]>
Commit | Line | Data |
---|---|---|
15c84731 JF |
1 | /* |
2 | * Xen time implementation. | |
3 | * | |
4 | * This is implemented in terms of a clocksource driver which uses | |
5 | * the hypervisor clock as a nanosecond timebase, and a clockevent | |
6 | * driver which uses the hypervisor's timer mechanism. | |
7 | * | |
8 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | |
9 | */ | |
10 | #include <linux/kernel.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/clocksource.h> | |
13 | #include <linux/clockchips.h> | |
f91a8b44 | 14 | #include <linux/kernel_stat.h> |
f595ec96 | 15 | #include <linux/math64.h> |
15c84731 | 16 | |
1c7b67f7 | 17 | #include <asm/pvclock.h> |
15c84731 JF |
18 | #include <asm/xen/hypervisor.h> |
19 | #include <asm/xen/hypercall.h> | |
20 | ||
21 | #include <xen/events.h> | |
22 | #include <xen/interface/xen.h> | |
23 | #include <xen/interface/vcpu.h> | |
24 | ||
25 | #include "xen-ops.h" | |
26 | ||
27 | #define XEN_SHIFT 22 | |
28 | ||
29 | /* Xen may fire a timer up to this many ns early */ | |
30 | #define TIMER_SLOP 100000 | |
f91a8b44 | 31 | #define NS_PER_TICK (1000000000LL / HZ) |
15c84731 | 32 | |
f91a8b44 JF |
33 | /* runstate info updated by Xen */ |
34 | static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); | |
35 | ||
36 | /* snapshots of runstate info */ | |
37 | static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot); | |
38 | ||
39 | /* unused ns of stolen and blocked time */ | |
40 | static DEFINE_PER_CPU(u64, residual_stolen); | |
41 | static DEFINE_PER_CPU(u64, residual_blocked); | |
42 | ||
43 | /* return an consistent snapshot of 64-bit time/counter value */ | |
44 | static u64 get64(const u64 *p) | |
45 | { | |
46 | u64 ret; | |
47 | ||
48 | if (BITS_PER_LONG < 64) { | |
49 | u32 *p32 = (u32 *)p; | |
50 | u32 h, l; | |
51 | ||
52 | /* | |
53 | * Read high then low, and then make sure high is | |
54 | * still the same; this will only loop if low wraps | |
55 | * and carries into high. | |
56 | * XXX some clean way to make this endian-proof? | |
57 | */ | |
58 | do { | |
59 | h = p32[1]; | |
60 | barrier(); | |
61 | l = p32[0]; | |
62 | barrier(); | |
63 | } while (p32[1] != h); | |
64 | ||
65 | ret = (((u64)h) << 32) | l; | |
66 | } else | |
67 | ret = *p; | |
68 | ||
69 | return ret; | |
70 | } | |
71 | ||
72 | /* | |
73 | * Runstate accounting | |
74 | */ | |
75 | static void get_runstate_snapshot(struct vcpu_runstate_info *res) | |
76 | { | |
77 | u64 state_time; | |
78 | struct vcpu_runstate_info *state; | |
79 | ||
f120f13e | 80 | BUG_ON(preemptible()); |
f91a8b44 JF |
81 | |
82 | state = &__get_cpu_var(runstate); | |
83 | ||
84 | /* | |
85 | * The runstate info is always updated by the hypervisor on | |
86 | * the current CPU, so there's no need to use anything | |
87 | * stronger than a compiler barrier when fetching it. | |
88 | */ | |
89 | do { | |
90 | state_time = get64(&state->state_entry_time); | |
91 | barrier(); | |
92 | *res = *state; | |
93 | barrier(); | |
94 | } while (get64(&state->state_entry_time) != state_time); | |
f91a8b44 JF |
95 | } |
96 | ||
f0d73394 JF |
97 | /* return true when a vcpu could run but has no real cpu to run on */ |
98 | bool xen_vcpu_stolen(int vcpu) | |
99 | { | |
100 | return per_cpu(runstate, vcpu).state == RUNSTATE_runnable; | |
101 | } | |
102 | ||
f91a8b44 JF |
103 | static void setup_runstate_info(int cpu) |
