]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86_64/kernel/time.c
[PATCH] simplify update_times (avoid jiffies/jiffies_64 aliasing problem)
[mirror_ubuntu-bionic-kernel.git] / arch / x86_64 / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
2f82bde4 11 * Copyright (c) 2002,2006 Vojtech Pavlik
1da177e4
LT
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
1da177e4
LT
21#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
a670fad0
VP
27#include <linux/notifier.h>
28#include <linux/cpu.h>
1da177e4 29#include <linux/kallsyms.h>
312df5f1 30#include <linux/acpi.h>
8d916406 31#ifdef CONFIG_ACPI
312df5f1 32#include <acpi/achware.h> /* for PM timer frequency */
0e5f61b0 33#include <acpi/acpi_bus.h>
8d916406 34#endif
1da177e4
LT
35#include <asm/8253pit.h>
36#include <asm/pgtable.h>
37#include <asm/vsyscall.h>
38#include <asm/timex.h>
39#include <asm/proto.h>
40#include <asm/hpet.h>
41#include <asm/sections.h>
42#include <linux/cpufreq.h>
43#include <linux/hpet.h>
1da177e4 44#include <asm/apic.h>
1da177e4 45
1da177e4
LT
46#ifdef CONFIG_CPU_FREQ
47static void cpufreq_delayed_get(void);
48#endif
49extern void i8254_timer_resume(void);
50extern int using_apic_timer;
51
a670fad0 52static char *timename = NULL;
e8b91777 53
1da177e4 54DEFINE_SPINLOCK(rtc_lock);
2ee60e17 55EXPORT_SYMBOL(rtc_lock);
1da177e4
LT
56DEFINE_SPINLOCK(i8253_lock);
57
73dea47f 58int nohpet __initdata = 0;
1da177e4
LT
59static int notsc __initdata = 0;
60
42211338
VP
61#define USEC_PER_TICK (USEC_PER_SEC / HZ)
62#define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
63#define FSEC_PER_TICK (FSEC_PER_SEC / HZ)
64
65#define NS_SCALE 10 /* 2^10, carefully chosen */
66#define US_SCALE 32 /* 2^32, arbitralrily chosen */
67
1da177e4 68unsigned int cpu_khz; /* TSC clocks / usec, not used here */
2ee60e17 69EXPORT_SYMBOL(cpu_khz);
1da177e4
LT
70static unsigned long hpet_period; /* fsecs / HPET clock */
71unsigned long hpet_tick; /* HPET clocks / interrupt */
33042a9f 72int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
1da177e4
LT
73unsigned long vxtime_hz = PIT_TICK_RATE;
74int report_lost_ticks; /* command line option */
75unsigned long long monotonic_base;
76
77struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
78
79volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
80unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
81struct timespec __xtime __section_xtime;
82struct timezone __sys_tz __section_sys_tz;
83
1da177e4
LT
84/*
85 * do_gettimeoffset() returns microseconds since last timer interrupt was
86 * triggered by hardware. A memory read of HPET is slower than a register read
87 * of TSC, but much more reliable. It's also synchronized to the timer
88 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
89 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
90 * This is not a problem, because jiffies hasn't updated either. They are bound
91 * together by xtime_lock.
92 */
93
94static inline unsigned int do_gettimeoffset_tsc(void)
95{
96 unsigned long t;
97 unsigned long x;
c818a181 98 t = get_cycles_sync();
7351c0bf
AK
99 if (t < vxtime.last_tsc)
100 t = vxtime.last_tsc; /* hack */
42211338 101 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE;
1da177e4
LT
102 return x;
103}
104
105static inline unsigned int do_gettimeoffset_hpet(void)
106{
a3a00751
JS
107 /* cap counter read to one tick to avoid inconsistencies */
108 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
42211338 109 return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE;
1da177e4
LT
110}
111
112unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
113
114/*
115 * This version of gettimeofday() has microsecond resolution and better than
116 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
117 * MHz) HPET timer.
118 */
119
120void do_gettimeofday(struct timeval *tv)
121{
122 unsigned long seq, t;
123 unsigned int sec, usec;
124
125 do {
126 seq = read_seqbegin(&xtime_lock);
127
128 sec = xtime.tv_sec;
42211338 129 usec = xtime.tv_nsec / NSEC_PER_USEC;
1da177e4
LT
130
131 /* i386 does some correction here to keep the clock
132 monotonous even when ntpd is fixing drift.
133 But they didn't work for me, there is a non monotonic
134 clock anyways with ntp.
135 I dropped all corrections now until a real solution can
136 be found. Note when you fix it here you need to do the same
137 in arch/x86_64/kernel/vsyscall.c and export all needed
138 variables in vmlinux.lds. -AK */
139
42211338 140 t = (jiffies - wall_jiffies) * USEC_PER_TICK +
1da177e4
LT
141 do_gettimeoffset();
142 usec += t;
143
144 } while (read_seqretry(&xtime_lock, seq));
145
42211338
VP
146 tv->tv_sec = sec + usec / USEC_PER_SEC;
147 tv->tv_usec = usec % USEC_PER_SEC;
1da177e4
LT
148}
149
150EXPORT_SYMBOL(do_gettimeofday);
151
152/*
153 * settimeofday() first undoes the correction that gettimeofday would do
154 * on the time, and then saves it. This is ugly, but has been like this for
155 * ages already.
