]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/xen/time.c
arm64: Relax licensing of arm64 Xen DMA operations
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / time.c
CommitLineData
15c84731
JF
1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
f91a8b44 14#include <linux/kernel_stat.h>
f595ec96 15#include <linux/math64.h>
5a0e3ad6 16#include <linux/gfp.h>
c9d76a24 17#include <linux/slab.h>
5584880e 18#include <linux/pvclock_gtod.h>
15c84731 19
1c7b67f7 20#include <asm/pvclock.h>
15c84731
JF
21#include <asm/xen/hypervisor.h>
22#include <asm/xen/hypercall.h>
23
24#include <xen/events.h>
409771d2 25#include <xen/features.h>
15c84731
JF
26#include <xen/interface/xen.h>
27#include <xen/interface/vcpu.h>
28
29#include "xen-ops.h"
30
15c84731
JF
31/* Xen may fire a timer up to this many ns early */
32#define TIMER_SLOP 100000
f91a8b44 33#define NS_PER_TICK (1000000000LL / HZ)
15c84731 34
f91a8b44 35/* runstate info updated by Xen */
c6e22f9e 36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
f91a8b44
JF
37
38/* snapshots of runstate info */
c6e22f9e 39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
f91a8b44 40
0b0c002c 41/* unused ns of stolen time */
c6e22f9e 42static DEFINE_PER_CPU(u64, xen_residual_stolen);
f91a8b44
JF
43
44/* return an consistent snapshot of 64-bit time/counter value */
45static u64 get64(const u64 *p)
46{
47 u64 ret;
48
49 if (BITS_PER_LONG < 64) {
50 u32 *p32 = (u32 *)p;
51 u32 h, l;
52
53 /*
54 * Read high then low, and then make sure high is
55 * still the same; this will only loop if low wraps
56 * and carries into high.
57 * XXX some clean way to make this endian-proof?
58 */
59 do {
60 h = p32[1];
61 barrier();
62 l = p32[0];
63 barrier();
64 } while (p32[1] != h);
65
66 ret = (((u64)h) << 32) | l;
67 } else
68 ret = *p;
69
70 return ret;
71}
72
73/*
74 * Runstate accounting
75 */
76static void get_runstate_snapshot(struct vcpu_runstate_info *res)
77{
78 u64 state_time;
79 struct vcpu_runstate_info *state;
80
f120f13e 81 BUG_ON(preemptible());
f91a8b44 82
89cbc767 83 state = this_cpu_ptr(&xen_runstate);
f91a8b44
JF
84
85 /*
86 * The runstate info is always updated by the hypervisor on
87 * the current CPU, so there's no need to use anything
88 * stronger than a compiler barrier when fetching it.
89 */
90 do {
91 state_time = get64(&state->state_entry_time);
92 barrier();
93 *res = *state;
94 barrier();
95 } while (get64(&state->state_entry_time) != state_time);
f91a8b44
JF
96}
97
f0d73394
JF
98/* return true when a vcpu could run but has no real cpu to run on */
99bool xen_vcpu_stolen(int vcpu)
100{
c6e22f9e 101 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
f0d73394
JF
102}
103
be012920 104void xen_setup_runstate_info(int cpu)
f91a8b44
JF
105{
106 struct vcpu_register_runstate_memory_area area;
107
c6e22f9e 108 area.addr.v = &per_cpu(xen_runstate, cpu);
f91a8b44
JF
109
110 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
111 cpu, &area))
112 BUG();
113}
114
115static void do_stolen_accounting(void)
116{
117 struct vcpu_runstate_info state;
118 struct vcpu_runstate_info *snap;
0b0c002c 119 s64 runnable, offline, stolen;
f91a8b44
JF
120 cputime_t ticks;
121
122 get_runstate_snapshot(&state);
123
124 WARN_ON(state.state != RUNSTATE_running);
125
89cbc767 126 snap = this_cpu_ptr(&xen_runstate_snapshot);
f91a8b44
JF
127
128 /* work out how much time the VCPU has not been runn*ing* */
f91a8b44
JF
129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132 *snap = state;
133
134 /* Add the appropriate number of ticks of stolen time,
79741dd3 135 including any left-overs from last time. */
780f36d8 136 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
f91a8b44
JF
137
138 if (stolen < 0)
139 stolen = 0;
140
f595ec96 141 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
780f36d8 142 __this_cpu_write(xen_residual_stolen, stolen);
79741dd3 143 account_steal_ticks(ticks);
f91a8b44
JF
144}
145
e93ef949 146/* Get the TSC speed from Xen */
