]> git.proxmox.com Git - mirror_lxcfs.git/blame - bindings.c
Mount /proc files even if /sys/fs/cgroup is disabled
[mirror_lxcfs.git] / bindings.c
CommitLineData
237e200e
SH
1/* lxcfs
2 *
3 * Copyright © 2014-2016 Canonical, Inc
4 * Author: Serge Hallyn <serge.hallyn@ubuntu.com>
5 *
6 * See COPYING file for details.
7 */
8
9#define FUSE_USE_VERSION 26
10
11#include <stdio.h>
12#include <dirent.h>
13#include <fcntl.h>
14#include <fuse.h>
15#include <unistd.h>
16#include <errno.h>
17#include <stdbool.h>
18#include <time.h>
19#include <string.h>
20#include <stdlib.h>
21#include <libgen.h>
22#include <sched.h>
23#include <pthread.h>
24#include <linux/sched.h>
25#include <sys/param.h>
26#include <sys/socket.h>
27#include <sys/mount.h>
28#include <sys/epoll.h>
29#include <wait.h>
30
237e200e
SH
31#include "bindings.h"
32
33#include "config.h" // for VERSION
34
35enum {
36 LXC_TYPE_CGDIR,
37 LXC_TYPE_CGFILE,
38 LXC_TYPE_PROC_MEMINFO,
39 LXC_TYPE_PROC_CPUINFO,
40 LXC_TYPE_PROC_UPTIME,
41 LXC_TYPE_PROC_STAT,
42 LXC_TYPE_PROC_DISKSTATS,
70dcc12e 43 LXC_TYPE_PROC_SWAPS,
237e200e
SH
44};
45
46struct file_info {
47 char *controller;
48 char *cgroup;
49 char *file;
50 int type;
51 char *buf; // unused as of yet
52 int buflen;
53 int size; //actual data size
54 int cached;
55};
56
57/* reserve buffer size, for cpuall in /proc/stat */
58#define BUF_RESERVE_SIZE 256
59
60/*
61 * A table caching which pid is init for a pid namespace.
62 * When looking up which pid is init for $qpid, we first
63 * 1. Stat /proc/$qpid/ns/pid.
64 * 2. Check whether the ino_t is in our store.
65 * a. if not, fork a child in qpid's ns to send us
66 * ucred.pid = 1, and read the initpid. Cache
67 * initpid and creation time for /proc/initpid
68 * in a new store entry.
69 * b. if so, verify that /proc/initpid still matches
70 * what we have saved. If not, clear the store
71 * entry and go back to a. If so, return the
72 * cached initpid.
73 */
74struct pidns_init_store {
75 ino_t ino; // inode number for /proc/$pid/ns/pid
76 pid_t initpid; // the pid of nit in that ns
77 long int ctime; // the time at which /proc/$initpid was created
78 struct pidns_init_store *next;
79 long int lastcheck;
80};
81
82/* lol - look at how they are allocated in the kernel */
83#define PIDNS_HASH_SIZE 4096
84#define HASH(x) ((x) % PIDNS_HASH_SIZE)
85
86static struct pidns_init_store *pidns_hash_table[PIDNS_HASH_SIZE];
87static pthread_mutex_t pidns_store_mutex = PTHREAD_MUTEX_INITIALIZER;
88static void lock_mutex(pthread_mutex_t *l)
89{
90 int ret;
91
92 if ((ret = pthread_mutex_lock(l)) != 0) {
93 fprintf(stderr, "pthread_mutex_lock returned:%d %s\n", ret, strerror(ret));
94 exit(1);
95 }
96}
97
98static void unlock_mutex(pthread_mutex_t *l)
99{
100 int ret;
101
102 if ((ret = pthread_mutex_unlock(l)) != 0) {
103 fprintf(stderr, "pthread_mutex_unlock returned:%d %s\n", ret, strerror(ret));
104 exit(1);
105 }
106}
107
108static void store_lock(void)
109{
110 lock_mutex(&pidns_store_mutex);
111}
112
113static void store_unlock(void)
114{
115 unlock_mutex(&pidns_store_mutex);
116}
117
118/* Must be called under store_lock */
119static bool initpid_still_valid(struct pidns_init_store *e, struct stat *nsfdsb)
120{
121 struct stat initsb;
122 char fnam[100];
123
124 snprintf(fnam, 100, "/proc/%d", e->initpid);
125 if (stat(fnam, &initsb) < 0)
126 return false;
127#if DEBUG
128 fprintf(stderr, "comparing ctime %ld %ld for pid %d\n",
129 e->ctime, initsb.st_ctime, e->initpid);
130#endif
131 if (e->ctime != initsb.st_ctime)
132 return false;
133 return true;
134}
135
136/* Must be called under store_lock */
137static void remove_initpid(struct pidns_init_store *e)
138{
139 struct pidns_init_store *tmp;
140 int h;
141
142#if DEBUG
143 fprintf(stderr, "remove_initpid: removing entry for %d\n", e->initpid);
144#endif
145 h = HASH(e->ino);
146 if (pidns_hash_table[h] == e) {
147 pidns_hash_table[h] = e->next;
148 free(e);
149 return;
150 }
151
152 tmp = pidns_hash_table[h];
153 while (tmp) {
154 if (tmp->next == e) {
155 tmp->next = e->next;
156 free(e);
157 return;
158 }
159 tmp = tmp->next;
160 }
161}
162
163#define PURGE_SECS 5
164/* Must be called under store_lock */
165static void prune_initpid_store(void)
166{
167 static long int last_prune = 0;
168 struct pidns_init_store *e, *prev, *delme;
169 long int now, threshold;
170 int i;
171
172 if (!last_prune) {
173 last_prune = time(NULL);
174 return;
175 }
176 now = time(NULL);
177 if (now < last_prune + PURGE_SECS)
178 return;
179#if DEBUG
180 fprintf(stderr, "pruning\n");
181#endif
182 last_prune = now;
183 threshold = now - 2 * PURGE_SECS;
184
185 for (i = 0; i < PIDNS_HASH_SIZE; i++) {
186 for (prev = NULL, e = pidns_hash_table[i]; e; ) {
187 if (e->lastcheck < threshold) {
188#if DEBUG
189 fprintf(stderr, "Removing cached entry for %d\n", e->initpid);
190#endif
191 delme = e;
192 if (prev)
193 prev->next = e->next;
194 else
195 pidns_hash_table[i] = e->next;
196 e = e->next;
197 free(delme);
198 } else {
199 prev = e;
200 e = e->next;
201 }
202 }
203 }
204}
205
206/* Must be called under store_lock */
207static void save_initpid(struct stat *sb, pid_t pid)
208{
209 struct pidns_init_store *e;
210 char fpath[100];
211 struct stat procsb;
212 int h;
213
214#if DEBUG
215 fprintf(stderr, "save_initpid: adding entry for %d\n", pid);
216#endif
217 snprintf(fpath, 100, "/proc/%d", pid);
218 if (stat(fpath, &procsb) < 0)
219 return;
220 do {
221 e = malloc(sizeof(*e));
222 } while (!e);
223 e->ino = sb->st_ino;
224 e->initpid = pid;
225 e->ctime = procsb.st_ctime;
226 h = HASH(e->ino);
227 e->next = pidns_hash_table[h];
228 e->lastcheck = time(NULL);
229 pidns_hash_table[h] = e;
230}
231
232/*
233 * Given the stat(2) info for a nsfd pid inode, lookup the init_pid_store
234 * entry for the inode number and creation time. Verify that the init pid
235 * is still valid. If not, remove it. Return the entry if valid, NULL
236 * otherwise.