104 | { | |
105 | struct vcpu_register_runstate_memory_area area; | |
106 | ||
107 | area.addr.v = &per_cpu(runstate, cpu); | |
108 | ||
109 | if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, | |
110 | cpu, &area)) | |
111 | BUG(); | |
112 | } | |
113 | ||
114 | static void do_stolen_accounting(void) | |
115 | { | |
116 | struct vcpu_runstate_info state; | |
117 | struct vcpu_runstate_info *snap; | |
118 | s64 blocked, runnable, offline, stolen; | |
119 | cputime_t ticks; | |
120 | ||
121 | get_runstate_snapshot(&state); | |
122 | ||
123 | WARN_ON(state.state != RUNSTATE_running); | |
124 | ||
125 | snap = &__get_cpu_var(runstate_snapshot); | |
126 | ||
127 | /* work out how much time the VCPU has not been runn*ing* */ | |
128 | blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; | |
129 | runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; | |
130 | offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; | |
131 | ||
132 | *snap = state; | |
133 | ||
134 | /* Add the appropriate number of ticks of stolen time, | |
79741dd3 | 135 | including any left-overs from last time. */ |
f91a8b44 JF |
136 | stolen = runnable + offline + __get_cpu_var(residual_stolen); |
137 | ||
138 | if (stolen < 0) | |
139 | stolen = 0; | |
140 | ||
f595ec96 | 141 | ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); |
f91a8b44 | 142 | __get_cpu_var(residual_stolen) = stolen; |
79741dd3 | 143 | account_steal_ticks(ticks); |
f91a8b44 JF |
144 | |
145 | /* Add the appropriate number of ticks of blocked time, | |
79741dd3 | 146 | including any left-overs from last time. */ |
f91a8b44 JF |
147 | blocked += __get_cpu_var(residual_blocked); |
148 | ||
149 | if (blocked < 0) | |
150 | blocked = 0; | |
151 | ||
f595ec96 | 152 | ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); |
f91a8b44 | 153 | __get_cpu_var(residual_blocked) = blocked; |
79741dd3 | 154 | account_idle_ticks(ticks); |
f91a8b44 JF |
155 | } |
156 | ||
ab550288 JF |
157 | /* |
158 | * Xen sched_clock implementation. Returns the number of unstolen | |
159 | * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED | |
160 | * states. | |
161 | */ | |
162 | unsigned long long xen_sched_clock(void) | |
163 | { | |
164 | struct vcpu_runstate_info state; | |
f120f13e JF |
165 | cycle_t now; |
166 | u64 ret; | |
ab550288 JF |
167 | s64 offset; |
168 | ||
f120f13e JF |
169 | /* |
170 | * Ideally sched_clock should be called on a per-cpu basis | |
171 | * anyway, so preempt should already be disabled, but that's | |
172 | * not current practice at the moment. | |
173 | */ | |
174 | preempt_disable(); | |
175 | ||
176 | now = xen_clocksource_read(); | |
177 | ||
ab550288 JF |
178 | get_runstate_snapshot(&state); |
179 | ||
180 | WARN_ON(state.state != RUNSTATE_running); | |
181 | ||
182 | offset = now - state.state_entry_time; | |
183 | if (offset < 0) | |
184 | offset = 0; | |
185 | ||
f120f13e | 186 | ret = state.time[RUNSTATE_blocked] + |
ab550288 JF |
187 | state.time[RUNSTATE_running] + |
188 | offset; | |
f120f13e JF |
189 | |
190 | preempt_enable(); | |
191 | ||
192 | return ret; | |
ab550288 | 193 | } |
f91a8b44 JF |
194 | |
195 | ||
e93ef949 AK |
196 | /* Get the TSC speed from Xen */ |
197 | unsigned long xen_tsc_khz(void) | |
15c84731 | 198 | { |
3807f345 | 199 | struct pvclock_vcpu_time_info *info = |
15c84731 JF |
200 | &HYPERVISOR_shared_info->vcpu_info[0].time; |
201 | ||
