]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/xen/mmu_pv.c
Merge tag 'v4.12-rc4' into x86/mm, to pick up fixes
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / mmu_pv.c
CommitLineData
7e0563de
VK
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched/mm.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/export.h>
47#include <linux/init.h>
48#include <linux/gfp.h>
49#include <linux/memblock.h>
50#include <linux/seq_file.h>
51#include <linux/crash_dump.h>
29985b09
JG
52#ifdef CONFIG_KEXEC_CORE
53#include <linux/kexec.h>
54#endif
7e0563de
VK
55
56#include <trace/events/xen.h>
57
58#include <asm/pgtable.h>
59#include <asm/tlbflush.h>
60#include <asm/fixmap.h>
61#include <asm/mmu_context.h>
62#include <asm/setup.h>
63#include <asm/paravirt.h>
64#include <asm/e820/api.h>
65#include <asm/linkage.h>
66#include <asm/page.h>
67#include <asm/init.h>
68#include <asm/pat.h>
69#include <asm/smp.h>
70
71#include <asm/xen/hypercall.h>
72#include <asm/xen/hypervisor.h>
73
74#include <xen/xen.h>
75#include <xen/page.h>
76#include <xen/interface/xen.h>
77#include <xen/interface/hvm/hvm_op.h>
78#include <xen/interface/version.h>
79#include <xen/interface/memory.h>
80#include <xen/hvc-console.h>
81
82#include "multicalls.h"
83#include "mmu.h"
84#include "debugfs.h"
85
86#ifdef CONFIG_X86_32
87/*
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
91 */
92#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94#endif
95#ifdef CONFIG_X86_64
96/* l3 pud for userspace vsyscall mapping */
97static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98#endif /* CONFIG_X86_64 */
99
100/*
101 * Note about cr3 (pagetable base) values:
102 *
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
108 *
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
113 */
114DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
116
117static phys_addr_t xen_pt_base, xen_pt_size __initdata;
118
119/*
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
122 */
123#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124
125void make_lowmem_page_readonly(void *vaddr)
126{
127 pte_t *pte, ptev;
128 unsigned long address = (unsigned long)vaddr;
129 unsigned int level;
130
131 pte = lookup_address(address, &level);
132 if (pte == NULL)
133 return; /* vaddr missing */
134
135 ptev = pte_wrprotect(*pte);
136
137 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 BUG();
139}
140
141void make_lowmem_page_readwrite(void *vaddr)
142{
143 pte_t *pte, ptev;
144 unsigned long address = (unsigned long)vaddr;
145 unsigned int level;
146
147 pte = lookup_address(address, &level);
148 if (pte == NULL)
149 return; /* vaddr missing */
150
151 ptev = pte_mkwrite(*pte);
152
153 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 BUG();
155}
156
157
158static bool xen_page_pinned(void *ptr)
159{
160 struct page *page = virt_to_page(ptr);
161
162 return PagePinned(page);
163}
164
165void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
166{
167 struct multicall_space mcs;
168 struct mmu_update *u;
169
170 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
171
172 mcs = xen_mc_entry(sizeof(*u));
173 u = mcs.args;
174
175 /* ptep might be kmapped when using 32-bit HIGHPTE */
176 u->ptr = virt_to_machine(ptep).maddr;
177 u->val = pte_val_ma(pteval);
178
179 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
180
181 xen_mc_issue(PARAVIRT_LAZY_MMU);
182}
183EXPORT_SYMBOL_GPL(xen_set_domain_pte);
184
185static void xen_extend_mmu_update(const struct mmu_update *update)
186{
187 struct multicall_space mcs;
188 struct mmu_update *u;
189
190 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
191
192 if (mcs.mc != NULL) {
193 mcs.mc->args[1]++;
194 } else {
195 mcs = __xen_mc_entry(sizeof(*u));
196 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
197 }
198
199 u = mcs.args;
200 *u = *update;
201}
202
203static void xen_extend_mmuext_op(const struct mmuext_op *op)
204{
205 struct multicall_space mcs;
206 struct mmuext_op *u;
207
208 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
209
210 if (mcs.mc != NULL) {
211 mcs.mc->args[1]++;
212 } else {
213 mcs = __xen_mc_entry(sizeof(*u));
214 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
215 }
216
217 u = mcs.args;
218 *u = *op;
219}
220
221static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
222{
223 struct mmu_update u;
224
225 preempt_disable();
226
227 xen_mc_batch();
228
229 /* ptr may be ioremapped for 64-bit pagetable setup */
230 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
231 u.val = pmd_val_ma(val);
232 xen_extend_mmu_update(&u);
233
234 xen_mc_issue(PARAVIRT_LAZY_MMU);
235
236 preempt_enable();
237}
238
239static void xen_set_pmd(pmd_t *ptr, pmd_t val)
240{
241 trace_xen_mmu_set_pmd(ptr, val);
242
243 /* If page is not pinned, we can just update the entry
244 directly */
245 if (!xen_page_pinned(ptr)) {
246 *ptr = val;
247 return;
248 }
249
250 xen_set_pmd_hyper(ptr, val);
251}
252
253/*
254 * Associate a virtual page frame with a given physical page frame
255 * and protection flags for that frame.
256 */
257void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
258{
259 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
260}
261
262static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
263{
264 struct mmu_update u;
265
266 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
267 return false;
268
269 xen_mc_batch();
270
271 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
272 u.val = pte_val_ma(pteval);
273 xen_extend_mmu_update(&u);
274
275 xen_mc_issue(PARAVIRT_LAZY_MMU);
276
277 return true;
278}
279
280static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
281{
282 if (!xen_batched_set_pte(ptep, pteval)) {
283 /*
284 * Could call native_set_pte() here and trap and
285 * emulate the PTE write but with 32-bit guests this
286 * needs two traps (one for each of the two 32-bit
287 * words in the PTE) so do one hypercall directly
288 * instead.
289 */
290 struct mmu_update u;
291
292 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
293 u.val = pte_val_ma(pteval);
294 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
295 }
296}
297
298static void xen_set_pte(pte_t *ptep, pte_t pteval)
299{
300 trace_xen_mmu_set_pte(ptep, pteval);
301 __xen_set_pte(ptep, pteval);
302}
303
304static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
305 pte_t *ptep, pte_t pteval)
306{
307 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
308 __xen_set_pte(ptep, pteval);
309}
310
311pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
312 unsigned long addr, pte_t *ptep)
313{
314 /* Just return the pte as-is. We preserve the bits on commit */
315 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
316 return *ptep;
317}
318
319void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
320 pte_t *ptep, pte_t pte)
321{
322 struct mmu_update u;
323
324 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
325 xen_mc_batch();
326
327 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
328 u.val = pte_val_ma(pte);
329 xen_extend_mmu_update(&u);
330
331 xen_mc_issue(PARAVIRT_LAZY_MMU);
332}
333
334/* Assume pteval_t is equivalent to all the other *val_t types. */
335static pteval_t pte_mfn_to_pfn(pteval_t val)
336{
337 if (val & _PAGE_PRESENT) {
338 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
339 unsigned long pfn = mfn_to_pfn(mfn);
340
341 pteval_t flags = val & PTE_FLAGS_MASK;
342 if (unlikely(pfn == ~0))
343 val = flags & ~_PAGE_PRESENT;
344 else
345 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
346 }
347
348 return val;
349}
350
351static pteval_t pte_pfn_to_mfn(pteval_t val)
352{
353 if (val & _PAGE_PRESENT) {
354 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
355 pteval_t flags = val & PTE_FLAGS_MASK;
356 unsigned long mfn;
357
989513a7
JG
358 mfn = __pfn_to_mfn(pfn);
359
7e0563de
VK
360 /*
361 * If there's no mfn for the pfn, then just create an
362 * empty non-present pte. Unfortunately this loses
363 * information about the original pfn, so
364 * pte_mfn_to_pfn is asymmetric.