237 * Must be called under store_lock
238 */
239static struct pidns_init_store *lookup_verify_initpid(struct stat *sb)
240{
241 int h = HASH(sb->st_ino);
242 struct pidns_init_store *e = pidns_hash_table[h];
243
244 while (e) {
245 if (e->ino == sb->st_ino) {
246 if (initpid_still_valid(e, sb)) {
247 e->lastcheck = time(NULL);
248 return e;
249 }
250 remove_initpid(e);
251 return NULL;
252 }
253 e = e->next;
254 }
255
256 return NULL;
257}
258
259static int is_dir(const char *path)
260{
261 struct stat statbuf;
262 int ret = stat(path, &statbuf);
263 if (ret == 0 && S_ISDIR(statbuf.st_mode))
264 return 1;
265 return 0;
266}
267
268static char *must_copy_string(const char *str)
269{
270 char *dup = NULL;
271 if (!str)
272 return NULL;
273 do {
274 dup = strdup(str);
275 } while (!dup);
276
277 return dup;
278}
279
280static inline void drop_trailing_newlines(char *s)
281{
282 int l;
283
284 for (l=strlen(s); l>0 && s[l-1] == '\n'; l--)
285 s[l-1] = '\0';
286}
287
288#define BATCH_SIZE 50
289static void dorealloc(char **mem, size_t oldlen, size_t newlen)
290{
291 int newbatches = (newlen / BATCH_SIZE) + 1;
292 int oldbatches = (oldlen / BATCH_SIZE) + 1;
293
294 if (!*mem || newbatches > oldbatches) {
295 char *tmp;
296 do {
297 tmp = realloc(*mem, newbatches * BATCH_SIZE);
298 } while (!tmp);
299 *mem = tmp;
300 }
301}
302static void append_line(char **contents, size_t *len, char *line, ssize_t linelen)
303{
304 size_t newlen = *len + linelen;
305 dorealloc(contents, *len, newlen + 1);
306 memcpy(*contents + *len, line, linelen+1);
307 *len = newlen;
308}
309
310static char *slurp_file(const char *from)
311{
312 char *line = NULL;
313 char *contents = NULL;
314 FILE *f = fopen(from, "r");
315 size_t len = 0, fulllen = 0;
316 ssize_t linelen;
317
318 if (!f)
319 return NULL;
320
321 while ((linelen = getline(&line, &len, f)) != -1) {
322 append_line(&contents, &fulllen, line, linelen);
323 }
324 fclose(f);
325
326 if (contents)
327 drop_trailing_newlines(contents);
328 free(line);
329 return contents;
330}
331
332static bool write_string(const char *fnam, const char *string)
333{
334 FILE *f;
335 size_t len, ret;
336
337 if (!(f = fopen(fnam, "w")))
338 return false;
339 len = strlen(string);
340 ret = fwrite(string, 1, len, f);
341 if (ret != len) {
342 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
343 fclose(f);
344 return false;
345 }
346 if (fclose(f) < 0) {
347 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
348 return false;
349 }
350 return true;
351}
352
353/*
354 * hierarchies, i.e. 'cpu,cpuacct'
355 */
356char **hierarchies;
357int num_hierarchies;
358
359struct cgfs_files {
360 char *name;
361 uint32_t uid, gid;
362 uint32_t mode;
363};
364
0619767c 365#define ALLOC_NUM 20
237e200e
SH
366static bool store_hierarchy(char *stridx, char *h)
367{
0619767c
SH
368 if (num_hierarchies % ALLOC_NUM == 0) {
369 size_t n = (num_hierarchies / ALLOC_NUM) + 1;
370 n *= ALLOC_NUM;
371 char **tmp = realloc(hierarchies, n * sizeof(char *));
0619767c
SH
372 if (!tmp) {
373 fprintf(stderr, "Out of memory\n");
374 exit(1);
375 }
237e200e 376 hierarchies = tmp;
237e200e
SH
377 }
378
0619767c 379 hierarchies[num_hierarchies++] = must_copy_string(h);
237e200e
SH
380 return true;
381}
382
383static void print_subsystems(void)
384{
385 int i;
386
387 fprintf(stderr, "hierarchies:");
388 for (i = 0; i < num_hierarchies; i++) {
389 if (hierarchies[i])
390 fprintf(stderr, " %d: %s\n", i, hierarchies[i]);
391 }
392}
393
394static bool in_comma_list(const char *needle, const char *haystack)
395{
396 const char *s = haystack, *e;
397 size_t nlen = strlen(needle);
398
399 while (*s && (e = index(s, ','))) {
400 if (nlen != e - s) {
401 s = e + 1;
402 continue;
403 }
404 if (strncmp(needle, s, nlen) == 0)
405 return true;
406 s = e + 1;
407 }
408 if (strcmp(needle, s) == 0)
409 return true;
410 return false;
411}
412
413/* do we need to do any massaging here? I'm not sure... */
414static char *find_mounted_controller(const char *controller)
415{
416 int i;
417
418 for (i = 0; i < num_hierarchies; i++) {
419 if (!hierarchies[i])
420 continue;
421 if (strcmp(hierarchies[i], controller) == 0)
422 return hierarchies[i];
423 if (in_comma_list(controller, hierarchies[i]))
424 return hierarchies[i];
425 }
426
427 return NULL;
428}
429
430bool cgfs_set_value(const char *controller, const char *cgroup, const char *file,
431 const char *value)
432{
433 size_t len;
434 char *fnam, *tmpc = find_mounted_controller(controller);
435
436 if (!tmpc)
437 return false;
438 /* basedir / tmpc / cgroup / file \0 */
439 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
440 fnam = alloca(len);
441 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
442
443 return write_string(fnam, value);
444}
445
446// Chown all the files in the cgroup directory. We do this when we create
447// a cgroup on behalf of a user.
448static void chown_all_cgroup_files(const char *dirname, uid_t uid, gid_t gid)
449{
450 struct dirent dirent, *direntp;
451 char path[MAXPATHLEN];
452 size_t len;
453 DIR *d;
454 int ret;
455
456 len = strlen(dirname);
457 if (len >= MAXPATHLEN) {
458 fprintf(stderr, "chown_all_cgroup_files: pathname too long: %s\n", dirname);
459 return;
460 }
461
462 d = opendir(dirname);
463 if (!d) {
464 fprintf(stderr, "chown_all_cgroup_files: failed to open %s\n", dirname);
465 return;
466 }
467
468 while (readdir_r(d, &dirent, &direntp) == 0 && direntp) {
469 if (!strcmp(direntp->d_name, ".") || !strcmp(direntp->d_name, ".."))
470 continue;
471 ret = snprintf(path, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
472 if (ret < 0 || ret >= MAXPATHLEN) {
473 fprintf(stderr, "chown_all_cgroup_files: pathname too long under %s\n", dirname);
474 continue;
475 }
476 if (chown(path, uid, gid) < 0)
477 fprintf(stderr, "Failed to chown file %s to %u:%u", path, uid, gid);
478 }
479 closedir(d);
480}
481
482int cgfs_create(const char *controller, const char *cg, uid_t uid, gid_t gid)
483{
484 size_t len;
485 char *dirnam, *tmpc = find_mounted_controller(controller);
486
487 if (!tmpc)
488 return -EINVAL;
489 /* basedir / tmpc / cg \0 */
490 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
491 dirnam = alloca(len);
492 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
493
494 if (mkdir(dirnam, 0755) < 0)
495 return -errno;
496
497 if (uid == 0 && gid == 0)
498 return 0;
499
500 if (chown(dirnam, uid, gid) < 0)
501 return -errno;
502
503 chown_all_cgroup_files(dirnam, uid, gid);
504
505 return 0;
506}
507
508static bool recursive_rmdir(const char *dirname)
509{
510 struct dirent dirent, *direntp;
511 DIR *dir;
512 bool ret = false;
513 char pathname[MAXPATHLEN];
514
515 dir = opendir(dirname);
516 if (!dir) {
517#if DEBUG
518 fprintf(stderr, "%s: failed to open %s: %s\n", __func__, dirname, strerror(errno));
519#endif
520 return false;
521 }
522
523 while (!readdir_r(dir, &dirent, &direntp)) {
524 struct stat mystat;
525 int rc;
526
527 if (!direntp)
528 break;
529
530 if (!strcmp(direntp->d_name, ".") ||
531 !strcmp(direntp->d_name, ".."))
