]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86_64/kernel/kprobes.c
[PATCH] ppc32: explicitly disable 440GP IRQ compatibility mode in 440GX setup
[mirror_ubuntu-artful-kernel.git] / arch / x86_64 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
73649dab
RL
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
1da177e4
LT
32 */
33
34#include <linux/config.h>
35#include <linux/kprobes.h>
36#include <linux/ptrace.h>
37#include <linux/spinlock.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/preempt.h>
9ec4b1f3 41
7e1048b1 42#include <asm/cacheflush.h>
1da177e4
LT
43#include <asm/pgtable.h>
44#include <asm/kdebug.h>
45
46static DECLARE_MUTEX(kprobe_mutex);
47
1da177e4
LT
48static struct kprobe *current_kprobe;
49static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags;
aa3d7e3d
PP
50static struct kprobe *kprobe_prev;
51static unsigned long kprobe_status_prev, kprobe_old_rflags_prev, kprobe_saved_rflags_prev;
1da177e4
LT
52static struct pt_regs jprobe_saved_regs;
53static long *jprobe_saved_rsp;
1da177e4
LT
54void jprobe_return_end(void);
55
56/* copy of the kernel stack at the probe fire time */
57static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
58
59/*
60 * returns non-zero if opcode modifies the interrupt flag.
61 */
62static inline int is_IF_modifier(kprobe_opcode_t *insn)
63{
64 switch (*insn) {
65 case 0xfa: /* cli */
66 case 0xfb: /* sti */
67 case 0xcf: /* iret/iretd */
68 case 0x9d: /* popf/popfd */
69 return 1;
70 }
71
72 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
73 return 1;
74 return 0;
75}
76
77int arch_prepare_kprobe(struct kprobe *p)
78{
79 /* insn: must be on special executable page on x86_64. */
80 up(&kprobe_mutex);
81 p->ainsn.insn = get_insn_slot();
82 down(&kprobe_mutex);
83 if (!p->ainsn.insn) {
84 return -ENOMEM;
85 }
86 return 0;
87}
88
89/*
90 * Determine if the instruction uses the %rip-relative addressing mode.
91 * If it does, return the address of the 32-bit displacement word.
92 * If not, return null.
93 */
94static inline s32 *is_riprel(u8 *insn)
95{
96#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
97 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
98 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
99 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
100 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
101 << (row % 64))
102 static const u64 onebyte_has_modrm[256 / 64] = {
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104 /* ------------------------------- */
105 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
106 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
107 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
108 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
109 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
110 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
111 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
112 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
113 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
114 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
115 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
116 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
117 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
118 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
119 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
120 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
121 /* ------------------------------- */
122 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
123 };
124 static const u64 twobyte_has_modrm[256 / 64] = {
125 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
126 /* ------------------------------- */
127 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
128 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
129 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
130 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
131 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
132 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
133 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
134 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
135 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
136 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
137 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
138 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
139 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
140 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
141 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
142 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
143 /* ------------------------------- */
144 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
145 };
146#undef W
147 int need_modrm;
148
149 /* Skip legacy instruction prefixes. */
150 while (1) {
151 switch (*insn) {
152 case 0x66:
153 case 0x67:
154 case 0x2e:
155 case 0x3e:
156 case 0x26:
157 case 0x64:
158 case 0x65:
159 case 0x36:
160 case 0xf0:
161 case 0xf3:
162 case 0xf2:
163 ++insn;
164 continue;
165 }
166 break;
167 }
168
169 /* Skip REX instruction prefix. */
170 if ((*insn & 0xf0) == 0x40)
171 ++insn;
172
173 if (*insn == 0x0f) { /* Two-byte opcode. */
174 ++insn;
175 need_modrm = test_bit(*insn, twobyte_has_modrm);
176 } else { /* One-byte opcode. */
177 need_modrm = test_bit(*insn, onebyte_has_modrm);
178 }
179
180 if (need_modrm) {
181 u8 modrm = *++insn;
182 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
183 /* Displacement follows ModRM byte. */
184 return (s32 *) ++insn;
185 }
186 }
187
188 /* No %rip-relative addressing mode here. */
189 return NULL;
190}
191
192void arch_copy_kprobe(struct kprobe *p)
193{
194 s32 *ripdisp;
195 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
196 ripdisp = is_riprel(p->ainsn.insn);
197 if (ripdisp) {
198 /*
199 * The copied instruction uses the %rip-relative
200 * addressing mode. Adjust the displacement for the
201 * difference between the original location of this
202 * instruction and the location of the copy that will
203 * actually be run. The tricky bit here is making sure
204 * that the sign extension happens correctly in this
205 * calculation, since we need a signed 32-bit result to
206 * be sign-extended to 64 bits when it's added to the
207 * %rip value and yield the same 64-bit result that the
208 * sign-extension of the original signed 32-bit
209 * displacement would have given.