156 */
157
158int do_settimeofday(struct timespec *tv)
159{
160 time_t wtm_sec, sec = tv->tv_sec;
161 long wtm_nsec, nsec = tv->tv_nsec;
162
163 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
164 return -EINVAL;
165
166 write_seqlock_irq(&xtime_lock);
167
42211338
VP
168 nsec -= do_gettimeoffset() * NSEC_PER_USEC +
169 (jiffies - wall_jiffies) * NSEC_PER_TICK;
1da177e4
LT
170
171 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
172 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
173
174 set_normalized_timespec(&xtime, sec, nsec);
175 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
176
b149ee22 177 ntp_clear();
1da177e4
LT
178
179 write_sequnlock_irq(&xtime_lock);
180 clock_was_set();
181 return 0;
182}
183
184EXPORT_SYMBOL(do_settimeofday);
185
186unsigned long profile_pc(struct pt_regs *regs)
187{
188 unsigned long pc = instruction_pointer(regs);
189
31679f38
AK
190 /* Assume the lock function has either no stack frame or a copy
191 of eflags from PUSHF
192 Eflags always has bits 22 and up cleared unlike kernel addresses. */
d5a26017 193 if (!user_mode(regs) && in_lock_functions(pc)) {
31679f38
AK
194 unsigned long *sp = (unsigned long *)regs->rsp;
195 if (sp[0] >> 22)
196 return sp[0];
197 if (sp[1] >> 22)
198 return sp[1];
1da177e4
LT
199 }
200 return pc;
201}
202EXPORT_SYMBOL(profile_pc);
203
204/*
205 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
206 * ms after the second nowtime has started, because when nowtime is written
207 * into the registers of the CMOS clock, it will jump to the next second
208 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
209 * sheet for details.
210 */
211
212static void set_rtc_mmss(unsigned long nowtime)
213{
214 int real_seconds, real_minutes, cmos_minutes;
215 unsigned char control, freq_select;
216
217/*
218 * IRQs are disabled when we're called from the timer interrupt,
219 * no need for spin_lock_irqsave()
220 */
221
222 spin_lock(&rtc_lock);
223
224/*
225 * Tell the clock it's being set and stop it.
226 */
227
228 control = CMOS_READ(RTC_CONTROL);
229 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
230
231 freq_select = CMOS_READ(RTC_FREQ_SELECT);
232 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
233
234 cmos_minutes = CMOS_READ(RTC_MINUTES);
235 BCD_TO_BIN(cmos_minutes);
236
237/*
238 * since we're only adjusting minutes and seconds, don't interfere with hour
239 * overflow. This avoids messing with unknown time zones but requires your RTC
240 * not to be off by more than 15 minutes. Since we're calling it only when
241 * our clock is externally synchronized using NTP, this shouldn't be a problem.
242 */
243
244 real_seconds = nowtime % 60;
245 real_minutes = nowtime / 60;
246 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
247 real_minutes += 30; /* correct for half hour time zone */
248 real_minutes %= 60;
249
1da177e4
LT
250 if (abs(real_minutes - cmos_minutes) >= 30) {
251 printk(KERN_WARNING "time.c: can't update CMOS clock "
252 "from %d to %d\n", cmos_minutes, real_minutes);
28456ede 253 } else {
0b91317e
AK
254 BIN_TO_BCD(real_seconds);
255 BIN_TO_BCD(real_minutes);
1da177e4
LT
256 CMOS_WRITE(real_seconds, RTC_SECONDS);
257 CMOS_WRITE(real_minutes, RTC_MINUTES);
258 }
259
260/*
261 * The following flags have to be released exactly in this order, otherwise the
262 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
263 * not reset the oscillator and will not update precisely 500 ms later. You
264 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
265 * believes data sheets anyway ... -- Markus Kuhn
266 */
267
268 CMOS_WRITE(control, RTC_CONTROL);
269 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
270
271 spin_unlock(&rtc_lock);
272}
273
274
275/* monotonic_clock(): returns # of nanoseconds passed since time_init()
276 * Note: This function is required to return accurate
277 * time even in the absence of multiple timer ticks.
278 */
cbf9b4bb 279static inline unsigned long long cycles_2_ns(unsigned long long cyc);
1da177e4
LT
280unsigned long long monotonic_clock(void)
281{
282 unsigned long seq;
283 u32 last_offset, this_offset, offset;
284 unsigned long long base;
285
286 if (vxtime.mode == VXTIME_HPET) {
287 do {
288 seq = read_seqbegin(&xtime_lock);
289
290 last_offset = vxtime.last;
291 base = monotonic_base;
a3a00751 292 this_offset = hpet_readl(HPET_COUNTER);
1da177e4
LT
293 } while (read_seqretry(&xtime_lock, seq));
294 offset = (this_offset - last_offset);
42211338 295 offset *= NSEC_PER_TICK / hpet_tick;
0b91317e 296 } else {
1da177e4
LT
297 do {
298 seq = read_seqbegin(&xtime_lock);
299
300 last_offset = vxtime.last_tsc;
301 base = monotonic_base;
302 } while (read_seqretry(&xtime_lock, seq));
c818a181 303 this_offset = get_cycles_sync();
cbf9b4bb 304 offset = cycles_2_ns(this_offset - last_offset);
1da177e4 305 }
7351c0bf 306 return base + offset;
1da177e4
LT
307}
308EXPORT_SYMBOL(monotonic_clock);
309
310static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
311{
7351c0bf
AK
312 static long lost_count;
313 static int warned;
314 if (report_lost_ticks) {
315 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
316 print_symbol("rip %s)\n", regs->rip);
317 }
318
319 if (lost_count == 1000 && !warned) {
320 printk(KERN_WARNING "warning: many lost ticks.\n"
321 KERN_WARNING "Your time source seems to be instable or "
1da177e4 322 "some driver is hogging interupts\n");
7351c0bf
AK
323 print_symbol("rip %s\n", regs->rip);
324 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
325 printk(KERN_WARNING "Falling back to HPET\n");
326 if (hpet_use_timer)
327 vxtime.last = hpet_readl(HPET_T0_CMP) -
328 hpet_tick;
329 else
330 vxtime.last = hpet_readl(HPET_COUNTER);
331 vxtime.mode = VXTIME_HPET;
332 do_gettimeoffset = do_gettimeoffset_hpet;
333 }
334 /* else should fall back to PIT, but code missing. */
335 warned = 1;
336 } else
337 lost_count++;
1da177e4
LT
338
339#ifdef CONFIG_CPU_FREQ
7351c0bf
AK
340 /* In some cases the CPU can change frequency without us noticing
341 Give cpufreq a change to catch up. */
342 if ((lost_count+1) % 25 == 0)
343 cpufreq_delayed_get();
1da177e4
LT
344#endif
345}
346
73dea47f 347void main_timer_handler(struct pt_regs *regs)
1da177e4
LT
348{
349 static unsigned long rtc_update = 0;
350 unsigned long tsc;
9ede6b09 351 int delay = 0, offset = 0, lost = 0;
1da177e4
LT
352
353/*
354 * Here we are in the timer irq handler. We have irqs locally disabled (so we
355 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
356 * on the other CPU, so we need a lock. We also need to lock the vsyscall
357 * variables, because both do_timer() and us change them -arca+vojtech
358 */
359
360 write_seqlock(&xtime_lock);
361
a3a00751
JS
362 if (vxtime.hpet_address)
363 offset = hpet_readl(HPET_COUNTER);
364
365 if (hpet_use_timer) {
366 /* if we're using the hpet timer functionality,
367 * we can more accurately know the counter value
368 * when the timer interrupt occured.