3807f345 | 202 | return pvclock_tsc_khz(info); |
15c84731 JF |
203 | } |
204 | ||
ee7686bc | 205 | cycle_t xen_clocksource_read(void) |
15c84731 | 206 | { |
1c7b67f7 | 207 | struct pvclock_vcpu_time_info *src; |
15c84731 | 208 | cycle_t ret; |
15c84731 | 209 | |
1c7b67f7 GH |
210 | src = &get_cpu_var(xen_vcpu)->time; |
211 | ret = pvclock_clocksource_read(src); | |
212 | put_cpu_var(xen_vcpu); | |
15c84731 JF |
213 | return ret; |
214 | } | |
215 | ||
8e19608e MD |
216 | static cycle_t xen_clocksource_get_cycles(struct clocksource *cs) |
217 | { | |
218 | return xen_clocksource_read(); | |
219 | } | |
220 | ||
15c84731 JF |
221 | static void xen_read_wallclock(struct timespec *ts) |
222 | { | |
1c7b67f7 GH |
223 | struct shared_info *s = HYPERVISOR_shared_info; |
224 | struct pvclock_wall_clock *wall_clock = &(s->wc); | |
225 | struct pvclock_vcpu_time_info *vcpu_time; | |
15c84731 | 226 | |
1c7b67f7 GH |
227 | vcpu_time = &get_cpu_var(xen_vcpu)->time; |
228 | pvclock_read_wallclock(wall_clock, vcpu_time, ts); | |
229 | put_cpu_var(xen_vcpu); | |
15c84731 JF |
230 | } |
231 | ||
232 | unsigned long xen_get_wallclock(void) | |
233 | { | |
234 | struct timespec ts; | |
235 | ||
236 | xen_read_wallclock(&ts); | |
15c84731 JF |
237 | return ts.tv_sec; |
238 | } | |
239 | ||
240 | int xen_set_wallclock(unsigned long now) | |
241 | { | |
242 | /* do nothing for domU */ | |
243 | return -1; | |
244 | } | |
245 | ||
246 | static struct clocksource xen_clocksource __read_mostly = { | |
247 | .name = "xen", | |
248 | .rating = 400, | |
8e19608e | 249 | .read = xen_clocksource_get_cycles, |
15c84731 JF |
250 | .mask = ~0, |
251 | .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */ | |
252 | .shift = XEN_SHIFT, | |
253 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | |
254 | }; | |
255 | ||
256 | /* | |
257 | Xen clockevent implementation | |
258 | ||
259 | Xen has two clockevent implementations: | |
260 | ||
261 | The old timer_op one works with all released versions of Xen prior | |
262 | to version 3.0.4. This version of the hypervisor provides a | |
263 | single-shot timer with nanosecond resolution. However, sharing the | |
264 | same event channel is a 100Hz tick which is delivered while the | |
265 | vcpu is running. We don't care about or use this tick, but it will | |
266 | cause the core time code to think the timer fired too soon, and | |
267 | will end up resetting it each time. It could be filtered, but | |
268 | doing so has complications when the ktime clocksource is not yet | |
269 | the xen clocksource (ie, at boot time). | |
270 | ||
271 | The new vcpu_op-based timer interface allows the tick timer period | |
272 | to be changed or turned off. The tick timer is not useful as a | |
273 | periodic timer because events are only delivered to running vcpus. | |
274 | The one-shot timer can report when a timeout is in the past, so | |
275 | set_next_event is capable of returning -ETIME when appropriate. | |
276 | This interface is used when available. | |
277 | */ | |
278 | ||
279 | ||
280 | /* | |
281 | Get a hypervisor absolute time. In theory we could maintain an | |
282 | offset between the kernel's time and the hypervisor's time, and | |
283 | apply that to a kernel's absolute timeout. Unfortunately the | |
284 | hypervisor and kernel times can drift even if the kernel is using | |
285 | the Xen clocksource, because ntp can warp the kernel's clocksource. | |
