]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/xtensa/kernel/vectors.S
Merge branch 'sched/urgent' into sched/core
[mirror_ubuntu-artful-kernel.git] / arch / xtensa / kernel / vectors.S
CommitLineData
5a0015d6
CZ
1/*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License. See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
2d1c645c 13 * Copyright (C) 2005 - 2008 Tensilica, Inc.
5a0015d6
CZ
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19/*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 * a0: trashed, original value saved on stack (PT_AREG0)
29 * a1: a1
30 * a2: new stack pointer, original value in depc
31 * a3: dispatch table
32 * depc: a2, original value saved on stack (PT_DEPC)
33 * excsave_1: a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 * PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 * < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note: Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45#include <linux/linkage.h>
46#include <asm/ptrace.h>
5a0015d6 47#include <asm/current.h>
0013a854 48#include <asm/asm-offsets.h>
5a0015d6
CZ
49#include <asm/pgtable.h>
50#include <asm/processor.h>
51#include <asm/page.h>
52#include <asm/thread_info.h>
e85e335f 53#include <asm/vectors.h>
5a0015d6 54
173d6681
CZ
55#define WINDOW_VECTORS_SIZE 0x180
56
5a0015d6
CZ
57
58/*
59 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
60 *
61 * We get here when an exception occurred while we were in userland.
62 * We switch to the kernel stack and jump to the first level handler
63 * associated to the exception cause.
64 *
65 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
66 * decremented by PT_USER_SIZE.
67 */
68
69 .section .UserExceptionVector.text, "ax"
70
71ENTRY(_UserExceptionVector)
72
bc5378fc
MF
73 xsr a3, excsave1 # save a3 and get dispatch table
74 wsr a2, depc # save a2
5a0015d6
CZ
75 l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2
76 s32i a0, a2, PT_AREG0 # save a0 to ESF
bc5378fc 77 rsr a0, exccause # retrieve exception cause
5a0015d6
CZ
78 s32i a0, a2, PT_DEPC # mark it as a regular exception
79 addx4 a0, a0, a3 # find entry in table
80 l32i a0, a0, EXC_TABLE_FAST_USER # load handler
81 jx a0
82
d1538c46
CZ
83ENDPROC(_UserExceptionVector)
84
5a0015d6
CZ
85/*
86 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
87 *
88 * We get this exception when we were already in kernel space.
89 * We decrement the current stack pointer (kernel) by PT_SIZE and
90 * jump to the first-level handler associated with the exception cause.
91 *
92 * Note: we need to preserve space for the spill region.
93 */
94
95 .section .KernelExceptionVector.text, "ax"
96
97ENTRY(_KernelExceptionVector)
98
bc5378fc
MF
99 xsr a3, excsave1 # save a3, and get dispatch table
100 wsr a2, depc # save a2
5a0015d6
CZ
101 addi a2, a1, -16-PT_SIZE # adjust stack pointer
102 s32i a0, a2, PT_AREG0 # save a0 to ESF
bc5378fc 103 rsr a0, exccause # retrieve exception cause
5a0015d6
CZ
104 s32i a0, a2, PT_DEPC # mark it as a regular exception
105 addx4 a0, a0, a3 # find entry in table
106 l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address
107 jx a0
108
d1538c46 109ENDPROC(_KernelExceptionVector)
5a0015d6
CZ
110
111/*
112 * Double exception vector (Exceptions with PS.EXCM == 1)
113 * We get this exception when another exception occurs while were are
114 * already in an exception, such as window overflow/underflow exception,
115 * or 'expected' exceptions, for example memory exception when we were trying
116 * to read data from an invalid address in user space.
117 *
118 * Note that this vector is never invoked for level-1 interrupts, because such
119 * interrupts are disabled (masked) when PS.EXCM is set.
120 *
121 * We decode the exception and take the appropriate action. However, the
122 * double exception vector is much more careful, because a lot more error
123 * cases go through the double exception vector than through the user and
124 * kernel exception vectors.