532 continue;
533
534 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
535 if (rc < 0 || rc >= MAXPATHLEN) {
536 fprintf(stderr, "pathname too long\n");
537 continue;
538 }
539
540 ret = lstat(pathname, &mystat);
541 if (ret) {
542#if DEBUG
543 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
544#endif
545 continue;
546 }
547 if (S_ISDIR(mystat.st_mode)) {
548 if (!recursive_rmdir(pathname)) {
549#if DEBUG
550 fprintf(stderr, "Error removing %s\n", pathname);
551#endif
552 }
553 }
554 }
555
556 ret = true;
557 if (closedir(dir) < 0) {
558 fprintf(stderr, "%s: failed to close directory %s: %s\n", __func__, dirname, strerror(errno));
559 ret = false;
560 }
561
562 if (rmdir(dirname) < 0) {
563#if DEBUG
564 fprintf(stderr, "%s: failed to delete %s: %s\n", __func__, dirname, strerror(errno));
565#endif
566 ret = false;
567 }
568
569 return ret;
570}
571
572bool cgfs_remove(const char *controller, const char *cg)
573{
574 size_t len;
575 char *dirnam, *tmpc = find_mounted_controller(controller);
576
577 if (!tmpc)
578 return false;
579 /* basedir / tmpc / cg \0 */
580 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
581 dirnam = alloca(len);
582 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
583 return recursive_rmdir(dirnam);
584}
585
586bool cgfs_chmod_file(const char *controller, const char *file, mode_t mode)
587{
588 size_t len;
589 char *pathname, *tmpc = find_mounted_controller(controller);
590
591 if (!tmpc)
592 return false;
593 /* basedir / tmpc / file \0 */
594 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
595 pathname = alloca(len);
596 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
597 if (chmod(pathname, mode) < 0)
598 return false;
599 return true;
600}
601
602static int chown_tasks_files(const char *dirname, uid_t uid, gid_t gid)
603{
604 size_t len;
605 char *fname;
606
607 len = strlen(dirname) + strlen("/cgroup.procs") + 1;
608 fname = alloca(len);
609 snprintf(fname, len, "%s/tasks", dirname);
610 if (chown(fname, uid, gid) != 0)
611 return -errno;
612 snprintf(fname, len, "%s/cgroup.procs", dirname);
613 if (chown(fname, uid, gid) != 0)
614 return -errno;
615 return 0;
616}
617
618int cgfs_chown_file(const char *controller, const char *file, uid_t uid, gid_t gid)
619{
620 size_t len;
621 char *pathname, *tmpc = find_mounted_controller(controller);
622
623 if (!tmpc)
624 return -EINVAL;
625 /* basedir / tmpc / file \0 */
626 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
627 pathname = alloca(len);
628 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
629 if (chown(pathname, uid, gid) < 0)
630 return -errno;
631
632 if (is_dir(pathname))
633 // like cgmanager did, we want to chown the tasks file as well
634 return chown_tasks_files(pathname, uid, gid);
635
636 return 0;
637}
638
639FILE *open_pids_file(const char *controller, const char *cgroup)
640{
641 size_t len;
642 char *pathname, *tmpc = find_mounted_controller(controller);
643
644 if (!tmpc)
645 return NULL;
646 /* basedir / tmpc / cgroup / "cgroup.procs" \0 */
647 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 4 + strlen("cgroup.procs");
648 pathname = alloca(len);
649 snprintf(pathname, len, "%s/%s/%s/cgroup.procs", basedir, tmpc, cgroup);
650 return fopen(pathname, "w");
651}
652
f366da65
WB
653static bool cgfs_iterate_cgroup(const char *controller, const char *cgroup, bool directories,
654 void ***list, size_t typesize,
655 void* (*iterator)(const char*, const char*, const char*))
237e200e
SH
656{
657 size_t len;
658 char *dirname, *tmpc = find_mounted_controller(controller);
659 char pathname[MAXPATHLEN];
f366da65 660 size_t sz = 0, asz = 0;
237e200e
SH
661 struct dirent dirent, *direntp;
662 DIR *dir;
663 int ret;
664
f366da65 665 *list = NULL;
237e200e 666 if (!tmpc)
e97c834b 667 return false;
237e200e
SH
668
669 /* basedir / tmpc / cgroup \0 */
670 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
671 dirname = alloca(len);
672 snprintf(dirname, len, "%s/%s/%s", basedir, tmpc, cgroup);
673
674 dir = opendir(dirname);
675 if (!dir)
676 return false;
677
678 while (!readdir_r(dir, &dirent, &direntp)) {
679 struct stat mystat;
680 int rc;
681
682 if (!direntp)
683 break;
684
685 if (!strcmp(direntp->d_name, ".") ||
686 !strcmp(direntp->d_name, ".."))
687 continue;
688
689 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
690 if (rc < 0 || rc >= MAXPATHLEN) {
691 fprintf(stderr, "%s: pathname too long under %s\n", __func__, dirname);
692 continue;
693 }
694
695 ret = lstat(pathname, &mystat);
696 if (ret) {
697 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
698 continue;
699 }
f366da65
WB
700 if ((!directories && !S_ISREG(mystat.st_mode)) ||
701 (directories && !S_ISDIR(mystat.st_mode)))
237e200e
SH
702 continue;
703
704 if (sz+2 >= asz) {
f366da65 705 void **tmp;
237e200e
SH
706 asz += BATCH_SIZE;
707 do {
f366da65 708 tmp = realloc(*list, asz * typesize);
237e200e
SH
709 } while (!tmp);
710 *list = tmp;
711 }
f366da65 712 (*list)[sz] = (*iterator)(controller, cgroup, direntp->d_name);
237e200e
SH
713 (*list)[sz+1] = NULL;
714 sz++;
715 }
716 if (closedir(dir) < 0) {
717 fprintf(stderr, "%s: failed closedir for %s: %s\n", __func__, dirname, strerror(errno));
718 return false;
719 }
720 return true;
721}
722
f366da65
WB
723static void *make_children_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
724{
725 char *dup;
726 do {
727 dup = strdup(dir_entry);
728 } while (!dup);
729 return dup;
730}
731
732bool cgfs_list_children(const char *controller, const char *cgroup, char ***list)
733{
734 return cgfs_iterate_cgroup(controller, cgroup, true, (void***)list, sizeof(*list), &make_children_list_entry);
735}
736
237e200e
SH
737void free_key(struct cgfs_files *k)
738{
739 if (!k)
740 return;
741 free(k->name);
742 free(k);
743}
744
745void free_keys(struct cgfs_files **keys)
746{
747 int i;
748
749 if (!keys)
750 return;
751 for (i = 0; keys[i]; i++) {
752 free_key(keys[i]);
753 }
754 free(keys);
755}
756
757bool cgfs_get_value(const char *controller, const char *cgroup, const char *file, char **value)
758{
759 size_t len;
760 char *fnam, *tmpc = find_mounted_controller(controller);
761
762 if (!tmpc)
763 return false;
764 /* basedir / tmpc / cgroup / file \0 */
765 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
766 fnam = alloca(len);
767 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
768
769 *value = slurp_file(fnam);
770 return *value != NULL;
771}
772
773struct cgfs_files *cgfs_get_key(const char *controller, const char *cgroup, const char *file)
774{
775 size_t len;
776 char *fnam, *tmpc = find_mounted_controller(controller);
777 struct stat sb;
778 struct cgfs_files *newkey;
779 int ret;
780
781 if (!tmpc)
782 return false;
783
784 if (file && *file == '/')
785 file++;
786
787 if (file && index(file, '/'))
788 return NULL;
789
790 /* basedir / tmpc / cgroup / file \0 */
791 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
792 if (file)
