]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/xen/mmu.c
xen: arm: enable balloon driver
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
d2cb2145 45#include <linux/vmalloc.h>
44408ad7 46#include <linux/module.h>
5a0e3ad6 47#include <linux/gfp.h>
a9ce6bc1 48#include <linux/memblock.h>
2222e71b 49#include <linux/seq_file.h>
34b6f01a 50#include <linux/crash_dump.h>
3b827c1b 51
84708807
JF
52#include <trace/events/xen.h>
53
3b827c1b
JF
54#include <asm/pgtable.h>
55#include <asm/tlbflush.h>
5deb30d1 56#include <asm/fixmap.h>
3b827c1b 57#include <asm/mmu_context.h>
319f3ba5 58#include <asm/setup.h>
f4f97b3e 59#include <asm/paravirt.h>
7347b408 60#include <asm/e820.h>
cbcd79c2 61#include <asm/linkage.h>
08bbc9da 62#include <asm/page.h>
fef5ba79 63#include <asm/init.h>
41f2e477 64#include <asm/pat.h>
900cba88 65#include <asm/smp.h>
3b827c1b
JF
66
67#include <asm/xen/hypercall.h>
f4f97b3e 68#include <asm/xen/hypervisor.h>
3b827c1b 69
c0011dbf 70#include <xen/xen.h>
3b827c1b
JF
71#include <xen/page.h>
72#include <xen/interface/xen.h>
59151001 73#include <xen/interface/hvm/hvm_op.h>
319f3ba5 74#include <xen/interface/version.h>
c0011dbf 75#include <xen/interface/memory.h>
319f3ba5 76#include <xen/hvc-console.h>
3b827c1b 77
f4f97b3e 78#include "multicalls.h"
3b827c1b 79#include "mmu.h"
994025ca
JF
80#include "debugfs.h"
81
19001c8c
AN
82/*
83 * Protects atomic reservation decrease/increase against concurrent increases.
06f521d5 84 * Also protects non-atomic updates of current_pages and balloon lists.
19001c8c
AN
85 */
86DEFINE_SPINLOCK(xen_reservation_lock);
87
caaf9ecf 88#ifdef CONFIG_X86_32
319f3ba5
JF
89/*
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
764f0138
JF
94#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
caaf9ecf 96#endif
319f3ba5
JF
97#ifdef CONFIG_X86_64
98/* l3 pud for userspace vsyscall mapping */
99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100#endif /* CONFIG_X86_64 */
101
102/*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
118
119
d6182fbf
JF
120/*
121 * Just beyond the highest usermode address. STACK_TOP_MAX has a
122 * redzone above it, so round it up to a PGD boundary.
123 */
124#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125
9976b39b
JF
126unsigned long arbitrary_virt_to_mfn(void *vaddr)
127{
128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129
130 return PFN_DOWN(maddr.maddr);
131}
132
ce803e70 133xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 134{
ce803e70 135 unsigned long address = (unsigned long)vaddr;
da7bfc50 136 unsigned int level;
9f32d21c
CL
137 pte_t *pte;
138 unsigned offset;
3b827c1b 139
9f32d21c
CL
140 /*
141 * if the PFN is in the linear mapped vaddr range, we can just use
142 * the (quick) virt_to_machine() p2m lookup
143 */
144 if (virt_addr_valid(vaddr))
145 return virt_to_machine(vaddr);
146
147 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 148
9f32d21c
CL
149 pte = lookup_address(address, &level);
150 BUG_ON(pte == NULL);
151 offset = address & ~PAGE_MASK;
ebd879e3 152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b 153}
de23be5f 154EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
3b827c1b
JF
155
156void make_lowmem_page_readonly(void *vaddr)
157{
158 pte_t *pte, ptev;
159 unsigned long address = (unsigned long)vaddr;
da7bfc50 160 unsigned int level;
3b827c1b 161
f0646e43 162 pte = lookup_address(address, &level);
fef5ba79
JF
163 if (pte == NULL)
164 return; /* vaddr missing */
3b827c1b
JF
165
166 ptev = pte_wrprotect(*pte);
167
168 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 BUG();
170}
171
172void make_lowmem_page_readwrite(void *vaddr)
173{
174 pte_t *pte, ptev;
175 unsigned long address = (unsigned long)vaddr;
da7bfc50 176 unsigned int level;
3b827c1b 177
f0646e43 178 pte = lookup_address(address, &level);
fef5ba79
JF
179 if (pte == NULL)
180 return; /* vaddr missing */
3b827c1b
JF
181
182 ptev = pte_mkwrite(*pte);
183
184 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 BUG();
186}
187
188
7708ad64 189static bool xen_page_pinned(void *ptr)
e2426cf8
JF
190{
191 struct page *page = virt_to_page(ptr);
192
193 return PagePinned(page);
194}
195
eba3ff8b 196void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
c0011dbf
JF
197{
198 struct multicall_space mcs;
199 struct mmu_update *u;
200
84708807
JF
201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202
c0011dbf
JF
203 mcs = xen_mc_entry(sizeof(*u));
204 u = mcs.args;
205
206 /* ptep might be kmapped when using 32-bit HIGHPTE */
d5108316 207 u->ptr = virt_to_machine(ptep).maddr;
c0011dbf
JF
208 u->val = pte_val_ma(pteval);
209
eba3ff8b 210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
c0011dbf
JF
211
212 xen_mc_issue(PARAVIRT_LAZY_MMU);
213}
eba3ff8b
JF
214EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215
7708ad64 216static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 217{
d66bf8fc
JF
218 struct multicall_space mcs;
219 struct mmu_update *u;
3b827c1b 220
400d3494
JF
221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222
994025ca 223 if (mcs.mc != NULL) {
400d3494 224 mcs.mc->args[1]++;
994025ca 225 } else {
400d3494
JF
226 mcs = __xen_mc_entry(sizeof(*u));
227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 }
d66bf8fc 229
d66bf8fc 230 u = mcs.args;
400d3494
JF
231 *u = *update;
232}
233
dcf7435c
JF
234static void xen_extend_mmuext_op(const struct mmuext_op *op)
235{
236 struct multicall_space mcs;
237 struct mmuext_op *u;
238
239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240
241 if (mcs.mc != NULL) {
242 mcs.mc->args[1]++;
243 } else {
244 mcs = __xen_mc_entry(sizeof(*u));
245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 }
247
248 u = mcs.args;
249 *u = *op;
250}
251
4c13629f 252static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
400d3494
JF
253{
254 struct mmu_update u;
255
256 preempt_disable();
257
258 xen_mc_batch();
259
ce803e70
JF
260 /* ptr may be ioremapped for 64-bit pagetable setup */
261 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 262 u.val = pmd_val_ma(val);
7708ad64 263 xen_extend_mmu_update(&u);
d66bf8fc
JF
264
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
266
267 preempt_enable();
3b827c1b
JF
268}
269
4c13629f 270static void xen_set_pmd(pmd_t *ptr, pmd_t val)
e2426cf8 271{
84708807
JF
272 trace_xen_mmu_set_pmd(ptr, val);
273
e2426cf8
JF
274 /* If page is not pinned, we can just update the entry
275 directly */
7708ad64 276 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
277 *ptr = val;
278 return;
279 }
280
281 xen_set_pmd_hyper(ptr, val);
282}
283
3b827c1b
JF
284/*
285 * Associate a virtual page frame with a given physical page frame
286 * and protection flags for that frame.
287 */
288void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289{
836fe2f2 290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
291}
292
4a35c13c 293static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
3b827c1b 294{
4a35c13c 295 struct mmu_update u;
c0011dbf 296
4a35c13c
JF
297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 return false;
994025ca 299
4a35c13c 300 xen_mc_batch();
d66bf8fc 301
4a35c13c
JF
302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 u.val = pte_val_ma(pteval);
304 xen_extend_mmu_update(&u);
a99ac5e8 305
4a35c13c 306 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 307
4a35c13c
JF
308 return true;
309}
310
84708807 311static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
4a35c13c 312{
d095d43e
DV
313 if (!xen_batched_set_pte(ptep, pteval)) {
314 /*
315 * Could call native_set_pte() here and trap and
316 * emulate the PTE write but with 32-bit guests this
317 * needs two traps (one for each of the two 32-bit
318 * words in the PTE) so do one hypercall directly
319 * instead.
320 */
321 struct mmu_update u;
322
323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 u.val = pte_val_ma(pteval);
325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 }
3b827c1b
JF
327}
328
84708807
JF
329static void xen_set_pte(pte_t *ptep, pte_t pteval)
330{
331 trace_xen_mmu_set_pte(ptep, pteval);
332 __xen_set_pte(ptep, pteval);
333}
334
4c13629f 335static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
4a35c13c
JF
336 pte_t *ptep, pte_t pteval)
337{
84708807
JF
338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 __xen_set_pte(ptep, pteval);
3b827c1b
JF
340}
341
f63c2f24
T
342pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 unsigned long addr, pte_t *ptep)
947a69c9 344{
e57778a1 345 /* Just return the pte as-is. We preserve the bits on commit */
84708807 346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
e57778a1
JF
347 return *ptep;
348}
349
350void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 pte_t *ptep, pte_t pte)
352{
400d3494 353 struct mmu_update u;
e57778a1 354
84708807 355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
400d3494 356 xen_mc_batch();
947a69c9 357
d5108316 358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 359 u.val = pte_val_ma(pte);
7708ad64 360 xen_extend_mmu_update(&u);
947a69c9 361
e57778a1 362 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
363}
364
ebb9cfe2
JF
365/* Assume pteval_t is equivalent to all the other *val_t types. */
366static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 367{
ebb9cfe2 368 if (val & _PAGE_PRESENT) {
59438c9f 369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
b7e5ffe5
KRW
370 unsigned long pfn = mfn_to_pfn(mfn);
371
77be1fab 372 pteval_t flags = val & PTE_FLAGS_MASK;
b7e5ffe5
KRW
373 if (unlikely(pfn == ~0))
374 val = flags & ~_PAGE_PRESENT;
375 else
376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
ebb9cfe2 377 }
947a69c9 378
ebb9cfe2 379 return val;
947a69c9
JF
380}
381
ebb9cfe2 382static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 383{
ebb9cfe2 384 if (val & _PAGE_PRESENT) {
59438c9f 385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 386 pteval_t flags = val & PTE_FLAGS_MASK;
fb38923e 387 unsigned long mfn;
cfd8951e 388
fb38923e
KRW
389 if (!xen_feature(XENFEAT_auto_translated_physmap))
390 mfn = get_phys_to_machine(pfn);
391 else
392 mfn = pfn;
cfd8951e
JF
393 /*
394 * If there's no mfn for the pfn, then just create an
395 * empty non-present pte. Unfortunately this loses
396 * information about the original pfn, so
397 * pte_mfn_to_pfn is asymmetric.