125 *
126 * Occasionally, the kernel expects a double exception to occur. This usually
127 * happens when accessing user-space memory with the user's permissions
128 * (l32e/s32e instructions). The kernel state, though, is not always suitable
129 * for immediate transfer of control to handle_double, where "normal" exception
130 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
131 * vmalloc memory, possibly requiring repair in a double exception handler.
132 *
133 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
134 * a boolean variable and a pointer to a fixup routine. If the variable
135 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
136 * zero indicates to use the default kernel/user exception handler.
137 * There is only one exception, when the value is identical to the exc_table
138 * label, the kernel is in trouble. This mechanism is used to protect critical
139 * sections, mainly when the handler writes to the stack to assert the stack
140 * pointer is valid. Once the fixup/default handler leaves that area, the
141 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
142 *
143 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
144 * nonzero address of a fixup routine before it could cause a double exception
145 * and reset it before it returns.
146 *
147 * Some other things to take care of when a fast exception handler doesn't
148 * specify a particular fixup handler but wants to use the default handlers:
149 *
150 * - The original stack pointer (in a1) must not be modified. The fast
151 * exception handler should only use a2 as the stack pointer.
152 *
153 * - If the fast handler manipulates the stack pointer (in a2), it has to
154 * register a valid fixup handler and cannot use the default handlers.
155 *
156 * - The handler can use any other generic register from a3 to a15, but it
157 * must save the content of these registers to stack (PT_AREG3...PT_AREGx)
158 *
159 * - These registers must be saved before a double exception can occur.
160 *
161 * - If we ever implement handling signals while in double exceptions, the
162 * number of registers a fast handler has saved (excluding a0 and a1) must
163 * be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
164 *
165 * The fixup handlers are special handlers:
166 *
167 * - Fixup entry conditions differ from regular exceptions:
168 *
169 * a0: DEPC
170 * a1: a1
171 * a2: trashed, original value in EXC_TABLE_DOUBLE_A2
172 * a3: exctable
173 * depc: a0
174 * excsave_1: a3
175 *
176 * - When the kernel enters the fixup handler, it still assumes it is in a
177 * critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
178 * The fixup handler, therefore, has to re-register itself as the fixup
179 * handler before it returns from the double exception.
180 *
181 * - Fixup handler can share the same exception frame with the fast handler.
182 * The kernel stack pointer is not changed when entering the fixup handler.
183 *
184 * - Fixup handlers can jump to the default kernel and user exception
185 * handlers. Before it jumps, though, it has to setup a exception frame
186 * on stack. Because the default handler resets the register fixup handler
187 * the fixup handler must make sure that the default handler returns to
188 * it instead of the exception address, so it can re-register itself as
189 * the fixup handler.
190 *
191 * In case of a critical condition where the kernel cannot recover, we jump
192 * to unrecoverable_exception with the following entry conditions.
193 * All registers a0...a15 are unchanged from the last exception, except:
194 *
195 * a0: last address before we jumped to the unrecoverable_exception.
196 * excsave_1: a0
197 *
198 *
199 * See the handle_alloca_user and spill_registers routines for example clients.
200 *
201 * FIXME: Note: we currently don't allow signal handling coming from a double
202 * exception, so the item markt with (*) is not required.