369 */
1da177e4
LT
370 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
371 delay = hpet_readl(HPET_COUNTER) - offset;
9ede6b09 372 } else if (!pmtmr_ioport) {
1da177e4
LT
373 spin_lock(&i8253_lock);
374 outb_p(0x00, 0x43);
375 delay = inb_p(0x40);
376 delay |= inb(0x40) << 8;
377 spin_unlock(&i8253_lock);
378 delay = LATCH - 1 - delay;
379 }
380
c818a181 381 tsc = get_cycles_sync();
1da177e4
LT
382
383 if (vxtime.mode == VXTIME_HPET) {
384 if (offset - vxtime.last > hpet_tick) {
385 lost = (offset - vxtime.last) / hpet_tick - 1;
386 }
387
388 monotonic_base +=
42211338 389 (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;
1da177e4
LT
390
391 vxtime.last = offset;
312df5f1
AK
392#ifdef CONFIG_X86_PM_TIMER
393 } else if (vxtime.mode == VXTIME_PMTMR) {
394 lost = pmtimer_mark_offset();
395#endif
1da177e4
LT
396 } else {
397 offset = (((tsc - vxtime.last_tsc) *
42211338 398 vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;
1da177e4
LT
399
400 if (offset < 0)
401 offset = 0;
402
42211338
VP
403 if (offset > USEC_PER_TICK) {
404 lost = offset / USEC_PER_TICK;
405 offset %= USEC_PER_TICK;
1da177e4
LT
406 }
407
cbf9b4bb 408 monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc);
1da177e4
LT
409
410 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
411
412 if ((((tsc - vxtime.last_tsc) *
42211338 413 vxtime.tsc_quot) >> US_SCALE) < offset)
1da177e4 414 vxtime.last_tsc = tsc -
42211338 415 (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
1da177e4
LT
416 }
417
3171a030 418 if (lost > 0)
1da177e4 419 handle_lost_ticks(lost, regs);
3171a030
AN
420 else
421 lost = 0;
1da177e4
LT
422
423/*
424 * Do the timer stuff.
425 */
426
3171a030 427 do_timer(lost + 1);
1da177e4
LT
428#ifndef CONFIG_SMP
429 update_process_times(user_mode(regs));
430#endif
431
432/*
433 * In the SMP case we use the local APIC timer interrupt to do the profiling,
434 * except when we simulate SMP mode on a uniprocessor system, in that case we
435 * have to call the local interrupt handler.
436 */
437
1da177e4
LT
438 if (!using_apic_timer)
439 smp_local_timer_interrupt(regs);
1da177e4
LT
440
441/*
442 * If we have an externally synchronized Linux clock, then update CMOS clock
443 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
444 * closest to exactly 500 ms before the next second. If the update fails, we
445 * don't care, as it'll be updated on the next turn, and the problem (time way
446 * off) isn't likely to go away much sooner anyway.
447 */
448
b149ee22 449 if (ntp_synced() && xtime.tv_sec > rtc_update &&
1da177e4
LT
450 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
451 set_rtc_mmss(xtime.tv_sec);
452 rtc_update = xtime.tv_sec + 660;
453 }
454
455 write_sequnlock(&xtime_lock);
73dea47f 456}
1da177e4 457
73dea47f
AK
458static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
459{
460 if (apic_runs_main_timer > 1)
461 return IRQ_HANDLED;
462 main_timer_handler(regs);
d25bf7e5
VP
463 if (using_apic_timer)
464 smp_send_timer_broadcast_ipi();
1da177e4
LT
465 return IRQ_HANDLED;
466}
467
68ed0040 468static unsigned int cyc2ns_scale __read_mostly;
1da177e4 469
dacb16b1 470static inline void set_cyc2ns_scale(unsigned long cpu_khz)
1da177e4 471{
42211338 472 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz;
1da177e4
LT
473}
474
475static inline unsigned long long cycles_2_ns(unsigned long long cyc)
476{
42211338 477 return (cyc * cyc2ns_scale) >> NS_SCALE;
1da177e4
LT
478}
479
480unsigned long long sched_clock(void)
481{
482 unsigned long a = 0;
483
484#if 0
485 /* Don't do a HPET read here. Using TSC always is much faster
486 and HPET may not be mapped yet when the scheduler first runs.