365 */
366 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
367 mfn = 0;
368 flags = 0;
369 } else
370 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
371 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
372 }
373
374 return val;
375}
376
377__visible pteval_t xen_pte_val(pte_t pte)
378{
379 pteval_t pteval = pte.pte;
380
381 return pte_mfn_to_pfn(pteval);
382}
383PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
384
385__visible pgdval_t xen_pgd_val(pgd_t pgd)
386{
387 return pte_mfn_to_pfn(pgd.pgd);
388}
389PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
390
391__visible pte_t xen_make_pte(pteval_t pte)
392{
393 pte = pte_pfn_to_mfn(pte);
394
395 return native_make_pte(pte);
396}
397PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
398
399__visible pgd_t xen_make_pgd(pgdval_t pgd)
400{
401 pgd = pte_pfn_to_mfn(pgd);
402 return native_make_pgd(pgd);
403}
404PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
405
406__visible pmdval_t xen_pmd_val(pmd_t pmd)
407{
408 return pte_mfn_to_pfn(pmd.pmd);
409}
410PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
411
412static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
413{
414 struct mmu_update u;
415
416 preempt_disable();
417
418 xen_mc_batch();
419
420 /* ptr may be ioremapped for 64-bit pagetable setup */
421 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
422 u.val = pud_val_ma(val);
423 xen_extend_mmu_update(&u);
424
425 xen_mc_issue(PARAVIRT_LAZY_MMU);
426
427 preempt_enable();
428}
429
430static void xen_set_pud(pud_t *ptr, pud_t val)
431{
432 trace_xen_mmu_set_pud(ptr, val);
433
434 /* If page is not pinned, we can just update the entry
435 directly */
436 if (!xen_page_pinned(ptr)) {
437 *ptr = val;
438 return;
439 }
440
441 xen_set_pud_hyper(ptr, val);
442}
443
444#ifdef CONFIG_X86_PAE
445static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
446{
447 trace_xen_mmu_set_pte_atomic(ptep, pte);
448 set_64bit((u64 *)ptep, native_pte_val(pte));
449}
450
451static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
452{
453 trace_xen_mmu_pte_clear(mm, addr, ptep);
454 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
455 native_pte_clear(mm, addr, ptep);
456}
457
458static void xen_pmd_clear(pmd_t *pmdp)
459{
460 trace_xen_mmu_pmd_clear(pmdp);
461 set_pmd(pmdp, __pmd(0));
462}
463#endif /* CONFIG_X86_PAE */
464
465__visible pmd_t xen_make_pmd(pmdval_t pmd)
466{
467 pmd = pte_pfn_to_mfn(pmd);
468 return native_make_pmd(pmd);
469}
470PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
471
472#if CONFIG_PGTABLE_LEVELS == 4
473__visible pudval_t xen_pud_val(pud_t pud)
474{
475 return pte_mfn_to_pfn(pud.pud);
476}
477PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
478
479__visible pud_t xen_make_pud(pudval_t pud)
480{
481 pud = pte_pfn_to_mfn(pud);
482
483 return native_make_pud(pud);
484}
485PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
486
487static pgd_t *xen_get_user_pgd(pgd_t *pgd)
488{
489 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
490 unsigned offset = pgd - pgd_page;
491 pgd_t *user_ptr = NULL;
492
493 if (offset < pgd_index(USER_LIMIT)) {
494 struct page *page = virt_to_page(pgd_page);
495 user_ptr = (pgd_t *)page->private;
496 if (user_ptr)
497 user_ptr += offset;
498 }
499
500 return user_ptr;
501}
502
503static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
504{
505 struct mmu_update u;
506
507 u.ptr = virt_to_machine(ptr).maddr;
508 u.val = p4d_val_ma(val);
509 xen_extend_mmu_update(&u);
510}
511
512/*
513 * Raw hypercall-based set_p4d, intended for in early boot before
514 * there's a page structure. This implies:
515 * 1. The only existing pagetable is the kernel's
516 * 2. It is always pinned
517 * 3. It has no user pagetable attached to it
518 */
519static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
520{
521 preempt_disable();
522
523 xen_mc_batch();
524
525 __xen_set_p4d_hyper(ptr, val);
526
527 xen_mc_issue(PARAVIRT_LAZY_MMU);
528
529 preempt_enable();
530}
531
532static void xen_set_p4d(p4d_t *ptr, p4d_t val)
533{
534 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
535 pgd_t pgd_val;
536
537 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
538
539 /* If page is not pinned, we can just update the entry
540 directly */
541 if (!xen_page_pinned(ptr)) {
542 *ptr = val;
543 if (user_ptr) {
544 WARN_ON(xen_page_pinned(user_ptr));
545 pgd_val.pgd = p4d_val_ma(val);
546 *user_ptr = pgd_val;
547 }
548 return;
549 }
550
551 /* If it's pinned, then we can at least batch the kernel and
552 user updates together. */
553 xen_mc_batch();
554
555 __xen_set_p4d_hyper(ptr, val);
556 if (user_ptr)
557 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
558
559 xen_mc_issue(PARAVIRT_LAZY_MMU);
560}
561#endif /* CONFIG_PGTABLE_LEVELS == 4 */
562
563static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
564 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
565 bool last, unsigned long limit)
566{
567 int i, nr, flush = 0;
568
569 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
570 for (i = 0; i < nr; i++) {
571 if (!pmd_none(pmd[i]))
572 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
573 }
574 return flush;
575}
576
577static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
578 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
579 bool last, unsigned long limit)
580{
581 int i, nr, flush = 0;
582
583 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
584 for (i = 0; i < nr; i++) {
585 pmd_t *pmd;
586
587 if (pud_none(pud[i]))
588 continue;
589
590 pmd = pmd_offset(&pud[i], 0);
591 if (PTRS_PER_PMD > 1)
592 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
593 flush |= xen_pmd_walk(mm, pmd, func,
594 last && i == nr - 1, limit);
595 }
596 return flush;
597}
598
599static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
600 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
601 bool last, unsigned long limit)
602{
603 int i, nr, flush = 0;
604
605 nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D;
606 for (i = 0; i < nr; i++) {
607 pud_t *pud;
608
609 if (p4d_none(p4d[i]))
610 continue;
611
612 pud = pud_offset(&p4d[i], 0);
613 if (PTRS_PER_PUD > 1)
614 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
615 flush |= xen_pud_walk(mm, pud, func,
616 last && i == nr - 1, limit);
617 }
618 return flush;
619}
620
621/*
622 * (Yet another) pagetable walker. This one is intended for pinning a
623 * pagetable. This means that it walks a pagetable and calls the
624 * callback function on each page it finds making up the page table,
625 * at every level. It walks the entire pagetable, but it only bothers
626 * pinning pte pages which are below limit. In the normal case this
627 * will be STACK_TOP_MAX, but at boot we need to pin up to
628 * FIXADDR_TOP.
629 *
630 * For 32-bit the important bit is that we don't pin beyond there,
631 * because then we start getting into Xen's ptes.
632 *
633 * For 64-bit, we must skip the Xen hole in the middle of the address
634 * space, just after the big x86-64 virtual hole.
635 */
636static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
637 int (*func)(struct mm_struct *mm, struct page *,
638 enum pt_level),
639 unsigned long limit)
640{
641 int i, nr, flush = 0;
642 unsigned hole_low, hole_high;
643
644 /* The limit is the last byte to be touched */
645 limit--;
646 BUG_ON(limit >= FIXADDR_TOP);
647
7e0563de
VK
648 /*
649 * 64-bit has a great big hole in the middle of the address
650 * space, which contains the Xen mappings. On 32-bit these
651 * will end up making a zero-sized hole and so is a no-op.
652 */
653 hole_low = pgd_index(USER_LIMIT);
654 hole_high = pgd_index(PAGE_OFFSET);
655
656 nr = pgd_index(limit) + 1;
657 for (i = 0; i < nr; i++) {
658 p4d_t *p4d;
659
660 if (i >= hole_low && i < hole_high)
661 continue;
662
663 if (pgd_none(pgd[i]))
664 continue;
665
666 p4d = p4d_offset(&pgd[i], 0);
667 if (PTRS_PER_P4D > 1)
668 flush |= (*func)(mm, virt_to_page(p4d), PT_P4D);
669 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
670 }
671
672 /* Do the top level last, so that the callbacks can use it as
673 a cue to do final things like tlb flushes. */
674 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
675
676 return flush;
677}
678
679static int xen_pgd_walk(struct mm_struct *mm,
680 int (*func)(struct mm_struct *mm, struct page *,
681 enum pt_level),
682 unsigned long limit)
683{
684 return __xen_pgd_walk(mm, mm->pgd, func, limit);
685}
686
687/* If we're using split pte locks, then take the page's lock and
688 return a pointer to it. Otherwise return NULL. */
689static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
690{
691 spinlock_t *ptl = NULL;
692
693#if USE_SPLIT_PTE_PTLOCKS
694 ptl = ptlock_ptr(page);
695 spin_lock_nest_lock(ptl, &mm->page_table_lock);
696#endif
697
698 return ptl;
699}
700
701static void xen_pte_unlock(void *v)
702{
703 spinlock_t *ptl = v;
704 spin_unlock(ptl);
705}
706
707static void xen_do_pin(unsigned level, unsigned long pfn)
708{
709 struct mmuext_op op;
710
711 op.cmd = level;
712 op.arg1.mfn = pfn_to_mfn(pfn);
713
714 xen_extend_mmuext_op(&op);
715}
716
717static int xen_pin_page(struct mm_struct *mm, struct page *page,
718 enum pt_level level)
719{
720 unsigned pgfl = TestSetPagePinned(page);
721 int flush;
722
723 if (pgfl)
724 flush = 0; /* already pinned */
725 else if (PageHighMem(page))
726 /* kmaps need flushing if we found an unpinned
727 highpage */
728 flush = 1;
729 else {
730 void *pt = lowmem_page_address(page);
731 unsigned long pfn = page_to_pfn(page);
732 struct multicall_space mcs = __xen_mc_entry(0);
733 spinlock_t *ptl;
734
735 flush = 0;
736
737 /*
738 * We need to hold the pagetable lock between the time
739 * we make the pagetable RO and when we actually pin
740 * it. If we don't, then other users may come in and
741 * attempt to update the pagetable by writing it,
742 * which will fail because the memory is RO but not
743 * pinned, so Xen won't do the trap'n'emulate.
744 *
745 * If we're using split pte locks, we can't hold the
746 * entire pagetable's worth of locks during the
747 * traverse, because we may wrap the preempt count (8
748 * bits). The solution is to mark RO and pin each PTE
749 * page while holding the lock. This means the number
750 * of locks we end up holding is never more than a
751 * batch size (~32 entries, at present).
752 *
753 * If we're not using split pte locks, we needn't pin
754 * the PTE pages independently, because we're
755 * protected by the overall pagetable lock.