203 */
204
205 .section .DoubleExceptionVector.text, "ax"
206 .begin literal_prefix .DoubleExceptionVector
207
208ENTRY(_DoubleExceptionVector)
209
210 /* Deliberately destroy excsave (don't assume it's value was valid). */
211
bc5378fc 212 wsr a3, excsave1 # save a3
5a0015d6
CZ
213
214 /* Check for kernel double exception (usually fatal). */
215
bc5378fc 216 rsr a3, ps
173d6681 217 _bbci.l a3, PS_UM_BIT, .Lksp
5a0015d6
CZ
218
219 /* Check if we are currently handling a window exception. */
220 /* Note: We don't need to indicate that we enter a critical section. */
221
bc5378fc 222 xsr a0, depc # get DEPC, save a0
5a0015d6 223
e85e335f 224 movi a3, WINDOW_VECTORS_VADDR
5a0015d6 225 _bltu a0, a3, .Lfixup
173d6681 226 addi a3, a3, WINDOW_VECTORS_SIZE
5a0015d6
CZ
227 _bgeu a0, a3, .Lfixup
228
229 /* Window overflow/underflow exception. Get stack pointer. */
230
231 mov a3, a2
c0226e34
MF
232 /* This explicit literal and the following references to it are made
233 * in order to fit DoubleExceptionVector.literals into the available
234 * 16-byte gap before DoubleExceptionVector.text in the absence of
235 * link time relaxation. See kernel/vmlinux.lds.S
236 */
237 .literal .Lexc_table, exc_table
238 l32r a2, .Lexc_table
5a0015d6
CZ
239 l32i a2, a2, EXC_TABLE_KSTK
240
241 /* Check for overflow/underflow exception, jump if overflow. */
242
243 _bbci.l a0, 6, .Lovfl
244
245 /* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
246
247 /* Restart window underflow exception.
248 * We return to the instruction in user space that caused the window
249 * underflow exception. Therefore, we change window base to the value
250 * before we entered the window underflow exception and prepare the
251 * registers to return as if we were coming from a regular exception
252 * by changing depc (in a0).
253 * Note: We can trash the current window frame (a0...a3) and depc!
254 */
255
bc5378fc
MF
256 wsr a2, depc # save stack pointer temporarily
257 rsr a0, ps
173d6681 258 extui a0, a0, PS_OWB_SHIFT, 4
bc5378fc 259 wsr a0, windowbase
5a0015d6
CZ
260 rsync
261
262 /* We are now in the previous window frame. Save registers again. */
263
bc5378fc 264 xsr a2, depc # save a2 and get stack pointer
5a0015d6
CZ
265 s32i a0, a2, PT_AREG0
266
bc5378fc 267 wsr a3, excsave1 # save a3
c0226e34 268 l32r a3, .Lexc_table
5a0015d6 269
bc5378fc 270 rsr a0, exccause
5a0015d6
CZ
271 s32i a0, a2, PT_DEPC # mark it as a regular exception
272 addx4 a0, a0, a3
273 l32i a0, a0, EXC_TABLE_FAST_USER
274 jx a0
275
276.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
277
278 /* a0: depc, a1: a1, a2: a2, a3: trashed, depc: a0, excsave1: a3 */
279
c0226e34 280 l32r a3, .Lexc_table
5a0015d6
CZ
281 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE # temporary variable
282
283 /* Enter critical section. */
284
285 l32i a2, a3, EXC_TABLE_FIXUP
286 s32i a3, a3, EXC_TABLE_FIXUP
287 beq a2, a3, .Lunrecoverable_fixup # critical!
288 beqz a2, .Ldflt # no handler was registered
289
290 /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
291
292 jx a2
293
294.Ldflt: /* Get stack pointer. */
295
296 l32i a3, a3, EXC_TABLE_DOUBLE_SAVE
297 addi a2, a3, -PT_USER_SIZE
298
299.Lovfl: /* Jump to default handlers. */
300
301 /* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
302
bc5378fc 303 xsr a3, depc
5a0015d6
CZ
304 s32i a0, a2, PT_DEPC
305 s32i a3, a2, PT_AREG0
306
307 /* a0: avail, a1: a1, a2: kstk, a3: avail, depc: a2, excsave: a3 */
308
c0226e34 309 l32r a3, .Lexc_table
bc5378fc 310 rsr a0, exccause
5a0015d6
CZ
311 addx4 a0, a0, a3
312 l32i a0, a0, EXC_TABLE_FAST_USER
313 jx a0
314
315 /*
316 * We only allow the ITLB miss exception if we are in kernel space.
317 * All other exceptions are unexpected and thus unrecoverable!