210 */
211 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
212 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
213 *ripdisp = disp;
214 }
7e1048b1 215 p->opcode = *p->addr;
1da177e4
LT
216}
217
7e1048b1 218void arch_arm_kprobe(struct kprobe *p)
1da177e4 219{
7e1048b1
RL
220 *p->addr = BREAKPOINT_INSTRUCTION;
221 flush_icache_range((unsigned long) p->addr,
222 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
1da177e4
LT
223}
224
7e1048b1 225void arch_disarm_kprobe(struct kprobe *p)
1da177e4
LT
226{
227 *p->addr = p->opcode;
7e1048b1
RL
228 flush_icache_range((unsigned long) p->addr,
229 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
230}
231
232void arch_remove_kprobe(struct kprobe *p)
233{
234 up(&kprobe_mutex);
235 free_insn_slot(p->ainsn.insn);
236 down(&kprobe_mutex);
1da177e4
LT
237}
238
aa3d7e3d
PP
239static inline void save_previous_kprobe(void)
240{
241 kprobe_prev = current_kprobe;
242 kprobe_status_prev = kprobe_status;
243 kprobe_old_rflags_prev = kprobe_old_rflags;
244 kprobe_saved_rflags_prev = kprobe_saved_rflags;
245}
246
247static inline void restore_previous_kprobe(void)
248{
249 current_kprobe = kprobe_prev;
250 kprobe_status = kprobe_status_prev;
251 kprobe_old_rflags = kprobe_old_rflags_prev;
252 kprobe_saved_rflags = kprobe_saved_rflags_prev;
253}
254
255static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs)
256{
257 current_kprobe = p;
258 kprobe_saved_rflags = kprobe_old_rflags
259 = (regs->eflags & (TF_MASK | IF_MASK));
260 if (is_IF_modifier(p->ainsn.insn))
261 kprobe_saved_rflags &= ~IF_MASK;
262}
263
1da177e4
LT
264static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
265{
266 regs->eflags |= TF_MASK;
267 regs->eflags &= ~IF_MASK;
268 /*single step inline if the instruction is an int3*/
269 if (p->opcode == BREAKPOINT_INSTRUCTION)
270 regs->rip = (unsigned long)p->addr;
271 else
272 regs->rip = (unsigned long)p->ainsn.insn;
273}
274
73649dab
RL
275void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs)
276{
277 unsigned long *sara = (unsigned long *)regs->rsp;
ba8af12f
RL
278 struct kretprobe_instance *ri;
279
280 if ((ri = get_free_rp_inst(rp)) != NULL) {
281 ri->rp = rp;
282 ri->task = current;
283 ri->ret_addr = (kprobe_opcode_t *) *sara;
73649dab 284
73649dab
RL
285 /* Replace the return addr with trampoline addr */
286 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 287
ba8af12f
RL
288 add_rp_inst(ri);
289 } else {
290 rp->nmissed++;
291 }
73649dab
RL
292}
293
1da177e4
LT
294/*
295 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
296 * remain disabled thorough out this function.
297 */
298int kprobe_handler(struct pt_regs *regs)
299{
300 struct kprobe *p;
301 int ret = 0;
302 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
303
304 /* We're in an interrupt, but this is clear and BUG()-safe. */
305 preempt_disable();
306
307 /* Check we're not actually recursing */
308 if (kprobe_running()) {
309 /* We *are* holding lock here, so this is safe.