756 */
757 ptl = NULL;
758 if (level == PT_PTE)
759 ptl = xen_pte_lock(page, mm);
760
761 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
762 pfn_pte(pfn, PAGE_KERNEL_RO),
763 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
764
765 if (ptl) {
766 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
767
768 /* Queue a deferred unlock for when this batch
769 is completed. */
770 xen_mc_callback(xen_pte_unlock, ptl);
771 }
772 }
773
774 return flush;
775}
776
777/* This is called just after a mm has been created, but it has not
778 been used yet. We need to make sure that its pagetable is all
779 read-only, and can be pinned. */
780static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
781{
782 trace_xen_mmu_pgd_pin(mm, pgd);
783
784 xen_mc_batch();
785
786 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
787 /* re-enable interrupts for flushing */
788 xen_mc_issue(0);
789
790 kmap_flush_unused();
791
792 xen_mc_batch();
793 }
794
795#ifdef CONFIG_X86_64
796 {
797 pgd_t *user_pgd = xen_get_user_pgd(pgd);
798
799 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
800
801 if (user_pgd) {
802 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
803 xen_do_pin(MMUEXT_PIN_L4_TABLE,
804 PFN_DOWN(__pa(user_pgd)));
805 }
806 }
807#else /* CONFIG_X86_32 */
808#ifdef CONFIG_X86_PAE
809 /* Need to make sure unshared kernel PMD is pinnable */
810 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
811 PT_PMD);
812#endif
813 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
814#endif /* CONFIG_X86_64 */
815 xen_mc_issue(0);
816}
817
818static void xen_pgd_pin(struct mm_struct *mm)
819{
820 __xen_pgd_pin(mm, mm->pgd);
821}
822
823/*
824 * On save, we need to pin all pagetables to make sure they get their
825 * mfns turned into pfns. Search the list for any unpinned pgds and pin
826 * them (unpinned pgds are not currently in use, probably because the
827 * process is under construction or destruction).
828 *
829 * Expected to be called in stop_machine() ("equivalent to taking
830 * every spinlock in the system"), so the locking doesn't really
831 * matter all that much.
832 */
833void xen_mm_pin_all(void)
834{
835 struct page *page;
836
837 spin_lock(&pgd_lock);
838
839 list_for_each_entry(page, &pgd_list, lru) {
840 if (!PagePinned(page)) {
841 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
842 SetPageSavePinned(page);
843 }
844 }
845
846 spin_unlock(&pgd_lock);
847}
848
849/*
850 * The init_mm pagetable is really pinned as soon as its created, but
851 * that's before we have page structures to store the bits. So do all
852 * the book-keeping now.
853 */
854static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
855 enum pt_level level)
856{
857 SetPagePinned(page);
858 return 0;
859}
860
861static void __init xen_mark_init_mm_pinned(void)
862{
863 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
864}
865
866static int xen_unpin_page(struct mm_struct *mm, struct page *page,
867 enum pt_level level)
868{
869 unsigned pgfl = TestClearPagePinned(page);
870
871 if (pgfl && !PageHighMem(page)) {
872 void *pt = lowmem_page_address(page);
873 unsigned long pfn = page_to_pfn(page);
874 spinlock_t *ptl = NULL;
875 struct multicall_space mcs;
876
877 /*
878 * Do the converse to pin_page. If we're using split
879 * pte locks, we must be holding the lock for while
880 * the pte page is unpinned but still RO to prevent
881 * concurrent updates from seeing it in this
882 * partially-pinned state.
883 */
884 if (level == PT_PTE) {
885 ptl = xen_pte_lock(page, mm);
886
887 if (ptl)
888 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
889 }
890
891 mcs = __xen_mc_entry(0);
892
893 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
894 pfn_pte(pfn, PAGE_KERNEL),
895 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
896
897 if (ptl) {
898 /* unlock when batch completed */
899 xen_mc_callback(xen_pte_unlock, ptl);
900 }
901 }
902
903 return 0; /* never need to flush on unpin */
904}
905
906/* Release a pagetables pages back as normal RW */
907static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
908{
909 trace_xen_mmu_pgd_unpin(mm, pgd);
910
911 xen_mc_batch();
912
913 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
914
915#ifdef CONFIG_X86_64
916 {
917 pgd_t *user_pgd = xen_get_user_pgd(pgd);
918
919 if (user_pgd) {
920 xen_do_pin(MMUEXT_UNPIN_TABLE,
921 PFN_DOWN(__pa(user_pgd)));
922 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
923 }
924 }
925#endif
926
927#ifdef CONFIG_X86_PAE
928 /* Need to make sure unshared kernel PMD is unpinned */
929 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
930 PT_PMD);
931#endif
932
933 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
934
935 xen_mc_issue(0);
936}
937
938static void xen_pgd_unpin(struct mm_struct *mm)
939{
940 __xen_pgd_unpin(mm, mm->pgd);
941}
942
943/*
944 * On resume, undo any pinning done at save, so that the rest of the
945 * kernel doesn't see any unexpected pinned pagetables.
946 */
947void xen_mm_unpin_all(void)
948{
949 struct page *page;
950
951 spin_lock(&pgd_lock);
952
953 list_for_each_entry(page, &pgd_list, lru) {
954 if (PageSavePinned(page)) {
955 BUG_ON(!PagePinned(page));
956 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
957 ClearPageSavePinned(page);
958 }
959 }
960
961 spin_unlock(&pgd_lock);
962}
963
964static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
965{
966 spin_lock(&next->page_table_lock);
967 xen_pgd_pin(next);
968 spin_unlock(&next->page_table_lock);
969}
970
971static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
972{
973 spin_lock(&mm->page_table_lock);
974 xen_pgd_pin(mm);
975 spin_unlock(&mm->page_table_lock);
976}
977
978
979#ifdef CONFIG_SMP
980/* Another cpu may still have their %cr3 pointing at the pagetable, so
981 we need to repoint it somewhere else before we can unpin it. */
982static void drop_other_mm_ref(void *info)
983{
984 struct mm_struct *mm = info;
985 struct mm_struct *active_mm;
986
987 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
988
989 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
990 leave_mm(smp_processor_id());
991
992 /* If this cpu still has a stale cr3 reference, then make sure
993 it has been flushed. */
994 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
995 load_cr3(swapper_pg_dir);
996}
997
998static void xen_drop_mm_ref(struct mm_struct *mm)
999{
1000 cpumask_var_t mask;
1001 unsigned cpu;
1002
1003 if (current->active_mm == mm) {
1004 if (current->mm == mm)
1005 load_cr3(swapper_pg_dir);
1006 else
1007 leave_mm(smp_processor_id());
1008 }
1009
1010 /* Get the "official" set of cpus referring to our pagetable. */
1011 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1012 for_each_online_cpu(cpu) {
1013 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1014 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1015 continue;
1016 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1017 }
1018 return;
1019 }
1020 cpumask_copy(mask, mm_cpumask(mm));
1021
1022 /* It's possible that a vcpu may have a stale reference to our
1023 cr3, because its in lazy mode, and it hasn't yet flushed
1024 its set of pending hypercalls yet. In this case, we can
1025 look at its actual current cr3 value, and force it to flush
1026 if needed. */
1027 for_each_online_cpu(cpu) {
1028 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1029 cpumask_set_cpu(cpu, mask);
1030 }
1031
1032 if (!cpumask_empty(mask))
1033 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1034 free_cpumask_var(mask);
1035}
1036#else
1037static void xen_drop_mm_ref(struct mm_struct *mm)
1038{
1039 if (current->active_mm == mm)
1040 load_cr3(swapper_pg_dir);
1041}
1042#endif
1043
1044/*
1045 * While a process runs, Xen pins its pagetables, which means that the
1046 * hypervisor forces it to be read-only, and it controls all updates
1047 * to it. This means that all pagetable updates have to go via the
1048 * hypervisor, which is moderately expensive.
1049 *
1050 * Since we're pulling the pagetable down, we switch to use init_mm,
1051 * unpin old process pagetable and mark it all read-write, which
1052 * allows further operations on it to be simple memory accesses.
1053 *
1054 * The only subtle point is that another CPU may be still using the
1055 * pagetable because of lazy tlb flushing. This means we need need to
1056 * switch all CPUs off this pagetable before we can unpin it.
1057 */
1058static void xen_exit_mmap(struct mm_struct *mm)
1059{
1060 get_cpu(); /* make sure we don't move around */
1061 xen_drop_mm_ref(mm);
1062 put_cpu();
1063
1064 spin_lock(&mm->page_table_lock);
1065
1066 /* pgd may not be pinned in the error exit path of execve */
1067 if (xen_page_pinned(mm->pgd))
1068 xen_pgd_unpin(mm);
1069
1070 spin_unlock(&mm->page_table_lock);
1071}
1072
1073static void xen_post_allocator_init(void);
1074
1075static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1076{
1077 struct mmuext_op op;
1078
1079 op.cmd = cmd;
1080 op.arg1.mfn = pfn_to_mfn(pfn);
1081 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1082 BUG();
1083}
1084
1085#ifdef CONFIG_X86_64
1086static void __init xen_cleanhighmap(unsigned long vaddr,
1087 unsigned long vaddr_end)
1088{
1089 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1090 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1091
1092 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1093 * We include the PMD passed in on _both_ boundaries. */
1094 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1095 pmd++, vaddr += PMD_SIZE) {
1096 if (pmd_none(*pmd))
1097 continue;
1098 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1099 set_pmd(pmd, __pmd(0));
1100 }
1101 /* In case we did something silly, we should crash in this function
1102 * instead of somewhere later and be confusing. */
1103 xen_mc_flush();
1104}
1105
1106/*
1107 * Make a page range writeable and free it.