318 */
319
e5083a63 320#ifdef CONFIG_MMU
5a0015d6
CZ
321 .extern fast_second_level_miss_double_kernel
322
323.Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
324
bc5378fc 325 rsr a3, exccause
173d6681
CZ
326 beqi a3, EXCCAUSE_ITLB_MISS, 1f
327 addi a3, a3, -EXCCAUSE_DTLB_MISS
5a0015d6
CZ
328 bnez a3, .Lunrecoverable
3291: movi a3, fast_second_level_miss_double_kernel
330 jx a3
e5083a63
JW
331#else
332.equ .Lksp, .Lunrecoverable
333#endif
5a0015d6
CZ
334
335 /* Critical! We can't handle this situation. PANIC! */
336
337 .extern unrecoverable_exception
338
339.Lunrecoverable_fixup:
340 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
bc5378fc 341 xsr a0, depc
5a0015d6
CZ
342
343.Lunrecoverable:
bc5378fc
MF
344 rsr a3, excsave1
345 wsr a0, excsave1
5a0015d6
CZ
346 movi a0, unrecoverable_exception
347 callx0 a0
348
349 .end literal_prefix
350
d1538c46 351ENDPROC(_DoubleExceptionVector)
5a0015d6
CZ
352
353/*
354 * Debug interrupt vector
355 *
356 * There is not much space here, so simply jump to another handler.
357 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
358 */
359
360 .section .DebugInterruptVector.text, "ax"
361
362ENTRY(_DebugInterruptVector)
d1538c46 363
bc5378fc 364 xsr a0, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
5a0015d6
CZ
365 jx a0
366
d1538c46 367ENDPROC(_DebugInterruptVector)
5a0015d6
CZ
368
369
2d1c645c
MG
370
371/*
372 * Medium priority level interrupt vectors
373 *
374 * Each takes less than 16 (0x10) bytes, no literals, by placing
375 * the extra 8 bytes that would otherwise be required in the window
376 * vectors area where there is space. With relocatable vectors,
377 * all vectors are within ~ 4 kB range of each other, so we can
378 * simply jump (J) to another vector without having to use JX.
379 *
380 * common_exception code gets current IRQ level in PS.INTLEVEL
381 * and preserves it for the IRQ handling time.
382 */
383
384 .macro irq_entry_level level
385
386 .if XCHAL_EXCM_LEVEL >= \level
387 .section .Level\level\()InterruptVector.text, "ax"
388ENTRY(_Level\level\()InterruptVector)
895666a9 389 wsr a0, excsave2
2d1c645c 390 rsr a0, epc\level
895666a9
MF
391 wsr a0, epc1
392 movi a0, EXCCAUSE_LEVEL1_INTERRUPT
393 wsr a0, exccause
394 rsr a0, eps\level
2d1c645c
MG
395 # branch to user or kernel vector
396 j _SimulateUserKernelVectorException
397 .endif
398
399 .endm
400
401 irq_entry_level 2
402 irq_entry_level 3
403 irq_entry_level 4
404 irq_entry_level 5
405 irq_entry_level 6
406
407
5a0015d6
CZ
408/* Window overflow and underflow handlers.
409 * The handlers must be 64 bytes apart, first starting with the underflow
410 * handlers underflow-4 to underflow-12, then the overflow handlers
411 * overflow-4 to overflow-12.
412 *
413 * Note: We rerun the underflow handlers if we hit an exception, so
414 * we try to access any page that would cause a page fault early.
415 */
416
d1538c46
CZ
417#define ENTRY_ALIGN64(name) \
418 .globl name; \
419 .align 64; \
420 name:
421
5a0015d6
CZ
422 .section .WindowVectors.text, "ax"
423
424
425/* 4-Register Window Overflow Vector (Handler) */
426
d1538c46
CZ
427ENTRY_ALIGN64(_WindowOverflow4)
428
5a0015d6
CZ
429 s32e a0, a5, -16
430 s32e a1, a5, -12
431 s32e a2, a5, -8
432 s32e a3, a5, -4
433 rfwo
434
d1538c46
CZ
435ENDPROC(_WindowOverflow4)
436
5a0015d6 437
2d1c645c
MG
438#if XCHAL_EXCM_LEVEL >= 2
439 /* Not a window vector - but a convenient location
440 * (where we know there's space) for continuation of
441 * medium priority interrupt dispatch code.