793 len += strlen(file) + 1;
794 fnam = alloca(len);
795 snprintf(fnam, len, "%s/%s/%s%s%s", basedir, tmpc, cgroup,
796 file ? "/" : "", file ? file : "");
797
798 ret = stat(fnam, &sb);
799 if (ret < 0)
800 return NULL;
801
802 do {
803 newkey = malloc(sizeof(struct cgfs_files));
804 } while (!newkey);
805 if (file)
806 newkey->name = must_copy_string(file);
807 else if (rindex(cgroup, '/'))
808 newkey->name = must_copy_string(rindex(cgroup, '/'));
809 else
810 newkey->name = must_copy_string(cgroup);
811 newkey->uid = sb.st_uid;
812 newkey->gid = sb.st_gid;
813 newkey->mode = sb.st_mode;
814
815 return newkey;
816}
817
f366da65 818static void *make_key_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
237e200e 819{
f366da65
WB
820 struct cgfs_files *entry = cgfs_get_key(controller, cgroup, dir_entry);
821 if (!entry) {
822 fprintf(stderr, "%s: Error getting files under %s:%s\n",
823 __func__, controller, cgroup);
237e200e 824 }
f366da65
WB
825 return entry;
826}
827
828bool cgfs_list_keys(const char *controller, const char *cgroup, struct cgfs_files ***keys)
829{
830 return cgfs_iterate_cgroup(controller, cgroup, false, (void***)keys, sizeof(*keys), &make_key_list_entry);
237e200e
SH
831}
832
833bool is_child_cgroup(const char *controller, const char *cgroup, const char *f)
834{ size_t len;
835 char *fnam, *tmpc = find_mounted_controller(controller);
836 int ret;
837 struct stat sb;
838
839 if (!tmpc)
840 return false;
841 /* basedir / tmpc / cgroup / f \0 */
842 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(f) + 4;
843 fnam = alloca(len);
844 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, f);
845
846 ret = stat(fnam, &sb);
847 if (ret < 0 || !S_ISDIR(sb.st_mode))
848 return false;
849 return true;
850}
851
852#define SEND_CREDS_OK 0
853#define SEND_CREDS_NOTSK 1
854#define SEND_CREDS_FAIL 2
855static bool recv_creds(int sock, struct ucred *cred, char *v);
856static int wait_for_pid(pid_t pid);
857static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst);
b10bdd6c 858static int send_creds_clone_wrapper(void *arg);
237e200e
SH
859
860/*
b10bdd6c 861 * clone a task which switches to @task's namespace and writes '1'.
237e200e
SH
862 * over a unix sock so we can read the task's reaper's pid in our
863 * namespace
b10bdd6c
FG
864 *
865 * Note: glibc's fork() does not respect pidns, which can lead to failed
866 * assertions inside glibc (and thus failed forks) if the child's pid in
867 * the pidns and the parent pid outside are identical. Using clone prevents
868 * this issue.
237e200e
SH
869 */
870static void write_task_init_pid_exit(int sock, pid_t target)
871{
237e200e
SH
872 char fnam[100];
873 pid_t pid;
237e200e 874 int fd, ret;
b10bdd6c
FG
875 size_t stack_size = sysconf(_SC_PAGESIZE);
876 void *stack = alloca(stack_size);
237e200e
SH
877
878 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", (int)target);
879 if (ret < 0 || ret >= sizeof(fnam))
880 _exit(1);
881
882 fd = open(fnam, O_RDONLY);
883 if (fd < 0) {
884 perror("write_task_init_pid_exit open of ns/pid");
885 _exit(1);
886 }
887 if (setns(fd, 0)) {
888 perror("write_task_init_pid_exit setns 1");
889 close(fd);
890 _exit(1);
891 }
b10bdd6c 892 pid = clone(send_creds_clone_wrapper, stack + stack_size, SIGCHLD, &sock);
237e200e
SH
893 if (pid < 0)
894 _exit(1);
895 if (pid != 0) {
896 if (!wait_for_pid(pid))
897 _exit(1);
898 _exit(0);
899 }
b10bdd6c
FG
900}
901
902static int send_creds_clone_wrapper(void *arg) {
903 struct ucred cred;
904 char v;
905 int sock = *(int *)arg;
237e200e
SH
906
907 /* we are the child */
908 cred.uid = 0;
909 cred.gid = 0;
910 cred.pid = 1;
911 v = '1';
912 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK)
b10bdd6c
FG
913 return 1;
914 return 0;
237e200e
SH
915}
916
917static pid_t get_init_pid_for_task(pid_t task)
918{
919 int sock[2];
920 pid_t pid;
921 pid_t ret = -1;
922 char v = '0';
923 struct ucred cred;
924
925 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
926 perror("socketpair");
927 return -1;
928 }
929
930 pid = fork();
931 if (pid < 0)
932 goto out;
933 if (!pid) {
934 close(sock[1]);
935 write_task_init_pid_exit(sock[0], task);
936 _exit(0);
937 }
938
939 if (!recv_creds(sock[1], &cred, &v))
940 goto out;
941 ret = cred.pid;
942
943out:
944 close(sock[0]);
945 close(sock[1]);
946 if (pid > 0)
947 wait_for_pid(pid);
948 return ret;
949}
950
951static pid_t lookup_initpid_in_store(pid_t qpid)
952{
953 pid_t answer = 0;
954 struct stat sb;
955 struct pidns_init_store *e;
956 char fnam[100];
957
958 snprintf(fnam, 100, "/proc/%d/ns/pid", qpid);
959 store_lock();
960 if (stat(fnam, &sb) < 0)
961 goto out;
962 e = lookup_verify_initpid(&sb);
963 if (e) {
964 answer = e->initpid;
965 goto out;
966 }
967 answer = get_init_pid_for_task(qpid);
968 if (answer > 0)
969 save_initpid(&sb, answer);
970
971out:
972 /* we prune at end in case we are returning
973 * the value we were about to return */
974 prune_initpid_store();
975 store_unlock();
976 return answer;
977}
978
979static int wait_for_pid(pid_t pid)
980{
981 int status, ret;
982
983 if (pid <= 0)
984 return -1;
985
986again:
987 ret = waitpid(pid, &status, 0);
988 if (ret == -1) {
989 if (errno == EINTR)
990 goto again;
991 return -1;
992 }
993 if (ret != pid)
994 goto again;
995 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
996 return -1;
997 return 0;
998}
999
1000
1001/*
1002 * append pid to *src.
1003 * src: a pointer to a char* in which ot append the pid.
1004 * sz: the number of characters printed so far, minus trailing \0.
1005 * asz: the allocated size so far
1006 * pid: the pid to append
1007 */
1008static void must_strcat_pid(char **src, size_t *sz, size_t *asz, pid_t pid)
1009{
1010 char tmp[30];
1011
1012 int tmplen = sprintf(tmp, "%d\n", (int)pid);
1013
1014 if (!*src || tmplen + *sz + 1 >= *asz) {
1015 char *tmp;
1016 do {
1017 tmp = realloc(*src, *asz + BUF_RESERVE_SIZE);
1018 } while (!tmp);
1019 *src = tmp;
1020 *asz += BUF_RESERVE_SIZE;
1021 }
bbfd0e33 1022 memcpy((*src) +*sz , tmp, tmplen+1); /* include the \0 */
237e200e 1023 *sz += tmplen;
237e200e
SH
1024}
1025
1026/*
1027 * Given a open file * to /proc/pid/{u,g}id_map, and an id
1028 * valid in the caller's namespace, return the id mapped into
1029 * pid's namespace.
1030 * Returns the mapped id, or -1 on error.
1031 */
1032unsigned int
1033convert_id_to_ns(FILE *idfile, unsigned int in_id)
1034{
1035 unsigned int nsuid, // base id for a range in the idfile's namespace
1036 hostuid, // base id for a range in the caller's namespace
1037 count; // number of ids in this range
1038 char line[400];
1039 int ret;
1040
1041 fseek(idfile, 0L, SEEK_SET);
1042 while (fgets(line, 400, idfile)) {
1043 ret = sscanf(line, "%u %u %u\n", &nsuid, &hostuid, &count);
1044 if (ret != 3)
1045 continue;
1046 if (hostuid + count < hostuid || nsuid + count < nsuid) {
1047 /*
1048 * uids wrapped around - unexpected as this is a procfile,
1049 * so just bail.