1108 */
1109static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1110{
1111 void *vaddr = __va(paddr);
1112 void *vaddr_end = vaddr + size;
1113
1114 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1115 make_lowmem_page_readwrite(vaddr);
1116
1117 memblock_free(paddr, size);
1118}
1119
1120static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1121{
1122 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1123
1124 if (unpin)
1125 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1126 ClearPagePinned(virt_to_page(__va(pa)));
1127 xen_free_ro_pages(pa, PAGE_SIZE);
1128}
1129
1130static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1131{
1132 unsigned long pa;
1133 pte_t *pte_tbl;
1134 int i;
1135
1136 if (pmd_large(*pmd)) {
1137 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1138 xen_free_ro_pages(pa, PMD_SIZE);
1139 return;
1140 }
1141
1142 pte_tbl = pte_offset_kernel(pmd, 0);
1143 for (i = 0; i < PTRS_PER_PTE; i++) {
1144 if (pte_none(pte_tbl[i]))
1145 continue;
1146 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1147 xen_free_ro_pages(pa, PAGE_SIZE);
1148 }
1149 set_pmd(pmd, __pmd(0));
1150 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1151}
1152
1153static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1154{
1155 unsigned long pa;
1156 pmd_t *pmd_tbl;
1157 int i;
1158
1159 if (pud_large(*pud)) {
1160 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1161 xen_free_ro_pages(pa, PUD_SIZE);
1162 return;
1163 }
1164
1165 pmd_tbl = pmd_offset(pud, 0);
1166 for (i = 0; i < PTRS_PER_PMD; i++) {
1167 if (pmd_none(pmd_tbl[i]))
1168 continue;
1169 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1170 }
1171 set_pud(pud, __pud(0));
1172 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1173}
1174
1175static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1176{
1177 unsigned long pa;
1178 pud_t *pud_tbl;
1179 int i;
1180
1181 if (p4d_large(*p4d)) {
1182 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1183 xen_free_ro_pages(pa, P4D_SIZE);
1184 return;
1185 }
1186
1187 pud_tbl = pud_offset(p4d, 0);
1188 for (i = 0; i < PTRS_PER_PUD; i++) {
1189 if (pud_none(pud_tbl[i]))
1190 continue;
1191 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1192 }
1193 set_p4d(p4d, __p4d(0));
1194 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1195}
1196
1197/*
1198 * Since it is well isolated we can (and since it is perhaps large we should)
1199 * also free the page tables mapping the initial P->M table.
1200 */
1201static void __init xen_cleanmfnmap(unsigned long vaddr)
1202{
1203 pgd_t *pgd;
1204 p4d_t *p4d;
1205 unsigned int i;
1206 bool unpin;
1207
1208 unpin = (vaddr == 2 * PGDIR_SIZE);
1209 vaddr &= PMD_MASK;
1210 pgd = pgd_offset_k(vaddr);
1211 p4d = p4d_offset(pgd, 0);
1212 for (i = 0; i < PTRS_PER_P4D; i++) {
1213 if (p4d_none(p4d[i]))
1214 continue;
1215 xen_cleanmfnmap_p4d(p4d + i, unpin);
1216 }
1217 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
1218 set_pgd(pgd, __pgd(0));
1219 xen_cleanmfnmap_free_pgtbl(p4d, unpin);
1220 }
1221}
1222
1223static void __init xen_pagetable_p2m_free(void)
1224{
1225 unsigned long size;
1226 unsigned long addr;
1227
1228 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1229
1230 /* No memory or already called. */
1231 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1232 return;
1233
1234 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1235 memset((void *)xen_start_info->mfn_list, 0xff, size);
1236
1237 addr = xen_start_info->mfn_list;
1238 /*
1239 * We could be in __ka space.
1240 * We roundup to the PMD, which means that if anybody at this stage is
1241 * using the __ka address of xen_start_info or
1242 * xen_start_info->shared_info they are in going to crash. Fortunatly
1243 * we have already revectored in xen_setup_kernel_pagetable and in
1244 * xen_setup_shared_info.
1245 */
1246 size = roundup(size, PMD_SIZE);
1247
1248 if (addr >= __START_KERNEL_map) {
1249 xen_cleanhighmap(addr, addr + size);
1250 size = PAGE_ALIGN(xen_start_info->nr_pages *
1251 sizeof(unsigned long));
1252 memblock_free(__pa(addr), size);
1253 } else {
1254 xen_cleanmfnmap(addr);
1255 }
1256}
1257
1258static void __init xen_pagetable_cleanhighmap(void)
1259{
1260 unsigned long size;
1261 unsigned long addr;
1262
1263 /* At this stage, cleanup_highmap has already cleaned __ka space
1264 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1265 * the ramdisk). We continue on, erasing PMD entries that point to page
1266 * tables - do note that they are accessible at this stage via __va.
1267 * For good measure we also round up to the PMD - which means that if
1268 * anybody is using __ka address to the initial boot-stack - and try
1269 * to use it - they are going to crash. The xen_start_info has been
1270 * taken care of already in xen_setup_kernel_pagetable. */
1271 addr = xen_start_info->pt_base;
1272 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1273
1274 xen_cleanhighmap(addr, addr + size);
1275 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1276#ifdef DEBUG
1277 /* This is superfluous and is not necessary, but you know what
1278 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1279 * anything at this stage. */
1280 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1281#endif
1282}
1283#endif
1284
1285static void __init xen_pagetable_p2m_setup(void)
1286{
7e0563de
VK
1287 xen_vmalloc_p2m_tree();
1288
1289#ifdef CONFIG_X86_64
1290 xen_pagetable_p2m_free();
1291
1292 xen_pagetable_cleanhighmap();
1293#endif
1294 /* And revector! Bye bye old array */
1295 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1296}
1297
1298static void __init xen_pagetable_init(void)
1299{
1300 paging_init();
1301 xen_post_allocator_init();
1302
1303 xen_pagetable_p2m_setup();
1304
1305 /* Allocate and initialize top and mid mfn levels for p2m structure */
1306 xen_build_mfn_list_list();
1307
1308 /* Remap memory freed due to conflicts with E820 map */
989513a7 1309 xen_remap_memory();
7e0563de
VK
1310
1311 xen_setup_shared_info();
1312}
1313static void xen_write_cr2(unsigned long cr2)
1314{
1315 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1316}
1317
1318static unsigned long xen_read_cr2(void)
1319{
1320 return this_cpu_read(xen_vcpu)->arch.cr2;
1321}
1322
1323unsigned long xen_read_cr2_direct(void)
1324{
1325 return this_cpu_read(xen_vcpu_info.arch.cr2);
1326}
1327
1328static void xen_flush_tlb(void)
1329{
1330 struct mmuext_op *op;
1331 struct multicall_space mcs;
1332
1333 trace_xen_mmu_flush_tlb(0);
1334
1335 preempt_disable();
1336
1337 mcs = xen_mc_entry(sizeof(*op));
1338
1339 op = mcs.args;
1340 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1341 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1342
1343 xen_mc_issue(PARAVIRT_LAZY_MMU);
1344
1345 preempt_enable();
1346}
1347
1348static void xen_flush_tlb_single(unsigned long addr)
1349{
1350 struct mmuext_op *op;
1351 struct multicall_space mcs;
1352
1353 trace_xen_mmu_flush_tlb_single(addr);
1354
1355 preempt_disable();
1356
1357 mcs = xen_mc_entry(sizeof(*op));
1358 op = mcs.args;
1359 op->cmd = MMUEXT_INVLPG_LOCAL;
1360 op->arg1.linear_addr = addr & PAGE_MASK;
1361 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1362
1363 xen_mc_issue(PARAVIRT_LAZY_MMU);
1364
1365 preempt_enable();
1366}
1367
1368static void xen_flush_tlb_others(const struct cpumask *cpus,
1369 struct mm_struct *mm, unsigned long start,
1370 unsigned long end)
1371{
1372 struct {
1373 struct mmuext_op op;
1374#ifdef CONFIG_SMP
1375 DECLARE_BITMAP(mask, num_processors);
1376#else
1377 DECLARE_BITMAP(mask, NR_CPUS);
1378#endif
1379 } *args;
1380 struct multicall_space mcs;
1381
1382 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1383
1384 if (cpumask_empty(cpus))
1385 return; /* nothing to do */
1386
1387 mcs = xen_mc_entry(sizeof(*args));
1388 args = mcs.args;
1389 args->op.arg2.vcpumask = to_cpumask(args->mask);
1390
1391 /* Remove us, and any offline CPUS. */
1392 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1393 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1394
1395 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1396 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1397 args->op.cmd = MMUEXT_INVLPG_MULTI;
1398 args->op.arg1.linear_addr = start;
1399 }
1400
1401 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1402
1403 xen_mc_issue(PARAVIRT_LAZY_MMU);
1404}
1405
1406static unsigned long xen_read_cr3(void)
1407{
1408 return this_cpu_read(xen_cr3);
1409}
1410
1411static void set_current_cr3(void *v)
1412{
1413 this_cpu_write(xen_current_cr3, (unsigned long)v);
1414}
1415
1416static void __xen_write_cr3(bool kernel, unsigned long cr3)
1417{
1418 struct mmuext_op op;
1419 unsigned long mfn;
1420
1421 trace_xen_mmu_write_cr3(kernel, cr3);
1422
1423 if (cr3)
1424 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1425 else
1426 mfn = 0;
1427
1428 WARN_ON(mfn == 0 && kernel);
1429
1430 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1431 op.arg1.mfn = mfn;
1432
1433 xen_extend_mmuext_op(&op);
1434
1435 if (kernel) {
1436 this_cpu_write(xen_cr3, cr3);
1437
1438 /* Update xen_current_cr3 once the batch has actually
1439 been submitted. */
1440 xen_mc_callback(set_current_cr3, (void *)cr3);
1441 }
1442}
1443static void xen_write_cr3(unsigned long cr3)
1444{
1445 BUG_ON(preemptible());
1446
1447 xen_mc_batch(); /* disables interrupts */
1448
1449 /* Update while interrupts are disabled, so its atomic with
1450 respect to ipis */
1451 this_cpu_write(xen_cr3, cr3);
1452
1453 __xen_write_cr3(true, cr3);
1454
1455#ifdef CONFIG_X86_64
1456 {
1457 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1458 if (user_pgd)
1459 __xen_write_cr3(false, __pa(user_pgd));
1460 else
1461 __xen_write_cr3(false, 0);
1462 }
1463#endif
1464
1465 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1466}
1467
1468#ifdef CONFIG_X86_64
1469/*
1470 * At the start of the day - when Xen launches a guest, it has already
1471 * built pagetables for the guest. We diligently look over them
1472 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1473 * init_level4_pgt and its friends. Then when we are happy we load
1474 * the new init_level4_pgt - and continue on.