442 * On entry here, a0 contains PS, and EPC2 contains saved a0:
443 */
444 .align 4
445_SimulateUserKernelVectorException:
895666a9
MF
446 addi a0, a0, (1 << PS_EXCM_BIT)
447 wsr a0, ps
2d1c645c
MG
448 bbsi.l a0, PS_UM_BIT, 1f # branch if user mode
449 rsr a0, excsave2 # restore a0
450 j _KernelExceptionVector # simulate kernel vector exception
4511: rsr a0, excsave2 # restore a0
452 j _UserExceptionVector # simulate user vector exception
453#endif
454
455
5a0015d6
CZ
456/* 4-Register Window Underflow Vector (Handler) */
457
d1538c46
CZ
458ENTRY_ALIGN64(_WindowUnderflow4)
459
5a0015d6
CZ
460 l32e a0, a5, -16
461 l32e a1, a5, -12
462 l32e a2, a5, -8
463 l32e a3, a5, -4
464 rfwu
465
d1538c46 466ENDPROC(_WindowUnderflow4)
5a0015d6
CZ
467
468/* 8-Register Window Overflow Vector (Handler) */
469
d1538c46
CZ
470ENTRY_ALIGN64(_WindowOverflow8)
471
5a0015d6
CZ
472 s32e a0, a9, -16
473 l32e a0, a1, -12
474 s32e a2, a9, -8
475 s32e a1, a9, -12
476 s32e a3, a9, -4
477 s32e a4, a0, -32
478 s32e a5, a0, -28
479 s32e a6, a0, -24
480 s32e a7, a0, -20
481 rfwo
482
d1538c46
CZ
483ENDPROC(_WindowOverflow8)
484
5a0015d6
CZ
485/* 8-Register Window Underflow Vector (Handler) */
486
d1538c46
CZ
487ENTRY_ALIGN64(_WindowUnderflow8)
488
5a0015d6
CZ
489 l32e a1, a9, -12
490 l32e a0, a9, -16
491 l32e a7, a1, -12
492 l32e a2, a9, -8
493 l32e a4, a7, -32
494 l32e a3, a9, -4
495 l32e a5, a7, -28
496 l32e a6, a7, -24
497 l32e a7, a7, -20
498 rfwu
499
d1538c46 500ENDPROC(_WindowUnderflow8)
5a0015d6
CZ
501
502/* 12-Register Window Overflow Vector (Handler) */
503
d1538c46
CZ
504ENTRY_ALIGN64(_WindowOverflow12)
505
5a0015d6
CZ
506 s32e a0, a13, -16
507 l32e a0, a1, -12
508 s32e a1, a13, -12
509 s32e a2, a13, -8
510 s32e a3, a13, -4
511 s32e a4, a0, -48
512 s32e a5, a0, -44
513 s32e a6, a0, -40
514 s32e a7, a0, -36
515 s32e a8, a0, -32
516 s32e a9, a0, -28
517 s32e a10, a0, -24
518 s32e a11, a0, -20
519 rfwo
520
d1538c46
CZ
521ENDPROC(_WindowOverflow12)
522
5a0015d6
CZ
523/* 12-Register Window Underflow Vector (Handler) */
524
d1538c46
CZ
525ENTRY_ALIGN64(_WindowUnderflow12)
526
5a0015d6
CZ
527 l32e a1, a13, -12
528 l32e a0, a13, -16
529 l32e a11, a1, -12
530 l32e a2, a13, -8
531 l32e a4, a11, -48
532 l32e a8, a11, -32
533 l32e a3, a13, -4
534 l32e a5, a11, -44
535 l32e a6, a11, -40
536 l32e a7, a11, -36
537 l32e a9, a11, -28
538 l32e a10, a11, -24
539 l32e a11, a11, -20
540 rfwu
541
d1538c46
CZ
542ENDPROC(_WindowUnderflow12)
543
5a0015d6 544 .text