]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86_64/kernel/kprobes.c
[PATCH] kprobes: changed from using spinlock to mutex
[mirror_ubuntu-artful-kernel.git] / arch / x86_64 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
73649dab
RL
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
1da177e4
LT
32 */
33
34#include <linux/config.h>
35#include <linux/kprobes.h>
36#include <linux/ptrace.h>
1da177e4
LT
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/preempt.h>
9ec4b1f3 40
7e1048b1 41#include <asm/cacheflush.h>
1da177e4
LT
42#include <asm/pgtable.h>
43#include <asm/kdebug.h>
44
1da177e4 45void jprobe_return_end(void);
49a2a1b8 46void __kprobes arch_copy_kprobe(struct kprobe *p);
1da177e4 47
e7a510f9
AM
48DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
49DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4
LT
50
51/*
52 * returns non-zero if opcode modifies the interrupt flag.
53 */
54static inline int is_IF_modifier(kprobe_opcode_t *insn)
55{
56 switch (*insn) {
57 case 0xfa: /* cli */
58 case 0xfb: /* sti */
59 case 0xcf: /* iret/iretd */
60 case 0x9d: /* popf/popfd */
61 return 1;
62 }
63
64 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
65 return 1;
66 return 0;
67}
68
0f2fbdcb 69int __kprobes arch_prepare_kprobe(struct kprobe *p)
1da177e4
LT
70{
71 /* insn: must be on special executable page on x86_64. */
2dd960d6 72 p->ainsn.insn = get_insn_slot();
1da177e4
LT
73 if (!p->ainsn.insn) {
74 return -ENOMEM;
75 }
49a2a1b8 76 arch_copy_kprobe(p);
1da177e4
LT
77 return 0;
78}
79
80/*
81 * Determine if the instruction uses the %rip-relative addressing mode.
82 * If it does, return the address of the 32-bit displacement word.
83 * If not, return null.
84 */
85static inline s32 *is_riprel(u8 *insn)
86{
87#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
88 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
89 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
90 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
91 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
92 << (row % 64))
93 static const u64 onebyte_has_modrm[256 / 64] = {
94 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
95 /* ------------------------------- */
96 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
97 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
98 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
99 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
100 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
101 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
102 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
103 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
104 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
105 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
106 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
107 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
108 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
109 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
110 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
111 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
112 /* ------------------------------- */
113 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
114 };
115 static const u64 twobyte_has_modrm[256 / 64] = {
116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
117 /* ------------------------------- */
118 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
119 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
120 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
121 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
122 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
123 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
124 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
125 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
126 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
127 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
128 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
129 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
130 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
131 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
132 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
133 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
134 /* ------------------------------- */
135 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
136 };
137#undef W
138 int need_modrm;
139
140 /* Skip legacy instruction prefixes. */
141 while (1) {
142 switch (*insn) {
143 case 0x66:
144 case 0x67:
145 case 0x2e:
146 case 0x3e:
147 case 0x26:
148 case 0x64:
149 case 0x65:
150 case 0x36:
151 case 0xf0:
152 case 0xf3:
153 case 0xf2:
154 ++insn;
155 continue;
156 }
157 break;
158 }
159
160 /* Skip REX instruction prefix. */
161 if ((*insn & 0xf0) == 0x40)
162 ++insn;
163
164 if (*insn == 0x0f) { /* Two-byte opcode. */
165 ++insn;
166 need_modrm = test_bit(*insn, twobyte_has_modrm);
167 } else { /* One-byte opcode. */
168 need_modrm = test_bit(*insn, onebyte_has_modrm);
169 }
170
171 if (need_modrm) {
172 u8 modrm = *++insn;
173 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
174 /* Displacement follows ModRM byte. */
175 return (s32 *) ++insn;
176 }
177 }
178
179 /* No %rip-relative addressing mode here. */
180 return NULL;
181}
182
0f2fbdcb 183void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4
LT
184{
185 s32 *ripdisp;
186 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
187 ripdisp = is_riprel(p->ainsn.insn);
188 if (ripdisp) {
189 /*
190 * The copied instruction uses the %rip-relative
191 * addressing mode. Adjust the displacement for the
192 * difference between the original location of this
193 * instruction and the location of the copy that will
194 * actually be run. The tricky bit here is making sure
195 * that the sign extension happens correctly in this
196 * calculation, since we need a signed 32-bit result to
197 * be sign-extended to 64 bits when it's added to the
198 * %rip value and yield the same 64-bit result that the
199 * sign-extension of the original signed 32-bit
200 * displacement would have given.