1475 *
1476 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1477 * up the rest of the pagetables. When it has completed it loads the cr3.
1478 * N.B. that baremetal would start at 'start_kernel' (and the early
1479 * #PF handler would create bootstrap pagetables) - so we are running
1480 * with the same assumptions as what to do when write_cr3 is executed
1481 * at this point.
1482 *
1483 * Since there are no user-page tables at all, we have two variants
1484 * of xen_write_cr3 - the early bootup (this one), and the late one
1485 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1486 * the Linux kernel and user-space are both in ring 3 while the
1487 * hypervisor is in ring 0.
1488 */
1489static void __init xen_write_cr3_init(unsigned long cr3)
1490{
1491 BUG_ON(preemptible());
1492
1493 xen_mc_batch(); /* disables interrupts */
1494
1495 /* Update while interrupts are disabled, so its atomic with
1496 respect to ipis */
1497 this_cpu_write(xen_cr3, cr3);
1498
1499 __xen_write_cr3(true, cr3);
1500
1501 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1502}
1503#endif
1504
1505static int xen_pgd_alloc(struct mm_struct *mm)
1506{
1507 pgd_t *pgd = mm->pgd;
1508 int ret = 0;
1509
1510 BUG_ON(PagePinned(virt_to_page(pgd)));
1511
1512#ifdef CONFIG_X86_64
1513 {
1514 struct page *page = virt_to_page(pgd);
1515 pgd_t *user_pgd;
1516
1517 BUG_ON(page->private != 0);
1518
1519 ret = -ENOMEM;
1520
1521 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1522 page->private = (unsigned long)user_pgd;
1523
1524 if (user_pgd != NULL) {
1525#ifdef CONFIG_X86_VSYSCALL_EMULATION
1526 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1527 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1528#endif
1529 ret = 0;
1530 }
1531
1532 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1533 }
1534#endif
1535 return ret;
1536}
1537
1538static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1539{
1540#ifdef CONFIG_X86_64
1541 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1542
1543 if (user_pgd)
1544 free_page((unsigned long)user_pgd);
1545#endif
1546}
1547
1548/*
1549 * Init-time set_pte while constructing initial pagetables, which
1550 * doesn't allow RO page table pages to be remapped RW.
1551 *
1552 * If there is no MFN for this PFN then this page is initially
1553 * ballooned out so clear the PTE (as in decrease_reservation() in
1554 * drivers/xen/balloon.c).
1555 *
1556 * Many of these PTE updates are done on unpinned and writable pages
1557 * and doing a hypercall for these is unnecessary and expensive. At
1558 * this point it is not possible to tell if a page is pinned or not,
1559 * so always write the PTE directly and rely on Xen trapping and
1560 * emulating any updates as necessary.
1561 */
1562__visible pte_t xen_make_pte_init(pteval_t pte)
1563{
1564#ifdef CONFIG_X86_64
1565 unsigned long pfn;
1566
1567 /*
1568 * Pages belonging to the initial p2m list mapped outside the default
1569 * address range must be mapped read-only. This region contains the
1570 * page tables for mapping the p2m list, too, and page tables MUST be
1571 * mapped read-only.
1572 */
1573 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1574 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1575 pfn >= xen_start_info->first_p2m_pfn &&
1576 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1577 pte &= ~_PAGE_RW;
1578#endif
1579 pte = pte_pfn_to_mfn(pte);
1580 return native_make_pte(pte);
1581}
1582PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1583
1584static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1585{
1586#ifdef CONFIG_X86_32
1587 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1588 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1589 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1590 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1591 pte_val_ma(pte));
1592#endif
1593 native_set_pte(ptep, pte);
1594}
1595
1596/* Early in boot, while setting up the initial pagetable, assume
1597 everything is pinned. */
1598static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1599{
1600#ifdef CONFIG_FLATMEM
1601 BUG_ON(mem_map); /* should only be used early */
1602#endif
1603 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1604 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1605}
1606
1607/* Used for pmd and pud */
1608static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1609{
1610#ifdef CONFIG_FLATMEM
1611 BUG_ON(mem_map); /* should only be used early */
1612#endif
1613 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1614}
1615
1616/* Early release_pte assumes that all pts are pinned, since there's
1617 only init_mm and anything attached to that is pinned. */
1618static void __init xen_release_pte_init(unsigned long pfn)
1619{
1620 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1621 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1622}
1623
1624static void __init xen_release_pmd_init(unsigned long pfn)
1625{
1626 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1627}
1628
1629static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1630{
1631 struct multicall_space mcs;
1632 struct mmuext_op *op;
1633
1634 mcs = __xen_mc_entry(sizeof(*op));
1635 op = mcs.args;
1636 op->cmd = cmd;
1637 op->arg1.mfn = pfn_to_mfn(pfn);
1638
1639 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1640}
1641
1642static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1643{
1644 struct multicall_space mcs;
1645 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1646
1647 mcs = __xen_mc_entry(0);
1648 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1649 pfn_pte(pfn, prot), 0);
1650}
1651
1652/* This needs to make sure the new pte page is pinned iff its being
1653 attached to a pinned pagetable. */
1654static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1655 unsigned level)
1656{
1657 bool pinned = PagePinned(virt_to_page(mm->pgd));
1658
1659 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1660
1661 if (pinned) {
1662 struct page *page = pfn_to_page(pfn);
1663
1664 SetPagePinned(page);
1665
1666 if (!PageHighMem(page)) {
1667 xen_mc_batch();
1668
1669 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1670
1671 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1672 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1673
1674 xen_mc_issue(PARAVIRT_LAZY_MMU);
1675 } else {
1676 /* make sure there are no stray mappings of
1677 this page */
1678 kmap_flush_unused();
1679 }
1680 }
1681}
1682
1683static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1684{
1685 xen_alloc_ptpage(mm, pfn, PT_PTE);
1686}
1687
1688static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1689{
1690 xen_alloc_ptpage(mm, pfn, PT_PMD);
1691}
1692
1693/* This should never happen until we're OK to use struct page */
1694static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1695{
1696 struct page *page = pfn_to_page(pfn);
1697 bool pinned = PagePinned(page);
1698
1699 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1700
1701 if (pinned) {
1702 if (!PageHighMem(page)) {
1703 xen_mc_batch();
1704
1705 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1706 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1707
1708 __set_pfn_prot(pfn, PAGE_KERNEL);
1709
1710 xen_mc_issue(PARAVIRT_LAZY_MMU);
1711 }
1712 ClearPagePinned(page);
1713 }
1714}
1715
1716static void xen_release_pte(unsigned long pfn)
1717{
1718 xen_release_ptpage(pfn, PT_PTE);
1719}
1720
1721static void xen_release_pmd(unsigned long pfn)
1722{
1723 xen_release_ptpage(pfn, PT_PMD);
1724}
1725
1726#if CONFIG_PGTABLE_LEVELS >= 4
1727static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1728{
1729 xen_alloc_ptpage(mm, pfn, PT_PUD);
1730}
1731
1732static void xen_release_pud(unsigned long pfn)
1733{
1734 xen_release_ptpage(pfn, PT_PUD);
1735}
1736#endif
1737
1738void __init xen_reserve_top(void)
1739{
1740#ifdef CONFIG_X86_32
1741 unsigned long top = HYPERVISOR_VIRT_START;
1742 struct xen_platform_parameters pp;
1743
1744 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1745 top = pp.virt_start;
1746
1747 reserve_top_address(-top);
1748#endif /* CONFIG_X86_32 */
1749}
1750
1751/*
1752 * Like __va(), but returns address in the kernel mapping (which is
1753 * all we have until the physical memory mapping has been set up.
