]>
Commit | Line | Data |
---|---|---|
15c84731 JF |
1 | /* |
2 | * Xen time implementation. | |
3 | * | |
4 | * This is implemented in terms of a clocksource driver which uses | |
5 | * the hypervisor clock as a nanosecond timebase, and a clockevent | |
6 | * driver which uses the hypervisor's timer mechanism. | |
7 | * | |
8 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | |
9 | */ | |
10 | #include <linux/kernel.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/clocksource.h> | |
13 | #include <linux/clockchips.h> | |
f91a8b44 | 14 | #include <linux/kernel_stat.h> |
f595ec96 | 15 | #include <linux/math64.h> |
5a0e3ad6 | 16 | #include <linux/gfp.h> |
15c84731 | 17 | |
1c7b67f7 | 18 | #include <asm/pvclock.h> |
15c84731 JF |
19 | #include <asm/xen/hypervisor.h> |
20 | #include <asm/xen/hypercall.h> | |
21 | ||
22 | #include <xen/events.h> | |
409771d2 | 23 | #include <xen/features.h> |
15c84731 JF |
24 | #include <xen/interface/xen.h> |
25 | #include <xen/interface/vcpu.h> | |
26 | ||
27 | #include "xen-ops.h" | |
28 | ||
15c84731 JF |
29 | /* Xen may fire a timer up to this many ns early */ |
30 | #define TIMER_SLOP 100000 | |
f91a8b44 | 31 | #define NS_PER_TICK (1000000000LL / HZ) |
15c84731 | 32 | |
f91a8b44 | 33 | /* runstate info updated by Xen */ |
c6e22f9e | 34 | static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate); |
f91a8b44 JF |
35 | |
36 | /* snapshots of runstate info */ | |
c6e22f9e | 37 | static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot); |
f91a8b44 JF |
38 | |
39 | /* unused ns of stolen and blocked time */ | |
c6e22f9e TH |
40 | static DEFINE_PER_CPU(u64, xen_residual_stolen); |
41 | static DEFINE_PER_CPU(u64, xen_residual_blocked); | |
f91a8b44 JF |
42 | |
43 | /* return an consistent snapshot of 64-bit time/counter value */ | |
44 | static u64 get64(const u64 *p) | |
45 | { | |
46 | u64 ret; | |
47 | ||
48 | if (BITS_PER_LONG < 64) { | |
49 | u32 *p32 = (u32 *)p; | |
50 | u32 h, l; | |
51 | ||
52 | /* | |
53 | * Read high then low, and then make sure high is | |
54 | * still the same; this will only loop if low wraps | |
55 | * and carries into high. | |
56 | * XXX some clean way to make this endian-proof? | |
57 | */ | |
58 | do { | |
59 | h = p32[1]; | |
60 | barrier(); | |
61 | l = p32[0]; | |
62 | barrier(); | |
63 | } while (p32[1] != h); | |
64 | ||
65 | ret = (((u64)h) << 32) | l; | |
66 | } else | |
67 | ret = *p; | |
68 | ||
69 | return ret; | |
70 | } | |
71 | ||
72 | /* | |
73 | * Runstate accounting | |
74 | */ | |
75 | static void get_runstate_snapshot(struct vcpu_runstate_info *res) | |
76 | { | |
77 | u64 state_time; | |
78 | struct vcpu_runstate_info *state; | |
79 | ||
f120f13e | 80 | BUG_ON(preemptible()); |
f91a8b44 | 81 | |
c6e22f9e | 82 | state = &__get_cpu_var(xen_runstate); |
f91a8b44 JF |
83 | |
84 | /* | |
85 | * The runstate info is always updated by the hypervisor on | |
86 | * the current CPU, so there's no need to use anything | |
87 | * stronger than a compiler barrier when fetching it. | |
88 | */ | |
89 | do { | |
90 | state_time = get64(&state->state_entry_time); | |
91 | barrier(); | |
92 | *res = *state; | |
93 | barrier(); | |
94 | } while (get64(&state->state_entry_time) != state_time); | |
