790 ClearPageSavePinned(page);
791 }
792 }
793
794 spin_unlock_irqrestore(&pgd_lock, flags);
795}
796
3b827c1b
JF
797void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
798{
f4f97b3e 799 spin_lock(&next->page_table_lock);
3b827c1b 800 xen_pgd_pin(next->pgd);
f4f97b3e 801 spin_unlock(&next->page_table_lock);
3b827c1b
JF
802}
803
804void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
805{
f4f97b3e 806 spin_lock(&mm->page_table_lock);
3b827c1b 807 xen_pgd_pin(mm->pgd);
f4f97b3e 808 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
809}
810
3b827c1b 811
f87e4cac
JF
812#ifdef CONFIG_SMP
813/* Another cpu may still have their %cr3 pointing at the pagetable, so
814 we need to repoint it somewhere else before we can unpin it. */
815static void drop_other_mm_ref(void *info)
816{
817 struct mm_struct *mm = info;
ce87b3d3 818 struct mm_struct *active_mm;
3b827c1b 819
ce87b3d3
JF
820#ifdef CONFIG_X86_64
821 active_mm = read_pda(active_mm);
822#else
823 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
824#endif
825
826 if (active_mm == mm)
f87e4cac 827 leave_mm(smp_processor_id());
9f79991d
JF
828
829 /* If this cpu still has a stale cr3 reference, then make sure
830 it has been flushed. */
831 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
832 load_cr3(swapper_pg_dir);
833 arch_flush_lazy_cpu_mode();
834 }
f87e4cac 835}
3b827c1b 836
f87e4cac
JF
837static void drop_mm_ref(struct mm_struct *mm)
838{
9f79991d
JF
839 cpumask_t mask;
840 unsigned cpu;
841
f87e4cac
JF
842 if (current->active_mm == mm) {
843 if (current->mm == mm)
844 load_cr3(swapper_pg_dir);
845 else
846 leave_mm(smp_processor_id());
9f79991d
JF
847 arch_flush_lazy_cpu_mode();
848 }
849
850 /* Get the "official" set of cpus referring to our pagetable. */
851 mask = mm->cpu_vm_mask;
852
853 /* It's possible that a vcpu may have a stale reference to our
854 cr3, because its in lazy mode, and it hasn't yet flushed
855 its set of pending hypercalls yet. In this case, we can
856 look at its actual current cr3 value, and force it to flush
857 if needed. */
858 for_each_online_cpu(cpu) {
859 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
860 cpu_set(cpu, mask);
3b827c1b
JF
861 }
862
9f79991d 863 if (!cpus_empty(mask))
3b16cf87 864 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
f87e4cac
JF
865}
866#else
867static void drop_mm_ref(struct mm_struct *mm)
868{
869 if (current->active_mm == mm)
870 load_cr3(swapper_pg_dir);
871}
872#endif
873
874/*
875 * While a process runs, Xen pins its pagetables, which means that the
876 * hypervisor forces it to be read-only, and it controls all updates
877 * to it. This means that all pagetable updates have to go via the
878 * hypervisor, which is moderately expensive.
879 *
880 * Since we're pulling the pagetable down, we switch to use init_mm,
881 * unpin old process pagetable and mark it all read-write, which
882 * allows further operations on it to be simple memory accesses.
883 *
884 * The only subtle point is that another CPU may be still using the
885 * pagetable because of lazy tlb flushing. This means we need need to
886 * switch all CPUs off this pagetable before we can unpin it.
887 */
888void xen_exit_mmap(struct mm_struct *mm)
889{
890 get_cpu(); /* make sure we don't move around */
891 drop_mm_ref(mm);
892 put_cpu();
3b827c1b 893
f120f13e 894 spin_lock(&mm->page_table_lock);
df912ea4
JF
895
896 /* pgd may not be pinned in the error exit path of execve */
e2426cf8 897 if (page_pinned(mm->pgd))
df912ea4 898 xen_pgd_unpin(mm->pgd);
74260714 899
f120f13e 900 spin_unlock(&mm->page_table_lock);
3b827c1b 901}