487 Disadvantage is a small drift between CPUs in some configurations,
488 but that should be tolerable. */
489 if (__vxtime.mode == VXTIME_HPET)
42211338 490 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE;
1da177e4
LT
491#endif
492
493 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
494 which means it is not completely exact and may not be monotonous between
495 CPUs. But the errors should be too small to matter for scheduling
496 purposes. */
497
498 rdtscll(a);
499 return cycles_2_ns(a);
500}
501
bdf2b1c9 502static unsigned long get_cmos_time(void)
1da177e4 503{
641f71f5 504 unsigned int year, mon, day, hour, min, sec;
1da177e4 505 unsigned long flags;
6954bee8 506 unsigned extyear = 0;
1da177e4 507
1da177e4
LT
508 spin_lock_irqsave(&rtc_lock, flags);
509
641f71f5
MM
510 do {
511 sec = CMOS_READ(RTC_SECONDS);
512 min = CMOS_READ(RTC_MINUTES);
513 hour = CMOS_READ(RTC_HOURS);
514 day = CMOS_READ(RTC_DAY_OF_MONTH);
515 mon = CMOS_READ(RTC_MONTH);
516 year = CMOS_READ(RTC_YEAR);
6954bee8 517#ifdef CONFIG_ACPI
641f71f5
MM
518 if (acpi_fadt.revision >= FADT2_REVISION_ID &&
519 acpi_fadt.century)
520 extyear = CMOS_READ(acpi_fadt.century);
6954bee8 521#endif
641f71f5 522 } while (sec != CMOS_READ(RTC_SECONDS));
6954bee8 523
1da177e4
LT
524 spin_unlock_irqrestore(&rtc_lock, flags);
525
0b91317e
AK
526 /*
527 * We know that x86-64 always uses BCD format, no need to check the
528 * config register.
7351c0bf 529 */
1da177e4 530
0b91317e
AK
531 BCD_TO_BIN(sec);
532 BCD_TO_BIN(min);
533 BCD_TO_BIN(hour);
534 BCD_TO_BIN(day);
535 BCD_TO_BIN(mon);
536 BCD_TO_BIN(year);
1da177e4 537
6954bee8
AK
538 if (extyear) {
539 BCD_TO_BIN(extyear);
540 year += extyear;
541 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
542 } else {
543 /*
544 * x86-64 systems only exists since 2002.
545 * This will work up to Dec 31, 2100
546 */
547 year += 2000;
548 }
1da177e4
LT
549
550 return mktime(year, mon, day, hour, min, sec);
551}
552
553#ifdef CONFIG_CPU_FREQ
554
555/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
556 changes.
557
558 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
559 not that important because current Opteron setups do not support
560 scaling on SMP anyroads.
561
562 Should fix up last_tsc too. Currently gettimeofday in the
563 first tick after the change will be slightly wrong. */
564
565#include <linux/workqueue.h>
566
567static unsigned int cpufreq_delayed_issched = 0;
568static unsigned int cpufreq_init = 0;
569static struct work_struct cpufreq_delayed_get_work;
570
571static void handle_cpufreq_delayed_get(void *v)
572{
573 unsigned int cpu;
574 for_each_online_cpu(cpu) {
575 cpufreq_get(cpu);
576 }
577 cpufreq_delayed_issched = 0;
578}
579
580/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
581 * to verify the CPU frequency the timing core thinks the CPU is running
582 * at is still correct.
583 */
584static void cpufreq_delayed_get(void)
585{
586 static int warned;
587 if (cpufreq_init && !cpufreq_delayed_issched) {
588 cpufreq_delayed_issched = 1;
589 if (!warned) {
590 warned = 1;
7351c0bf
AK
591 printk(KERN_DEBUG
592 "Losing some ticks... checking if CPU frequency changed.\n");
1da177e4
LT
593 }
594 schedule_work(&cpufreq_delayed_get_work);
595 }
596}
597
598static unsigned int ref_freq = 0;
599static unsigned long loops_per_jiffy_ref = 0;
600
601static unsigned long cpu_khz_ref = 0;
602
603static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
604 void *data)
605{
606 struct cpufreq_freqs *freq = data;
607 unsigned long *lpj, dummy;
608
c29601e9
AK
609 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
610 return 0;
611
1da177e4
LT
612 lpj = &dummy;
613 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
614#ifdef CONFIG_SMP
7351c0bf 615 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
1da177e4 616#else
7351c0bf 617 lpj = &boot_cpu_data.loops_per_jiffy;
1da177e4
LT
618#endif
619
1da177e4
LT
620 if (!ref_freq) {
621 ref_freq = freq->old;
622 loops_per_jiffy_ref = *lpj;
623 cpu_khz_ref = cpu_khz;
624 }
625 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
626 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
627 (val == CPUFREQ_RESUMECHANGE)) {
628 *lpj =
629 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
630
631 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
632 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
42211338 633 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
1da177e4
LT
634 }
635
dacb16b1 636 set_cyc2ns_scale(cpu_khz_ref);
1da177e4
LT
637
638 return 0;
639}
640
641static struct notifier_block time_cpufreq_notifier_block = {
642 .notifier_call = time_cpufreq_notifier
643};
644
645static int __init cpufreq_tsc(void)
646{
647 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
648 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
649 CPUFREQ_TRANSITION_NOTIFIER))
650 cpufreq_init = 1;
651 return 0;
652}
653
654core_initcall(cpufreq_tsc);
655
656#endif
657
658/*
659 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
660 * it to the HPET timer of known frequency.