1050 */
1051 fprintf(stderr, "pid wrapparound at entry %u %u %u in %s\n",
1052 nsuid, hostuid, count, line);
1053 return -1;
1054 }
1055 if (hostuid <= in_id && hostuid+count > in_id) {
1056 /*
1057 * now since hostuid <= in_id < hostuid+count, and
1058 * hostuid+count and nsuid+count do not wrap around,
1059 * we know that nsuid+(in_id-hostuid) which must be
1060 * less that nsuid+(count) must not wrap around
1061 */
1062 return (in_id - hostuid) + nsuid;
1063 }
1064 }
1065
1066 // no answer found
1067 return -1;
1068}
1069
1070/*
1071 * for is_privileged_over,
1072 * specify whether we require the calling uid to be root in his
1073 * namespace
1074 */
1075#define NS_ROOT_REQD true
1076#define NS_ROOT_OPT false
1077
1078#define PROCLEN 100
1079
1080static bool is_privileged_over(pid_t pid, uid_t uid, uid_t victim, bool req_ns_root)
1081{
1082 char fpath[PROCLEN];
1083 int ret;
1084 bool answer = false;
1085 uid_t nsuid;
1086
1087 if (victim == -1 || uid == -1)
1088 return false;
1089
1090 /*
1091 * If the request is one not requiring root in the namespace,
1092 * then having the same uid suffices. (i.e. uid 1000 has write
1093 * access to files owned by uid 1000
1094 */
1095 if (!req_ns_root && uid == victim)
1096 return true;
1097
1098 ret = snprintf(fpath, PROCLEN, "/proc/%d/uid_map", pid);
1099 if (ret < 0 || ret >= PROCLEN)
1100 return false;
1101 FILE *f = fopen(fpath, "r");
1102 if (!f)
1103 return false;
1104
1105 /* if caller's not root in his namespace, reject */
1106 nsuid = convert_id_to_ns(f, uid);
1107 if (nsuid)
1108 goto out;
1109
1110 /*
1111 * If victim is not mapped into caller's ns, reject.
1112 * XXX I'm not sure this check is needed given that fuse
1113 * will be sending requests where the vfs has converted
1114 */
1115 nsuid = convert_id_to_ns(f, victim);
1116 if (nsuid == -1)
1117 goto out;
1118
1119 answer = true;
1120
1121out:
1122 fclose(f);
1123 return answer;
1124}
1125
1126static bool perms_include(int fmode, mode_t req_mode)
1127{
1128 mode_t r;
1129
1130 switch (req_mode & O_ACCMODE) {
1131 case O_RDONLY:
1132 r = S_IROTH;
1133 break;
1134 case O_WRONLY:
1135 r = S_IWOTH;
1136 break;
1137 case O_RDWR:
1138 r = S_IROTH | S_IWOTH;
1139 break;
1140 default:
1141 return false;
1142 }
1143 return ((fmode & r) == r);
1144}
1145
1146
1147/*
1148 * taskcg is a/b/c
1149 * querycg is /a/b/c/d/e
1150 * we return 'd'
1151 */
1152static char *get_next_cgroup_dir(const char *taskcg, const char *querycg)
1153{
1154 char *start, *end;
1155
1156 if (strlen(taskcg) <= strlen(querycg)) {
1157 fprintf(stderr, "%s: I was fed bad input\n", __func__);
1158 return NULL;
1159 }
1160
1161 if (strcmp(querycg, "/") == 0)
1162 start = strdup(taskcg + 1);
1163 else
1164 start = strdup(taskcg + strlen(querycg) + 1);
1165 if (!start)
1166 return NULL;
1167 end = strchr(start, '/');
1168 if (end)
1169 *end = '\0';
1170 return start;
1171}
1172
1173static void stripnewline(char *x)
1174{
1175 size_t l = strlen(x);
1176 if (l && x[l-1] == '\n')
1177 x[l-1] = '\0';
1178}
1179
1180static char *get_pid_cgroup(pid_t pid, const char *contrl)
1181{
1182 char fnam[PROCLEN];
1183 FILE *f;
1184 char *answer = NULL;
1185 char *line = NULL;
1186 size_t len = 0;
1187 int ret;
1188 const char *h = find_mounted_controller(contrl);
1189 if (!h)
1190 return NULL;
1191
1192 ret = snprintf(fnam, PROCLEN, "/proc/%d/cgroup", pid);
1193 if (ret < 0 || ret >= PROCLEN)
1194 return NULL;
1195 if (!(f = fopen(fnam, "r")))
1196 return NULL;
1197
1198 while (getline(&line, &len, f) != -1) {
1199 char *c1, *c2;
1200 if (!line[0])
1201 continue;
1202 c1 = strchr(line, ':');
1203 if (!c1)
1204 goto out;
1205 c1++;
1206 c2 = strchr(c1, ':');
1207 if (!c2)
1208 goto out;
1209 *c2 = '\0';
1210 if (strcmp(c1, h) != 0)
1211 continue;
1212 c2++;
1213 stripnewline(c2);
1214 do {
1215 answer = strdup(c2);
1216 } while (!answer);
1217 break;
1218 }
1219
1220out:
1221 fclose(f);
1222 free(line);
1223 return answer;
1224}
1225
1226/*
1227 * check whether a fuse context may access a cgroup dir or file
1228 *
1229 * If file is not null, it is a cgroup file to check under cg.
1230 * If file is null, then we are checking perms on cg itself.
1231 *
1232 * For files we can check the mode of the list_keys result.
1233 * For cgroups, we must make assumptions based on the files under the
1234 * cgroup, because cgmanager doesn't tell us ownership/perms of cgroups
1235 * yet.
1236 */
1237static bool fc_may_access(struct fuse_context *fc, const char *contrl, const char *cg, const char *file, mode_t mode)
1238{
1239 struct cgfs_files *k = NULL;
1240 bool ret = false;
1241
1242 k = cgfs_get_key(contrl, cg, file);
1243 if (!k)
1244 return false;
1245
1246 if (is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
1247 if (perms_include(k->mode >> 6, mode)) {
1248 ret = true;
1249 goto out;
1250 }
1251 }
1252 if (fc->gid == k->gid) {
1253 if (perms_include(k->mode >> 3, mode)) {
1254 ret = true;
1255 goto out;
1256 }
1257 }
1258 ret = perms_include(k->mode, mode);
1259
1260out:
1261 free_key(k);
1262 return ret;
1263}
1264
1265#define INITSCOPE "/init.scope"
1266static void prune_init_slice(char *cg)
1267{
1268 char *point;
1269 size_t cg_len = strlen(cg), initscope_len = strlen(INITSCOPE);
1270
1271 if (cg_len < initscope_len)
1272 return;
1273
1274 point = cg + cg_len - initscope_len;
1275 if (strcmp(point, INITSCOPE) == 0) {
1276 if (point == cg)
1277 *(point+1) = '\0';
1278 else
1279 *point = '\0';
1280 }
1281}
1282
1283/*
1284 * If pid is in /a/b/c/d, he may only act on things under cg=/a/b/c/d.
1285 * If pid is in /a, he may act on /a/b, but not on /b.
1286 * if the answer is false and nextcg is not NULL, then *nextcg will point
1287 * to a string containing the next cgroup directory under cg, which must be
1288 * freed by the caller.