398 */
399 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 mfn = 0;
401 flags = 0;
fb38923e
KRW
402 } else {
403 /*
404 * Paramount to do this test _after_ the
405 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
406 * IDENTITY_FRAME_BIT resolves to true.
407 */
408 mfn &= ~FOREIGN_FRAME_BIT;
409 if (mfn & IDENTITY_FRAME_BIT) {
410 mfn &= ~IDENTITY_FRAME_BIT;
411 flags |= _PAGE_IOMAP;
412 }
cfd8951e 413 }
cfd8951e 414 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
947a69c9
JF
415 }
416
ebb9cfe2 417 return val;
947a69c9
JF
418}
419
c0011dbf
JF
420static pteval_t iomap_pte(pteval_t val)
421{
422 if (val & _PAGE_PRESENT) {
423 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
424 pteval_t flags = val & PTE_FLAGS_MASK;
425
426 /* We assume the pte frame number is a MFN, so
427 just use it as-is. */
428 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
429 }
430
431 return val;
432}
433
4c13629f 434static pteval_t xen_pte_val(pte_t pte)
947a69c9 435{
41f2e477 436 pteval_t pteval = pte.pte;
8eaffa67 437#if 0
41f2e477
JF
438 /* If this is a WC pte, convert back from Xen WC to Linux WC */
439 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
440 WARN_ON(!pat_enabled);
441 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
442 }
8eaffa67 443#endif
41f2e477
JF
444 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
445 return pteval;
446
447 return pte_mfn_to_pfn(pteval);
947a69c9 448}
da5de7c2 449PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
947a69c9 450
4c13629f 451static pgdval_t xen_pgd_val(pgd_t pgd)
947a69c9 452{
ebb9cfe2 453 return pte_mfn_to_pfn(pgd.pgd);
947a69c9 454}
da5de7c2 455PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
947a69c9 456
41f2e477
JF
457/*
458 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
459 * are reserved for now, to correspond to the Intel-reserved PAT
460 * types.
461 *
462 * We expect Linux's PAT set as follows:
463 *
464 * Idx PTE flags Linux Xen Default
465 * 0 WB WB WB
466 * 1 PWT WC WT WT
467 * 2 PCD UC- UC- UC-
468 * 3 PCD PWT UC UC UC
469 * 4 PAT WB WC WB
470 * 5 PAT PWT WC WP WT
471 * 6 PAT PCD UC- UC UC-
472 * 7 PAT PCD PWT UC UC UC
473 */
474
475void xen_set_pat(u64 pat)
476{
477 /* We expect Linux to use a PAT setting of
478 * UC UC- WC WB (ignoring the PAT flag) */
479 WARN_ON(pat != 0x0007010600070106ull);
480}
481
4c13629f 482static pte_t xen_make_pte(pteval_t pte)
947a69c9 483{
7347b408 484 phys_addr_t addr = (pte & PTE_PFN_MASK);
8eaffa67 485#if 0
41f2e477
JF
486 /* If Linux is trying to set a WC pte, then map to the Xen WC.
487 * If _PAGE_PAT is set, then it probably means it is really
488 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
489 * things work out OK...
490 *
491 * (We should never see kernel mappings with _PAGE_PSE set,
492 * but we could see hugetlbfs mappings, I think.).
493 */
494 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
495 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
496 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
497 }
8eaffa67 498#endif
7347b408
AN
499 /*
500 * Unprivileged domains are allowed to do IOMAPpings for
501 * PCI passthrough, but not map ISA space. The ISA
502 * mappings are just dummy local mappings to keep other
503 * parts of the kernel happy.
504 */
505 if (unlikely(pte & _PAGE_IOMAP) &&
506 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
c0011dbf 507 pte = iomap_pte(pte);
7347b408
AN
508 } else {
509 pte &= ~_PAGE_IOMAP;
c0011dbf 510 pte = pte_pfn_to_mfn(pte);
7347b408 511 }
c0011dbf 512
ebb9cfe2 513 return native_make_pte(pte);
947a69c9 514}
da5de7c2 515PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
947a69c9 516
4c13629f 517static pgd_t xen_make_pgd(pgdval_t pgd)
947a69c9 518{
ebb9cfe2
JF
519 pgd = pte_pfn_to_mfn(pgd);
520 return native_make_pgd(pgd);
947a69c9 521}
da5de7c2 522PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
947a69c9 523
4c13629f 524static pmdval_t xen_pmd_val(pmd_t pmd)
947a69c9 525{
ebb9cfe2 526 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 527}
da5de7c2 528PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
28499143 529
4c13629f 530static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 531{
400d3494 532 struct mmu_update u;
f4f97b3e 533
d66bf8fc
JF
534 preempt_disable();
535
400d3494
JF
536 xen_mc_batch();
537
ce803e70
JF
538 /* ptr may be ioremapped for 64-bit pagetable setup */
539 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 540 u.val = pud_val_ma(val);
7708ad64 541 xen_extend_mmu_update(&u);
d66bf8fc
JF
542
543 xen_mc_issue(PARAVIRT_LAZY_MMU);
544
545 preempt_enable();
f4f97b3e
JF
546}
547
4c13629f 548static void xen_set_pud(pud_t *ptr, pud_t val)
e2426cf8 549{
84708807
JF
550 trace_xen_mmu_set_pud(ptr, val);
551
e2426cf8
JF
552 /* If page is not pinned, we can just update the entry
553 directly */
7708ad64 554 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
555 *ptr = val;
556 return;
557 }
558
559 xen_set_pud_hyper(ptr, val);
560}
561
f6e58732 562#ifdef CONFIG_X86_PAE
4c13629f 563static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
3b827c1b 564{
84708807 565 trace_xen_mmu_set_pte_atomic(ptep, pte);
f6e58732 566 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
567}
568
4c13629f 569static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
3b827c1b 570{
84708807 571 trace_xen_mmu_pte_clear(mm, addr, ptep);
4a35c13c
JF
572 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
573 native_pte_clear(mm, addr, ptep);
3b827c1b
JF
574}
575
4c13629f 576static void xen_pmd_clear(pmd_t *pmdp)
3b827c1b 577{
84708807 578 trace_xen_mmu_pmd_clear(pmdp);
e2426cf8 579 set_pmd(pmdp, __pmd(0));
3b827c1b 580}
f6e58732 581#endif /* CONFIG_X86_PAE */
3b827c1b 582
4c13629f 583static pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 584{
ebb9cfe2 585 pmd = pte_pfn_to_mfn(pmd);
947a69c9 586 return native_make_pmd(pmd);
3b827c1b 587}
da5de7c2 588PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
3b827c1b 589
f6e58732 590#if PAGETABLE_LEVELS == 4
4c13629f 591static pudval_t xen_pud_val(pud_t pud)
f6e58732
JF
592{
593 return pte_mfn_to_pfn(pud.pud);
594}
da5de7c2 595PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
f6e58732 596
4c13629f 597static pud_t xen_make_pud(pudval_t pud)
f6e58732
JF
598{
599 pud = pte_pfn_to_mfn(pud);
600
601 return native_make_pud(pud);
602}
da5de7c2 603PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
f6e58732 604
4c13629f 605static pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 606{
d6182fbf
JF
607 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
608 unsigned offset = pgd - pgd_page;
609 pgd_t *user_ptr = NULL;
f6e58732 610
d6182fbf
JF
611 if (offset < pgd_index(USER_LIMIT)) {
612 struct page *page = virt_to_page(pgd_page);
613 user_ptr = (pgd_t *)page->private;
614 if (user_ptr)
615 user_ptr += offset;
616 }
f6e58732 617
d6182fbf
JF
618 return user_ptr;
619}
620
621static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
622{
623 struct mmu_update u;
f6e58732
JF
624
625 u.ptr = virt_to_machine(ptr).maddr;
626 u.val = pgd_val_ma(val);
7708ad64 627 xen_extend_mmu_update(&u);
d6182fbf
JF
628}
629
630/*
631 * Raw hypercall-based set_pgd, intended for in early boot before
632 * there's a page structure. This implies:
633 * 1. The only existing pagetable is the kernel's
634 * 2. It is always pinned
635 * 3. It has no user pagetable attached to it
636 */
4c13629f 637static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
d6182fbf
JF
638{
639 preempt_disable();
640
641 xen_mc_batch();
642
643 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
644
645 xen_mc_issue(PARAVIRT_LAZY_MMU);
646
647 preempt_enable();
648}
649
4c13629f 650static void xen_set_pgd(pgd_t *ptr, pgd_t val)
f6e58732 651{
d6182fbf
JF
652 pgd_t *user_ptr = xen_get_user_pgd(ptr);
653
84708807
JF
654 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
655
f6e58732
JF
656 /* If page is not pinned, we can just update the entry
657 directly */
7708ad64 658 if (!xen_page_pinned(ptr)) {
f6e58732 659 *ptr = val;
d6182fbf 660 if (user_ptr) {
7708ad64 661 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
662 *user_ptr = val;
663 }
f6e58732
JF
664 return;
665 }
666
d6182fbf
JF
667 /* If it's pinned, then we can at least batch the kernel and
668 user updates together. */
669 xen_mc_batch();
670
671 __xen_set_pgd_hyper(ptr, val);
672 if (user_ptr)
673 __xen_set_pgd_hyper(user_ptr, val);
674
675 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
676}
677#endif /* PAGETABLE_LEVELS == 4 */
678
f4f97b3e 679/*
5deb30d1
JF
680 * (Yet another) pagetable walker. This one is intended for pinning a
681 * pagetable. This means that it walks a pagetable and calls the
682 * callback function on each page it finds making up the page table,
683 * at every level. It walks the entire pagetable, but it only bothers
684 * pinning pte pages which are below limit. In the normal case this
685 * will be STACK_TOP_MAX, but at boot we need to pin up to
686 * FIXADDR_TOP.