1754 */
1755static void * __init __ka(phys_addr_t paddr)
1756{
1757#ifdef CONFIG_X86_64
1758 return (void *)(paddr + __START_KERNEL_map);
1759#else
1760 return __va(paddr);
1761#endif
1762}
1763
1764/* Convert a machine address to physical address */
1765static unsigned long __init m2p(phys_addr_t maddr)
1766{
1767 phys_addr_t paddr;
1768
1769 maddr &= PTE_PFN_MASK;
1770 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1771
1772 return paddr;
1773}
1774
1775/* Convert a machine address to kernel virtual */
1776static void * __init m2v(phys_addr_t maddr)
1777{
1778 return __ka(m2p(maddr));
1779}
1780
1781/* Set the page permissions on an identity-mapped pages */
1782static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1783 unsigned long flags)
1784{
1785 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1786 pte_t pte = pfn_pte(pfn, prot);
1787
1788 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1789 BUG();
1790}
1791static void __init set_page_prot(void *addr, pgprot_t prot)
1792{
1793 return set_page_prot_flags(addr, prot, UVMF_NONE);
1794}
1795#ifdef CONFIG_X86_32
1796static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1797{
1798 unsigned pmdidx, pteidx;
1799 unsigned ident_pte;
1800 unsigned long pfn;
1801
1802 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1803 PAGE_SIZE);
1804
1805 ident_pte = 0;
1806 pfn = 0;
1807 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1808 pte_t *pte_page;
1809
1810 /* Reuse or allocate a page of ptes */
1811 if (pmd_present(pmd[pmdidx]))
1812 pte_page = m2v(pmd[pmdidx].pmd);
1813 else {
1814 /* Check for free pte pages */
1815 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1816 break;
1817
1818 pte_page = &level1_ident_pgt[ident_pte];
1819 ident_pte += PTRS_PER_PTE;
1820
1821 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1822 }
1823
1824 /* Install mappings */
1825 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1826 pte_t pte;
1827
1828 if (pfn > max_pfn_mapped)
1829 max_pfn_mapped = pfn;
1830
1831 if (!pte_none(pte_page[pteidx]))
1832 continue;
1833
1834 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1835 pte_page[pteidx] = pte;
1836 }
1837 }
1838
1839 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1840 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1841
1842 set_page_prot(pmd, PAGE_KERNEL_RO);
1843}
1844#endif
1845void __init xen_setup_machphys_mapping(void)
1846{
1847 struct xen_machphys_mapping mapping;
1848
1849 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1850 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1851 machine_to_phys_nr = mapping.max_mfn + 1;
1852 } else {
1853 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1854 }
1855#ifdef CONFIG_X86_32
1856 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1857 < machine_to_phys_mapping);
1858#endif
1859}
1860
1861#ifdef CONFIG_X86_64
1862static void __init convert_pfn_mfn(void *v)
1863{
1864 pte_t *pte = v;
1865 int i;
1866
1867 /* All levels are converted the same way, so just treat them
1868 as ptes. */
1869 for (i = 0; i < PTRS_PER_PTE; i++)
1870 pte[i] = xen_make_pte(pte[i].pte);
1871}
1872static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1873 unsigned long addr)
1874{
1875 if (*pt_base == PFN_DOWN(__pa(addr))) {
1876 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1877 clear_page((void *)addr);
1878 (*pt_base)++;
1879 }
1880 if (*pt_end == PFN_DOWN(__pa(addr))) {
1881 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1882 clear_page((void *)addr);
1883 (*pt_end)--;
1884 }
1885}
1886/*
1887 * Set up the initial kernel pagetable.
1888 *
1889 * We can construct this by grafting the Xen provided pagetable into
1890 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1891 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1892 * kernel has a physical mapping to start with - but that's enough to
1893 * get __va working. We need to fill in the rest of the physical
1894 * mapping once some sort of allocator has been set up.
1895 */
1896void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1897{
1898 pud_t *l3;
1899 pmd_t *l2;
1900 unsigned long addr[3];
1901 unsigned long pt_base, pt_end;
1902 unsigned i;
1903
1904 /* max_pfn_mapped is the last pfn mapped in the initial memory
1905 * mappings. Considering that on Xen after the kernel mappings we
1906 * have the mappings of some pages that don't exist in pfn space, we
1907 * set max_pfn_mapped to the last real pfn mapped. */
1908 if (xen_start_info->mfn_list < __START_KERNEL_map)
1909 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1910 else
1911 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1912
1913 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1914 pt_end = pt_base + xen_start_info->nr_pt_frames;
1915
1916 /* Zap identity mapping */
1917 init_level4_pgt[0] = __pgd(0);
1918
989513a7
JG
1919 /* Pre-constructed entries are in pfn, so convert to mfn */
1920 /* L4[272] -> level3_ident_pgt */
1921 /* L4[511] -> level3_kernel_pgt */
1922 convert_pfn_mfn(init_level4_pgt);
7e0563de 1923
989513a7
JG
1924 /* L3_i[0] -> level2_ident_pgt */
1925 convert_pfn_mfn(level3_ident_pgt);
1926 /* L3_k[510] -> level2_kernel_pgt */
1927 /* L3_k[511] -> level2_fixmap_pgt */
1928 convert_pfn_mfn(level3_kernel_pgt);
1929
1930 /* L3_k[511][506] -> level1_fixmap_pgt */
1931 convert_pfn_mfn(level2_fixmap_pgt);
7e0563de 1932
7e0563de
VK
1933 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1934 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1935 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1936
1937 addr[0] = (unsigned long)pgd;
1938 addr[1] = (unsigned long)l3;
1939 addr[2] = (unsigned long)l2;
1940 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1941 * Both L4[272][0] and L4[511][510] have entries that point to the same
1942 * L2 (PMD) tables. Meaning that if you modify it in __va space
1943 * it will be also modified in the __ka space! (But if you just
1944 * modify the PMD table to point to other PTE's or none, then you
1945 * are OK - which is what cleanup_highmap does) */
1946 copy_page(level2_ident_pgt, l2);
1947 /* Graft it onto L4[511][510] */
1948 copy_page(level2_kernel_pgt, l2);
1949
1950 /* Copy the initial P->M table mappings if necessary. */
1951 i = pgd_index(xen_start_info->mfn_list);
1952 if (i && i < pgd_index(__START_KERNEL_map))
1953 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1954
989513a7
JG
1955 /* Make pagetable pieces RO */
1956 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1957 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1958 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1959 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1960 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1961 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1962 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1963 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1964
1965 /* Pin down new L4 */
1966 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1967 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1968
1969 /* Unpin Xen-provided one */
1970 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
7e0563de 1971
989513a7
JG
1972 /*
1973 * At this stage there can be no user pgd, and no page structure to
1974 * attach it to, so make sure we just set kernel pgd.
1975 */
1976 xen_mc_batch();
1977 __xen_write_cr3(true, __pa(init_level4_pgt));
1978 xen_mc_issue(PARAVIRT_LAZY_CPU);
7e0563de
VK
1979
1980 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1981 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1982 * the initial domain. For guests using the toolstack, they are in:
1983 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1984 * rip out the [L4] (pgd), but for guests we shave off three pages.
1985 */
1986 for (i = 0; i < ARRAY_SIZE(addr); i++)
1987 check_pt_base(&pt_base, &pt_end, addr[i]);
1988
1989 /* Our (by three pages) smaller Xen pagetable that we are using */
1990 xen_pt_base = PFN_PHYS(pt_base);
1991 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1992 memblock_reserve(xen_pt_base, xen_pt_size);
1993
1994 /* Revector the xen_start_info */
1995 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1996}
1997
1998/*
1999 * Read a value from a physical address.
2000 */
2001static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2002{
2003 unsigned long *vaddr;
2004 unsigned long val;
2005
2006 vaddr = early_memremap_ro(addr, sizeof(val));
2007 val = *vaddr;
2008 early_memunmap(vaddr, sizeof(val));
2009 return val;
2010}
2011
2012/*
2013 * Translate a virtual address to a physical one without relying on mapped
69861e0a
JG
2014 * page tables. Don't rely on big pages being aligned in (guest) physical
2015 * space!
7e0563de
VK
2016 */
2017static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2018{
2019 phys_addr_t pa;
2020 pgd_t pgd;
2021 pud_t pud;
2022 pmd_t pmd;
2023 pte_t pte;
2024
2025 pa = read_cr3();
2026 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2027 sizeof(pgd)));
2028 if (!pgd_present(pgd))
2029 return 0;
2030
2031 pa = pgd_val(pgd) & PTE_PFN_MASK;
2032 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2033 sizeof(pud)));
2034 if (!pud_present(pud))
2035 return 0;
69861e0a 2036 pa = pud_val(pud) & PTE_PFN_MASK;
7e0563de
VK
2037 if (pud_large(pud))
2038 return pa + (vaddr & ~PUD_MASK);
2039
2040 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2041 sizeof(pmd)));
2042 if (!pmd_present(pmd))
2043 return 0;
69861e0a 2044 pa = pmd_val(pmd) & PTE_PFN_MASK;
7e0563de
VK
2045 if (pmd_large(pmd))
2046 return pa + (vaddr & ~PMD_MASK);
2047
2048 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2049 sizeof(pte)));
2050 if (!pte_present(pte))
2051 return 0;
2052 pa = pte_pfn(pte) << PAGE_SHIFT;
2053
2054 return pa | (vaddr & ~PAGE_MASK);
2055}
2056
2057/*
2058 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2059 * this area.