286 | */ | |
287 | static s64 get_abs_timeout(unsigned long delta) | |
288 | { | |
289 | return xen_clocksource_read() + delta; | |
290 | } | |
291 | ||
292 | static void xen_timerop_set_mode(enum clock_event_mode mode, | |
293 | struct clock_event_device *evt) | |
294 | { | |
295 | switch (mode) { | |
296 | case CLOCK_EVT_MODE_PERIODIC: | |
297 | /* unsupported */ | |
298 | WARN_ON(1); | |
299 | break; | |
300 | ||
301 | case CLOCK_EVT_MODE_ONESHOT: | |
18de5bc4 | 302 | case CLOCK_EVT_MODE_RESUME: |
15c84731 JF |
303 | break; |
304 | ||
305 | case CLOCK_EVT_MODE_UNUSED: | |
306 | case CLOCK_EVT_MODE_SHUTDOWN: | |
307 | HYPERVISOR_set_timer_op(0); /* cancel timeout */ | |
308 | break; | |
309 | } | |
310 | } | |
311 | ||
312 | static int xen_timerop_set_next_event(unsigned long delta, | |
313 | struct clock_event_device *evt) | |
314 | { | |
315 | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); | |
316 | ||
317 | if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) | |
318 | BUG(); | |
319 | ||
320 | /* We may have missed the deadline, but there's no real way of | |
321 | knowing for sure. If the event was in the past, then we'll | |
322 | get an immediate interrupt. */ | |
323 | ||
324 | return 0; | |
325 | } | |
326 | ||
327 | static const struct clock_event_device xen_timerop_clockevent = { | |
328 | .name = "xen", | |
329 | .features = CLOCK_EVT_FEAT_ONESHOT, | |
330 | ||
331 | .max_delta_ns = 0xffffffff, | |
332 | .min_delta_ns = TIMER_SLOP, | |
333 | ||
334 | .mult = 1, | |
335 | .shift = 0, | |
336 | .rating = 500, | |
337 | ||
338 | .set_mode = xen_timerop_set_mode, | |
339 | .set_next_event = xen_timerop_set_next_event, | |
340 | }; | |
341 | ||
342 | ||
343 | ||
344 | static void xen_vcpuop_set_mode(enum clock_event_mode mode, | |
345 | struct clock_event_device *evt) | |
346 | { | |
347 | int cpu = smp_processor_id(); | |
348 | ||
349 | switch (mode) { | |
350 | case CLOCK_EVT_MODE_PERIODIC: | |
351 | WARN_ON(1); /* unsupported */ | |
352 | break; | |
353 | ||
354 | case CLOCK_EVT_MODE_ONESHOT: | |
355 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | |
356 | BUG(); | |
357 | break; | |
358 | ||
359 | case CLOCK_EVT_MODE_UNUSED: | |
360 | case CLOCK_EVT_MODE_SHUTDOWN: | |
361 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || | |
362 | HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | |
363 | BUG(); | |
364 | break; | |
18de5bc4 TG |
365 | case CLOCK_EVT_MODE_RESUME: |
366 | break; | |
15c84731 JF |
367 | } |
368 | } | |
369 | ||
370 | static int xen_vcpuop_set_next_event(unsigned long delta, | |
371 | struct clock_event_device *evt) | |
372 | { | |
373 | int cpu = smp_processor_id(); | |
374 | struct vcpu_set_singleshot_timer single; | |
375 | int ret; | |
376 | ||
377 | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); | |
378 | ||
379 | single.timeout_abs_ns = get_abs_timeout(delta); | |
380 | single.flags = VCPU_SSHOTTMR_future; | |
381 | ||
382 | ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); | |
383 | ||
384 | BUG_ON(ret != 0 && ret != -ETIME); | |
385 | ||
386 | return ret; | |
387 | } | |
388 | ||
389 | static const struct clock_event_device xen_vcpuop_clockevent = { | |
390 | .name = "xen", | |
391 | .features = CLOCK_EVT_FEAT_ONESHOT, | |
392 | ||
393 | .max_delta_ns = 0xffffffff, | |
394 | .min_delta_ns = TIMER_SLOP, | |
395 | ||