201 */
202 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
203 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
204 *ripdisp = disp;
205 }
7e1048b1 206 p->opcode = *p->addr;
1da177e4
LT
207}
208
0f2fbdcb 209void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 210{
7e1048b1
RL
211 *p->addr = BREAKPOINT_INSTRUCTION;
212 flush_icache_range((unsigned long) p->addr,
213 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
1da177e4
LT
214}
215
0f2fbdcb 216void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4
LT
217{
218 *p->addr = p->opcode;
7e1048b1
RL
219 flush_icache_range((unsigned long) p->addr,
220 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
221}
222
0f2fbdcb 223void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 224{
2dd960d6 225 free_insn_slot(p->ainsn.insn);
1da177e4
LT
226}
227
e7a510f9 228static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 229{
e7a510f9
AM
230 kcb->prev_kprobe.kp = kprobe_running();
231 kcb->prev_kprobe.status = kcb->kprobe_status;
232 kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
233 kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
aa3d7e3d
PP
234}
235
e7a510f9 236static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 237{
e7a510f9
AM
238 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
239 kcb->kprobe_status = kcb->prev_kprobe.status;
240 kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
241 kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
aa3d7e3d
PP
242}
243
e7a510f9
AM
244static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
245 struct kprobe_ctlblk *kcb)
aa3d7e3d 246{
e7a510f9
AM
247 __get_cpu_var(current_kprobe) = p;
248 kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
aa3d7e3d
PP
249 = (regs->eflags & (TF_MASK | IF_MASK));
250 if (is_IF_modifier(p->ainsn.insn))
e7a510f9 251 kcb->kprobe_saved_rflags &= ~IF_MASK;
aa3d7e3d
PP
252}
253
0f2fbdcb 254static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
255{
256 regs->eflags |= TF_MASK;
257 regs->eflags &= ~IF_MASK;
258 /*single step inline if the instruction is an int3*/
259 if (p->opcode == BREAKPOINT_INSTRUCTION)
260 regs->rip = (unsigned long)p->addr;
261 else
262 regs->rip = (unsigned long)p->ainsn.insn;
263}
264
991a51d8 265/* Called with kretprobe_lock held */
0f2fbdcb
PP
266void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
267 struct pt_regs *regs)
73649dab
RL
268{
269 unsigned long *sara = (unsigned long *)regs->rsp;
ba8af12f
RL
270 struct kretprobe_instance *ri;
271
272 if ((ri = get_free_rp_inst(rp)) != NULL) {
273 ri->rp = rp;
274 ri->task = current;
275 ri->ret_addr = (kprobe_opcode_t *) *sara;
73649dab 276
73649dab
RL
277 /* Replace the return addr with trampoline addr */
278 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 279
ba8af12f
RL
280 add_rp_inst(ri);
281 } else {
282 rp->nmissed++;
283 }
73649dab
RL
284}
285
0f2fbdcb 286int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
287{
288 struct kprobe *p;
289 int ret = 0;
290 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
d217d545
AM
291 struct kprobe_ctlblk *kcb;
292
293 /*
294 * We don't want to be preempted for the entire
295 * duration of kprobe processing
296 */
297 preempt_disable();
298 kcb = get_kprobe_ctlblk();
1da177e4 299
1da177e4
LT
300 /* Check we're not actually recursing */
301 if (kprobe_running()) {
1da177e4
LT
302 p = get_kprobe(addr);
303 if (p) {
e7a510f9 304 if (kcb->kprobe_status == KPROBE_HIT_SS &&
deac66ae 305 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
1da177e4 306 regs->eflags &= ~TF_MASK;
e7a510f9 307 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 308 goto no_kprobe;
e7a510f9 309 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
aa3d7e3d
PP
310 /* TODO: Provide re-entrancy from
311 * post_kprobes_handler() and avoid exception
312 * stack corruption while single-stepping on
313 * the instruction of the new probe.
314 */
315 arch_disarm_kprobe(p);
316 regs->rip = (unsigned long)p->addr;
e7a510f9 317 reset_current_kprobe();
aa3d7e3d
PP
318 ret = 1;
319 } else {
320 /* We have reentered the kprobe_handler(), since
321 * another probe was hit while within the
322 * handler. We here save the original kprobe
323 * variables and just single step on instruction
324 * of the new probe without calling any user
325 * handlers.