310 Disarm the probe we just hit, and ignore it. */
311 p = get_kprobe(addr);
312 if (p) {
313 if (kprobe_status == KPROBE_HIT_SS) {
314 regs->eflags &= ~TF_MASK;
315 regs->eflags |= kprobe_saved_rflags;
316 unlock_kprobes();
317 goto no_kprobe;
aa3d7e3d
PP
318 } else if (kprobe_status == KPROBE_HIT_SSDONE) {
319 /* TODO: Provide re-entrancy from
320 * post_kprobes_handler() and avoid exception
321 * stack corruption while single-stepping on
322 * the instruction of the new probe.
323 */
324 arch_disarm_kprobe(p);
325 regs->rip = (unsigned long)p->addr;
326 ret = 1;
327 } else {
328 /* We have reentered the kprobe_handler(), since
329 * another probe was hit while within the
330 * handler. We here save the original kprobe
331 * variables and just single step on instruction
332 * of the new probe without calling any user
333 * handlers.
334 */
335 save_previous_kprobe();
336 set_current_kprobe(p, regs);
337 p->nmissed++;
338 prepare_singlestep(p, regs);
339 kprobe_status = KPROBE_REENTER;
340 return 1;
1da177e4 341 }
1da177e4
LT
342 } else {
343 p = current_kprobe;
344 if (p->break_handler && p->break_handler(p, regs)) {
345 goto ss_probe;
346 }
347 }
348 /* If it's not ours, can't be delete race, (we hold lock). */
349 goto no_kprobe;
350 }
351
352 lock_kprobes();
353 p = get_kprobe(addr);
354 if (!p) {
355 unlock_kprobes();
356 if (*addr != BREAKPOINT_INSTRUCTION) {
357 /*
358 * The breakpoint instruction was removed right
359 * after we hit it. Another cpu has removed
360 * either a probepoint or a debugger breakpoint
361 * at this address. In either case, no further
362 * handling of this interrupt is appropriate.
363 */
364 ret = 1;
365 }
366 /* Not one of ours: let kernel handle it */
367 goto no_kprobe;
368 }
369
370 kprobe_status = KPROBE_HIT_ACTIVE;
aa3d7e3d 371 set_current_kprobe(p, regs);
1da177e4
LT
372
373 if (p->pre_handler && p->pre_handler(p, regs))
374 /* handler has already set things up, so skip ss setup */
375 return 1;
376
377ss_probe:
378 prepare_singlestep(p, regs);
379 kprobe_status = KPROBE_HIT_SS;
380 return 1;
381
382no_kprobe:
383 preempt_enable_no_resched();
384 return ret;
385}
386
73649dab
RL
387/*
388 * For function-return probes, init_kprobes() establishes a probepoint
389 * here. When a retprobed function returns, this probe is hit and
390 * trampoline_probe_handler() runs, calling the kretprobe's handler.
391 */
392 void kretprobe_trampoline_holder(void)
393 {
394 asm volatile ( ".global kretprobe_trampoline\n"
395 "kretprobe_trampoline: \n"
396 "nop\n");
397 }
398
399/*
400 * Called when we hit the probe point at kretprobe_trampoline
401 */
402int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
403{
ba8af12f
RL
404 struct kretprobe_instance *ri = NULL;
405 struct hlist_head *head;
406 struct hlist_node *node, *tmp;
407 unsigned long orig_ret_address = 0;
408 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
73649dab 409
ba8af12f 410 head = kretprobe_inst_table_head(current);
73649dab 411
ba8af12f
RL
412 /*
413 * It is possible to have multiple instances associated with a given
414 * task either because an multiple functions in the call path
415 * have a return probe installed on them, and/or more then one return
416 * return probe was registered for a target function.