1289 */
1290static bool caller_is_in_ancestor(pid_t pid, const char *contrl, const char *cg, char **nextcg)
1291{
1292 bool answer = false;
1293 char *c2 = get_pid_cgroup(pid, contrl);
1294 char *linecmp;
1295
1296 if (!c2)
1297 return false;
1298 prune_init_slice(c2);
1299
1300 /*
1301 * callers pass in '/' for root cgroup, otherwise they pass
1302 * in a cgroup without leading '/'
1303 */
1304 linecmp = *cg == '/' ? c2 : c2+1;
1305 if (strncmp(linecmp, cg, strlen(linecmp)) != 0) {
1306 if (nextcg) {
1307 *nextcg = get_next_cgroup_dir(linecmp, cg);
1308 }
1309 goto out;
1310 }
1311 answer = true;
1312
1313out:
1314 free(c2);
1315 return answer;
1316}
1317
1318/*
1319 * If pid is in /a/b/c, he may see that /a exists, but not /b or /a/c.
1320 */
1321static bool caller_may_see_dir(pid_t pid, const char *contrl, const char *cg)
1322{
1323 bool answer = false;
1324 char *c2, *task_cg;
1325 size_t target_len, task_len;
1326
1327 if (strcmp(cg, "/") == 0)
1328 return true;
1329
1330 c2 = get_pid_cgroup(pid, contrl);
1331 if (!c2)
1332 return false;
1333 prune_init_slice(c2);
1334
1335 task_cg = c2 + 1;
1336 target_len = strlen(cg);
1337 task_len = strlen(task_cg);
1338 if (task_len == 0) {
1339 /* Task is in the root cg, it can see everything. This case is
1340 * not handled by the strmcps below, since they test for the
1341 * last /, but that is the first / that we've chopped off
1342 * above.
1343 */
1344 answer = true;
1345 goto out;
1346 }
1347 if (strcmp(cg, task_cg) == 0) {
1348 answer = true;
1349 goto out;
1350 }
1351 if (target_len < task_len) {
1352 /* looking up a parent dir */
1353 if (strncmp(task_cg, cg, target_len) == 0 && task_cg[target_len] == '/')
1354 answer = true;
1355 goto out;
1356 }
1357 if (target_len > task_len) {
1358 /* looking up a child dir */
1359 if (strncmp(task_cg, cg, task_len) == 0 && cg[task_len] == '/')
1360 answer = true;
1361 goto out;
1362 }
1363
1364out:
1365 free(c2);
1366 return answer;
1367}
1368
1369/*
1370 * given /cgroup/freezer/a/b, return "freezer".
1371 * the returned char* should NOT be freed.
1372 */
1373static char *pick_controller_from_path(struct fuse_context *fc, const char *path)
1374{
1375 const char *p1;
1376 char *contr, *slash;
1377
1378 if (strlen(path) < 9)
1379 return NULL;
1380 if (*(path+7) != '/')
1381 return NULL;
1382 p1 = path+8;
1383 contr = strdupa(p1);
1384 if (!contr)
1385 return NULL;
1386 slash = strstr(contr, "/");
1387 if (slash)
1388 *slash = '\0';
1389
1390 int i;
1391 for (i = 0; i < num_hierarchies; i++) {
1392 if (hierarchies[i] && strcmp(hierarchies[i], contr) == 0)
1393 return hierarchies[i];
1394 }
1395 return NULL;
1396}
1397
1398/*
1399 * Find the start of cgroup in /cgroup/controller/the/cgroup/path
1400 * Note that the returned value may include files (keynames) etc
1401 */
1402static const char *find_cgroup_in_path(const char *path)
1403{
1404 const char *p1;
1405
1406 if (strlen(path) < 9)
1407 return NULL;
1408 p1 = strstr(path+8, "/");
1409 if (!p1)
1410 return NULL;
1411 return p1+1;
1412}
1413
1414/*
1415 * split the last path element from the path in @cg.
1416 * @dir is newly allocated and should be freed, @last not
1417*/
1418static void get_cgdir_and_path(const char *cg, char **dir, char **last)
1419{
1420 char *p;
1421
1422 do {
1423 *dir = strdup(cg);
1424 } while (!*dir);
1425 *last = strrchr(cg, '/');
1426 if (!*last) {
1427 *last = NULL;
1428 return;
1429 }
1430 p = strrchr(*dir, '/');
1431 *p = '\0';
1432}
1433
1434/*
1435 * FUSE ops for /cgroup
1436 */
1437
1438int cg_getattr(const char *path, struct stat *sb)
1439{
1440 struct timespec now;
1441 struct fuse_context *fc = fuse_get_context();
1442 char * cgdir = NULL;
1443 char *last = NULL, *path1, *path2;
1444 struct cgfs_files *k = NULL;
1445 const char *cgroup;
1446 const char *controller = NULL;
1447 int ret = -ENOENT;
1448
1449
1450 if (!fc)
1451 return -EIO;
1452
1453 memset(sb, 0, sizeof(struct stat));
1454
1455 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
1456 return -EINVAL;
1457
1458 sb->st_uid = sb->st_gid = 0;
1459 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
1460 sb->st_size = 0;
1461
1462 if (strcmp(path, "/cgroup") == 0) {
1463 sb->st_mode = S_IFDIR | 00755;
1464 sb->st_nlink = 2;
1465 return 0;
1466 }
1467
1468 controller = pick_controller_from_path(fc, path);
1469 if (!controller)
1470 return -EIO;
1471 cgroup = find_cgroup_in_path(path);
1472 if (!cgroup) {
1473 /* this is just /cgroup/controller, return it as a dir */
1474 sb->st_mode = S_IFDIR | 00755;
1475 sb->st_nlink = 2;
1476 return 0;
1477 }
1478
1479 get_cgdir_and_path(cgroup, &cgdir, &last);
1480
1481 if (!last) {
1482 path1 = "/";
1483 path2 = cgdir;
1484 } else {
1485 path1 = cgdir;
1486 path2 = last;
1487 }
1488
1489 pid_t initpid = lookup_initpid_in_store(fc->pid);
1490 if (initpid <= 0)
1491 initpid = fc->pid;
1492 /* check that cgcopy is either a child cgroup of cgdir, or listed in its keys.