2060 */
2061void __init xen_relocate_p2m(void)
2062{
2063 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys;
2064 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2065 int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d;
2066 pte_t *pt;
2067 pmd_t *pmd;
2068 pud_t *pud;
2069 p4d_t *p4d = NULL;
2070 pgd_t *pgd;
2071 unsigned long *new_p2m;
2072 int save_pud;
2073
2074 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2075 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2076 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2077 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2078 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2079 if (PTRS_PER_P4D > 1)
2080 n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2081 else
2082 n_p4d = 0;
2083 n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d;
2084
2085 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2086 if (!new_area) {
2087 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2088 BUG();
2089 }
2090
2091 /*
2092 * Setup the page tables for addressing the new p2m list.
2093 * We have asked the hypervisor to map the p2m list at the user address
2094 * PUD_SIZE. It may have done so, or it may have used a kernel space
2095 * address depending on the Xen version.
2096 * To avoid any possible virtual address collision, just use
2097 * 2 * PUD_SIZE for the new area.
2098 */
2099 p4d_phys = new_area;
2100 pud_phys = p4d_phys + PFN_PHYS(n_p4d);
2101 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2102 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2103 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2104
2105 pgd = __va(read_cr3());
2106 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2107 idx_p4d = 0;
2108 save_pud = n_pud;
2109 do {
2110 if (n_p4d > 0) {
2111 p4d = early_memremap(p4d_phys, PAGE_SIZE);
2112 clear_page(p4d);
2113 n_pud = min(save_pud, PTRS_PER_P4D);
2114 }
2115 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2116 pud = early_memremap(pud_phys, PAGE_SIZE);
2117 clear_page(pud);
2118 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2119 idx_pmd++) {
2120 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2121 clear_page(pmd);
2122 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2123 idx_pt++) {
2124 pt = early_memremap(pt_phys, PAGE_SIZE);
2125 clear_page(pt);
2126 for (idx_pte = 0;
2127 idx_pte < min(n_pte, PTRS_PER_PTE);
2128 idx_pte++) {
2129 set_pte(pt + idx_pte,
2130 pfn_pte(p2m_pfn, PAGE_KERNEL));
2131 p2m_pfn++;
2132 }
2133 n_pte -= PTRS_PER_PTE;
2134 early_memunmap(pt, PAGE_SIZE);
2135 make_lowmem_page_readonly(__va(pt_phys));
2136 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2137 PFN_DOWN(pt_phys));
2138 set_pmd(pmd + idx_pt,
2139 __pmd(_PAGE_TABLE | pt_phys));
2140 pt_phys += PAGE_SIZE;
2141 }
2142 n_pt -= PTRS_PER_PMD;
2143 early_memunmap(pmd, PAGE_SIZE);
2144 make_lowmem_page_readonly(__va(pmd_phys));
2145 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2146 PFN_DOWN(pmd_phys));
2147 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2148 pmd_phys += PAGE_SIZE;
2149 }
2150 n_pmd -= PTRS_PER_PUD;
2151 early_memunmap(pud, PAGE_SIZE);
2152 make_lowmem_page_readonly(__va(pud_phys));
2153 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2154 if (n_p4d > 0)
2155 set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys));
2156 else
2157 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2158 pud_phys += PAGE_SIZE;
2159 }
2160 if (n_p4d > 0) {
2161 save_pud -= PTRS_PER_P4D;
2162 early_memunmap(p4d, PAGE_SIZE);
2163 make_lowmem_page_readonly(__va(p4d_phys));
2164 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys));
2165 set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys));
2166 p4d_phys += PAGE_SIZE;
2167 }
2168 } while (++idx_p4d < n_p4d);
2169
2170 /* Now copy the old p2m info to the new area. */
2171 memcpy(new_p2m, xen_p2m_addr, size);
2172 xen_p2m_addr = new_p2m;
2173
2174 /* Release the old p2m list and set new list info. */
2175 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2176 BUG_ON(!p2m_pfn);
2177 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2178
2179 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2180 pfn = xen_start_info->first_p2m_pfn;
2181 pfn_end = xen_start_info->first_p2m_pfn +
2182 xen_start_info->nr_p2m_frames;
2183 set_pgd(pgd + 1, __pgd(0));
2184 } else {
2185 pfn = p2m_pfn;
2186 pfn_end = p2m_pfn_end;
2187 }
2188
2189 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2190 while (pfn < pfn_end) {
2191 if (pfn == p2m_pfn) {
2192 pfn = p2m_pfn_end;
2193 continue;
2194 }
2195 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2196 pfn++;
2197 }
2198
2199 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2200 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2201 xen_start_info->nr_p2m_frames = n_frames;
2202}
2203
2204#else /* !CONFIG_X86_64 */
2205static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2206static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2207
2208static void __init xen_write_cr3_init(unsigned long cr3)
2209{
2210 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2211
2212 BUG_ON(read_cr3() != __pa(initial_page_table));
2213 BUG_ON(cr3 != __pa(swapper_pg_dir));
2214
2215 /*
2216 * We are switching to swapper_pg_dir for the first time (from
2217 * initial_page_table) and therefore need to mark that page
2218 * read-only and then pin it.
2219 *
2220 * Xen disallows sharing of kernel PMDs for PAE
2221 * guests. Therefore we must copy the kernel PMD from
2222 * initial_page_table into a new kernel PMD to be used in
2223 * swapper_pg_dir.
2224 */
2225 swapper_kernel_pmd =
2226 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2227 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2228 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2229 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2230 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2231
2232 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2233 xen_write_cr3(cr3);
2234 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2235
2236 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2237 PFN_DOWN(__pa(initial_page_table)));
2238 set_page_prot(initial_page_table, PAGE_KERNEL);
2239 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2240
2241 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2242}
2243
2244/*
2245 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2246 * not the first page table in the page table pool.
2247 * Iterate through the initial page tables to find the real page table base.
2248 */
2249static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2250{
2251 phys_addr_t pt_base, paddr;
2252 unsigned pmdidx;
2253
2254 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2255
2256 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2257 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2258 paddr = m2p(pmd[pmdidx].pmd);
2259 pt_base = min(pt_base, paddr);
2260 }
2261
2262 return pt_base;
2263}
2264
2265void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2266{
2267 pmd_t *kernel_pmd;
2268
2269 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2270
2271 xen_pt_base = xen_find_pt_base(kernel_pmd);
2272 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2273
2274 initial_kernel_pmd =
2275 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2276
2277 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2278
2279 copy_page(initial_kernel_pmd, kernel_pmd);
2280
2281 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2282
2283 copy_page(initial_page_table, pgd);
2284 initial_page_table[KERNEL_PGD_BOUNDARY] =
2285 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2286
2287 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2288 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2289 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2290
2291 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2292
2293 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2294 PFN_DOWN(__pa(initial_page_table)));
2295 xen_write_cr3(__pa(initial_page_table));
2296
2297 memblock_reserve(xen_pt_base, xen_pt_size);
2298}
2299#endif /* CONFIG_X86_64 */
2300
2301void __init xen_reserve_special_pages(void)
2302{
2303 phys_addr_t paddr;
2304
2305 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2306 if (xen_start_info->store_mfn) {
2307 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2308 memblock_reserve(paddr, PAGE_SIZE);
2309 }
2310 if (!xen_initial_domain()) {
2311 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2312 memblock_reserve(paddr, PAGE_SIZE);
2313 }
2314}
2315
2316void __init xen_pt_check_e820(void)
2317{
2318 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2319 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2320 BUG();
2321 }
2322}
2323
2324static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2325
2326static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2327{
2328 pte_t pte;
2329
2330 phys >>= PAGE_SHIFT;
2331
2332 switch (idx) {
2333 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2334 case FIX_RO_IDT:
2335#ifdef CONFIG_X86_32
2336 case FIX_WP_TEST:
2337# ifdef CONFIG_HIGHMEM
2338 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2339# endif
2340#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2341 case VSYSCALL_PAGE:
2342#endif
2343 case FIX_TEXT_POKE0:
2344 case FIX_TEXT_POKE1:
2345 case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END:
2346 /* All local page mappings */
2347 pte = pfn_pte(phys, prot);
2348 break;
2349
2350#ifdef CONFIG_X86_LOCAL_APIC
2351 case FIX_APIC_BASE: /* maps dummy local APIC */
2352 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2353 break;
2354#endif
2355
2356#ifdef CONFIG_X86_IO_APIC
2357 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2358 /*
2359 * We just don't map the IO APIC - all access is via
2360 * hypercalls. Keep the address in the pte for reference.