417 *
418 * We can handle this because:
419 * - instances are always inserted at the head of the list
420 * - when multiple return probes are registered for the same
421 * function, the first instance's ret_addr will point to the
422 * real return address, and all the rest will point to
423 * kretprobe_trampoline
424 */
425 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
426 if (ri->task != current)
427 /* another task is sharing our hash bucket */
428 continue;
429
430 if (ri->rp && ri->rp->handler)
431 ri->rp->handler(ri, regs);
432
433 orig_ret_address = (unsigned long)ri->ret_addr;
73649dab 434 recycle_rp_inst(ri);
ba8af12f
RL
435
436 if (orig_ret_address != trampoline_address)
437 /*
438 * This is the real return address. Any other
439 * instances associated with this task are for
440 * other calls deeper on the call stack
441 */
442 break;
73649dab 443 }
ba8af12f
RL
444
445 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
446 regs->rip = orig_ret_address;
447
448 unlock_kprobes();
449 preempt_enable_no_resched();
450
451 /*
452 * By returning a non-zero value, we are telling
453 * kprobe_handler() that we have handled unlocking
454 * and re-enabling preemption.
455 */
456 return 1;
73649dab
RL
457}
458
1da177e4
LT
459/*
460 * Called after single-stepping. p->addr is the address of the
461 * instruction whose first byte has been replaced by the "int 3"
462 * instruction. To avoid the SMP problems that can occur when we
463 * temporarily put back the original opcode to single-step, we
464 * single-stepped a copy of the instruction. The address of this
465 * copy is p->ainsn.insn.
466 *
467 * This function prepares to return from the post-single-step
468 * interrupt. We have to fix up the stack as follows:
469 *
470 * 0) Except in the case of absolute or indirect jump or call instructions,
471 * the new rip is relative to the copied instruction. We need to make
472 * it relative to the original instruction.
473 *
474 * 1) If the single-stepped instruction was pushfl, then the TF and IF
475 * flags are set in the just-pushed eflags, and may need to be cleared.
476 *
477 * 2) If the single-stepped instruction was a call, the return address
478 * that is atop the stack is the address following the copied instruction.
479 * We need to make it the address following the original instruction.
480 */
481static void resume_execution(struct kprobe *p, struct pt_regs *regs)
482{
483 unsigned long *tos = (unsigned long *)regs->rsp;
484 unsigned long next_rip = 0;
485 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
486 unsigned long orig_rip = (unsigned long)p->addr;
487 kprobe_opcode_t *insn = p->ainsn.insn;
488
489 /*skip the REX prefix*/
490 if (*insn >= 0x40 && *insn <= 0x4f)
491 insn++;
492
493 switch (*insn) {
494 case 0x9c: /* pushfl */
495 *tos &= ~(TF_MASK | IF_MASK);
496 *tos |= kprobe_old_rflags;
497 break;
0b9e2cac
PP
498 case 0xc3: /* ret/lret */
499 case 0xcb:
500 case 0xc2:
501 case 0xca:
502 regs->eflags &= ~TF_MASK;
503 /* rip is already adjusted, no more changes required*/
504 return;
1da177e4
LT
505 case 0xe8: /* call relative - Fix return addr */
506 *tos = orig_rip + (*tos - copy_rip);
507 break;
508 case 0xff:
509 if ((*insn & 0x30) == 0x10) {
510 /* call absolute, indirect */
511 /* Fix return addr; rip is correct. */
512 next_rip = regs->rip;
513 *tos = orig_rip + (*tos - copy_rip);
514 } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
515 ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
516 /* rip is correct. */
517 next_rip = regs->rip;
518 }
519 break;
520 case 0xea: /* jmp absolute -- rip is correct */
521 next_rip = regs->rip;
522 break;
523 default:
524 break;
525 }
526
527 regs->eflags &= ~TF_MASK;
528 if (next_rip) {
529 regs->rip = next_rip;
530 } else {
531 regs->rip = orig_rip + (regs->rip - copy_rip);
532 }
533}
534
535/*
536 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
537 * remain disabled thoroughout this function. And we hold kprobe lock.
538 */
539int post_kprobe_handler(struct pt_regs *regs)
540{
541 if (!kprobe_running())
542 return 0;
543
aa3d7e3d
PP
544 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
545 kprobe_status = KPROBE_HIT_SSDONE;
1da177e4 546 current_kprobe->post_handler(current_kprobe, regs, 0);
aa3d7e3d 547 }
1da177e4 548
ba8af12f 549 resume_execution(current_kprobe, regs);
1da177e4
LT
550 regs->eflags |= kprobe_saved_rflags;
551
aa3d7e3d
PP
552 /* Restore the original saved kprobes variables and continue. */
553 if (kprobe_status == KPROBE_REENTER) {
554 restore_previous_kprobe();
555 goto out;
556 } else {
557 unlock_kprobes();
558 }
559out:
1da177e4
LT
560 preempt_enable_no_resched();
561
562 /*
563 * if somebody else is singlestepping across a probe point, eflags
564 * will have TF set, in which case, continue the remaining processing
565 * of do_debug, as if this is not a probe hit.