409771d2 147static unsigned long xen_tsc_khz(void)
15c84731 148{
3807f345 149 struct pvclock_vcpu_time_info *info =
15c84731
JF
150 &HYPERVISOR_shared_info->vcpu_info[0].time;
151
3807f345 152 return pvclock_tsc_khz(info);
15c84731
JF
153}
154
ee7686bc 155cycle_t xen_clocksource_read(void)
15c84731 156{
1c7b67f7 157 struct pvclock_vcpu_time_info *src;
15c84731 158 cycle_t ret;
15c84731 159
f1c39625 160 preempt_disable_notrace();
3251f20b 161 src = &__this_cpu_read(xen_vcpu)->time;
1c7b67f7 162 ret = pvclock_clocksource_read(src);
f1c39625 163 preempt_enable_notrace();
15c84731
JF
164 return ret;
165}
166
8e19608e
MD
167static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
168{
169 return xen_clocksource_read();
170}
171
15c84731
JF
172static void xen_read_wallclock(struct timespec *ts)
173{
1c7b67f7
GH
174 struct shared_info *s = HYPERVISOR_shared_info;
175 struct pvclock_wall_clock *wall_clock = &(s->wc);
176 struct pvclock_vcpu_time_info *vcpu_time;
15c84731 177
1c7b67f7
GH
178 vcpu_time = &get_cpu_var(xen_vcpu)->time;
179 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
180 put_cpu_var(xen_vcpu);
15c84731
JF
181}
182
3565184e 183static void xen_get_wallclock(struct timespec *now)
15c84731 184{
3565184e 185 xen_read_wallclock(now);
15c84731 186}
15c84731 187
3565184e 188static int xen_set_wallclock(const struct timespec *now)
15c84731 189{
47433b8c 190 return -1;
15c84731
JF
191}
192
47433b8c
DV
193static int xen_pvclock_gtod_notify(struct notifier_block *nb,
194 unsigned long was_set, void *priv)
15c84731 195{
47433b8c
DV
196 /* Protected by the calling core code serialization */
197 static struct timespec next_sync;
5584880e 198
fdb9eb9f 199 struct xen_platform_op op;
47433b8c 200 struct timespec now;
fdb9eb9f 201
5584880e
DV
202 now = __current_kernel_time();
203
47433b8c
DV
204 /*
205 * We only take the expensive HV call when the clock was set
206 * or when the 11 minutes RTC synchronization time elapsed.
207 */
208 if (!was_set && timespec_compare(&now, &next_sync) < 0)
209 return NOTIFY_OK;
fdb9eb9f
JF
210
211 op.cmd = XENPF_settime;
5584880e
DV
212 op.u.settime.secs = now.tv_sec;
213 op.u.settime.nsecs = now.tv_nsec;
fdb9eb9f
JF
214 op.u.settime.system_time = xen_clocksource_read();
215
5584880e 216 (void)HYPERVISOR_dom0_op(&op);
fdb9eb9f 217
47433b8c
DV
218 /*
219 * Move the next drift compensation time 11 minutes
220 * ahead. That's emulating the sync_cmos_clock() update for
221 * the hardware RTC.
222 */
223 next_sync = now;
224 next_sync.tv_sec += 11 * 60;
225
5584880e 226 return NOTIFY_OK;
15c84731
JF
227}
228
5584880e
DV
229static struct notifier_block xen_pvclock_gtod_notifier = {
230 .notifier_call = xen_pvclock_gtod_notify,
231};
232
15c84731
JF
233static struct clocksource xen_clocksource __read_mostly = {
234 .name = "xen",
235 .rating = 400,
8e19608e 236 .read = xen_clocksource_get_cycles,
15c84731 237 .mask = ~0,
15c84731
JF
238 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
239};
240
241/*
242 Xen clockevent implementation
243
244 Xen has two clockevent implementations:
245
246 The old timer_op one works with all released versions of Xen prior
247 to version 3.0.4. This version of the hypervisor provides a
248 single-shot timer with nanosecond resolution. However, sharing the
249 same event channel is a 100Hz tick which is delivered while the
250 vcpu is running. We don't care about or use this tick, but it will
251 cause the core time code to think the timer fired too soon, and
252 will end up resetting it each time. It could be filtered, but
253 doing so has complications when the ktime clocksource is not yet
254 the xen clocksource (ie, at boot time).
255
256 The new vcpu_op-based timer interface allows the tick timer period
257 to be changed or turned off. The tick timer is not useful as a
258 periodic timer because events are only delivered to running vcpus.
259 The one-shot timer can report when a timeout is in the past, so
260 set_next_event is capable of returning -ETIME when appropriate.