326 */
e7a510f9
AM
327 save_previous_kprobe(kcb);
328 set_current_kprobe(p, regs, kcb);
bf8d5c52 329 kprobes_inc_nmissed_count(p);
aa3d7e3d 330 prepare_singlestep(p, regs);
e7a510f9 331 kcb->kprobe_status = KPROBE_REENTER;
aa3d7e3d 332 return 1;
1da177e4 333 }
1da177e4 334 } else {
e7a510f9 335 p = __get_cpu_var(current_kprobe);
1da177e4
LT
336 if (p->break_handler && p->break_handler(p, regs)) {
337 goto ss_probe;
338 }
339 }
1da177e4
LT
340 goto no_kprobe;
341 }
342
1da177e4
LT
343 p = get_kprobe(addr);
344 if (!p) {
1da177e4
LT
345 if (*addr != BREAKPOINT_INSTRUCTION) {
346 /*
347 * The breakpoint instruction was removed right
348 * after we hit it. Another cpu has removed
349 * either a probepoint or a debugger breakpoint
350 * at this address. In either case, no further
351 * handling of this interrupt is appropriate.
bce06494
JK
352 * Back up over the (now missing) int3 and run
353 * the original instruction.
1da177e4 354 */
bce06494 355 regs->rip = (unsigned long)addr;
1da177e4
LT
356 ret = 1;
357 }
358 /* Not one of ours: let kernel handle it */
359 goto no_kprobe;
360 }
361
e7a510f9
AM
362 set_current_kprobe(p, regs, kcb);
363 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
364
365 if (p->pre_handler && p->pre_handler(p, regs))
366 /* handler has already set things up, so skip ss setup */
367 return 1;
368
369ss_probe:
370 prepare_singlestep(p, regs);
e7a510f9 371 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
372 return 1;
373
374no_kprobe:
d217d545 375 preempt_enable_no_resched();
1da177e4
LT
376 return ret;
377}
378
73649dab
RL
379/*
380 * For function-return probes, init_kprobes() establishes a probepoint
381 * here. When a retprobed function returns, this probe is hit and
382 * trampoline_probe_handler() runs, calling the kretprobe's handler.
383 */
384 void kretprobe_trampoline_holder(void)
385 {
386 asm volatile ( ".global kretprobe_trampoline\n"
387 "kretprobe_trampoline: \n"
388 "nop\n");
389 }
390
391/*
392 * Called when we hit the probe point at kretprobe_trampoline
393 */
0f2fbdcb 394int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
73649dab 395{
ba8af12f
RL
396 struct kretprobe_instance *ri = NULL;
397 struct hlist_head *head;
398 struct hlist_node *node, *tmp;
991a51d8 399 unsigned long flags, orig_ret_address = 0;
ba8af12f 400 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
73649dab 401
991a51d8 402 spin_lock_irqsave(&kretprobe_lock, flags);
ba8af12f 403 head = kretprobe_inst_table_head(current);
73649dab 404
ba8af12f
RL
405 /*
406 * It is possible to have multiple instances associated with a given
407 * task either because an multiple functions in the call path
408 * have a return probe installed on them, and/or more then one return
409 * return probe was registered for a target function.
410 *
411 * We can handle this because:
412 * - instances are always inserted at the head of the list
413 * - when multiple return probes are registered for the same
414 * function, the first instance's ret_addr will point to the
415 * real return address, and all the rest will point to
416 * kretprobe_trampoline
417 */
418 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
419 if (ri->task != current)
420 /* another task is sharing our hash bucket */
421 continue;
422
423 if (ri->rp && ri->rp->handler)
424 ri->rp->handler(ri, regs);
425
426 orig_ret_address = (unsigned long)ri->ret_addr;
73649dab 427 recycle_rp_inst(ri);
ba8af12f
RL
428
429 if (orig_ret_address != trampoline_address)
430 /*
431 * This is the real return address. Any other
432 * instances associated with this task are for
433 * other calls deeper on the call stack
434 */
435 break;
73649dab 436 }
ba8af12f
RL
437
438 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
439 regs->rip = orig_ret_address;
440
e7a510f9 441 reset_current_kprobe();
991a51d8 442 spin_unlock_irqrestore(&kretprobe_lock, flags);
ba8af12f
RL
443 preempt_enable_no_resched();
444
445 /*
446 * By returning a non-zero value, we are telling
d217d545
AM
447 * kprobe_handler() that we don't want the post_handler
448 * to run (and have re-enabled preemption)
ba8af12f
RL
449 */
450 return 1;
73649dab
RL
451}
452
1da177e4
LT
453/*
454 * Called after single-stepping. p->addr is the address of the
455 * instruction whose first byte has been replaced by the "int 3"
456 * instruction. To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction. The address of this
459 * copy is p->ainsn.insn.