661 */
662
663#define TICK_COUNT 100000000
664
665static unsigned int __init hpet_calibrate_tsc(void)
666{
667 int tsc_start, hpet_start;
668 int tsc_now, hpet_now;
669 unsigned long flags;
670
671 local_irq_save(flags);
672 local_irq_disable();
673
674 hpet_start = hpet_readl(HPET_COUNTER);
675 rdtscl(tsc_start);
676
677 do {
678 local_irq_disable();
679 hpet_now = hpet_readl(HPET_COUNTER);
c818a181 680 tsc_now = get_cycles_sync();
1da177e4
LT
681 local_irq_restore(flags);
682 } while ((tsc_now - tsc_start) < TICK_COUNT &&
683 (hpet_now - hpet_start) < TICK_COUNT);
684
685 return (tsc_now - tsc_start) * 1000000000L
686 / ((hpet_now - hpet_start) * hpet_period / 1000);
687}
688
689
690/*
691 * pit_calibrate_tsc() uses the speaker output (channel 2) of
692 * the PIT. This is better than using the timer interrupt output,
693 * because we can read the value of the speaker with just one inb(),
694 * where we need three i/o operations for the interrupt channel.
695 * We count how many ticks the TSC does in 50 ms.
696 */
697
698static unsigned int __init pit_calibrate_tsc(void)
699{
700 unsigned long start, end;
701 unsigned long flags;
702
703 spin_lock_irqsave(&i8253_lock, flags);
704
705 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
706
707 outb(0xb0, 0x43);
708 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
709 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
c818a181 710 start = get_cycles_sync();
1da177e4 711 while ((inb(0x61) & 0x20) == 0);
c818a181 712 end = get_cycles_sync();
1da177e4
LT
713
714 spin_unlock_irqrestore(&i8253_lock, flags);
715
716 return (end - start) / 50;
717}
718
719#ifdef CONFIG_HPET
720static __init int late_hpet_init(void)
721{
722 struct hpet_data hd;
723 unsigned int ntimer;
724
725 if (!vxtime.hpet_address)
3d34ee68 726 return 0;
1da177e4
LT
727
728 memset(&hd, 0, sizeof (hd));
729
730 ntimer = hpet_readl(HPET_ID);
731 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
732 ntimer++;
733
734 /*
735 * Register with driver.
736 * Timer0 and Timer1 is used by platform.
737 */
738 hd.hd_phys_address = vxtime.hpet_address;
dd42b151 739 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
1da177e4
LT
740 hd.hd_nirqs = ntimer;
741 hd.hd_flags = HPET_DATA_PLATFORM;
742 hpet_reserve_timer(&hd, 0);
743#ifdef CONFIG_HPET_EMULATE_RTC
744 hpet_reserve_timer(&hd, 1);
745#endif
746 hd.hd_irq[0] = HPET_LEGACY_8254;
747 hd.hd_irq[1] = HPET_LEGACY_RTC;
748 if (ntimer > 2) {
749 struct hpet *hpet;
750 struct hpet_timer *timer;
751 int i;
752
753 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
7351c0bf
AK
754 timer = &hpet->hpet_timers[2];
755 for (i = 2; i < ntimer; timer++, i++)
1da177e4
LT
756 hd.hd_irq[i] = (timer->hpet_config &
757 Tn_INT_ROUTE_CNF_MASK) >>
758 Tn_INT_ROUTE_CNF_SHIFT;
759
760 }
761
762 hpet_alloc(&hd);
763 return 0;
764}
765fs_initcall(late_hpet_init);
766#endif
767
768static int hpet_timer_stop_set_go(unsigned long tick)
769{
770 unsigned int cfg;
771
772/*
773 * Stop the timers and reset the main counter.
774 */
775
776 cfg = hpet_readl(HPET_CFG);
777 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
778 hpet_writel(cfg, HPET_CFG);
779 hpet_writel(0, HPET_COUNTER);
780 hpet_writel(0, HPET_COUNTER + 4);
781
782/*
783 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
784 * and period also hpet_tick.
785 */
a3a00751
JS
786 if (hpet_use_timer) {
787 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
1da177e4 788 HPET_TN_32BIT, HPET_T0_CFG);
b2df3ddb
VP
789 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
790 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
a3a00751
JS
791 cfg |= HPET_CFG_LEGACY;
792 }
1da177e4
LT
793/*
794 * Go!
795 */
796
a3a00751 797 cfg |= HPET_CFG_ENABLE;
1da177e4
LT
798 hpet_writel(cfg, HPET_CFG);
799
800 return 0;
801}
802
803static int hpet_init(void)
804{
805 unsigned int id;
806
807 if (!vxtime.hpet_address)
808 return -1;
809 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
810 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
811
812/*
813 * Read the period, compute tick and quotient.