261 This interface is used when available.
262*/
263
264
265/*
266 Get a hypervisor absolute time. In theory we could maintain an
267 offset between the kernel's time and the hypervisor's time, and
268 apply that to a kernel's absolute timeout. Unfortunately the
269 hypervisor and kernel times can drift even if the kernel is using
270 the Xen clocksource, because ntp can warp the kernel's clocksource.
271*/
272static s64 get_abs_timeout(unsigned long delta)
273{
274 return xen_clocksource_read() + delta;
275}
276
277static void xen_timerop_set_mode(enum clock_event_mode mode,
278 struct clock_event_device *evt)
279{
280 switch (mode) {
281 case CLOCK_EVT_MODE_PERIODIC:
282 /* unsupported */
283 WARN_ON(1);
284 break;
285
286 case CLOCK_EVT_MODE_ONESHOT:
18de5bc4 287 case CLOCK_EVT_MODE_RESUME:
15c84731
JF
288 break;
289
290 case CLOCK_EVT_MODE_UNUSED:
291 case CLOCK_EVT_MODE_SHUTDOWN:
292 HYPERVISOR_set_timer_op(0); /* cancel timeout */
293 break;
294 }
295}
296
297static int xen_timerop_set_next_event(unsigned long delta,
298 struct clock_event_device *evt)
299{
300 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
301
302 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
303 BUG();
304
305 /* We may have missed the deadline, but there's no real way of
306 knowing for sure. If the event was in the past, then we'll
307 get an immediate interrupt. */
308
309 return 0;
310}
311
312static const struct clock_event_device xen_timerop_clockevent = {
313 .name = "xen",
314 .features = CLOCK_EVT_FEAT_ONESHOT,
315
316 .max_delta_ns = 0xffffffff,
317 .min_delta_ns = TIMER_SLOP,
318
319 .mult = 1,
320 .shift = 0,
321 .rating = 500,
322
323 .set_mode = xen_timerop_set_mode,
324 .set_next_event = xen_timerop_set_next_event,
325};
326
327
328
329static void xen_vcpuop_set_mode(enum clock_event_mode mode,
330 struct clock_event_device *evt)
331{
332 int cpu = smp_processor_id();
333
334 switch (mode) {
335 case CLOCK_EVT_MODE_PERIODIC:
336 WARN_ON(1); /* unsupported */
337 break;
338
339 case CLOCK_EVT_MODE_ONESHOT:
340 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
341 BUG();
342 break;
343
344 case CLOCK_EVT_MODE_UNUSED:
345 case CLOCK_EVT_MODE_SHUTDOWN:
346 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
347 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
348 BUG();
349 break;
18de5bc4
TG
350 case CLOCK_EVT_MODE_RESUME:
351 break;
15c84731
JF
352 }
353}
354
355static int xen_vcpuop_set_next_event(unsigned long delta,
356 struct clock_event_device *evt)
357{
358 int cpu = smp_processor_id();
359 struct vcpu_set_singleshot_timer single;
360 int ret;
361
362 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
363
364 single.timeout_abs_ns = get_abs_timeout(delta);
365 single.flags = VCPU_SSHOTTMR_future;
366
367 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
368
369 BUG_ON(ret != 0 && ret != -ETIME);
370
371 return ret;
372}
373
374static const struct clock_event_device xen_vcpuop_clockevent = {
375 .name = "xen",
376 .features = CLOCK_EVT_FEAT_ONESHOT,
377
378 .max_delta_ns = 0xffffffff,
379 .min_delta_ns = TIMER_SLOP,
380
381 .mult = 1,
382 .shift = 0,
383 .rating = 500,
384
385 .set_mode = xen_vcpuop_set_mode,
386 .set_next_event = xen_vcpuop_set_next_event,
387};
388
389static const struct clock_event_device *xen_clockevent =
390 &xen_timerop_clockevent;
31620a19
KRW
391
392struct xen_clock_event_device {
393 struct clock_event_device evt;
7be0772d 394 char name[16];
31620a19
KRW
395};
396static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
15c84731
JF
397
398static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
399{
89cbc767 400 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
15c84731
JF
401 irqreturn_t ret;
402
403 ret = IRQ_NONE;
404 if (evt->event_handler) {
405 evt->event_handler(evt);
406 ret = IRQ_HANDLED;
407 }
408
f91a8b44
JF
409 do_stolen_accounting();
410
15c84731
JF
411 return ret;
412}
413
09e99da7
KRW
414void xen_teardown_timer(int cpu)
415{
416 struct clock_event_device *evt;
417 BUG_ON(cpu == 0);
418 evt = &per_cpu(xen_clock_events, cpu).evt;
419
420 if (evt->irq >= 0) {
421 unbind_from_irqhandler(evt->irq, NULL);
422 evt->irq = -1;
09e99da7
KRW
423 }
424}
425
f87e4cac 426void xen_setup_timer(int cpu)
