]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/xtensa/kernel/process.c
Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables
[mirror_ubuntu-focal-kernel.git] / arch / xtensa / kernel / process.c
CommitLineData
5a0015d6
CZ
1/*
2 * arch/xtensa/kernel/process.c
3 *
4 * Xtensa Processor version.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 *
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
11 *
12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13 * Chris Zankel <chris@zankel.net>
14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15 * Kevin Chea
16 */
17
5a0015d6
CZ
18#include <linux/errno.h>
19#include <linux/sched.h>
b17b0153 20#include <linux/sched/debug.h>
29930025 21#include <linux/sched/task.h>
68db0cf1 22#include <linux/sched/task_stack.h>
5a0015d6
CZ
23#include <linux/kernel.h>
24#include <linux/mm.h>
25#include <linux/smp.h>
5a0015d6
CZ
26#include <linux/stddef.h>
27#include <linux/unistd.h>
28#include <linux/ptrace.h>
5a0015d6 29#include <linux/elf.h>
c91e02bd 30#include <linux/hw_breakpoint.h>
5a0015d6
CZ
31#include <linux/init.h>
32#include <linux/prctl.h>
33#include <linux/init_task.h>
34#include <linux/module.h>
35#include <linux/mqueue.h>
73089cbf 36#include <linux/fs.h>
5a0e3ad6 37#include <linux/slab.h>
11ad47a0 38#include <linux/rcupdate.h>
5a0015d6
CZ
39
40#include <asm/pgtable.h>
7c0f6ba6 41#include <linux/uaccess.h>
5a0015d6
CZ
42#include <asm/io.h>
43#include <asm/processor.h>
44#include <asm/platform.h>
45#include <asm/mmu.h>
46#include <asm/irq.h>
60063497 47#include <linux/atomic.h>
0013a854 48#include <asm/asm-offsets.h>
173d6681 49#include <asm/regs.h>
c91e02bd 50#include <asm/hw_breakpoint.h>
5a0015d6
CZ
51
52extern void ret_from_fork(void);
3306a726 53extern void ret_from_kernel_thread(void);
5a0015d6 54
5a0015d6
CZ
55struct task_struct *current_set[NR_CPUS] = {&init_task, };
56
47f3fc94
AB
57void (*pm_power_off)(void) = NULL;
58EXPORT_SYMBOL(pm_power_off);
59
5a0015d6 60
050e9baa 61#ifdef CONFIG_STACKPROTECTOR
40d1a07b
MF
62#include <linux/stackprotector.h>
63unsigned long __stack_chk_guard __read_mostly;
64EXPORT_SYMBOL(__stack_chk_guard);
65#endif
66
c658eac6
CZ
67#if XTENSA_HAVE_COPROCESSORS
68
69void coprocessor_release_all(struct thread_info *ti)
70{
71 unsigned long cpenable;
72 int i;
73
74 /* Make sure we don't switch tasks during this operation. */
75
76 preempt_disable();
77
78 /* Walk through all cp owners and release it for the requested one. */
79
80 cpenable = ti->cpenable;
81
82 for (i = 0; i < XCHAL_CP_MAX; i++) {
83 if (coprocessor_owner[i] == ti) {
84 coprocessor_owner[i] = 0;
85 cpenable &= ~(1 << i);
86 }
87 }
88
89 ti->cpenable = cpenable;
90 coprocessor_clear_cpenable();
91
92 preempt_enable();
93}
94
95void coprocessor_flush_all(struct thread_info *ti)
96{
97 unsigned long cpenable;
98 int i;
99
100 preempt_disable();
101
102 cpenable = ti->cpenable;
103
104 for (i = 0; i < XCHAL_CP_MAX; i++) {
105 if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
106 coprocessor_flush(ti, i);
107 cpenable >>= 1;
108 }
109
110 preempt_enable();
111}
112
113#endif
114
115
5a0015d6
CZ
116/*
117 * Powermanagement idle function, if any is provided by the platform.
118 */
f4e2e9a4 119void arch_cpu_idle(void)
5a0015d6 120{
f4e2e9a4 121 platform_idle();
5a0015d6
CZ
122}
123
124/*
c658eac6 125 * This is called when the thread calls exit().
5a0015d6 126 */
e6464694 127void exit_thread(struct task_struct *tsk)
5a0015d6 128{
c658eac6 129#if XTENSA_HAVE_COPROCESSORS
e6464694 130 coprocessor_release_all(task_thread_info(tsk));
c658eac6 131#endif
5a0015d6
CZ
132}
133
c658eac6
CZ
134/*
135 * Flush thread state. This is called when a thread does an execve()
136 * Note that we flush coprocessor registers for the case execve fails.