396 | .mult = 1, | |
397 | .shift = 0, | |
398 | .rating = 500, | |
399 | ||
400 | .set_mode = xen_vcpuop_set_mode, | |
401 | .set_next_event = xen_vcpuop_set_next_event, | |
402 | }; | |
403 | ||
404 | static const struct clock_event_device *xen_clockevent = | |
405 | &xen_timerop_clockevent; | |
406 | static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); | |
407 | ||
408 | static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) | |
409 | { | |
410 | struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); | |
411 | irqreturn_t ret; | |
412 | ||
413 | ret = IRQ_NONE; | |
414 | if (evt->event_handler) { | |
415 | evt->event_handler(evt); | |
416 | ret = IRQ_HANDLED; | |
417 | } | |
418 | ||
f91a8b44 JF |
419 | do_stolen_accounting(); |
420 | ||
15c84731 JF |
421 | return ret; |
422 | } | |
423 | ||
f87e4cac | 424 | void xen_setup_timer(int cpu) |
15c84731 JF |
425 | { |
426 | const char *name; | |
427 | struct clock_event_device *evt; | |
428 | int irq; | |
429 | ||
430 | printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); | |
431 | ||
432 | name = kasprintf(GFP_KERNEL, "timer%d", cpu); | |
433 | if (!name) | |
434 | name = "<timer kasprintf failed>"; | |
435 | ||
436 | irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, | |
437 | IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, | |
438 | name, NULL); | |
439 | ||
f87e4cac | 440 | evt = &per_cpu(xen_clock_events, cpu); |
15c84731 JF |
441 | memcpy(evt, xen_clockevent, sizeof(*evt)); |
442 | ||
320ab2b0 | 443 | evt->cpumask = cpumask_of(cpu); |
15c84731 | 444 | evt->irq = irq; |
15c84731 | 445 | |
f91a8b44 | 446 | setup_runstate_info(cpu); |
f87e4cac JF |
447 | } |
448 | ||
d68d82af AN |
449 | void xen_teardown_timer(int cpu) |
450 | { | |
451 | struct clock_event_device *evt; | |
452 | BUG_ON(cpu == 0); | |
453 | evt = &per_cpu(xen_clock_events, cpu); | |
454 | unbind_from_irqhandler(evt->irq, NULL); | |
455 | } | |
456 | ||
f87e4cac JF |
457 | void xen_setup_cpu_clockevents(void) |
458 | { | |
459 | BUG_ON(preemptible()); | |
f91a8b44 | 460 | |
f87e4cac | 461 | clockevents_register_device(&__get_cpu_var(xen_clock_events)); |
15c84731 JF |
462 | } |
463 | ||
d07af1f0 JF |
464 | void xen_timer_resume(void) |
465 | { | |
466 | int cpu; | |
467 | ||
468 | if (xen_clockevent != &xen_vcpuop_clockevent) | |
469 | return; | |
470 | ||
471 | for_each_online_cpu(cpu) { | |
472 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | |
473 | BUG(); | |
474 | } | |
475 | } | |
476 | ||
15c84731 JF |
477 | __init void xen_time_init(void) |
478 | { | |
479 | int cpu = smp_processor_id(); | |
480 | ||
15c84731 JF |
481 | clocksource_register(&xen_clocksource); |
482 | ||
483 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { | |
f91a8b44 | 484 | /* Successfully turned off 100Hz tick, so we have the |
15c84731 JF |
485 | vcpuop-based timer interface */ |
486 | printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); | |
487 | xen_clockevent = &xen_vcpuop_clockevent; | |
488 | } | |
489 | ||
490 | /* Set initial system time with full resolution */ | |
491 | xen_read_wallclock(&xtime); | |
492 | set_normalized_timespec(&wall_to_monotonic, | |
493 | -xtime.tv_sec, -xtime.tv_nsec); | |
494 | ||
404ee5b1 | 495 | setup_force_cpu_cap(X86_FEATURE_TSC); |
15c84731 JF |
496 | |
497 | xen_setup_timer(cpu); | |
f87e4cac | 498 | xen_setup_cpu_clockevents(); |
15c84731 | 499 | } |