15c84731 427{
7be0772d
VK
428 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
429 struct clock_event_device *evt = &xevt->evt;
15c84731
JF
430 int irq;
431
ef35a4e6 432 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
09e99da7
KRW
433 if (evt->irq >= 0)
434 xen_teardown_timer(cpu);
ef35a4e6 435
15c84731
JF
436 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
437
7be0772d 438 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
15c84731
JF
439
440 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
9d71cee6 441 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
8d5999df 442 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
7be0772d 443 xevt->name, NULL);
8785c676 444 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
15c84731 445
15c84731
JF
446 memcpy(evt, xen_clockevent, sizeof(*evt));
447
320ab2b0 448 evt->cpumask = cpumask_of(cpu);
15c84731 449 evt->irq = irq;
f87e4cac
JF
450}
451
d68d82af 452
f87e4cac
JF
453void xen_setup_cpu_clockevents(void)
454{
89cbc767 455 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
15c84731
JF
456}
457
d07af1f0
JF
458void xen_timer_resume(void)
459{
460 int cpu;
461
e7a3481c
JF
462 pvclock_resume();
463
d07af1f0
JF
464 if (xen_clockevent != &xen_vcpuop_clockevent)
465 return;
466
467 for_each_online_cpu(cpu) {
468 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
469 BUG();
470 }
471}
472
fb6ce5de 473static const struct pv_time_ops xen_time_ops __initconst = {
ca50a5f3 474 .sched_clock = xen_clocksource_read,
409771d2
SS
475};
476
fb6ce5de 477static void __init xen_time_init(void)
15c84731
JF
478{
479 int cpu = smp_processor_id();
c4507257 480 struct timespec tp;
15c84731 481
b01cc1b0 482 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
15c84731
JF
483
484 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
f91a8b44 485 /* Successfully turned off 100Hz tick, so we have the
15c84731
JF
486 vcpuop-based timer interface */
487 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
488 xen_clockevent = &xen_vcpuop_clockevent;
489 }
490
491 /* Set initial system time with full resolution */
c4507257
JS
492 xen_read_wallclock(&tp);
493 do_settimeofday(&tp);
15c84731 494
404ee5b1 495 setup_force_cpu_cap(X86_FEATURE_TSC);
15c84731 496
be012920 497 xen_setup_runstate_info(cpu);
15c84731 498 xen_setup_timer(cpu);
f87e4cac 499 xen_setup_cpu_clockevents();
5584880e
DV
500
501 if (xen_initial_domain())
502 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
15c84731 503}
409771d2 504
fb6ce5de 505void __init xen_init_time_ops(void)
409771d2
SS
506{
507 pv_time_ops = xen_time_ops;
508
509 x86_init.timers.timer_init = xen_time_init;
510 x86_init.timers.setup_percpu_clockev = x86_init_noop;
511 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
512
513 x86_platform.calibrate_tsc = xen_tsc_khz;
514 x86_platform.get_wallclock = xen_get_wallclock;
47433b8c
DV
515 /* Dom0 uses the native method to set the hardware RTC. */
516 if (!xen_initial_domain())
517 x86_platform.set_wallclock = xen_set_wallclock;
409771d2
SS
518}
519
ca65f9fc 520#ifdef CONFIG_XEN_PVHVM
409771d2
SS
521static void xen_hvm_setup_cpu_clockevents(void)
522{
523 int cpu = smp_processor_id();
524 xen_setup_runstate_info(cpu);
7918c92a
KRW
525 /*
526 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
527 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
528 * early bootup and also during CPU hotplug events).
529 */
409771d2
SS
530 xen_setup_cpu_clockevents();
531}
532
fb6ce5de 533void __init xen_hvm_init_time_ops(void)
409771d2
SS
534{
535 /* vector callback is needed otherwise we cannot receive interrupts
31e7e931
SS
536 * on cpu > 0 and at this point we don't know how many cpus are
537 * available */
538 if (!xen_have_vector_callback)
409771d2
SS
539 return;
540 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
541 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
542 "disable pv timer\n");
543 return;
544 }
545
546 pv_time_ops = xen_time_ops;
547 x86_init.timers.setup_percpu_clockev = xen_time_init;
548 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
549
550 x86_platform.calibrate_tsc = xen_tsc_khz;
551 x86_platform.get_wallclock = xen_get_wallclock;
552 x86_platform.set_wallclock = xen_set_wallclock;
553}
ca65f9fc 554#endif