814 */
815
816 id = hpet_readl(HPET_ID);
817
a3a00751 818 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
1da177e4
LT
819 return -1;
820
821 hpet_period = hpet_readl(HPET_PERIOD);
822 if (hpet_period < 100000 || hpet_period > 100000000)
823 return -1;
824
42211338 825 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
1da177e4 826
a3a00751
JS
827 hpet_use_timer = (id & HPET_ID_LEGSUP);
828
1da177e4
LT
829 return hpet_timer_stop_set_go(hpet_tick);
830}
831
832static int hpet_reenable(void)
833{
834 return hpet_timer_stop_set_go(hpet_tick);
835}
836
73dea47f
AK
837#define PIT_MODE 0x43
838#define PIT_CH0 0x40
839
840static void __init __pit_init(int val, u8 mode)
1da177e4
LT
841{
842 unsigned long flags;
843
844 spin_lock_irqsave(&i8253_lock, flags);
73dea47f
AK
845 outb_p(mode, PIT_MODE);
846 outb_p(val & 0xff, PIT_CH0); /* LSB */
847 outb_p(val >> 8, PIT_CH0); /* MSB */
1da177e4
LT
848 spin_unlock_irqrestore(&i8253_lock, flags);
849}
850
73dea47f
AK
851void __init pit_init(void)
852{
853 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
854}
855
856void __init pit_stop_interrupt(void)
857{
858 __pit_init(0, 0x30); /* mode 0 */
859}
860
861void __init stop_timer_interrupt(void)
862{
863 char *name;
864 if (vxtime.hpet_address) {
865 name = "HPET";
866 hpet_timer_stop_set_go(0);
867 } else {
868 name = "PIT";
869 pit_stop_interrupt();
870 }
871 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
872}
873
1da177e4
LT
874int __init time_setup(char *str)
875{
876 report_lost_ticks = 1;
877 return 1;
878}
879
880static struct irqaction irq0 = {
b1e05aa2 881 timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
1da177e4
LT
882};
883
a670fad0
VP
884static int __cpuinit
885time_cpu_notifier(struct notifier_block *nb, unsigned long action, void *hcpu)
1da177e4 886{
a670fad0 887 unsigned cpu = (unsigned long) hcpu;
c08c8205
VP
888 if (action == CPU_ONLINE)
889 vsyscall_set_cpu(cpu);
a670fad0
VP
890 return NOTIFY_DONE;
891}
1da177e4 892
a670fad0
VP
893void __init time_init(void)
894{
1da177e4
LT
895 if (nohpet)
896 vxtime.hpet_address = 0;
897
898 xtime.tv_sec = get_cmos_time();
899 xtime.tv_nsec = 0;
900
901 set_normalized_timespec(&wall_to_monotonic,
902 -xtime.tv_sec, -xtime.tv_nsec);
903
a3a00751 904 if (!hpet_init())
42211338 905 vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
68e18891
AK
906 else
907 vxtime.hpet_address = 0;
a3a00751
JS
908
909 if (hpet_use_timer) {
b20367a6
JH
910 /* set tick_nsec to use the proper rate for HPET */
911 tick_nsec = TICK_NSEC_HPET;
1da177e4
LT
912 cpu_khz = hpet_calibrate_tsc();
913 timename = "HPET";
312df5f1 914#ifdef CONFIG_X86_PM_TIMER
fd495471 915 } else if (pmtmr_ioport && !vxtime.hpet_address) {
312df5f1
AK
916 vxtime_hz = PM_TIMER_FREQUENCY;
917 timename = "PM";
918 pit_init();
919 cpu_khz = pit_calibrate_tsc();
920#endif
1da177e4
LT
921 } else {
922 pit_init();
923 cpu_khz = pit_calibrate_tsc();
924 timename = "PIT";
925 }
926
e8b91777 927 vxtime.mode = VXTIME_TSC;
42211338
VP
928 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
929 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
c818a181 930 vxtime.last_tsc = get_cycles_sync();
dacb16b1 931 set_cyc2ns_scale(cpu_khz);
1da177e4 932 setup_irq(0, &irq0);
a670fad0
VP
933 hotcpu_notifier(time_cpu_notifier, 0);
934 time_cpu_notifier(NULL, CPU_ONLINE, (void *)(long)smp_processor_id());
1da177e4 935
a670fad0
VP
936#ifndef CONFIG_SMP
937 time_init_gtod();
938#endif
1da177e4
LT
939}
940
312df5f1
AK
941/*
942 * Make an educated guess if the TSC is trustworthy and synchronized
943 * over all CPUs.
944 */
396bd50f 945__cpuinit int unsynchronized_tsc(void)
312df5f1
AK
946{
947#ifdef CONFIG_SMP
f8bf3c65 948 if (apic_is_clustered_box())
312df5f1 949 return 1;
312df5f1 950#endif
0e5f61b0
AK
951 /* Most intel systems have synchronized TSCs except for
952 multi node systems */
953 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
954#ifdef CONFIG_ACPI
955 /* But TSC doesn't tick in C3 so don't use it there */
956 if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 100)
957 return 1;
958#endif
959 return 0;
960 }
961
312df5f1 962 /* Assume multi socket systems are not synchronized */
737c5c3b 963 return num_present_cpus() > 1;
312df5f1
AK
964}
965
a8ab26fe 966/*
e8b91777 967 * Decide what mode gettimeofday should use.
a8ab26fe 968 */
a670fad0 969void time_init_gtod(void)
1da177e4
LT
970{
971 char *timetype;
972
312df5f1 973 if (unsynchronized_tsc())
1da177e4 974 notsc = 1;
a670fad0 975
c08c8205
VP
976 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
977 vgetcpu_mode = VGETCPU_RDTSCP;
978 else
979 vgetcpu_mode = VGETCPU_LSL;
980
1da177e4 981 if (vxtime.hpet_address && notsc) {
a3a00751 982 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
33042a9f
CM
983 if (hpet_use_timer)
984 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
985 else
986 vxtime.last = hpet_readl(HPET_COUNTER);
1da177e4
LT
987 vxtime.mode = VXTIME_HPET;
988 do_gettimeoffset = do_gettimeoffset_hpet;
312df5f1
AK
989#ifdef CONFIG_X86_PM_TIMER
990 /* Using PM for gettimeofday is quite slow, but we have no other
991 choice because the TSC is too unreliable on some systems. */
992 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
993 timetype = "PM";
994 do_gettimeoffset = do_gettimeoffset_pm;
995 vxtime.mode = VXTIME_PMTMR;
996 sysctl_vsyscall = 0;
997 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
998#endif
1da177e4 999 } else {
a3a00751 1000 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
1da177e4
LT
1001 vxtime.mode = VXTIME_TSC;
1002 }
a670fad0
VP
1003
1004 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
1005 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
1006 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
1007 cpu_khz / 1000, cpu_khz % 1000);
1008 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
1009 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
1010 vxtime.last_tsc = get_cycles_sync();
1011
1012 set_cyc2ns_scale(cpu_khz);
1da177e4
LT
1013}
1014
1015__setup("report_lost_ticks", time_setup);
1016
1017static long clock_cmos_diff;
1018static unsigned long sleep_start;
1019
0b91317e
AK
1020/*
1021 * sysfs support for the timer.