460 *
461 * This function prepares to return from the post-single-step
462 * interrupt. We have to fix up the stack as follows:
463 *
464 * 0) Except in the case of absolute or indirect jump or call instructions,
465 * the new rip is relative to the copied instruction. We need to make
466 * it relative to the original instruction.
467 *
468 * 1) If the single-stepped instruction was pushfl, then the TF and IF
469 * flags are set in the just-pushed eflags, and may need to be cleared.
470 *
471 * 2) If the single-stepped instruction was a call, the return address
472 * that is atop the stack is the address following the copied instruction.
473 * We need to make it the address following the original instruction.
474 */
e7a510f9
AM
475static void __kprobes resume_execution(struct kprobe *p,
476 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4
LT
477{
478 unsigned long *tos = (unsigned long *)regs->rsp;
479 unsigned long next_rip = 0;
480 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
481 unsigned long orig_rip = (unsigned long)p->addr;
482 kprobe_opcode_t *insn = p->ainsn.insn;
483
484 /*skip the REX prefix*/
485 if (*insn >= 0x40 && *insn <= 0x4f)
486 insn++;
487
488 switch (*insn) {
489 case 0x9c: /* pushfl */
490 *tos &= ~(TF_MASK | IF_MASK);
e7a510f9 491 *tos |= kcb->kprobe_old_rflags;
1da177e4 492 break;
0b9e2cac
PP
493 case 0xc3: /* ret/lret */
494 case 0xcb:
495 case 0xc2:
496 case 0xca:
497 regs->eflags &= ~TF_MASK;
498 /* rip is already adjusted, no more changes required*/
499 return;
1da177e4
LT
500 case 0xe8: /* call relative - Fix return addr */
501 *tos = orig_rip + (*tos - copy_rip);
502 break;
503 case 0xff:
504 if ((*insn & 0x30) == 0x10) {
505 /* call absolute, indirect */
506 /* Fix return addr; rip is correct. */
507 next_rip = regs->rip;
508 *tos = orig_rip + (*tos - copy_rip);
509 } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
510 ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
511 /* rip is correct. */
512 next_rip = regs->rip;
513 }
514 break;
515 case 0xea: /* jmp absolute -- rip is correct */
516 next_rip = regs->rip;
517 break;
518 default:
519 break;
520 }
521
522 regs->eflags &= ~TF_MASK;
523 if (next_rip) {
524 regs->rip = next_rip;
525 } else {
526 regs->rip = orig_rip + (regs->rip - copy_rip);
527 }
528}
529
0f2fbdcb 530int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 531{
e7a510f9
AM
532 struct kprobe *cur = kprobe_running();
533 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
534
535 if (!cur)
1da177e4
LT
536 return 0;
537
e7a510f9
AM
538 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
539 kcb->kprobe_status = KPROBE_HIT_SSDONE;
540 cur->post_handler(cur, regs, 0);
aa3d7e3d 541 }
1da177e4 542
e7a510f9
AM
543 resume_execution(cur, regs, kcb);
544 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 545
aa3d7e3d 546 /* Restore the original saved kprobes variables and continue. */
e7a510f9
AM
547 if (kcb->kprobe_status == KPROBE_REENTER) {
548 restore_previous_kprobe(kcb);
aa3d7e3d 549 goto out;
aa3d7e3d 550 }
e7a510f9 551 reset_current_kprobe();
aa3d7e3d 552out:
1da177e4
LT
553 preempt_enable_no_resched();
554
555 /*
556 * if somebody else is singlestepping across a probe point, eflags
557 * will have TF set, in which case, continue the remaining processing
558 * of do_debug, as if this is not a probe hit.