2361 */
2362 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2363 break;
2364#endif
2365
2366 case FIX_PARAVIRT_BOOTMAP:
2367 /* This is an MFN, but it isn't an IO mapping from the
2368 IO domain */
2369 pte = mfn_pte(phys, prot);
2370 break;
2371
2372 default:
2373 /* By default, set_fixmap is used for hardware mappings */
2374 pte = mfn_pte(phys, prot);
2375 break;
2376 }
2377
2378 __native_set_fixmap(idx, pte);
2379
2380#ifdef CONFIG_X86_VSYSCALL_EMULATION
2381 /* Replicate changes to map the vsyscall page into the user
2382 pagetable vsyscall mapping. */
2383 if (idx == VSYSCALL_PAGE) {
2384 unsigned long vaddr = __fix_to_virt(idx);
2385 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2386 }
2387#endif
2388}
2389
2390static void __init xen_post_allocator_init(void)
2391{
7e0563de
VK
2392 pv_mmu_ops.set_pte = xen_set_pte;
2393 pv_mmu_ops.set_pmd = xen_set_pmd;
2394 pv_mmu_ops.set_pud = xen_set_pud;
2395#if CONFIG_PGTABLE_LEVELS >= 4
2396 pv_mmu_ops.set_p4d = xen_set_p4d;
2397#endif
2398
2399 /* This will work as long as patching hasn't happened yet
2400 (which it hasn't) */
2401 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2402 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2403 pv_mmu_ops.release_pte = xen_release_pte;
2404 pv_mmu_ops.release_pmd = xen_release_pmd;
2405#if CONFIG_PGTABLE_LEVELS >= 4
2406 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2407 pv_mmu_ops.release_pud = xen_release_pud;
2408#endif
2409 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2410
2411#ifdef CONFIG_X86_64
2412 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2413 SetPagePinned(virt_to_page(level3_user_vsyscall));
2414#endif
2415 xen_mark_init_mm_pinned();
2416}
2417
2418static void xen_leave_lazy_mmu(void)
2419{
2420 preempt_disable();
2421 xen_mc_flush();
2422 paravirt_leave_lazy_mmu();
2423 preempt_enable();
2424}
2425
2426static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2427 .read_cr2 = xen_read_cr2,
2428 .write_cr2 = xen_write_cr2,
2429
2430 .read_cr3 = xen_read_cr3,
2431 .write_cr3 = xen_write_cr3_init,
2432
2433 .flush_tlb_user = xen_flush_tlb,
2434 .flush_tlb_kernel = xen_flush_tlb,
2435 .flush_tlb_single = xen_flush_tlb_single,
2436 .flush_tlb_others = xen_flush_tlb_others,
2437
2438 .pte_update = paravirt_nop,
2439
2440 .pgd_alloc = xen_pgd_alloc,
2441 .pgd_free = xen_pgd_free,
2442
2443 .alloc_pte = xen_alloc_pte_init,
2444 .release_pte = xen_release_pte_init,
2445 .alloc_pmd = xen_alloc_pmd_init,
2446 .release_pmd = xen_release_pmd_init,
2447
2448 .set_pte = xen_set_pte_init,
2449 .set_pte_at = xen_set_pte_at,
2450 .set_pmd = xen_set_pmd_hyper,
2451
2452 .ptep_modify_prot_start = __ptep_modify_prot_start,
2453 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2454
2455 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2456 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2457
2458 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2459 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2460
2461#ifdef CONFIG_X86_PAE
2462 .set_pte_atomic = xen_set_pte_atomic,
2463 .pte_clear = xen_pte_clear,
2464 .pmd_clear = xen_pmd_clear,
2465#endif /* CONFIG_X86_PAE */
2466 .set_pud = xen_set_pud_hyper,
2467
2468 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2469 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2470
2471#if CONFIG_PGTABLE_LEVELS >= 4
2472 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2473 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2474 .set_p4d = xen_set_p4d_hyper,
2475
2476 .alloc_pud = xen_alloc_pmd_init,
2477 .release_pud = xen_release_pmd_init,
2478#endif /* CONFIG_PGTABLE_LEVELS == 4 */
2479
2480 .activate_mm = xen_activate_mm,
2481 .dup_mmap = xen_dup_mmap,
2482 .exit_mmap = xen_exit_mmap,
2483
2484 .lazy_mode = {
2485 .enter = paravirt_enter_lazy_mmu,
2486 .leave = xen_leave_lazy_mmu,
2487 .flush = paravirt_flush_lazy_mmu,
2488 },
2489
2490 .set_fixmap = xen_set_fixmap,
2491};
2492
2493void __init xen_init_mmu_ops(void)
2494{
2495 x86_init.paging.pagetable_init = xen_pagetable_init;
2496
7e0563de
VK
2497 pv_mmu_ops = xen_mmu_ops;
2498
2499 memset(dummy_mapping, 0xff, PAGE_SIZE);
2500}
2501
2502/* Protected by xen_reservation_lock. */
2503#define MAX_CONTIG_ORDER 9 /* 2MB */
2504static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2505
2506#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2507static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2508 unsigned long *in_frames,
2509 unsigned long *out_frames)
2510{
2511 int i;
2512 struct multicall_space mcs;
2513
2514 xen_mc_batch();
2515 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2516 mcs = __xen_mc_entry(0);
2517
2518 if (in_frames)
2519 in_frames[i] = virt_to_mfn(vaddr);
2520
2521 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2522 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2523
2524 if (out_frames)
2525 out_frames[i] = virt_to_pfn(vaddr);
2526 }
2527 xen_mc_issue(0);
2528}
2529
2530/*
2531 * Update the pfn-to-mfn mappings for a virtual address range, either to
2532 * point to an array of mfns, or contiguously from a single starting
2533 * mfn.
2534 */
2535static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2536 unsigned long *mfns,
2537 unsigned long first_mfn)
2538{
2539 unsigned i, limit;
2540 unsigned long mfn;
2541
2542 xen_mc_batch();
2543
2544 limit = 1u << order;
2545 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2546 struct multicall_space mcs;
2547 unsigned flags;
2548
2549 mcs = __xen_mc_entry(0);
2550 if (mfns)
2551 mfn = mfns[i];
2552 else
2553 mfn = first_mfn + i;
2554
2555 if (i < (limit - 1))
2556 flags = 0;
2557 else {
2558 if (order == 0)
2559 flags = UVMF_INVLPG | UVMF_ALL;
2560 else
2561 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2562 }
2563
2564 MULTI_update_va_mapping(mcs.mc, vaddr,
2565 mfn_pte(mfn, PAGE_KERNEL), flags);
2566
2567 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2568 }
2569
2570 xen_mc_issue(0);
2571}
2572
2573/*
2574 * Perform the hypercall to exchange a region of our pfns to point to
2575 * memory with the required contiguous alignment. Takes the pfns as
2576 * input, and populates mfns as output.
2577 *
2578 * Returns a success code indicating whether the hypervisor was able to
2579 * satisfy the request or not.
2580 */
2581static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2582 unsigned long *pfns_in,
2583 unsigned long extents_out,
2584 unsigned int order_out,
2585 unsigned long *mfns_out,
2586 unsigned int address_bits)
2587{
2588 long rc;
2589 int success;
2590
2591 struct xen_memory_exchange exchange = {
2592 .in = {
2593 .nr_extents = extents_in,
2594 .extent_order = order_in,
2595 .extent_start = pfns_in,
2596 .domid = DOMID_SELF
2597 },
2598 .out = {
2599 .nr_extents = extents_out,
2600 .extent_order = order_out,
2601 .extent_start = mfns_out,
2602 .address_bits = address_bits,
2603 .domid = DOMID_SELF
2604 }
2605 };
2606
2607 BUG_ON(extents_in << order_in != extents_out << order_out);
2608
2609 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2610 success = (exchange.nr_exchanged == extents_in);
2611
2612 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2613 BUG_ON(success && (rc != 0));
2614
2615 return success;
2616}
2617
2618int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2619 unsigned int address_bits,
2620 dma_addr_t *dma_handle)
2621{
2622 unsigned long *in_frames = discontig_frames, out_frame;
2623 unsigned long flags;
2624 int success;
2625 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2626
2627 /*
2628 * Currently an auto-translated guest will not perform I/O, nor will
2629 * it require PAE page directories below 4GB. Therefore any calls to
2630 * this function are redundant and can be ignored.
2631 */
2632
7e0563de
VK
2633 if (unlikely(order > MAX_CONTIG_ORDER))
2634 return -ENOMEM;
2635
2636 memset((void *) vstart, 0, PAGE_SIZE << order);
2637
2638 spin_lock_irqsave(&xen_reservation_lock, flags);
2639
2640 /* 1. Zap current PTEs, remembering MFNs. */
2641 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2642
2643 /* 2. Get a new contiguous memory extent. */
2644 out_frame = virt_to_pfn(vstart);
2645 success = xen_exchange_memory(1UL << order, 0, in_frames,
2646 1, order, &out_frame,
2647 address_bits);
2648
2649 /* 3. Map the new extent in place of old pages. */
2650 if (success)
2651 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2652 else
2653 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2654
2655 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2656
2657 *dma_handle = virt_to_machine(vstart).maddr;
2658 return success ? 0 : -ENOMEM;
2659}
2660EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2661
2662void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2663{
2664 unsigned long *out_frames = discontig_frames, in_frame;
2665 unsigned long flags;
2666 int success;
2667 unsigned long vstart;
2668
7e0563de
VK
2669 if (unlikely(order > MAX_CONTIG_ORDER))
2670 return;
2671
2672 vstart = (unsigned long)phys_to_virt(pstart);
2673 memset((void *) vstart, 0, PAGE_SIZE << order);
2674
2675 spin_lock_irqsave(&xen_reservation_lock, flags);
2676
2677 /* 1. Find start MFN of contiguous extent. */
2678 in_frame = virt_to_mfn(vstart);
2679
2680 /* 2. Zap current PTEs. */
2681 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2682
2683 /* 3. Do the exchange for non-contiguous MFNs. */
2684 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2685 0, out_frames, 0);
2686
2687 /* 4. Map new pages in place of old pages. */
2688 if (success)
2689 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2690 else
2691 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2692
2693 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2694}
2695EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
29985b09
JG
2696
2697#ifdef CONFIG_KEXEC_CORE
2698phys_addr_t paddr_vmcoreinfo_note(void)
2699{
2700 if (xen_pv_domain())
2701 return virt_to_machine(&vmcoreinfo_note).maddr;
2702 else
2703 return __pa_symbol(&vmcoreinfo_note);
2704}
2705#endif /* CONFIG_KEXEC_CORE */