137 */
5a0015d6
CZ
138void flush_thread(void)
139{
c658eac6
CZ
140#if XTENSA_HAVE_COPROCESSORS
141 struct thread_info *ti = current_thread_info();
142 coprocessor_flush_all(ti);
143 coprocessor_release_all(ti);
144#endif
c91e02bd 145 flush_ptrace_hw_breakpoint(current);
c658eac6
CZ
146}
147
148/*
55ccf3fe
SS
149 * this gets called so that we can store coprocessor state into memory and
150 * copy the current task into the new thread.
c658eac6 151 */
55ccf3fe 152int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
c658eac6
CZ
153{
154#if XTENSA_HAVE_COPROCESSORS
55ccf3fe 155 coprocessor_flush_all(task_thread_info(src));
c658eac6 156#endif
55ccf3fe
SS
157 *dst = *src;
158 return 0;
5a0015d6
CZ
159}
160
161/*
162 * Copy thread.
163 *
3306a726
MF
164 * There are two modes in which this function is called:
165 * 1) Userspace thread creation,
166 * regs != NULL, usp_thread_fn is userspace stack pointer.
167 * It is expected to copy parent regs (in case CLONE_VM is not set
168 * in the clone_flags) and set up passed usp in the childregs.
169 * 2) Kernel thread creation,
170 * regs == NULL, usp_thread_fn is the function to run in the new thread
171 * and thread_fn_arg is its parameter.
172 * childregs are not used for the kernel threads.
173 *
5a0015d6
CZ
174 * The stack layout for the new thread looks like this:
175 *
3306a726 176 * +------------------------+
5a0015d6
CZ
177 * | childregs |
178 * +------------------------+ <- thread.sp = sp in dummy-frame
179 * | dummy-frame | (saved in dummy-frame spill-area)
180 * +------------------------+
181 *
3306a726
MF
182 * We create a dummy frame to return to either ret_from_fork or
183 * ret_from_kernel_thread:
184 * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
5a0015d6 185 * sp points to itself (thread.sp)
3306a726
MF
186 * a2, a3 are unused for userspace threads,
187 * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
5a0015d6
CZ
188 *
189 * Note: This is a pristine frame, so we don't need any spill region on top of
190 * childregs.
84ed3053
MG
191 *
192 * The fun part: if we're keeping the same VM (i.e. cloning a thread,
193 * not an entire process), we're normally given a new usp, and we CANNOT share
194 * any live address register windows. If we just copy those live frames over,
195 * the two threads (parent and child) will overflow the same frames onto the
196 * parent stack at different times, likely corrupting the parent stack (esp.
197 * if the parent returns from functions that called clone() and calls new
198 * ones, before the child overflows its now old copies of its parent windows).
199 * One solution is to spill windows to the parent stack, but that's fairly
200 * involved. Much simpler to just not copy those live frames across.
5a0015d6
CZ
201 */
202
3306a726 203int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
afa86fc4 204 unsigned long thread_fn_arg, struct task_struct *p)
5a0015d6 205{
3306a726 206 struct pt_regs *childregs = task_pt_regs(p);
5a0015d6 207
39070cb8
CZ
208#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
209 struct thread_info *ti;
210#endif
211
5a0015d6 212 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
062b1c19
MF
213 SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
214 SPILL_SLOT(childregs, 0) = 0;
5a0015d6 215
5a0015d6 216 p->thread.sp = (unsigned long)childregs;
c658eac6 217
3306a726
MF
218 if (!(p->flags & PF_KTHREAD)) {
219 struct pt_regs *regs = current_pt_regs();
220 unsigned long usp = usp_thread_fn ?
221 usp_thread_fn : regs->areg[1];
222
223 p->thread.ra = MAKE_RA_FOR_CALL(
224 (unsigned long)ret_from_fork, 0x1);
5a0015d6 225
3306a726
MF
226 /* This does not copy all the regs.
227 * In a bout of brilliance or madness,
228 * ARs beyond a0-a15 exist past the end of the struct.
229 */
230 *childregs = *regs;
5a0015d6 231 childregs->areg[1] = usp;
3306a726 232 childregs->areg[2] = 0;
6ebe7da2
CZ
233
234 /* When sharing memory with the parent thread, the child
235 usually starts on a pristine stack, so we have to reset
236 windowbase, windowstart and wmask.
237 (Note that such a new thread is required to always create
238 an initial call4 frame)
239 The exception is vfork, where the new thread continues to
240 run on the parent's stack until it calls execve. This could
241 be a call8 or call12, which requires a legal stack frame
242 of the previous caller for the overflow handlers to work.