687 *
688 * For 32-bit the important bit is that we don't pin beyond there,
689 * because then we start getting into Xen's ptes.
690 *
691 * For 64-bit, we must skip the Xen hole in the middle of the address
692 * space, just after the big x86-64 virtual hole.
693 */
86bbc2c2
IC
694static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
695 int (*func)(struct mm_struct *mm, struct page *,
696 enum pt_level),
697 unsigned long limit)
3b827c1b 698{
f4f97b3e 699 int flush = 0;
5deb30d1
JF
700 unsigned hole_low, hole_high;
701 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
702 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 703
5deb30d1
JF
704 /* The limit is the last byte to be touched */
705 limit--;
706 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
707
708 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
709 return 0;
710
5deb30d1
JF
711 /*
712 * 64-bit has a great big hole in the middle of the address
713 * space, which contains the Xen mappings. On 32-bit these
714 * will end up making a zero-sized hole and so is a no-op.
715 */
d6182fbf 716 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
717 hole_high = pgd_index(PAGE_OFFSET);
718
719 pgdidx_limit = pgd_index(limit);
720#if PTRS_PER_PUD > 1
721 pudidx_limit = pud_index(limit);
722#else
723 pudidx_limit = 0;
724#endif
725#if PTRS_PER_PMD > 1
726 pmdidx_limit = pmd_index(limit);
727#else
728 pmdidx_limit = 0;
729#endif
730
5deb30d1 731 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 732 pud_t *pud;
3b827c1b 733
5deb30d1
JF
734 if (pgdidx >= hole_low && pgdidx < hole_high)
735 continue;
f4f97b3e 736
5deb30d1 737 if (!pgd_val(pgd[pgdidx]))
3b827c1b 738 continue;
f4f97b3e 739
5deb30d1 740 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
741
742 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 743 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 744
5deb30d1 745 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 746 pmd_t *pmd;
f4f97b3e 747
5deb30d1
JF
748 if (pgdidx == pgdidx_limit &&
749 pudidx > pudidx_limit)
750 goto out;
3b827c1b 751
5deb30d1 752 if (pud_none(pud[pudidx]))
3b827c1b 753 continue;
f4f97b3e 754
5deb30d1 755 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
756
757 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 758 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 759
5deb30d1
JF
760 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
761 struct page *pte;
762
763 if (pgdidx == pgdidx_limit &&
764 pudidx == pudidx_limit &&
765 pmdidx > pmdidx_limit)
766 goto out;
3b827c1b 767
5deb30d1 768 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
769 continue;
770
5deb30d1 771 pte = pmd_page(pmd[pmdidx]);
eefb47f6 772 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
773 }
774 }
775 }
11ad93e5 776
5deb30d1 777out:
11ad93e5
JF
778 /* Do the top level last, so that the callbacks can use it as
779 a cue to do final things like tlb flushes. */
eefb47f6 780 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
781
782 return flush;
3b827c1b
JF
783}
784
86bbc2c2
IC
785static int xen_pgd_walk(struct mm_struct *mm,
786 int (*func)(struct mm_struct *mm, struct page *,
787 enum pt_level),
788 unsigned long limit)
789{
790 return __xen_pgd_walk(mm, mm->pgd, func, limit);
791}
792
7708ad64
JF
793/* If we're using split pte locks, then take the page's lock and
794 return a pointer to it. Otherwise return NULL. */
eefb47f6 795static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
796{
797 spinlock_t *ptl = NULL;
798
f7d0b926 799#if USE_SPLIT_PTLOCKS
74260714 800 ptl = __pte_lockptr(page);
eefb47f6 801 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
802#endif
803
804 return ptl;
805}
806
7708ad64 807static void xen_pte_unlock(void *v)
74260714
JF
808{
809 spinlock_t *ptl = v;
810 spin_unlock(ptl);
811}
812
813static void xen_do_pin(unsigned level, unsigned long pfn)
814{
dcf7435c 815 struct mmuext_op op;
74260714 816
dcf7435c
JF
817 op.cmd = level;
818 op.arg1.mfn = pfn_to_mfn(pfn);
819
820 xen_extend_mmuext_op(&op);
74260714
JF
821}
822
eefb47f6
JF
823static int xen_pin_page(struct mm_struct *mm, struct page *page,
824 enum pt_level level)
f4f97b3e 825{
d60cd46b 826 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
827 int flush;
828
829 if (pgfl)
830 flush = 0; /* already pinned */
831 else if (PageHighMem(page))
832 /* kmaps need flushing if we found an unpinned
833 highpage */
834 flush = 1;
835 else {
836 void *pt = lowmem_page_address(page);
837 unsigned long pfn = page_to_pfn(page);
838 struct multicall_space mcs = __xen_mc_entry(0);
74260714 839 spinlock_t *ptl;
f4f97b3e
JF
840
841 flush = 0;
842
11ad93e5
JF
843 /*
844 * We need to hold the pagetable lock between the time
845 * we make the pagetable RO and when we actually pin
846 * it. If we don't, then other users may come in and
847 * attempt to update the pagetable by writing it,
848 * which will fail because the memory is RO but not
849 * pinned, so Xen won't do the trap'n'emulate.
850 *
851 * If we're using split pte locks, we can't hold the
852 * entire pagetable's worth of locks during the
853 * traverse, because we may wrap the preempt count (8
854 * bits). The solution is to mark RO and pin each PTE
855 * page while holding the lock. This means the number
856 * of locks we end up holding is never more than a
857 * batch size (~32 entries, at present).
858 *
859 * If we're not using split pte locks, we needn't pin
860 * the PTE pages independently, because we're
861 * protected by the overall pagetable lock.
862 */
74260714
JF
863 ptl = NULL;
864 if (level == PT_PTE)
eefb47f6 865 ptl = xen_pte_lock(page, mm);
74260714 866
f4f97b3e
JF
867 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
868 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
869 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
870
11ad93e5 871 if (ptl) {
74260714
JF
872 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
873
74260714
JF
874 /* Queue a deferred unlock for when this batch
875 is completed. */
7708ad64 876 xen_mc_callback(xen_pte_unlock, ptl);
74260714 877 }
f4f97b3e
JF
878 }
879
880 return flush;
881}
3b827c1b 882
f4f97b3e
JF
883/* This is called just after a mm has been created, but it has not
884 been used yet. We need to make sure that its pagetable is all
885 read-only, and can be pinned. */
eefb47f6 886static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 887{
5f94fb5b
JF
888 trace_xen_mmu_pgd_pin(mm, pgd);
889
f4f97b3e 890 xen_mc_batch();
3b827c1b 891
86bbc2c2 892 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
d05fdf31 893 /* re-enable interrupts for flushing */
f87e4cac 894 xen_mc_issue(0);
d05fdf31 895
f4f97b3e 896 kmap_flush_unused();
d05fdf31 897
f87e4cac
JF
898 xen_mc_batch();
899 }
f4f97b3e 900
d6182fbf
JF
901#ifdef CONFIG_X86_64
902 {
903 pgd_t *user_pgd = xen_get_user_pgd(pgd);
904
905 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
906
907 if (user_pgd) {
eefb47f6 908 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
f63c2f24
T
909 xen_do_pin(MMUEXT_PIN_L4_TABLE,
910 PFN_DOWN(__pa(user_pgd)));
d6182fbf
JF
911 }
912 }
913#else /* CONFIG_X86_32 */
5deb30d1
JF
914#ifdef CONFIG_X86_PAE
915 /* Need to make sure unshared kernel PMD is pinnable */
47cb2ed9 916 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 917 PT_PMD);
5deb30d1 918#endif
28499143 919 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 920#endif /* CONFIG_X86_64 */
f4f97b3e 921 xen_mc_issue(0);
3b827c1b
JF
922}
923
eefb47f6
JF
924static void xen_pgd_pin(struct mm_struct *mm)
925{
926 __xen_pgd_pin(mm, mm->pgd);
927}
928
0e91398f
JF
929/*
930 * On save, we need to pin all pagetables to make sure they get their
931 * mfns turned into pfns. Search the list for any unpinned pgds and pin
932 * them (unpinned pgds are not currently in use, probably because the
933 * process is under construction or destruction).
eefb47f6
JF
934 *
935 * Expected to be called in stop_machine() ("equivalent to taking
936 * every spinlock in the system"), so the locking doesn't really
937 * matter all that much.
0e91398f
JF
938 */
939void xen_mm_pin_all(void)
940{
0e91398f 941 struct page *page;
74260714 942
a79e53d8 943 spin_lock(&pgd_lock);
f4f97b3e 944
0e91398f
JF
945 list_for_each_entry(page, &pgd_list, lru) {
946 if (!PagePinned(page)) {
eefb47f6 947 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
948 SetPageSavePinned(page);
949 }
950 }
951
a79e53d8 952 spin_unlock(&pgd_lock);
3b827c1b
JF
953}
954
c1f2f09e
EH
955/*
956 * The init_mm pagetable is really pinned as soon as its created, but
957 * that's before we have page structures to store the bits. So do all
958 * the book-keeping now.
959 */
3f508953 960static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
eefb47f6 961 enum pt_level level)
3b827c1b 962{
f4f97b3e
JF
963 SetPagePinned(page);
964 return 0;
965}
3b827c1b 966
b96229b5 967static void __init xen_mark_init_mm_pinned(void)
f4f97b3e 968{
eefb47f6 969 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 970}
3b827c1b 971
eefb47f6
JF
972static int xen_unpin_page(struct mm_struct *mm, struct page *page,
973 enum pt_level level)
f4f97b3e 974{
d60cd46b 975 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 976
f4f97b3e
JF
977 if (pgfl && !PageHighMem(page)) {
978 void *pt = lowmem_page_address(page);
979 unsigned long pfn = page_to_pfn(page);
74260714
JF
980 spinlock_t *ptl = NULL;
981 struct multicall_space mcs;
982
11ad93e5
JF
983 /*
984 * Do the converse to pin_page. If we're using split
985 * pte locks, we must be holding the lock for while
986 * the pte page is unpinned but still RO to prevent
987 * concurrent updates from seeing it in this
988 * partially-pinned state.