1022 */
1023
0b9c33a7 1024static int timer_suspend(struct sys_device *dev, pm_message_t state)
1da177e4
LT
1025{
1026 /*
1027 * Estimate time zone so that set_time can update the clock
1028 */
1029 long cmos_time = get_cmos_time();
1030
1031 clock_cmos_diff = -cmos_time;
1032 clock_cmos_diff += get_seconds();
1033 sleep_start = cmos_time;
1034 return 0;
1035}
1036
1037static int timer_resume(struct sys_device *dev)
1038{
1039 unsigned long flags;
1040 unsigned long sec;
1041 unsigned long ctime = get_cmos_time();
34464a5b 1042 long sleep_length = (ctime - sleep_start) * HZ;
1da177e4 1043
34464a5b
RW
1044 if (sleep_length < 0) {
1045 printk(KERN_WARNING "Time skew detected in timer resume!\n");
1046 /* The time after the resume must not be earlier than the time
1047 * before the suspend or some nasty things will happen
1048 */
1049 sleep_length = 0;
1050 ctime = sleep_start;
1051 }
1da177e4
LT
1052 if (vxtime.hpet_address)
1053 hpet_reenable();
1054 else
1055 i8254_timer_resume();
1056
1057 sec = ctime + clock_cmos_diff;
1058 write_seqlock_irqsave(&xtime_lock,flags);
1059 xtime.tv_sec = sec;
1060 xtime.tv_nsec = 0;
0dd2ea9a
SL
1061 if (vxtime.mode == VXTIME_HPET) {
1062 if (hpet_use_timer)
1063 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1064 else
1065 vxtime.last = hpet_readl(HPET_COUNTER);
1066#ifdef CONFIG_X86_PM_TIMER
1067 } else if (vxtime.mode == VXTIME_PMTMR) {
1068 pmtimer_resume();
1069#endif
1070 } else
1071 vxtime.last_tsc = get_cycles_sync();
1da177e4
LT
1072 write_sequnlock_irqrestore(&xtime_lock,flags);
1073 jiffies += sleep_length;
1074 wall_jiffies += sleep_length;
0dd2ea9a 1075 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
8446f1d3 1076 touch_softlockup_watchdog();
1da177e4
LT
1077 return 0;
1078}
1079
1080static struct sysdev_class timer_sysclass = {
1081 .resume = timer_resume,
1082 .suspend = timer_suspend,
1083 set_kset_name("timer"),
1084};
1085
1da177e4
LT
1086/* XXX this driverfs stuff should probably go elsewhere later -john */
1087static struct sys_device device_timer = {
1088 .id = 0,
1089 .cls = &timer_sysclass,
1090};
1091
1092static int time_init_device(void)
1093{
1094 int error = sysdev_class_register(&timer_sysclass);
1095 if (!error)
1096 error = sysdev_register(&device_timer);
1097 return error;
1098}
1099
1100device_initcall(time_init_device);
1101
1102#ifdef CONFIG_HPET_EMULATE_RTC
1103/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1104 * is enabled, we support RTC interrupt functionality in software.
1105 * RTC has 3 kinds of interrupts:
1106 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1107 * is updated
1108 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1109 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1110 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1111 * (1) and (2) above are implemented using polling at a frequency of
1112 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1113 * overhead. (DEFAULT_RTC_INT_FREQ)
1114 * For (3), we use interrupts at 64Hz or user specified periodic
1115 * frequency, whichever is higher.
1116 */
1117#include <linux/rtc.h>
1118
1da177e4
LT
1119#define DEFAULT_RTC_INT_FREQ 64
1120#define RTC_NUM_INTS 1
1121
1122static unsigned long UIE_on;
1123static unsigned long prev_update_sec;
1124
1125static unsigned long AIE_on;
1126static struct rtc_time alarm_time;
1127
1128static unsigned long PIE_on;
1129static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1130static unsigned long PIE_count;
1131
1132static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
7811fb8f 1133static unsigned int hpet_t1_cmp; /* cached comparator register */
1da177e4
LT
1134
1135int is_hpet_enabled(void)
1136{
1137 return vxtime.hpet_address != 0;
1138}
1139
1140/*
1141 * Timer 1 for RTC, we do not use periodic interrupt feature,
1142 * even if HPET supports periodic interrupts on Timer 1.
1143 * The reason being, to set up a periodic interrupt in HPET, we need to
1144 * stop the main counter. And if we do that everytime someone diables/enables
1145 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1146 * So, for the time being, simulate the periodic interrupt in software.
1147 *
1148 * hpet_rtc_timer_init() is called for the first time and during subsequent
1149 * interuppts reinit happens through hpet_rtc_timer_reinit().
1150 */
1151int hpet_rtc_timer_init(void)
1152{
1153 unsigned int cfg, cnt;
1154 unsigned long flags;
1155
1156 if (!is_hpet_enabled())
1157 return 0;
1158 /*
1159 * Set the counter 1 and enable the interrupts.