1493 * Then check that caller's cgroup is under path if last is a child
1494 * cgroup, or cgdir if last is a file */
1495
1496 if (is_child_cgroup(controller, path1, path2)) {
1497 if (!caller_may_see_dir(initpid, controller, cgroup)) {
1498 ret = -ENOENT;
1499 goto out;
1500 }
1501 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
1502 /* this is just /cgroup/controller, return it as a dir */
1503 sb->st_mode = S_IFDIR | 00555;
1504 sb->st_nlink = 2;
1505 ret = 0;
1506 goto out;
1507 }
1508 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY)) {
1509 ret = -EACCES;
1510 goto out;
1511 }
1512
1513 // get uid, gid, from '/tasks' file and make up a mode
1514 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
1515 sb->st_mode = S_IFDIR | 00755;
1516 k = cgfs_get_key(controller, cgroup, NULL);
1517 if (!k) {
1518 sb->st_uid = sb->st_gid = 0;
1519 } else {
1520 sb->st_uid = k->uid;
1521 sb->st_gid = k->gid;
1522 }
1523 free_key(k);
1524 sb->st_nlink = 2;
1525 ret = 0;
1526 goto out;
1527 }
1528
1529 if ((k = cgfs_get_key(controller, path1, path2)) != NULL) {
1530 sb->st_mode = S_IFREG | k->mode;
1531 sb->st_nlink = 1;
1532 sb->st_uid = k->uid;
1533 sb->st_gid = k->gid;
1534 sb->st_size = 0;
1535 free_key(k);
1536 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
1537 ret = -ENOENT;
1538 goto out;
1539 }
1540 if (!fc_may_access(fc, controller, path1, path2, O_RDONLY)) {
1541 ret = -EACCES;
1542 goto out;
1543 }
1544
1545 ret = 0;
1546 }
1547
1548out:
1549 free(cgdir);
1550 return ret;
1551}
1552
1553int cg_opendir(const char *path, struct fuse_file_info *fi)
1554{
1555 struct fuse_context *fc = fuse_get_context();
1556 const char *cgroup;
1557 struct file_info *dir_info;
1558 char *controller = NULL;
1559
1560 if (!fc)
1561 return -EIO;
1562
1563 if (strcmp(path, "/cgroup") == 0) {
1564 cgroup = NULL;
1565 controller = NULL;
1566 } else {
1567 // return list of keys for the controller, and list of child cgroups
1568 controller = pick_controller_from_path(fc, path);
1569 if (!controller)
1570 return -EIO;
1571
1572 cgroup = find_cgroup_in_path(path);
1573 if (!cgroup) {
1574 /* this is just /cgroup/controller, return its contents */
1575 cgroup = "/";
1576 }
1577 }
1578
1579 pid_t initpid = lookup_initpid_in_store(fc->pid);
1580 if (initpid <= 0)
1581 initpid = fc->pid;
1582 if (cgroup) {
1583 if (!caller_may_see_dir(initpid, controller, cgroup))
1584 return -ENOENT;
1585 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY))
1586 return -EACCES;
1587 }
1588
1589 /* we'll free this at cg_releasedir */
1590 dir_info = malloc(sizeof(*dir_info));
1591 if (!dir_info)
1592 return -ENOMEM;
1593 dir_info->controller = must_copy_string(controller);
1594 dir_info->cgroup = must_copy_string(cgroup);
1595 dir_info->type = LXC_TYPE_CGDIR;
1596 dir_info->buf = NULL;
1597 dir_info->file = NULL;
1598 dir_info->buflen = 0;
1599
1600 fi->fh = (unsigned long)dir_info;
1601 return 0;
1602}
1603
1604int cg_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
1605 struct fuse_file_info *fi)
1606{
1607 struct file_info *d = (struct file_info *)fi->fh;
1608 struct cgfs_files **list = NULL;
1609 int i, ret;
1610 char *nextcg = NULL;
1611 struct fuse_context *fc = fuse_get_context();
1612 char **clist = NULL;
1613
1614 if (d->type != LXC_TYPE_CGDIR) {
1615 fprintf(stderr, "Internal error: file cache info used in readdir\n");
1616 return -EIO;
1617 }
1618 if (!d->cgroup && !d->controller) {
1619 // ls /var/lib/lxcfs/cgroup - just show list of controllers
1620 int i;
1621
1622 for (i = 0; i < num_hierarchies; i++) {
1623 if (hierarchies[i] && filler(buf, hierarchies[i], NULL, 0) != 0) {
1624 return -EIO;
1625 }
1626 }
1627 return 0;
1628 }
1629
1630 if (!cgfs_list_keys(d->controller, d->cgroup, &list)) {
1631 // not a valid cgroup
1632 ret = -EINVAL;
1633 goto out;
1634 }
1635
1636 pid_t initpid = lookup_initpid_in_store(fc->pid);
1637 if (initpid <= 0)
1638 initpid = fc->pid;
1639 if (!caller_is_in_ancestor(initpid, d->controller, d->cgroup, &nextcg)) {
1640 if (nextcg) {
1641 ret = filler(buf, nextcg, NULL, 0);
1642 free(nextcg);
1643 if (ret != 0) {
1644 ret = -EIO;
1645 goto out;
1646 }
1647 }
1648 ret = 0;
1649 goto out;
1650 }
1651
1652 for (i = 0; list[i]; i++) {
1653 if (filler(buf, list[i]->name, NULL, 0) != 0) {
1654 ret = -EIO;
1655 goto out;
1656 }
1657 }
1658
1659 // now get the list of child cgroups
1660
1661 if (!cgfs_list_children(d->controller, d->cgroup, &clist)) {
1662 ret = 0;
1663 goto out;
1664 }
f366da65
WB
1665 if (clist) {
1666 for (i = 0; clist[i]; i++) {
1667 if (filler(buf, clist[i], NULL, 0) != 0) {
1668 ret = -EIO;
1669 goto out;
1670 }
237e200e
SH
1671 }
1672 }
1673 ret = 0;
1674
1675out:
1676 free_keys(list);
1677 if (clist) {
1678 for (i = 0; clist[i]; i++)
1679 free(clist[i]);
1680 free(clist);
1681 }
1682 return ret;
1683}
1684
1685static void do_release_file_info(struct file_info *f)
1686{
1687 if (!f)
1688 return;
1689 free(f->controller);
1690 free(f->cgroup);
1691 free(f->file);
1692 free(f->buf);
1693 free(f);
1694}
1695
1696int cg_releasedir(const char *path, struct fuse_file_info *fi)
1697{
1698 struct file_info *d = (struct file_info *)fi->fh;
1699
1700 do_release_file_info(d);
1701 return 0;
1702}
1703
1704int cg_open(const char *path, struct fuse_file_info *fi)
1705{
1706 const char *cgroup;
1707 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1708 struct cgfs_files *k = NULL;
1709 struct file_info *file_info;
1710 struct fuse_context *fc = fuse_get_context();
1711 int ret;
1712
1713 if (!fc)
1714 return -EIO;
1715
1716 controller = pick_controller_from_path(fc, path);
1717 if (!controller)
1718 return -EIO;
1719 cgroup = find_cgroup_in_path(path);
1720 if (!cgroup)
1721 return -EINVAL;
1722
1723 get_cgdir_and_path(cgroup, &cgdir, &last);
1724 if (!last) {
1725 path1 = "/";
1726 path2 = cgdir;
1727 } else {
1728 path1 = cgdir;
1729 path2 = last;
1730 }
1731
1732 k = cgfs_get_key(controller, path1, path2);
1733 if (!k) {
1734 ret = -EINVAL;
1735 goto out;
1736 }
1737 free_key(k);
1738
1739 pid_t initpid = lookup_initpid_in_store(fc->pid);
1740 if (initpid <= 0)
1741 initpid = fc->pid;
1742 if (!caller_may_see_dir(initpid, controller, path1)) {
1743 ret = -ENOENT;
1744 goto out;
1745 }
1746 if (!fc_may_access(fc, controller, path1, path2, fi->flags)) {
1747 // should never get here
1748 ret = -EACCES;
1749 goto out;
1750 }
1751
1752 /* we'll free this at cg_release */
1753 file_info = malloc(sizeof(*file_info));
1754 if (!file_info) {
1755 ret = -ENOMEM;
1756 goto out;
1757 }
1758 file_info->controller = must_copy_string(controller);
1759 file_info->cgroup = must_copy_string(path1);
1760 file_info->file = must_copy_string(path2);
1761 file_info->type = LXC_TYPE_CGFILE;
1762 file_info->buf = NULL;
1763 file_info->buflen = 0;
1764
1765 fi->fh = (unsigned long)file_info;
1766 ret = 0;