989 */
74260714 990 if (level == PT_PTE) {
eefb47f6 991 ptl = xen_pte_lock(page, mm);
74260714 992
11ad93e5
JF
993 if (ptl)
994 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
995 }
996
997 mcs = __xen_mc_entry(0);
f4f97b3e
JF
998
999 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
1001 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002
1003 if (ptl) {
1004 /* unlock when batch completed */
7708ad64 1005 xen_mc_callback(xen_pte_unlock, ptl);
74260714 1006 }
f4f97b3e
JF
1007 }
1008
1009 return 0; /* never need to flush on unpin */
3b827c1b
JF
1010}
1011
f4f97b3e 1012/* Release a pagetables pages back as normal RW */
eefb47f6 1013static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 1014{
5f94fb5b
JF
1015 trace_xen_mmu_pgd_unpin(mm, pgd);
1016
f4f97b3e
JF
1017 xen_mc_batch();
1018
74260714 1019 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 1020
d6182fbf
JF
1021#ifdef CONFIG_X86_64
1022 {
1023 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024
1025 if (user_pgd) {
f63c2f24
T
1026 xen_do_pin(MMUEXT_UNPIN_TABLE,
1027 PFN_DOWN(__pa(user_pgd)));
eefb47f6 1028 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
1029 }
1030 }
1031#endif
1032
5deb30d1
JF
1033#ifdef CONFIG_X86_PAE
1034 /* Need to make sure unshared kernel PMD is unpinned */
47cb2ed9 1035 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1036 PT_PMD);
5deb30d1 1037#endif
d6182fbf 1038
86bbc2c2 1039 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
1040
1041 xen_mc_issue(0);
1042}
3b827c1b 1043
eefb47f6
JF
1044static void xen_pgd_unpin(struct mm_struct *mm)
1045{
1046 __xen_pgd_unpin(mm, mm->pgd);
1047}
1048
0e91398f
JF
1049/*
1050 * On resume, undo any pinning done at save, so that the rest of the
1051 * kernel doesn't see any unexpected pinned pagetables.
1052 */
1053void xen_mm_unpin_all(void)
1054{
0e91398f
JF
1055 struct page *page;
1056
a79e53d8 1057 spin_lock(&pgd_lock);
0e91398f
JF
1058
1059 list_for_each_entry(page, &pgd_list, lru) {
1060 if (PageSavePinned(page)) {
1061 BUG_ON(!PagePinned(page));
eefb47f6 1062 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1063 ClearPageSavePinned(page);
1064 }
1065 }
1066
a79e53d8 1067 spin_unlock(&pgd_lock);
0e91398f
JF
1068}
1069
4c13629f 1070static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
3b827c1b 1071{
f4f97b3e 1072 spin_lock(&next->page_table_lock);
eefb47f6 1073 xen_pgd_pin(next);
f4f97b3e 1074 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1075}
1076
4c13629f 1077static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
3b827c1b 1078{
f4f97b3e 1079 spin_lock(&mm->page_table_lock);
eefb47f6 1080 xen_pgd_pin(mm);
f4f97b3e 1081 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1082}
1083
3b827c1b 1084
f87e4cac
JF
1085#ifdef CONFIG_SMP
1086/* Another cpu may still have their %cr3 pointing at the pagetable, so
1087 we need to repoint it somewhere else before we can unpin it. */
1088static void drop_other_mm_ref(void *info)
1089{
1090 struct mm_struct *mm = info;
ce87b3d3 1091 struct mm_struct *active_mm;
3b827c1b 1092
2113f469 1093 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
ce87b3d3 1094
2113f469 1095 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
f87e4cac 1096 leave_mm(smp_processor_id());
9f79991d
JF
1097
1098 /* If this cpu still has a stale cr3 reference, then make sure
1099 it has been flushed. */
2113f469 1100 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
9f79991d 1101 load_cr3(swapper_pg_dir);
f87e4cac 1102}
3b827c1b 1103
7708ad64 1104static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1105{
e4d98207 1106 cpumask_var_t mask;
9f79991d
JF
1107 unsigned cpu;
1108
f87e4cac
JF
1109 if (current->active_mm == mm) {
1110 if (current->mm == mm)
1111 load_cr3(swapper_pg_dir);
1112 else
1113 leave_mm(smp_processor_id());
9f79991d
JF
1114 }
1115
1116 /* Get the "official" set of cpus referring to our pagetable. */
e4d98207
MT
1117 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118 for_each_online_cpu(cpu) {
78f1c4d6 1119 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
e4d98207
MT
1120 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121 continue;
1122 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123 }
1124 return;
1125 }
78f1c4d6 1126 cpumask_copy(mask, mm_cpumask(mm));
9f79991d
JF
1127
1128 /* It's possible that a vcpu may have a stale reference to our
1129 cr3, because its in lazy mode, and it hasn't yet flushed
1130 its set of pending hypercalls yet. In this case, we can
1131 look at its actual current cr3 value, and force it to flush
1132 if needed. */
1133 for_each_online_cpu(cpu) {
1134 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
e4d98207 1135 cpumask_set_cpu(cpu, mask);
3b827c1b
JF
1136 }
1137
e4d98207
MT
1138 if (!cpumask_empty(mask))
1139 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140 free_cpumask_var(mask);
f87e4cac
JF
1141}
1142#else
7708ad64 1143static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1144{
1145 if (current->active_mm == mm)
1146 load_cr3(swapper_pg_dir);
1147}
1148#endif
1149
1150/*
1151 * While a process runs, Xen pins its pagetables, which means that the
1152 * hypervisor forces it to be read-only, and it controls all updates
1153 * to it. This means that all pagetable updates have to go via the
1154 * hypervisor, which is moderately expensive.
1155 *
1156 * Since we're pulling the pagetable down, we switch to use init_mm,
1157 * unpin old process pagetable and mark it all read-write, which
1158 * allows further operations on it to be simple memory accesses.
1159 *
1160 * The only subtle point is that another CPU may be still using the
1161 * pagetable because of lazy tlb flushing. This means we need need to
1162 * switch all CPUs off this pagetable before we can unpin it.
1163 */
4c13629f 1164static void xen_exit_mmap(struct mm_struct *mm)
f87e4cac
JF
1165{
1166 get_cpu(); /* make sure we don't move around */
7708ad64 1167 xen_drop_mm_ref(mm);
f87e4cac 1168 put_cpu();
3b827c1b 1169
f120f13e 1170 spin_lock(&mm->page_table_lock);
df912ea4
JF
1171
1172 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1173 if (xen_page_pinned(mm->pgd))
eefb47f6 1174 xen_pgd_unpin(mm);
74260714 1175
f120f13e 1176 spin_unlock(&mm->page_table_lock);
3b827c1b 1177}
994025ca 1178
c7112887
AR
1179static void xen_post_allocator_init(void);
1180
279b706b
SS
1181static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1182{
1183 /* reserve the range used */
1184 native_pagetable_reserve(start, end);
1185
1186 /* set as RW the rest */
1187 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1188 PFN_PHYS(pgt_buf_top));
1189 while (end < PFN_PHYS(pgt_buf_top)) {
1190 make_lowmem_page_readwrite(__va(end));
1191 end += PAGE_SIZE;
1192 }
1193}
1194
7f914062
KRW
1195#ifdef CONFIG_X86_64
1196static void __init xen_cleanhighmap(unsigned long vaddr,
1197 unsigned long vaddr_end)
1198{
1199 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1200 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1201
1202 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1203 * We include the PMD passed in on _both_ boundaries. */
1204 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1205 pmd++, vaddr += PMD_SIZE) {
1206 if (pmd_none(*pmd))
1207 continue;
1208 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1209 set_pmd(pmd, __pmd(0));
1210 }
1211 /* In case we did something silly, we should crash in this function
1212 * instead of somewhere later and be confusing. */
1213 xen_mc_flush();
1214}
1215#endif
98104c34 1216static void __init xen_pagetable_init(void)
319f3ba5 1217{
7f914062
KRW
1218#ifdef CONFIG_X86_64
1219 unsigned long size;
1220 unsigned long addr;
1221#endif
98104c34 1222 paging_init();
319f3ba5 1223 xen_setup_shared_info();
7f914062
KRW
1224#ifdef CONFIG_X86_64
1225 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1226 unsigned long new_mfn_list;
1227
1228 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1229
1230 /* On 32-bit, we get zero so this never gets executed. */
1231 new_mfn_list = xen_revector_p2m_tree();
1232 if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
1233 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1234 memset((void *)xen_start_info->mfn_list, 0xff, size);
1235
1236 /* We should be in __ka space. */
1237 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1238 addr = xen_start_info->mfn_list;
7f914062
KRW
1239 /* We roundup to the PMD, which means that if anybody at this stage is
1240 * using the __ka address of xen_start_info or xen_start_info->shared_info
1241 * they are in going to crash. Fortunatly we have already revectored
1242 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1243 size = roundup(size, PMD_SIZE);
1244 xen_cleanhighmap(addr, addr + size);
1245
785f6231 1246 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
7f914062
KRW
1247 memblock_free(__pa(xen_start_info->mfn_list), size);
1248 /* And revector! Bye bye old array */
1249 xen_start_info->mfn_list = new_mfn_list;
32873187
KRW
1250 } else
1251 goto skip;
7f914062 1252 }
3aca7fbc
KRW
1253 /* At this stage, cleanup_highmap has already cleaned __ka space
1254 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1255 * the ramdisk). We continue on, erasing PMD entries that point to page
1256 * tables - do note that they are accessible at this stage via __va.