559 */
560 if (regs->eflags & TF_MASK)
561 return 0;
562
563 return 1;
564}
565
0f2fbdcb 566int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 567{
e7a510f9
AM
568 struct kprobe *cur = kprobe_running();
569 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
570
571 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1da177e4
LT
572 return 1;
573
e7a510f9
AM
574 if (kcb->kprobe_status & KPROBE_HIT_SS) {
575 resume_execution(cur, regs, kcb);
576 regs->eflags |= kcb->kprobe_old_rflags;
1da177e4 577
e7a510f9 578 reset_current_kprobe();
1da177e4
LT
579 preempt_enable_no_resched();
580 }
581 return 0;
582}
583
584/*
585 * Wrapper routine for handling exceptions.
586 */
0f2fbdcb
PP
587int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
588 unsigned long val, void *data)
1da177e4
LT
589{
590 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
591 int ret = NOTIFY_DONE;
592
1da177e4
LT
593 switch (val) {
594 case DIE_INT3:
595 if (kprobe_handler(args->regs))
66ff2d06 596 ret = NOTIFY_STOP;
1da177e4
LT
597 break;
598 case DIE_DEBUG:
599 if (post_kprobe_handler(args->regs))
66ff2d06 600 ret = NOTIFY_STOP;
1da177e4
LT
601 break;
602 case DIE_GPF:
1da177e4 603 case DIE_PAGE_FAULT:
d217d545
AM
604 /* kprobe_running() needs smp_processor_id() */
605 preempt_disable();
1da177e4
LT
606 if (kprobe_running() &&
607 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 608 ret = NOTIFY_STOP;
d217d545 609 preempt_enable();
1da177e4
LT
610 break;
611 default:
612 break;
613 }
66ff2d06 614 return ret;
1da177e4
LT
615}
616
0f2fbdcb 617int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
618{
619 struct jprobe *jp = container_of(p, struct jprobe, kp);
620 unsigned long addr;
e7a510f9 621 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 622
e7a510f9
AM
623 kcb->jprobe_saved_regs = *regs;
624 kcb->jprobe_saved_rsp = (long *) regs->rsp;
625 addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
626 /*
627 * As Linus pointed out, gcc assumes that the callee
628 * owns the argument space and could overwrite it, e.g.
629 * tailcall optimization. So, to be absolutely safe
630 * we also save and restore enough stack bytes to cover
631 * the argument area.
632 */
e7a510f9
AM
633 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
634 MIN_STACK_SIZE(addr));
1da177e4
LT
635 regs->eflags &= ~IF_MASK;
636 regs->rip = (unsigned long)(jp->entry);
637 return 1;
638}
639
0f2fbdcb 640void __kprobes jprobe_return(void)
1da177e4 641{
e7a510f9
AM
642 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
643
1da177e4
LT
644 asm volatile (" xchg %%rbx,%%rsp \n"
645 " int3 \n"
646 " .globl jprobe_return_end \n"
647 " jprobe_return_end: \n"
648 " nop \n"::"b"
e7a510f9 649 (kcb->jprobe_saved_rsp):"memory");
1da177e4
LT
650}
651
0f2fbdcb 652int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 653{
e7a510f9 654 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 655 u8 *addr = (u8 *) (regs->rip - 1);
e7a510f9 656 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
657 struct jprobe *jp = container_of(p, struct jprobe, kp);
658
659 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
e7a510f9 660 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
1da177e4 661 struct pt_regs *saved_regs =
e7a510f9
AM
662 container_of(kcb->jprobe_saved_rsp,
663 struct pt_regs, rsp);
1da177e4 664 printk("current rsp %p does not match saved rsp %p\n",
e7a510f9 665 (long *)regs->rsp, kcb->jprobe_saved_rsp);
1da177e4
LT
666 printk("Saved registers for jprobe %p\n", jp);
667 show_registers(saved_regs);
668 printk("Current registers\n");
669 show_registers(regs);
670 BUG();
671 }
e7a510f9
AM
672 *regs = kcb->jprobe_saved_regs;
673 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
1da177e4 674 MIN_STACK_SIZE(stack_addr));
d217d545 675 preempt_enable_no_resched();
1da177e4
LT
676 return 1;
677 }
678 return 0;
679}
ba8af12f
RL
680
681static struct kprobe trampoline_p = {
682 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
683 .pre_handler = trampoline_probe_handler
684};
685
6772926b 686int __init arch_init_kprobes(void)
ba8af12f
RL
687{
688 return register_kprobe(&trampoline_p);
689}