243 (Note that it's always legal to overflow live registers).
244 In this case, ensure to spill at least the stack pointer
245 of that frame. */
246
84ed3053 247 if (clone_flags & CLONE_VM) {
6ebe7da2
CZ
248 /* check that caller window is live and same stack */
249 int len = childregs->wmask & ~0xf;
250 if (regs->areg[1] == usp && len != 0) {
251 int callinc = (regs->areg[0] >> 30) & 3;
252 int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
253 put_user(regs->areg[caller_ars+1],
254 (unsigned __user*)(usp - 12));
255 }
256 childregs->wmask = 1;
257 childregs->windowstart = 1;
258 childregs->windowbase = 0;
84ed3053
MG
259 } else {
260 int len = childregs->wmask & ~0xf;
261 memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
262 &regs->areg[XCHAL_NUM_AREGS - len/4], len);
263 }
c50842df
CZ
264
265 /* The thread pointer is passed in the '4th argument' (= a5) */
5a0015d6 266 if (clone_flags & CLONE_SETTLS)
c50842df 267 childregs->threadptr = childregs->areg[5];
5a0015d6 268 } else {
3306a726
MF
269 p->thread.ra = MAKE_RA_FOR_CALL(
270 (unsigned long)ret_from_kernel_thread, 1);
271
272 /* pass parameters to ret_from_kernel_thread:
273 * a2 = thread_fn, a3 = thread_fn arg
274 */
062b1c19
MF
275 SPILL_SLOT(childregs, 3) = thread_fn_arg;
276 SPILL_SLOT(childregs, 2) = usp_thread_fn;
3306a726
MF
277
278 /* Childregs are only used when we're going to userspace
279 * in which case start_thread will set them up.
280 */
5a0015d6 281 }
c658eac6
CZ
282
283#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
284 ti = task_thread_info(p);
285 ti->cpenable = 0;
286#endif
287
c91e02bd
MF
288 clear_ptrace_hw_breakpoint(p);
289
5a0015d6
CZ
290 return 0;
291}
292
293
5a0015d6
CZ
294/*
295 * These bracket the sleeping functions..
296 */
297
298unsigned long get_wchan(struct task_struct *p)
299{
300 unsigned long sp, pc;
04fe6faf 301 unsigned long stack_page = (unsigned long) task_stack_page(p);
5a0015d6
CZ
302 int count = 0;
303
304 if (!p || p == current || p->state == TASK_RUNNING)
305 return 0;
306
307 sp = p->thread.sp;
308 pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
309
310 do {
311 if (sp < stack_page + sizeof(struct task_struct) ||
312 sp >= (stack_page + THREAD_SIZE) ||
313 pc == 0)
314 return 0;
315 if (!in_sched_functions(pc))
316 return pc;
317
318 /* Stack layout: sp-4: ra, sp-3: sp' */
319
320 pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
321 sp = *(unsigned long *)sp - 3;
322 } while (count++ < 16);
323 return 0;
324}
325
326/*
5a0015d6
CZ
327 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
328 * of processor registers. Besides different ordering,
329 * xtensa_gregset_t contains non-live register information that
330 * 'struct pt_regs' does not. Exception handling (primarily) uses
331 * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
332 *
333 */
334
c658eac6 335void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
5a0015d6 336{
c658eac6
CZ
337 unsigned long wb, ws, wm;
338 int live, last;
339
340 wb = regs->windowbase;
341 ws = regs->windowstart;
342 wm = regs->wmask;
343 ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
344
345 /* Don't leak any random bits. */
346
688bb415 347 memset(elfregs, 0, sizeof(*elfregs));
c658eac6 348
5a0015d6
CZ
349 /* Note: PS.EXCM is not set while user task is running; its
350 * being set in regs->ps is for exception handling convenience.
351 */
352
353 elfregs->pc = regs->pc;
173d6681 354 elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT));
5a0015d6
CZ
355 elfregs->lbeg = regs->lbeg;
356 elfregs->lend = regs->lend;
357 elfregs->lcount = regs->lcount;
358 elfregs->sar = regs->sar;
c658eac6 359 elfregs->windowstart = ws;
5a0015d6 360
c658eac6
CZ
361 live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
362 last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
363 memcpy(elfregs->a, regs->areg, live * 4);
364 memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
5a0015d6
CZ
365}
366
c658eac6 367int dump_fpu(void)
5a0015d6 368{
5a0015d6
CZ
369 return 0;
370}