1257 * For good measure we also round up to the PMD - which means that if
1258 * anybody is using __ka address to the initial boot-stack - and try
1259 * to use it - they are going to crash. The xen_start_info has been
1260 * taken care of already in xen_setup_kernel_pagetable. */
1261 addr = xen_start_info->pt_base;
1262 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1263
1264 xen_cleanhighmap(addr, addr + size);
1265 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1266#ifdef DEBUG
1267 /* This is superflous and is not neccessary, but you know what
1268 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1269 * anything at this stage. */
1270 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1271#endif
32873187 1272skip:
7f914062 1273#endif
f1d7062a 1274 xen_post_allocator_init();
319f3ba5 1275}
319f3ba5
JF
1276static void xen_write_cr2(unsigned long cr2)
1277{
2113f469 1278 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
319f3ba5
JF
1279}
1280
1281static unsigned long xen_read_cr2(void)
1282{
2113f469 1283 return this_cpu_read(xen_vcpu)->arch.cr2;
319f3ba5
JF
1284}
1285
1286unsigned long xen_read_cr2_direct(void)
1287{
2113f469 1288 return this_cpu_read(xen_vcpu_info.arch.cr2);
319f3ba5
JF
1289}
1290
1291static void xen_flush_tlb(void)
1292{
1293 struct mmuext_op *op;
1294 struct multicall_space mcs;
1295
c8eed171
JF
1296 trace_xen_mmu_flush_tlb(0);
1297
319f3ba5
JF
1298 preempt_disable();
1299
1300 mcs = xen_mc_entry(sizeof(*op));
1301
1302 op = mcs.args;
1303 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1304 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1305
1306 xen_mc_issue(PARAVIRT_LAZY_MMU);
1307
1308 preempt_enable();
1309}
1310
1311static void xen_flush_tlb_single(unsigned long addr)
1312{
1313 struct mmuext_op *op;
1314 struct multicall_space mcs;
1315
c8eed171
JF
1316 trace_xen_mmu_flush_tlb_single(addr);
1317
319f3ba5
JF
1318 preempt_disable();
1319
1320 mcs = xen_mc_entry(sizeof(*op));
1321 op = mcs.args;
1322 op->cmd = MMUEXT_INVLPG_LOCAL;
1323 op->arg1.linear_addr = addr & PAGE_MASK;
1324 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1325
1326 xen_mc_issue(PARAVIRT_LAZY_MMU);
1327
1328 preempt_enable();
1329}
1330
1331static void xen_flush_tlb_others(const struct cpumask *cpus,
e7b52ffd
AS
1332 struct mm_struct *mm, unsigned long start,
1333 unsigned long end)
319f3ba5
JF
1334{
1335 struct {
1336 struct mmuext_op op;
32dd1194 1337#ifdef CONFIG_SMP
900cba88 1338 DECLARE_BITMAP(mask, num_processors);
32dd1194
KRW
1339#else
1340 DECLARE_BITMAP(mask, NR_CPUS);
1341#endif
319f3ba5
JF
1342 } *args;
1343 struct multicall_space mcs;
1344
e7b52ffd 1345 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
c8eed171 1346
e3f8a74e
JF
1347 if (cpumask_empty(cpus))
1348 return; /* nothing to do */
319f3ba5
JF
1349
1350 mcs = xen_mc_entry(sizeof(*args));
1351 args = mcs.args;
1352 args->op.arg2.vcpumask = to_cpumask(args->mask);
1353
1354 /* Remove us, and any offline CPUS. */
1355 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1356 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
319f3ba5 1357
e7b52ffd 1358 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
ce7184bd 1359 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
319f3ba5 1360 args->op.cmd = MMUEXT_INVLPG_MULTI;
e7b52ffd 1361 args->op.arg1.linear_addr = start;
319f3ba5
JF
1362 }
1363
1364 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1365
319f3ba5
JF
1366 xen_mc_issue(PARAVIRT_LAZY_MMU);
1367}
1368
1369static unsigned long xen_read_cr3(void)
1370{
2113f469 1371 return this_cpu_read(xen_cr3);
319f3ba5
JF
1372}
1373
1374static void set_current_cr3(void *v)
1375{
2113f469 1376 this_cpu_write(xen_current_cr3, (unsigned long)v);
319f3ba5
JF
1377}
1378
1379static void __xen_write_cr3(bool kernel, unsigned long cr3)
1380{
dcf7435c 1381 struct mmuext_op op;
319f3ba5
JF
1382 unsigned long mfn;
1383
c8eed171
JF
1384 trace_xen_mmu_write_cr3(kernel, cr3);
1385
319f3ba5
JF
1386 if (cr3)
1387 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1388 else
1389 mfn = 0;
1390
1391 WARN_ON(mfn == 0 && kernel);
1392
dcf7435c
JF
1393 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1394 op.arg1.mfn = mfn;
319f3ba5 1395
dcf7435c 1396 xen_extend_mmuext_op(&op);
319f3ba5
JF
1397
1398 if (kernel) {
2113f469 1399 this_cpu_write(xen_cr3, cr3);
319f3ba5
JF
1400
1401 /* Update xen_current_cr3 once the batch has actually
1402 been submitted. */
1403 xen_mc_callback(set_current_cr3, (void *)cr3);
1404 }
1405}
1406
1407static void xen_write_cr3(unsigned long cr3)
1408{
1409 BUG_ON(preemptible());
1410
1411 xen_mc_batch(); /* disables interrupts */
1412
1413 /* Update while interrupts are disabled, so its atomic with
1414 respect to ipis */
2113f469 1415 this_cpu_write(xen_cr3, cr3);
319f3ba5
JF
1416
1417 __xen_write_cr3(true, cr3);
1418
1419#ifdef CONFIG_X86_64
1420 {
1421 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1422 if (user_pgd)
1423 __xen_write_cr3(false, __pa(user_pgd));
1424 else
1425 __xen_write_cr3(false, 0);
1426 }
1427#endif
1428
1429 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1430}
1431
1432static int xen_pgd_alloc(struct mm_struct *mm)
1433{
1434 pgd_t *pgd = mm->pgd;
1435 int ret = 0;
1436
1437 BUG_ON(PagePinned(virt_to_page(pgd)));
1438
1439#ifdef CONFIG_X86_64
1440 {
1441 struct page *page = virt_to_page(pgd);
1442 pgd_t *user_pgd;
1443
1444 BUG_ON(page->private != 0);
1445
1446 ret = -ENOMEM;
1447
1448 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1449 page->private = (unsigned long)user_pgd;
1450
1451 if (user_pgd != NULL) {
1452 user_pgd[pgd_index(VSYSCALL_START)] =
1453 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1454 ret = 0;
1455 }
1456
1457 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1458 }
1459#endif
1460
1461 return ret;
1462}
1463
1464static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1465{
1466#ifdef CONFIG_X86_64
1467 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1468
1469 if (user_pgd)
1470 free_page((unsigned long)user_pgd);
1471#endif
1472}
1473
ee176455 1474#ifdef CONFIG_X86_32
3f508953 1475static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1f4f9315
JF
1476{
1477 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1478 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1479 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1480 pte_val_ma(pte));
ee176455
SS
1481
1482 return pte;
1483}
1484#else /* CONFIG_X86_64 */
3f508953 1485static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
ee176455
SS
1486{
1487 unsigned long pfn = pte_pfn(pte);
fef5ba79
JF
1488
1489 /*
1490 * If the new pfn is within the range of the newly allocated
1491 * kernel pagetable, and it isn't being mapped into an
d8aa5ec3
SS
1492 * early_ioremap fixmap slot as a freshly allocated page, make sure
1493 * it is RO.
fef5ba79 1494 */
d8aa5ec3 1495 if (((!is_early_ioremap_ptep(ptep) &&
b9269dc7 1496 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
d8aa5ec3 1497 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
fef5ba79 1498 pte = pte_wrprotect(pte);
1f4f9315
JF
1499
1500 return pte;
1501}
ee176455 1502#endif /* CONFIG_X86_64 */
1f4f9315 1503
d095d43e
DV
1504/*
1505 * Init-time set_pte while constructing initial pagetables, which
1506 * doesn't allow RO page table pages to be remapped RW.
1507 *
66a27dde
DV
1508 * If there is no MFN for this PFN then this page is initially
1509 * ballooned out so clear the PTE (as in decrease_reservation() in
1510 * drivers/xen/balloon.c).
1511 *
d095d43e
DV
1512 * Many of these PTE updates are done on unpinned and writable pages
1513 * and doing a hypercall for these is unnecessary and expensive. At
1514 * this point it is not possible to tell if a page is pinned or not,
1515 * so always write the PTE directly and rely on Xen trapping and
1516 * emulating any updates as necessary.