f91a8b44 JF |
95 | } |
96 | ||
f0d73394 JF |
97 | /* return true when a vcpu could run but has no real cpu to run on */ |
98 | bool xen_vcpu_stolen(int vcpu) | |
99 | { | |
c6e22f9e | 100 | return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable; |
f0d73394 JF |
101 | } |
102 | ||
be012920 | 103 | void xen_setup_runstate_info(int cpu) |
f91a8b44 JF |
104 | { |
105 | struct vcpu_register_runstate_memory_area area; | |
106 | ||
c6e22f9e | 107 | area.addr.v = &per_cpu(xen_runstate, cpu); |
f91a8b44 JF |
108 | |
109 | if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, | |
110 | cpu, &area)) | |
111 | BUG(); | |
112 | } | |
113 | ||
114 | static void do_stolen_accounting(void) | |
115 | { | |
116 | struct vcpu_runstate_info state; | |
117 | struct vcpu_runstate_info *snap; | |
118 | s64 blocked, runnable, offline, stolen; | |
119 | cputime_t ticks; | |
120 | ||
121 | get_runstate_snapshot(&state); | |
122 | ||
123 | WARN_ON(state.state != RUNSTATE_running); | |
124 | ||
c6e22f9e | 125 | snap = &__get_cpu_var(xen_runstate_snapshot); |
f91a8b44 JF |
126 | |
127 | /* work out how much time the VCPU has not been runn*ing* */ | |
128 | blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; | |
129 | runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; | |
130 | offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; | |
131 | ||
132 | *snap = state; | |
133 | ||
134 | /* Add the appropriate number of ticks of stolen time, | |
79741dd3 | 135 | including any left-overs from last time. */ |
780f36d8 | 136 | stolen = runnable + offline + __this_cpu_read(xen_residual_stolen); |
f91a8b44 JF |
137 | |
138 | if (stolen < 0) | |
139 | stolen = 0; | |
140 | ||
f595ec96 | 141 | ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); |
780f36d8 | 142 | __this_cpu_write(xen_residual_stolen, stolen); |
79741dd3 | 143 | account_steal_ticks(ticks); |
f91a8b44 JF |
144 | |
145 | /* Add the appropriate number of ticks of blocked time, | |
79741dd3 | 146 | including any left-overs from last time. */ |
780f36d8 | 147 | blocked += __this_cpu_read(xen_residual_blocked); |
f91a8b44 JF |
148 | |
149 | if (blocked < 0) | |
150 | blocked = 0; | |
151 | ||
f595ec96 | 152 | ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); |
780f36d8 | 153 | __this_cpu_write(xen_residual_blocked, blocked); |
79741dd3 | 154 | account_idle_ticks(ticks); |
f91a8b44 JF |
155 | } |
156 | ||
e93ef949 | 157 | /* Get the TSC speed from Xen */ |
409771d2 | 158 | static unsigned long xen_tsc_khz(void) |
15c84731 | 159 | { |
3807f345 | 160 | struct pvclock_vcpu_time_info *info = |
15c84731 JF |
161 | &HYPERVISOR_shared_info->vcpu_info[0].time; |
162 | ||
3807f345 | 163 | return pvclock_tsc_khz(info); |
15c84731 JF |
164 | } |
165 | ||
ee7686bc | 166 | cycle_t xen_clocksource_read(void) |
15c84731 | 167 | { |
1c7b67f7 | 168 | struct pvclock_vcpu_time_info *src; |
15c84731 | 169 | cycle_t ret; |
15c84731 | 170 | |
f1c39625 JF |
171 | preempt_disable_notrace(); |
172 | src = &__get_cpu_var(xen_vcpu)->time; | |
1c7b67f7 | 173 | ret = pvclock_clocksource_read(src); |
f1c39625 | 174 | preempt_enable_notrace(); |
15c84731 JF |
175 | return ret; |
176 | } | |
177 | ||