1160 */
1161 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1162 hpet_rtc_int_freq = PIE_freq;
1163 else
1164 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1165
1166 local_irq_save(flags);
1447c27d 1167
1da177e4
LT
1168 cnt = hpet_readl(HPET_COUNTER);
1169 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1170 hpet_writel(cnt, HPET_T1_CMP);
7811fb8f 1171 hpet_t1_cmp = cnt;
1da177e4
LT
1172
1173 cfg = hpet_readl(HPET_T1_CFG);
5f819949
CL
1174 cfg &= ~HPET_TN_PERIODIC;
1175 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1da177e4
LT
1176 hpet_writel(cfg, HPET_T1_CFG);
1177
1447c27d
CL
1178 local_irq_restore(flags);
1179
1da177e4
LT
1180 return 1;
1181}
1182
1183static void hpet_rtc_timer_reinit(void)
1184{
1447c27d 1185 unsigned int cfg, cnt, ticks_per_int, lost_ints;
1da177e4 1186
f00c96f3
CL
1187 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1188 cfg = hpet_readl(HPET_T1_CFG);
1189 cfg &= ~HPET_TN_ENABLE;
1190 hpet_writel(cfg, HPET_T1_CFG);
1da177e4 1191 return;
f00c96f3 1192 }
1da177e4
LT
1193
1194 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1195 hpet_rtc_int_freq = PIE_freq;
1196 else
1197 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1198
1199 /* It is more accurate to use the comparator value than current count.*/
1447c27d
CL
1200 ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
1201 hpet_t1_cmp += ticks_per_int;
1202 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1203
1204 /*
1205 * If the interrupt handler was delayed too long, the write above tries
1206 * to schedule the next interrupt in the past and the hardware would
1207 * not interrupt until the counter had wrapped around.
1208 * So we have to check that the comparator wasn't set to a past time.
1209 */
1210 cnt = hpet_readl(HPET_COUNTER);
1211 if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
1212 lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
1213 /* Make sure that, even with the time needed to execute
1214 * this code, the next scheduled interrupt has been moved
1215 * back to the future: */
1216 lost_ints++;
1217
1218 hpet_t1_cmp += lost_ints * ticks_per_int;
1219 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1220
1221 if (PIE_on)
1222 PIE_count += lost_ints;
1223
1224 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1225 hpet_rtc_int_freq);
1226 }
1da177e4
LT
1227}
1228
1229/*
1230 * The functions below are called from rtc driver.
1231 * Return 0 if HPET is not being used.
1232 * Otherwise do the necessary changes and return 1.
1233 */
1234int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1235{
1236 if (!is_hpet_enabled())
1237 return 0;
1238
1239 if (bit_mask & RTC_UIE)
1240 UIE_on = 0;
1241 if (bit_mask & RTC_PIE)
1242 PIE_on = 0;
1243 if (bit_mask & RTC_AIE)
1244 AIE_on = 0;
1245
1246 return 1;
1247}
1248
1249int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1250{
1251 int timer_init_reqd = 0;
1252
1253 if (!is_hpet_enabled())
1254 return 0;
1255
1256 if (!(PIE_on | AIE_on | UIE_on))
1257 timer_init_reqd = 1;
1258
1259 if (bit_mask & RTC_UIE) {
1260 UIE_on = 1;
1261 }
1262 if (bit_mask & RTC_PIE) {
1263 PIE_on = 1;
1264 PIE_count = 0;
1265 }
1266 if (bit_mask & RTC_AIE) {
1267 AIE_on = 1;
1268 }
1269
1270 if (timer_init_reqd)
1271 hpet_rtc_timer_init();
1272
1273 return 1;
1274}
1275
1276int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1277{
1278 if (!is_hpet_enabled())
1279 return 0;
1280
1281 alarm_time.tm_hour = hrs;
1282 alarm_time.tm_min = min;
1283 alarm_time.tm_sec = sec;
1284
1285 return 1;
1286}
1287
1288int hpet_set_periodic_freq(unsigned long freq)
1289{
1290 if (!is_hpet_enabled())
1291 return 0;
1292
1293 PIE_freq = freq;
1294 PIE_count = 0;
1295
1296 return 1;
1297}
1298
1299int hpet_rtc_dropped_irq(void)
1300{
1301 if (!is_hpet_enabled())
1302 return 0;
1303
1304 return 1;
1305}
1306
1307irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1308{
1309 struct rtc_time curr_time;
1310 unsigned long rtc_int_flag = 0;
1311 int call_rtc_interrupt = 0;
1312
1313 hpet_rtc_timer_reinit();
1314
1315 if (UIE_on | AIE_on) {
1316 rtc_get_rtc_time(&curr_time);
1317 }
1318 if (UIE_on) {
1319 if (curr_time.tm_sec != prev_update_sec) {
1320 /* Set update int info, call real rtc int routine */
1321 call_rtc_interrupt = 1;
1322 rtc_int_flag = RTC_UF;
1323 prev_update_sec = curr_time.tm_sec;
1324 }
1325 }
1326 if (PIE_on) {
1327 PIE_count++;
1328 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1329 /* Set periodic int info, call real rtc int routine */
1330 call_rtc_interrupt = 1;
1331 rtc_int_flag |= RTC_PF;
1332 PIE_count = 0;
1333 }
1334 }
1335 if (AIE_on) {
1336 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1337 (curr_time.tm_min == alarm_time.tm_min) &&
1338 (curr_time.tm_hour == alarm_time.tm_hour)) {
1339 /* Set alarm int info, call real rtc int routine */
1340 call_rtc_interrupt = 1;
1341 rtc_int_flag |= RTC_AF;
1342 }
1343 }
1344 if (call_rtc_interrupt) {
1345 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1346 rtc_interrupt(rtc_int_flag, dev_id, regs);
1347 }
1348 return IRQ_HANDLED;
1349}
1350#endif
1351
1da177e4
LT
1352static int __init nohpet_setup(char *s)
1353{
1354 nohpet = 1;
9b41046c 1355 return 1;
1da177e4
LT
1356}
1357
1358__setup("nohpet", nohpet_setup);
1359
7fd67843 1360int __init notsc_setup(char *s)
1da177e4
LT
1361{
1362 notsc = 1;
9b41046c 1363 return 1;
1da177e4
LT
1364}
1365
1366__setup("notsc", notsc_setup);