1517 */
3f508953 1518static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1f4f9315 1519{
66a27dde
DV
1520 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1521 pte = mask_rw_pte(ptep, pte);
1522 else
1523 pte = __pte_ma(0);
1f4f9315 1524
d095d43e 1525 native_set_pte(ptep, pte);
1f4f9315 1526}
319f3ba5 1527
b96229b5
JF
1528static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1529{
1530 struct mmuext_op op;
1531 op.cmd = cmd;
1532 op.arg1.mfn = pfn_to_mfn(pfn);
1533 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1534 BUG();
1535}
1536
319f3ba5
JF
1537/* Early in boot, while setting up the initial pagetable, assume
1538 everything is pinned. */
3f508953 1539static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
319f3ba5 1540{
b96229b5
JF
1541#ifdef CONFIG_FLATMEM
1542 BUG_ON(mem_map); /* should only be used early */
1543#endif
1544 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1545 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1546}
1547
1548/* Used for pmd and pud */
3f508953 1549static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
b96229b5 1550{
319f3ba5
JF
1551#ifdef CONFIG_FLATMEM
1552 BUG_ON(mem_map); /* should only be used early */
1553#endif
1554 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1555}
1556
1557/* Early release_pte assumes that all pts are pinned, since there's
1558 only init_mm and anything attached to that is pinned. */
3f508953 1559static void __init xen_release_pte_init(unsigned long pfn)
319f3ba5 1560{
b96229b5 1561 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
319f3ba5
JF
1562 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1563}
1564
3f508953 1565static void __init xen_release_pmd_init(unsigned long pfn)
319f3ba5 1566{
b96229b5 1567 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
319f3ba5
JF
1568}
1569
bc7fe1d9
JF
1570static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1571{
1572 struct multicall_space mcs;
1573 struct mmuext_op *op;
1574
1575 mcs = __xen_mc_entry(sizeof(*op));
1576 op = mcs.args;
1577 op->cmd = cmd;
1578 op->arg1.mfn = pfn_to_mfn(pfn);
1579
1580 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1581}
1582
1583static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1584{
1585 struct multicall_space mcs;
1586 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1587
1588 mcs = __xen_mc_entry(0);
1589 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1590 pfn_pte(pfn, prot), 0);
1591}
1592
319f3ba5
JF
1593/* This needs to make sure the new pte page is pinned iff its being
1594 attached to a pinned pagetable. */
bc7fe1d9
JF
1595static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1596 unsigned level)
319f3ba5 1597{
bc7fe1d9
JF
1598 bool pinned = PagePinned(virt_to_page(mm->pgd));
1599
c2ba050d 1600 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
319f3ba5 1601
c2ba050d 1602 if (pinned) {
bc7fe1d9 1603 struct page *page = pfn_to_page(pfn);
319f3ba5 1604
319f3ba5
JF
1605 SetPagePinned(page);
1606
319f3ba5 1607 if (!PageHighMem(page)) {
bc7fe1d9
JF
1608 xen_mc_batch();
1609
1610 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1611
319f3ba5 1612 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
bc7fe1d9
JF
1613 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1614
1615 xen_mc_issue(PARAVIRT_LAZY_MMU);
319f3ba5
JF
1616 } else {
1617 /* make sure there are no stray mappings of
1618 this page */
1619 kmap_flush_unused();
1620 }
1621 }
1622}
1623
1624static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1625{
1626 xen_alloc_ptpage(mm, pfn, PT_PTE);
1627}
1628
1629static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1630{
1631 xen_alloc_ptpage(mm, pfn, PT_PMD);
1632}
1633
1634/* This should never happen until we're OK to use struct page */
bc7fe1d9 1635static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
319f3ba5
JF
1636{
1637 struct page *page = pfn_to_page(pfn);
c2ba050d 1638 bool pinned = PagePinned(page);
319f3ba5 1639
c2ba050d 1640 trace_xen_mmu_release_ptpage(pfn, level, pinned);
319f3ba5 1641
c2ba050d 1642 if (pinned) {
319f3ba5 1643 if (!PageHighMem(page)) {
bc7fe1d9
JF
1644 xen_mc_batch();
1645
319f3ba5 1646 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
bc7fe1d9
JF
1647 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1648
1649 __set_pfn_prot(pfn, PAGE_KERNEL);
1650
1651 xen_mc_issue(PARAVIRT_LAZY_MMU);
319f3ba5
JF
1652 }
1653 ClearPagePinned(page);
1654 }
1655}
1656
1657static void xen_release_pte(unsigned long pfn)
1658{
1659 xen_release_ptpage(pfn, PT_PTE);
1660}
1661
1662static void xen_release_pmd(unsigned long pfn)
1663{
1664 xen_release_ptpage(pfn, PT_PMD);
1665}
1666
1667#if PAGETABLE_LEVELS == 4
1668static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1669{
1670 xen_alloc_ptpage(mm, pfn, PT_PUD);
1671}
1672
1673static void xen_release_pud(unsigned long pfn)
1674{
1675 xen_release_ptpage(pfn, PT_PUD);
1676}
1677#endif
1678
1679void __init xen_reserve_top(void)
1680{
1681#ifdef CONFIG_X86_32
1682 unsigned long top = HYPERVISOR_VIRT_START;
1683 struct xen_platform_parameters pp;
1684
1685 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1686 top = pp.virt_start;
1687
1688 reserve_top_address(-top);
1689#endif /* CONFIG_X86_32 */
1690}
1691
1692/*
1693 * Like __va(), but returns address in the kernel mapping (which is
1694 * all we have until the physical memory mapping has been set up.
1695 */
1696static void *__ka(phys_addr_t paddr)
1697{
1698#ifdef CONFIG_X86_64
1699 return (void *)(paddr + __START_KERNEL_map);
1700#else
1701 return __va(paddr);
1702#endif
1703}
1704
1705/* Convert a machine address to physical address */
1706static unsigned long m2p(phys_addr_t maddr)
1707{
1708 phys_addr_t paddr;
1709
1710 maddr &= PTE_PFN_MASK;
1711 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1712
1713 return paddr;
1714}
1715
1716/* Convert a machine address to kernel virtual */
1717static void *m2v(phys_addr_t maddr)
1718{
1719 return __ka(m2p(maddr));
1720}
1721
4ec5387c 1722/* Set the page permissions on an identity-mapped pages */
319f3ba5
JF
1723static void set_page_prot(void *addr, pgprot_t prot)
1724{
1725 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1726 pte_t pte = pfn_pte(pfn, prot);
1727
1728 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1729 BUG();
1730}
caaf9ecf 1731#ifdef CONFIG_X86_32
3f508953 1732static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
319f3ba5
JF
1733{
1734 unsigned pmdidx, pteidx;
1735 unsigned ident_pte;
1736 unsigned long pfn;
1737
764f0138
JF
1738 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1739 PAGE_SIZE);
1740
319f3ba5
JF
1741 ident_pte = 0;
1742 pfn = 0;
1743 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1744 pte_t *pte_page;
1745
1746 /* Reuse or allocate a page of ptes */
1747 if (pmd_present(pmd[pmdidx]))
1748 pte_page = m2v(pmd[pmdidx].pmd);
1749 else {
1750 /* Check for free pte pages */
764f0138 1751 if (ident_pte == LEVEL1_IDENT_ENTRIES)
319f3ba5
JF
1752 break;
1753
1754 pte_page = &level1_ident_pgt[ident_pte];
1755 ident_pte += PTRS_PER_PTE;
1756
1757 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1758 }
1759
1760 /* Install mappings */
1761 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1762 pte_t pte;
1763
a91d9287
SS
1764#ifdef CONFIG_X86_32
1765 if (pfn > max_pfn_mapped)
1766 max_pfn_mapped = pfn;
1767#endif
1768
319f3ba5
JF
1769 if (!pte_none(pte_page[pteidx]))
1770 continue;
1771
1772 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1773 pte_page[pteidx] = pte;
1774 }
1775 }
1776
1777 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1778 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1779
1780 set_page_prot(pmd, PAGE_KERNEL_RO);
1781}
caaf9ecf 1782#endif
7e77506a
IC
1783void __init xen_setup_machphys_mapping(void)
1784{
1785 struct xen_machphys_mapping mapping;
7e77506a
IC
1786
1787 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1788 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
ccbcdf7c 1789 machine_to_phys_nr = mapping.max_mfn + 1;
7e77506a 1790 } else {
ccbcdf7c 1791 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
7e77506a 1792 }
ccbcdf7c 1793#ifdef CONFIG_X86_32
61cca2fa
JB
1794 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1795 < machine_to_phys_mapping);
ccbcdf7c 1796#endif
7e77506a
IC
1797}
1798
319f3ba5
JF
1799#ifdef CONFIG_X86_64
1800static void convert_pfn_mfn(void *v)
1801{
1802 pte_t *pte = v;
1803 int i;
1804
1805 /* All levels are converted the same way, so just treat them
1806 as ptes. */
1807 for (i = 0; i < PTRS_PER_PTE; i++)
1808 pte[i] = xen_make_pte(pte[i].pte);
1809}
488f046d
KRW
1810static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1811 unsigned long addr)
1812{
1813 if (*pt_base == PFN_DOWN(__pa(addr))) {
1814 set_page_prot((void *)addr, PAGE_KERNEL);
1815 clear_page((void *)addr);
1816 (*pt_base)++;
1817 }
1818 if (*pt_end == PFN_DOWN(__pa(addr))) {
1819 set_page_prot((void *)addr, PAGE_KERNEL);
1820 clear_page((void *)addr);
1821 (*pt_end)--;
1822 }
1823}
319f3ba5 1824/*
0d2eb44f 1825 * Set up the initial kernel pagetable.
319f3ba5
JF
1826 *
1827 * We can construct this by grafting the Xen provided pagetable into
1828 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1829 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1830 * means that only the kernel has a physical mapping to start with -
1831 * but that's enough to get __va working. We need to fill in the rest
1832 * of the physical mapping once some sort of allocator has been set
1833 * up.
1834 */
3699aad0 1835void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
319f3ba5
JF
1836{
1837 pud_t *l3;
1838 pmd_t *l2;
488f046d
KRW
1839 unsigned long addr[3];
1840 unsigned long pt_base, pt_end;
1841 unsigned i;
319f3ba5 1842
14988a4d
SS
1843 /* max_pfn_mapped is the last pfn mapped in the initial memory
1844 * mappings. Considering that on Xen after the kernel mappings we
1845 * have the mappings of some pages that don't exist in pfn space, we
1846 * set max_pfn_mapped to the last real pfn mapped. */
1847 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1848
488f046d
KRW
1849 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1850 pt_end = pt_base + xen_start_info->nr_pt_frames;
1851
319f3ba5
JF
1852 /* Zap identity mapping */
1853 init_level4_pgt[0] = __pgd(0);
1854
1855 /* Pre-constructed entries are in pfn, so convert to mfn */
4fac153a
KRW
1856 /* L4[272] -> level3_ident_pgt
1857 * L4[511] -> level3_kernel_pgt */
319f3ba5 1858 convert_pfn_mfn(init_level4_pgt);
4fac153a
KRW
1859
1860 /* L3_i[0] -> level2_ident_pgt */
319f3ba5 1861 convert_pfn_mfn(level3_ident_pgt);
4fac153a
KRW
1862 /* L3_k[510] -> level2_kernel_pgt
1863 * L3_i[511] -> level2_fixmap_pgt */
319f3ba5
JF
1864 convert_pfn_mfn(level3_kernel_pgt);
1865
4fac153a 1866 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
319f3ba5
JF
1867 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1868 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1869
488f046d
KRW
1870 addr[0] = (unsigned long)pgd;
1871 addr[1] = (unsigned long)l3;
1872 addr[2] = (unsigned long)l2;
4fac153a
KRW
1873 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1874 * Both L4[272][0] and L4[511][511] have entries that point to the same
1875 * L2 (PMD) tables. Meaning that if you modify it in __va space
1876 * it will be also modified in the __ka space! (But if you just
1877 * modify the PMD table to point to other PTE's or none, then you
1878 * are OK - which is what cleanup_highmap does) */
ae895ed7 1879 copy_page(level2_ident_pgt, l2);
4fac153a 1880 /* Graft it onto L4[511][511] */
ae895ed7 1881 copy_page(level2_kernel_pgt, l2);
319f3ba5 1882
4fac153a 1883 /* Get [511][510] and graft that in level2_fixmap_pgt */
319f3ba5
JF
1884 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1885 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
ae895ed7 1886 copy_page(level2_fixmap_pgt, l2);
4fac153a
KRW
1887 /* Note that we don't do anything with level1_fixmap_pgt which
1888 * we don't need. */
319f3ba5
JF
1889
1890 /* Make pagetable pieces RO */
1891 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1892 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1893 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1894 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
caaf9ecf 1895 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
319f3ba5
JF
1896 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1897 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1898
1899 /* Pin down new L4 */
1900 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1901 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1902
1903 /* Unpin Xen-provided one */
1904 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1905
319f3ba5
JF
1906 /*
1907 * At this stage there can be no user pgd, and no page
1908 * structure to attach it to, so make sure we just set kernel
1909 * pgd.