8e19608e MD |
178 | static cycle_t xen_clocksource_get_cycles(struct clocksource *cs) |
179 | { | |
180 | return xen_clocksource_read(); | |
181 | } | |
182 | ||
15c84731 JF |
183 | static void xen_read_wallclock(struct timespec *ts) |
184 | { | |
1c7b67f7 GH |
185 | struct shared_info *s = HYPERVISOR_shared_info; |
186 | struct pvclock_wall_clock *wall_clock = &(s->wc); | |
187 | struct pvclock_vcpu_time_info *vcpu_time; | |
15c84731 | 188 | |
1c7b67f7 GH |
189 | vcpu_time = &get_cpu_var(xen_vcpu)->time; |
190 | pvclock_read_wallclock(wall_clock, vcpu_time, ts); | |
191 | put_cpu_var(xen_vcpu); | |
15c84731 JF |
192 | } |
193 | ||
409771d2 | 194 | static unsigned long xen_get_wallclock(void) |
15c84731 JF |
195 | { |
196 | struct timespec ts; | |
197 | ||
198 | xen_read_wallclock(&ts); | |
15c84731 JF |
199 | return ts.tv_sec; |
200 | } | |
201 | ||
409771d2 | 202 | static int xen_set_wallclock(unsigned long now) |
15c84731 | 203 | { |
fdb9eb9f JF |
204 | struct xen_platform_op op; |
205 | int rc; | |
206 | ||
15c84731 | 207 | /* do nothing for domU */ |
fdb9eb9f JF |
208 | if (!xen_initial_domain()) |
209 | return -1; | |
210 | ||
211 | op.cmd = XENPF_settime; | |
212 | op.u.settime.secs = now; | |
213 | op.u.settime.nsecs = 0; | |
214 | op.u.settime.system_time = xen_clocksource_read(); | |
215 | ||
216 | rc = HYPERVISOR_dom0_op(&op); | |
217 | WARN(rc != 0, "XENPF_settime failed: now=%ld\n", now); | |
218 | ||
219 | return rc; | |
15c84731 JF |
220 | } |
221 | ||
222 | static struct clocksource xen_clocksource __read_mostly = { | |
223 | .name = "xen", | |
224 | .rating = 400, | |
8e19608e | 225 | .read = xen_clocksource_get_cycles, |
15c84731 | 226 | .mask = ~0, |
15c84731 JF |
227 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
228 | }; | |
229 | ||
230 | /* | |
231 | Xen clockevent implementation | |
232 | ||
233 | Xen has two clockevent implementations: | |
234 | ||
235 | The old timer_op one works with all released versions of Xen prior | |
236 | to version 3.0.4. This version of the hypervisor provides a | |
237 | single-shot timer with nanosecond resolution. However, sharing the | |
238 | same event channel is a 100Hz tick which is delivered while the | |
239 | vcpu is running. We don't care about or use this tick, but it will | |
240 | cause the core time code to think the timer fired too soon, and | |
241 | will end up resetting it each time. It could be filtered, but | |
242 | doing so has complications when the ktime clocksource is not yet | |
243 | the xen clocksource (ie, at boot time). | |
244 | ||
245 | The new vcpu_op-based timer interface allows the tick timer period | |
246 | to be changed or turned off. The tick timer is not useful as a | |
247 | periodic timer because events are only delivered to running vcpus. | |
248 | The one-shot timer can report when a timeout is in the past, so | |
249 | set_next_event is capable of returning -ETIME when appropriate. | |
250 | This interface is used when available. | |
251 | */ | |
252 | ||
253 | ||
254 | /* | |
255 | Get a hypervisor absolute time. In theory we could maintain an | |
256 | offset between the kernel's time and the hypervisor's time, and | |