566 */
567 if (regs->eflags & TF_MASK)
568 return 0;
569
570 return 1;
571}
572
573/* Interrupts disabled, kprobe_lock held. */
574int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
575{
576 if (current_kprobe->fault_handler
577 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
578 return 1;
579
580 if (kprobe_status & KPROBE_HIT_SS) {
581 resume_execution(current_kprobe, regs);
582 regs->eflags |= kprobe_old_rflags;
583
584 unlock_kprobes();
585 preempt_enable_no_resched();
586 }
587 return 0;
588}
589
590/*
591 * Wrapper routine for handling exceptions.
592 */
593int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
594 void *data)
595{
596 struct die_args *args = (struct die_args *)data;
597 switch (val) {
598 case DIE_INT3:
599 if (kprobe_handler(args->regs))
600 return NOTIFY_STOP;
601 break;
602 case DIE_DEBUG:
603 if (post_kprobe_handler(args->regs))
604 return NOTIFY_STOP;
605 break;
606 case DIE_GPF:
607 if (kprobe_running() &&
608 kprobe_fault_handler(args->regs, args->trapnr))
609 return NOTIFY_STOP;
610 break;
611 case DIE_PAGE_FAULT:
612 if (kprobe_running() &&
613 kprobe_fault_handler(args->regs, args->trapnr))
614 return NOTIFY_STOP;
615 break;
616 default:
617 break;
618 }
619 return NOTIFY_DONE;
620}
621
622int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
623{
624 struct jprobe *jp = container_of(p, struct jprobe, kp);
625 unsigned long addr;
626
627 jprobe_saved_regs = *regs;
628 jprobe_saved_rsp = (long *) regs->rsp;
629 addr = (unsigned long)jprobe_saved_rsp;
630 /*
631 * As Linus pointed out, gcc assumes that the callee
632 * owns the argument space and could overwrite it, e.g.
633 * tailcall optimization. So, to be absolutely safe
634 * we also save and restore enough stack bytes to cover
635 * the argument area.
636 */
637 memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
638 regs->eflags &= ~IF_MASK;
639 regs->rip = (unsigned long)(jp->entry);
640 return 1;
641}
642
643void jprobe_return(void)
644{
645 preempt_enable_no_resched();
646 asm volatile (" xchg %%rbx,%%rsp \n"
647 " int3 \n"
648 " .globl jprobe_return_end \n"
649 " jprobe_return_end: \n"
650 " nop \n"::"b"
651 (jprobe_saved_rsp):"memory");
652}
653
654int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
655{
656 u8 *addr = (u8 *) (regs->rip - 1);
657 unsigned long stack_addr = (unsigned long)jprobe_saved_rsp;
658 struct jprobe *jp = container_of(p, struct jprobe, kp);
659
660 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
661 if ((long *)regs->rsp != jprobe_saved_rsp) {
662 struct pt_regs *saved_regs =
663 container_of(jprobe_saved_rsp, struct pt_regs, rsp);
664 printk("current rsp %p does not match saved rsp %p\n",
665 (long *)regs->rsp, jprobe_saved_rsp);
666 printk("Saved registers for jprobe %p\n", jp);
667 show_registers(saved_regs);
668 printk("Current registers\n");
669 show_registers(regs);
670 BUG();
671 }
672 *regs = jprobe_saved_regs;
673 memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
674 MIN_STACK_SIZE(stack_addr));
675 return 1;
676 }
677 return 0;
678}
ba8af12f
RL
679
680static struct kprobe trampoline_p = {
681 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
682 .pre_handler = trampoline_probe_handler
683};
684
685int __init arch_init(void)
686{
687 return register_kprobe(&trampoline_p);
688}