1910 */
1911 xen_mc_batch();
488f046d 1912 __xen_write_cr3(true, __pa(init_level4_pgt));
319f3ba5
JF
1913 xen_mc_issue(PARAVIRT_LAZY_CPU);
1914
488f046d
KRW
1915 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1916 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1917 * the initial domain. For guests using the toolstack, they are in:
1918 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1919 * rip out the [L4] (pgd), but for guests we shave off three pages.
1920 */
1921 for (i = 0; i < ARRAY_SIZE(addr); i++)
1922 check_pt_base(&pt_base, &pt_end, addr[i]);
319f3ba5 1923
488f046d
KRW
1924 /* Our (by three pages) smaller Xen pagetable that we are using */
1925 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
7f914062
KRW
1926 /* Revector the xen_start_info */
1927 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
319f3ba5
JF
1928}
1929#else /* !CONFIG_X86_64 */
5b5c1af1
IC
1930static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1931static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1932
3f508953 1933static void __init xen_write_cr3_init(unsigned long cr3)
5b5c1af1
IC
1934{
1935 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1936
1937 BUG_ON(read_cr3() != __pa(initial_page_table));
1938 BUG_ON(cr3 != __pa(swapper_pg_dir));
1939
1940 /*
1941 * We are switching to swapper_pg_dir for the first time (from
1942 * initial_page_table) and therefore need to mark that page
1943 * read-only and then pin it.
1944 *
1945 * Xen disallows sharing of kernel PMDs for PAE
1946 * guests. Therefore we must copy the kernel PMD from
1947 * initial_page_table into a new kernel PMD to be used in
1948 * swapper_pg_dir.
1949 */
1950 swapper_kernel_pmd =
1951 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
ae895ed7 1952 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
5b5c1af1
IC
1953 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1954 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1955 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1956
1957 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1958 xen_write_cr3(cr3);
1959 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1960
1961 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1962 PFN_DOWN(__pa(initial_page_table)));
1963 set_page_prot(initial_page_table, PAGE_KERNEL);
1964 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1965
1966 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1967}
319f3ba5 1968
3699aad0 1969void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
319f3ba5
JF
1970{
1971 pmd_t *kernel_pmd;
1972
5b5c1af1
IC
1973 initial_kernel_pmd =
1974 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
f0991802 1975
a91d9287
SS
1976 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1977 xen_start_info->nr_pt_frames * PAGE_SIZE +
1978 512*1024);
319f3ba5
JF
1979
1980 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
ae895ed7 1981 copy_page(initial_kernel_pmd, kernel_pmd);
319f3ba5 1982
5b5c1af1 1983 xen_map_identity_early(initial_kernel_pmd, max_pfn);
319f3ba5 1984
ae895ed7 1985 copy_page(initial_page_table, pgd);
5b5c1af1
IC
1986 initial_page_table[KERNEL_PGD_BOUNDARY] =
1987 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
319f3ba5 1988
5b5c1af1
IC
1989 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1990 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
319f3ba5
JF
1991 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1992
1993 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1994
5b5c1af1
IC
1995 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1996 PFN_DOWN(__pa(initial_page_table)));
1997 xen_write_cr3(__pa(initial_page_table));
319f3ba5 1998
24aa0788 1999 memblock_reserve(__pa(xen_start_info->pt_base),
dc6821e0 2000 xen_start_info->nr_pt_frames * PAGE_SIZE);
319f3ba5
JF
2001}
2002#endif /* CONFIG_X86_64 */
2003
98511f35
JF
2004static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2005
3b3809ac 2006static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
319f3ba5
JF
2007{
2008 pte_t pte;
2009
2010 phys >>= PAGE_SHIFT;
2011
2012 switch (idx) {
2013 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2014#ifdef CONFIG_X86_F00F_BUG
2015 case FIX_F00F_IDT:
2016#endif
2017#ifdef CONFIG_X86_32
2018 case FIX_WP_TEST:
2019 case FIX_VDSO:
2020# ifdef CONFIG_HIGHMEM
2021 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2022# endif
2023#else
2024 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
5d5791af 2025 case VVAR_PAGE:
319f3ba5 2026#endif
3ecb1b7d
JF
2027 case FIX_TEXT_POKE0:
2028 case FIX_TEXT_POKE1:
2029 /* All local page mappings */
319f3ba5
JF
2030 pte = pfn_pte(phys, prot);
2031 break;
2032
98511f35
JF
2033#ifdef CONFIG_X86_LOCAL_APIC
2034 case FIX_APIC_BASE: /* maps dummy local APIC */
2035 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2036 break;
2037#endif
2038
2039#ifdef CONFIG_X86_IO_APIC
2040 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2041 /*
2042 * We just don't map the IO APIC - all access is via
2043 * hypercalls. Keep the address in the pte for reference.
2044 */
27abd14b 2045 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
98511f35
JF
2046 break;
2047#endif
2048
c0011dbf
JF
2049 case FIX_PARAVIRT_BOOTMAP:
2050 /* This is an MFN, but it isn't an IO mapping from the
2051 IO domain */
319f3ba5
JF
2052 pte = mfn_pte(phys, prot);
2053 break;
c0011dbf
JF
2054
2055 default:
2056 /* By default, set_fixmap is used for hardware mappings */
2057 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2058 break;
319f3ba5
JF
2059 }
2060
2061 __native_set_fixmap(idx, pte);
2062
2063#ifdef CONFIG_X86_64
2064 /* Replicate changes to map the vsyscall page into the user
2065 pagetable vsyscall mapping. */
5d5791af
AL
2066 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2067 idx == VVAR_PAGE) {
319f3ba5
JF
2068 unsigned long vaddr = __fix_to_virt(idx);
2069 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2070 }
2071#endif
2072}
2073
3f508953 2074static void __init xen_post_allocator_init(void)
319f3ba5
JF
2075{
2076 pv_mmu_ops.set_pte = xen_set_pte;
2077 pv_mmu_ops.set_pmd = xen_set_pmd;
2078 pv_mmu_ops.set_pud = xen_set_pud;
2079#if PAGETABLE_LEVELS == 4
2080 pv_mmu_ops.set_pgd = xen_set_pgd;
2081#endif
2082
2083 /* This will work as long as patching hasn't happened yet
2084 (which it hasn't) */
2085 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2086 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2087 pv_mmu_ops.release_pte = xen_release_pte;
2088 pv_mmu_ops.release_pmd = xen_release_pmd;
2089#if PAGETABLE_LEVELS == 4
2090 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2091 pv_mmu_ops.release_pud = xen_release_pud;
2092#endif
2093
2094#ifdef CONFIG_X86_64
2095 SetPagePinned(virt_to_page(level3_user_vsyscall));
2096#endif
2097 xen_mark_init_mm_pinned();
2098}
2099
b407fc57
JF
2100static void xen_leave_lazy_mmu(void)
2101{
5caecb94 2102 preempt_disable();
b407fc57
JF
2103 xen_mc_flush();
2104 paravirt_leave_lazy_mmu();
5caecb94 2105 preempt_enable();
b407fc57 2106}
319f3ba5 2107
3f508953 2108static const struct pv_mmu_ops xen_mmu_ops __initconst = {
319f3ba5
JF
2109 .read_cr2 = xen_read_cr2,
2110 .write_cr2 = xen_write_cr2,
2111
2112 .read_cr3 = xen_read_cr3,
5b5c1af1
IC
2113#ifdef CONFIG_X86_32
2114 .write_cr3 = xen_write_cr3_init,
2115#else
319f3ba5 2116 .write_cr3 = xen_write_cr3,
5b5c1af1 2117#endif
319f3ba5
JF
2118
2119 .flush_tlb_user = xen_flush_tlb,
2120 .flush_tlb_kernel = xen_flush_tlb,
2121 .flush_tlb_single = xen_flush_tlb_single,
2122 .flush_tlb_others = xen_flush_tlb_others,
2123
2124 .pte_update = paravirt_nop,
2125 .pte_update_defer = paravirt_nop,
2126
2127 .pgd_alloc = xen_pgd_alloc,
2128 .pgd_free = xen_pgd_free,
2129
2130 .alloc_pte = xen_alloc_pte_init,
2131 .release_pte = xen_release_pte_init,
b96229b5 2132 .alloc_pmd = xen_alloc_pmd_init,
b96229b5 2133 .release_pmd = xen_release_pmd_init,
319f3ba5 2134
319f3ba5 2135 .set_pte = xen_set_pte_init,
319f3ba5
JF
2136 .set_pte_at = xen_set_pte_at,
2137 .set_pmd = xen_set_pmd_hyper,
2138
2139 .ptep_modify_prot_start = __ptep_modify_prot_start,
2140 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2141
da5de7c2
JF
2142 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2143 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
319f3ba5 2144
da5de7c2
JF
2145 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2146 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
319f3ba5
JF
2147
2148#ifdef CONFIG_X86_PAE
2149 .set_pte_atomic = xen_set_pte_atomic,
319f3ba5
JF
2150 .pte_clear = xen_pte_clear,
2151 .pmd_clear = xen_pmd_clear,
2152#endif /* CONFIG_X86_PAE */
2153 .set_pud = xen_set_pud_hyper,
2154
da5de7c2
JF
2155 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2156 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
319f3ba5
JF
2157
2158#if PAGETABLE_LEVELS == 4
da5de7c2
JF
2159 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2160 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
319f3ba5
JF
2161 .set_pgd = xen_set_pgd_hyper,
2162
b96229b5
JF
2163 .alloc_pud = xen_alloc_pmd_init,
2164 .release_pud = xen_release_pmd_init,
319f3ba5
JF
2165#endif /* PAGETABLE_LEVELS == 4 */
2166
2167 .activate_mm = xen_activate_mm,
2168 .dup_mmap = xen_dup_mmap,
2169 .exit_mmap = xen_exit_mmap,
2170
2171 .lazy_mode = {
2172 .enter = paravirt_enter_lazy_mmu,
b407fc57 2173 .leave = xen_leave_lazy_mmu,
319f3ba5
JF
2174 },
2175
2176 .set_fixmap = xen_set_fixmap,
2177};
2178
030cb6c0
TG
2179void __init xen_init_mmu_ops(void)
2180{
279b706b 2181 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
7737b215 2182 x86_init.paging.pagetable_init = xen_pagetable_init;
030cb6c0 2183 pv_mmu_ops = xen_mmu_ops;
d2cb2145 2184
98511f35 2185 memset(dummy_mapping, 0xff, PAGE_SIZE);
030cb6c0 2186}
319f3ba5 2187
08bbc9da
AN
2188/* Protected by xen_reservation_lock. */
2189#define MAX_CONTIG_ORDER 9 /* 2MB */
2190static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2191
2192#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2193static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2194 unsigned long *in_frames,
2195 unsigned long *out_frames)
2196{
2197 int i;
2198 struct multicall_space mcs;
2199
2200 xen_mc_batch();
2201 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2202 mcs = __xen_mc_entry(0);
2203
2204 if (in_frames)
2205 in_frames[i] = virt_to_mfn(vaddr);
2206
2207 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
6eaa412f 2208 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
08bbc9da
AN
2209
2210 if (out_frames)
2211 out_frames[i] = virt_to_pfn(vaddr);
2212 }
2213 xen_mc_issue(0);
2214}
2215
2216/*
2217 * Update the pfn-to-mfn mappings for a virtual address range, either to
2218 * point to an array of mfns, or contiguously from a single starting
2219 * mfn.