257 | apply that to a kernel's absolute timeout. Unfortunately the | |
258 | hypervisor and kernel times can drift even if the kernel is using | |
259 | the Xen clocksource, because ntp can warp the kernel's clocksource. | |
260 | */ | |
261 | static s64 get_abs_timeout(unsigned long delta) | |
262 | { | |
263 | return xen_clocksource_read() + delta; | |
264 | } | |
265 | ||
266 | static void xen_timerop_set_mode(enum clock_event_mode mode, | |
267 | struct clock_event_device *evt) | |
268 | { | |
269 | switch (mode) { | |
270 | case CLOCK_EVT_MODE_PERIODIC: | |
271 | /* unsupported */ | |
272 | WARN_ON(1); | |
273 | break; | |
274 | ||
275 | case CLOCK_EVT_MODE_ONESHOT: | |
18de5bc4 | 276 | case CLOCK_EVT_MODE_RESUME: |
15c84731 JF |
277 | break; |
278 | ||
279 | case CLOCK_EVT_MODE_UNUSED: | |
280 | case CLOCK_EVT_MODE_SHUTDOWN: | |
281 | HYPERVISOR_set_timer_op(0); /* cancel timeout */ | |
282 | break; | |
283 | } | |
284 | } | |
285 | ||
286 | static int xen_timerop_set_next_event(unsigned long delta, | |
287 | struct clock_event_device *evt) | |
288 | { | |
289 | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); | |
290 | ||
291 | if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) | |
292 | BUG(); | |
293 | ||
294 | /* We may have missed the deadline, but there's no real way of | |
295 | knowing for sure. If the event was in the past, then we'll | |
296 | get an immediate interrupt. */ | |
297 | ||
298 | return 0; | |
299 | } | |
300 | ||
301 | static const struct clock_event_device xen_timerop_clockevent = { | |
302 | .name = "xen", | |
303 | .features = CLOCK_EVT_FEAT_ONESHOT, | |
304 | ||
305 | .max_delta_ns = 0xffffffff, | |
306 | .min_delta_ns = TIMER_SLOP, | |
307 | ||
308 | .mult = 1, | |
309 | .shift = 0, | |
310 | .rating = 500, | |
311 | ||
312 | .set_mode = xen_timerop_set_mode, | |
313 | .set_next_event = xen_timerop_set_next_event, | |
314 | }; | |
315 | ||
316 | ||
317 | ||
318 | static void xen_vcpuop_set_mode(enum clock_event_mode mode, | |
319 | struct clock_event_device *evt) | |
320 | { | |
321 | int cpu = smp_processor_id(); | |
322 | ||
323 | switch (mode) { | |
324 | case CLOCK_EVT_MODE_PERIODIC: | |
325 | WARN_ON(1); /* unsupported */ | |
326 | break; | |
327 | ||
328 | case CLOCK_EVT_MODE_ONESHOT: | |
329 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | |
330 | BUG(); | |
331 | break; | |
332 | ||
333 | case CLOCK_EVT_MODE_UNUSED: | |
334 | case CLOCK_EVT_MODE_SHUTDOWN: | |
335 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || | |
336 | HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | |
337 | BUG(); | |
338 | break; | |
18de5bc4 TG |
339 | case CLOCK_EVT_MODE_RESUME: |
340 | break; | |
15c84731 JF |
341 | } |
342 | } | |
343 | ||
344 | static int xen_vcpuop_set_next_event(unsigned long delta, | |
345 | struct clock_event_device *evt) | |
346 | { | |
347 | int cpu = smp_processor_id(); | |
348 | struct vcpu_set_singleshot_timer single; | |
349 | int ret; | |
350 | ||
351 | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); | |
352 | ||
353 | single.timeout_abs_ns = get_abs_timeout(delta); | |
354 | single.flags = VCPU_SSHOTTMR_future; | |
355 | ||
356 | ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); | |
357 | ||