2220 */
2221static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2222 unsigned long *mfns,
2223 unsigned long first_mfn)
2224{
2225 unsigned i, limit;
2226 unsigned long mfn;
2227
2228 xen_mc_batch();
2229
2230 limit = 1u << order;
2231 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2232 struct multicall_space mcs;
2233 unsigned flags;
2234
2235 mcs = __xen_mc_entry(0);
2236 if (mfns)
2237 mfn = mfns[i];
2238 else
2239 mfn = first_mfn + i;
2240
2241 if (i < (limit - 1))
2242 flags = 0;
2243 else {
2244 if (order == 0)
2245 flags = UVMF_INVLPG | UVMF_ALL;
2246 else
2247 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2248 }
2249
2250 MULTI_update_va_mapping(mcs.mc, vaddr,
2251 mfn_pte(mfn, PAGE_KERNEL), flags);
2252
2253 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2254 }
2255
2256 xen_mc_issue(0);
2257}
2258
2259/*
2260 * Perform the hypercall to exchange a region of our pfns to point to
2261 * memory with the required contiguous alignment. Takes the pfns as
2262 * input, and populates mfns as output.
2263 *
2264 * Returns a success code indicating whether the hypervisor was able to
2265 * satisfy the request or not.
2266 */
2267static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2268 unsigned long *pfns_in,
2269 unsigned long extents_out,
2270 unsigned int order_out,
2271 unsigned long *mfns_out,
2272 unsigned int address_bits)
2273{
2274 long rc;
2275 int success;
2276
2277 struct xen_memory_exchange exchange = {
2278 .in = {
2279 .nr_extents = extents_in,
2280 .extent_order = order_in,
2281 .extent_start = pfns_in,
2282 .domid = DOMID_SELF
2283 },
2284 .out = {
2285 .nr_extents = extents_out,
2286 .extent_order = order_out,
2287 .extent_start = mfns_out,
2288 .address_bits = address_bits,
2289 .domid = DOMID_SELF
2290 }
2291 };
2292
2293 BUG_ON(extents_in << order_in != extents_out << order_out);
2294
2295 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2296 success = (exchange.nr_exchanged == extents_in);
2297
2298 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2299 BUG_ON(success && (rc != 0));
2300
2301 return success;
2302}
2303
2304int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2305 unsigned int address_bits)
2306{
2307 unsigned long *in_frames = discontig_frames, out_frame;
2308 unsigned long flags;
2309 int success;
2310
2311 /*
2312 * Currently an auto-translated guest will not perform I/O, nor will
2313 * it require PAE page directories below 4GB. Therefore any calls to
2314 * this function are redundant and can be ignored.
2315 */
2316
2317 if (xen_feature(XENFEAT_auto_translated_physmap))
2318 return 0;
2319
2320 if (unlikely(order > MAX_CONTIG_ORDER))
2321 return -ENOMEM;
2322
2323 memset((void *) vstart, 0, PAGE_SIZE << order);
2324
08bbc9da
AN
2325 spin_lock_irqsave(&xen_reservation_lock, flags);
2326
2327 /* 1. Zap current PTEs, remembering MFNs. */
2328 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2329
2330 /* 2. Get a new contiguous memory extent. */
2331 out_frame = virt_to_pfn(vstart);
2332 success = xen_exchange_memory(1UL << order, 0, in_frames,
2333 1, order, &out_frame,
2334 address_bits);
2335
2336 /* 3. Map the new extent in place of old pages. */
2337 if (success)
2338 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2339 else
2340 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2341
2342 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2343
2344 return success ? 0 : -ENOMEM;
2345}
2346EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2347
2348void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2349{
2350 unsigned long *out_frames = discontig_frames, in_frame;
2351 unsigned long flags;
2352 int success;
2353
2354 if (xen_feature(XENFEAT_auto_translated_physmap))
2355 return;
2356
2357 if (unlikely(order > MAX_CONTIG_ORDER))
2358 return;
2359
2360 memset((void *) vstart, 0, PAGE_SIZE << order);
2361
08bbc9da
AN
2362 spin_lock_irqsave(&xen_reservation_lock, flags);
2363
2364 /* 1. Find start MFN of contiguous extent. */
2365 in_frame = virt_to_mfn(vstart);
2366
2367 /* 2. Zap current PTEs. */
2368 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2369
2370 /* 3. Do the exchange for non-contiguous MFNs. */
2371 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2372 0, out_frames, 0);
2373
2374 /* 4. Map new pages in place of old pages. */
2375 if (success)
2376 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2377 else
2378 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2379
2380 spin_unlock_irqrestore(&xen_reservation_lock, flags);
030cb6c0 2381}
08bbc9da 2382EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
319f3ba5 2383
ca65f9fc 2384#ifdef CONFIG_XEN_PVHVM
34b6f01a
OH
2385#ifdef CONFIG_PROC_VMCORE
2386/*
2387 * This function is used in two contexts:
2388 * - the kdump kernel has to check whether a pfn of the crashed kernel
2389 * was a ballooned page. vmcore is using this function to decide
2390 * whether to access a pfn of the crashed kernel.
2391 * - the kexec kernel has to check whether a pfn was ballooned by the
2392 * previous kernel. If the pfn is ballooned, handle it properly.
2393 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2394 * handle the pfn special in this case.
2395 */
2396static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2397{
2398 struct xen_hvm_get_mem_type a = {
2399 .domid = DOMID_SELF,
2400 .pfn = pfn,
2401 };
2402 int ram;
2403
2404 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2405 return -ENXIO;
2406
2407 switch (a.mem_type) {
2408 case HVMMEM_mmio_dm:
2409 ram = 0;
2410 break;
2411 case HVMMEM_ram_rw:
2412 case HVMMEM_ram_ro:
2413 default:
2414 ram = 1;
2415 break;
2416 }
2417
2418 return ram;
2419}
2420#endif
2421
59151001
SS
2422static void xen_hvm_exit_mmap(struct mm_struct *mm)
2423{
2424 struct xen_hvm_pagetable_dying a;
2425 int rc;
2426
2427 a.domid = DOMID_SELF;
2428 a.gpa = __pa(mm->pgd);
2429 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2430 WARN_ON_ONCE(rc < 0);
2431}
2432
2433static int is_pagetable_dying_supported(void)
2434{
2435 struct xen_hvm_pagetable_dying a;
2436 int rc = 0;
2437
2438 a.domid = DOMID_SELF;
2439 a.gpa = 0x00;
2440 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2441 if (rc < 0) {
2442 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2443 return 0;
2444 }
2445 return 1;
2446}
2447
2448void __init xen_hvm_init_mmu_ops(void)
2449{
2450 if (is_pagetable_dying_supported())
2451 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
34b6f01a
OH
2452#ifdef CONFIG_PROC_VMCORE
2453 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2454#endif
59151001 2455}
ca65f9fc 2456#endif
59151001 2457
de1ef206
IC
2458#define REMAP_BATCH_SIZE 16
2459
2460struct remap_data {
2461 unsigned long mfn;
2462 pgprot_t prot;
2463 struct mmu_update *mmu_update;
2464};
2465
2466static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2467 unsigned long addr, void *data)
2468{
2469 struct remap_data *rmd = data;
2470 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2471
d5108316 2472 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
de1ef206
IC
2473 rmd->mmu_update->val = pte_val_ma(pte);
2474 rmd->mmu_update++;
2475
2476 return 0;
2477}
2478
2479int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2480 unsigned long addr,
2481 unsigned long mfn, int nr,
9a032e39
IC
2482 pgprot_t prot, unsigned domid,
2483 struct page **pages)
2484
de1ef206
IC
2485{
2486 struct remap_data rmd;
2487 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2488 int batch;
2489 unsigned long range;
2490 int err = 0;
2491
1a1d4331
SS
2492 if (xen_feature(XENFEAT_auto_translated_physmap))
2493 return -EINVAL;
2494
de1ef206
IC
2495 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2496
314e51b9 2497 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
de1ef206
IC
2498
2499 rmd.mfn = mfn;
2500 rmd.prot = prot;
2501
2502 while (nr) {
2503 batch = min(REMAP_BATCH_SIZE, nr);
2504 range = (unsigned long)batch << PAGE_SHIFT;
2505
2506 rmd.mmu_update = mmu_update;
2507 err = apply_to_page_range(vma->vm_mm, addr, range,
2508 remap_area_mfn_pte_fn, &rmd);
2509 if (err)
2510 goto out;
2511
69870a84
DV
2512 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2513 if (err < 0)
de1ef206
IC
2514 goto out;
2515
2516 nr -= batch;
2517 addr += range;
2518 }
2519
2520 err = 0;
2521out:
2522
2523 flush_tlb_all();
2524
2525 return err;
2526}
2527EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
9a032e39
IC
2528
2529/* Returns: 0 success */
2530int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2531 int numpgs, struct page **pages)
2532{
2533 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2534 return 0;
2535
2536 return -EINVAL;
2537}
2538EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);