358 | BUG_ON(ret != 0 && ret != -ETIME); | |
359 | ||
360 | return ret; | |
361 | } | |
362 | ||
363 | static const struct clock_event_device xen_vcpuop_clockevent = { | |
364 | .name = "xen", | |
365 | .features = CLOCK_EVT_FEAT_ONESHOT, | |
366 | ||
367 | .max_delta_ns = 0xffffffff, | |
368 | .min_delta_ns = TIMER_SLOP, | |
369 | ||
370 | .mult = 1, | |
371 | .shift = 0, | |
372 | .rating = 500, | |
373 | ||
374 | .set_mode = xen_vcpuop_set_mode, | |
375 | .set_next_event = xen_vcpuop_set_next_event, | |
376 | }; | |
377 | ||
378 | static const struct clock_event_device *xen_clockevent = | |
379 | &xen_timerop_clockevent; | |
31620a19 KRW |
380 | |
381 | struct xen_clock_event_device { | |
382 | struct clock_event_device evt; | |
383 | char *name; | |
384 | }; | |
385 | static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 }; | |
15c84731 JF |
386 | |
387 | static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) | |
388 | { | |
31620a19 | 389 | struct clock_event_device *evt = &__get_cpu_var(xen_clock_events).evt; |
15c84731 JF |
390 | irqreturn_t ret; |
391 | ||
392 | ret = IRQ_NONE; | |
393 | if (evt->event_handler) { | |
394 | evt->event_handler(evt); | |
395 | ret = IRQ_HANDLED; | |
396 | } | |
397 | ||
f91a8b44 JF |
398 | do_stolen_accounting(); |
399 | ||
15c84731 JF |
400 | return ret; |
401 | } | |
402 | ||
f87e4cac | 403 | void xen_setup_timer(int cpu) |
15c84731 JF |
404 | { |
405 | const char *name; | |
406 | struct clock_event_device *evt; | |
407 | int irq; | |
408 | ||
31620a19 | 409 | evt = &per_cpu(xen_clock_events, cpu).evt; |
ef35a4e6 KRW |
410 | WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu); |
411 | ||
15c84731 JF |
412 | printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); |
413 | ||
414 | name = kasprintf(GFP_KERNEL, "timer%d", cpu); | |
415 | if (!name) | |
416 | name = "<timer kasprintf failed>"; | |
417 | ||
418 | irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, | |
f611f2da IC |
419 | IRQF_DISABLED|IRQF_PERCPU| |
420 | IRQF_NOBALANCING|IRQF_TIMER| | |
421 | IRQF_FORCE_RESUME, | |
15c84731 JF |
422 | name, NULL); |
423 | ||
15c84731 JF |
424 | memcpy(evt, xen_clockevent, sizeof(*evt)); |
425 | ||
320ab2b0 | 426 | evt->cpumask = cpumask_of(cpu); |
15c84731 | 427 | evt->irq = irq; |
f87e4cac JF |
428 | } |
429 | ||
d68d82af AN |
430 | void xen_teardown_timer(int cpu) |
431 | { | |
432 | struct clock_event_device *evt; | |
433 | BUG_ON(cpu == 0); | |
31620a19 | 434 | evt = &per_cpu(xen_clock_events, cpu).evt; |
d68d82af | 435 | unbind_from_irqhandler(evt->irq, NULL); |
ef35a4e6 | 436 | evt->irq = -1; |
d68d82af AN |
437 | } |
438 | ||
f87e4cac JF |
439 | void xen_setup_cpu_clockevents(void) |
440 | { | |
441 | BUG_ON(preemptible()); | |
f91a8b44 | 442 | |
31620a19 | 443 | clockevents_register_device(&__get_cpu_var(xen_clock_events).evt); |
15c84731 JF |
444 | } |
445 | ||
d07af1f0 JF |
446 | void xen_timer_resume(void) |
447 | { | |
448 | int cpu; | |
449 | ||
e7a3481c JF |
450 | pvclock_resume(); |
451 | ||
d07af1f0 JF |
452 | if (xen_clockevent != &xen_vcpuop_clockevent) |
453 | return; | |
454 | ||
455 | for_each_online_cpu(cpu) { | |
456 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | |
457 | BUG(); | |
458 | } | |
459 | } | |
460 | ||
fb6ce5de | 461 | static const struct pv_time_ops xen_time_ops __initconst = { |
ca50a5f3 | 462 | .sched_clock = xen_clocksource_read, |
409771d2 SS |
463 | }; |
464 | ||
fb6ce5de | 465 | static void __init xen_time_init(void) |
15c84731 JF |
466 | { |
467 | int cpu = smp_processor_id(); | |
c4507257 | 468 | struct timespec tp; |
15c84731 | 469 | |
b01cc1b0 | 470 | clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); |
15c84731 JF |
471 | |
472 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { | |
f91a8b44 | 473 | /* Successfully turned off 100Hz tick, so we have the |
15c84731 JF |
474 | vcpuop-based timer interface */ |
475 | printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); | |
476 | xen_clockevent = &xen_vcpuop_clockevent; | |
477 | } | |
478 | ||
479 | /* Set initial system time with full resolution */ | |
c4507257 JS |
480 | xen_read_wallclock(&tp); |
481 | do_settimeofday(&tp); | |
15c84731 | 482 | |
404ee5b1 | 483 | setup_force_cpu_cap(X86_FEATURE_TSC); |
15c84731 | 484 | |
be012920 | 485 | xen_setup_runstate_info(cpu); |
15c84731 | 486 | xen_setup_timer(cpu); |
f87e4cac | 487 | xen_setup_cpu_clockevents(); |
15c84731 | 488 | } |
409771d2 | 489 | |
fb6ce5de | 490 | void __init xen_init_time_ops(void) |
409771d2 SS |
491 | { |
492 | pv_time_ops = xen_time_ops; | |
493 | ||
494 | x86_init.timers.timer_init = xen_time_init; | |
495 | x86_init.timers.setup_percpu_clockev = x86_init_noop; | |
496 | x86_cpuinit.setup_percpu_clockev = x86_init_noop; | |
497 | ||
498 | x86_platform.calibrate_tsc = xen_tsc_khz; | |
499 | x86_platform.get_wallclock = xen_get_wallclock; | |
500 | x86_platform.set_wallclock = xen_set_wallclock; | |
501 | } | |
502 | ||
ca65f9fc | 503 | #ifdef CONFIG_XEN_PVHVM |
409771d2 SS |
504 | static void xen_hvm_setup_cpu_clockevents(void) |
505 | { | |
506 | int cpu = smp_processor_id(); | |
507 | xen_setup_runstate_info(cpu); | |
7918c92a KRW |
508 | /* |
509 | * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence | |
510 | * doing it xen_hvm_cpu_notify (which gets called by smp_init during | |
511 | * early bootup and also during CPU hotplug events). | |
512 | */ | |
409771d2 SS |
513 | xen_setup_cpu_clockevents(); |
514 | } | |
515 | ||
fb6ce5de | 516 | void __init xen_hvm_init_time_ops(void) |
409771d2 SS |
517 | { |
518 | /* vector callback is needed otherwise we cannot receive interrupts | |
31e7e931 SS |
519 | * on cpu > 0 and at this point we don't know how many cpus are |
520 | * available */ | |
521 | if (!xen_have_vector_callback) | |
409771d2 SS |
522 | return; |
523 | if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { | |
524 | printk(KERN_INFO "Xen doesn't support pvclock on HVM," | |
525 | "disable pv timer\n"); | |
526 | return; | |
527 | } | |
528 | ||
529 | pv_time_ops = xen_time_ops; | |
530 | x86_init.timers.setup_percpu_clockev = xen_time_init; | |
531 | x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; | |
532 | ||
533 | x86_platform.calibrate_tsc = xen_tsc_khz; | |
534 | x86_platform.get_wallclock = xen_get_wallclock; | |
535 | x86_platform.set_wallclock = xen_set_wallclock; | |
536 | } | |
ca65f9fc | 537 | #endif |