1767
1768out:
1769 free(cgdir);
1770 return ret;
1771}
1772
1773int cg_release(const char *path, struct fuse_file_info *fi)
1774{
1775 struct file_info *f = (struct file_info *)fi->fh;
1776
1777 do_release_file_info(f);
1778 return 0;
1779}
1780
1781#define POLLIN_SET ( EPOLLIN | EPOLLHUP | EPOLLRDHUP )
1782
1783static bool wait_for_sock(int sock, int timeout)
1784{
1785 struct epoll_event ev;
1786 int epfd, ret, now, starttime, deltatime, saved_errno;
1787
1788 if ((starttime = time(NULL)) < 0)
1789 return false;
1790
1791 if ((epfd = epoll_create(1)) < 0) {
1792 fprintf(stderr, "Failed to create epoll socket: %m\n");
1793 return false;
1794 }
1795
1796 ev.events = POLLIN_SET;
1797 ev.data.fd = sock;
1798 if (epoll_ctl(epfd, EPOLL_CTL_ADD, sock, &ev) < 0) {
1799 fprintf(stderr, "Failed adding socket to epoll: %m\n");
1800 close(epfd);
1801 return false;
1802 }
1803
1804again:
1805 if ((now = time(NULL)) < 0) {
1806 close(epfd);
1807 return false;
1808 }
1809
1810 deltatime = (starttime + timeout) - now;
1811 if (deltatime < 0) { // timeout
1812 errno = 0;
1813 close(epfd);
1814 return false;
1815 }
1816 ret = epoll_wait(epfd, &ev, 1, 1000*deltatime + 1);
1817 if (ret < 0 && errno == EINTR)
1818 goto again;
1819 saved_errno = errno;
1820 close(epfd);
1821
1822 if (ret <= 0) {
1823 errno = saved_errno;
1824 return false;
1825 }
1826 return true;
1827}
1828
1829static int msgrecv(int sockfd, void *buf, size_t len)
1830{
1831 if (!wait_for_sock(sockfd, 2))
1832 return -1;
1833 return recv(sockfd, buf, len, MSG_DONTWAIT);
1834}
1835
1836static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst)
1837{
1838 struct msghdr msg = { 0 };
1839 struct iovec iov;
1840 struct cmsghdr *cmsg;
1841 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1842 char buf[1];
1843 buf[0] = 'p';
1844
1845 if (pingfirst) {
1846 if (msgrecv(sock, buf, 1) != 1) {
1847 fprintf(stderr, "%s: Error getting reply from server over socketpair\n",
1848 __func__);
1849 return SEND_CREDS_FAIL;
1850 }
1851 }
1852
1853 msg.msg_control = cmsgbuf;
1854 msg.msg_controllen = sizeof(cmsgbuf);
1855
1856 cmsg = CMSG_FIRSTHDR(&msg);
1857 cmsg->cmsg_len = CMSG_LEN(sizeof(struct ucred));
1858 cmsg->cmsg_level = SOL_SOCKET;
1859 cmsg->cmsg_type = SCM_CREDENTIALS;
1860 memcpy(CMSG_DATA(cmsg), cred, sizeof(*cred));
1861
1862 msg.msg_name = NULL;
1863 msg.msg_namelen = 0;
1864
1865 buf[0] = v;
1866 iov.iov_base = buf;
1867 iov.iov_len = sizeof(buf);
1868 msg.msg_iov = &iov;
1869 msg.msg_iovlen = 1;
1870
1871 if (sendmsg(sock, &msg, 0) < 0) {
1872 fprintf(stderr, "%s: failed at sendmsg: %s\n", __func__,
1873 strerror(errno));
1874 if (errno == 3)
1875 return SEND_CREDS_NOTSK;
1876 return SEND_CREDS_FAIL;
1877 }
1878
1879 return SEND_CREDS_OK;
1880}
1881
1882static bool recv_creds(int sock, struct ucred *cred, char *v)
1883{
1884 struct msghdr msg = { 0 };
1885 struct iovec iov;
1886 struct cmsghdr *cmsg;
1887 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1888 char buf[1];
1889 int ret;
1890 int optval = 1;
1891
1892 *v = '1';
1893
1894 cred->pid = -1;
1895 cred->uid = -1;
1896 cred->gid = -1;
1897
1898 if (setsockopt(sock, SOL_SOCKET, SO_PASSCRED, &optval, sizeof(optval)) == -1) {
1899 fprintf(stderr, "Failed to set passcred: %s\n", strerror(errno));
1900 return false;
1901 }
1902 buf[0] = '1';
1903 if (write(sock, buf, 1) != 1) {
1904 fprintf(stderr, "Failed to start write on scm fd: %s\n", strerror(errno));
1905 return false;
1906 }
1907
1908 msg.msg_name = NULL;
1909 msg.msg_namelen = 0;
1910 msg.msg_control = cmsgbuf;
1911 msg.msg_controllen = sizeof(cmsgbuf);
1912
1913 iov.iov_base = buf;
1914 iov.iov_len = sizeof(buf);
1915 msg.msg_iov = &iov;
1916 msg.msg_iovlen = 1;
1917
1918 if (!wait_for_sock(sock, 2)) {
1919 fprintf(stderr, "Timed out waiting for scm_cred: %s\n",
1920 strerror(errno));
1921 return false;
1922 }
1923 ret = recvmsg(sock, &msg, MSG_DONTWAIT);
1924 if (ret < 0) {
1925 fprintf(stderr, "Failed to receive scm_cred: %s\n",
1926 strerror(errno));
1927 return false;
1928 }
1929
1930 cmsg = CMSG_FIRSTHDR(&msg);
1931
1932 if (cmsg && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred)) &&
1933 cmsg->cmsg_level == SOL_SOCKET &&
1934 cmsg->cmsg_type == SCM_CREDENTIALS) {
1935 memcpy(cred, CMSG_DATA(cmsg), sizeof(*cred));
1936 }
1937 *v = buf[0];
1938
1939 return true;
1940}
1941
35174b0f
FG
1942struct pid_ns_clone_args {
1943 int *cpipe;
1944 int sock;
1945 pid_t tpid;
1946 int (*wrapped) (int, pid_t); // pid_from_ns or pid_to_ns
1947};
1948
1949/*
1950 * pid_ns_clone_wrapper - wraps pid_to_ns or pid_from_ns for usage
1951 * with clone(). This simply writes '1' as ACK back to the parent
1952 * before calling the actual wrapped function.
1953 */
1954static int pid_ns_clone_wrapper(void *arg) {
1955 struct pid_ns_clone_args* args = (struct pid_ns_clone_args *) arg;
1956 char b = '1';
1957
1958 close(args->cpipe[0]);
1959 if (write(args->cpipe[1], &b, sizeof(char)) < 0) {
1960 fprintf(stderr, "%s (child): error on write: %s\n",
1961 __func__, strerror(errno));
1962 }
1963 close(args->cpipe[1]);
1964 return args->wrapped(args->sock, args->tpid);
1965}
237e200e
SH
1966
1967/*
1968 * pid_to_ns - reads pids from a ucred over a socket, then writes the
1969 * int value back over the socket. This shifts the pid from the
1970 * sender's pidns into tpid's pidns.
1971 */
35174b0f 1972static int pid_to_ns(int sock, pid_t tpid)
237e200e
SH
1973{
1974 char v = '0';
1975 struct ucred cred;
1976
1977 while (recv_creds(sock, &cred, &v)) {
1978 if (v == '1')
35174b0f 1979 return 0;
237e200e 1980 if (write(sock, &cred.pid, sizeof(pid_t)) != sizeof(pid_t))
35174b0f 1981 return 1;
237e200e 1982 }
35174b0f 1983 return 0;
237e200e
SH
1984}
1985
35174b0f 1986
237e200e
SH
1987/*
1988 * pid_to_ns_wrapper: when you setns into a pidns, you yourself remain
35174b0f
FG
1989 * in your old pidns. Only children which you clone will be in the target
1990 * pidns. So the pid_to_ns_wrapper does the setns, then clones a child to
1991 * actually convert pids.
1992 *
1993 * Note: glibc's fork() does not respect pidns, which can lead to failed
1994 * assertions inside glibc (and thus failed forks) if the child's pid in
1995 * the pidns and the parent pid outside are identical. Using clone prevents
1996 * this issue.
237e200e
SH
1997 */
1998static void pid_to_ns_wrapper(int sock, pid_t tpid)
1999{
2000 int newnsfd = -1, ret, cpipe[2];
2001 char fnam[100];
2002 pid_t cpid;
2003 char v;
2004
2005 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2006 if (ret < 0 || ret >= sizeof(fnam))
2007 _exit(1);
2008 newnsfd = open(fnam, O_RDONLY);
2009 if (newnsfd < 0)
2010 _exit(1);
2011 if (setns(newnsfd, 0) < 0)
2012 _exit(1);
2013 close(newnsfd);
2014
2015 if (pipe(cpipe) < 0)
2016 _exit(1);
2017
35174b0f
FG
2018 struct pid_ns_clone_args args = {
2019 .cpipe = cpipe,
2020 .sock = sock,
2021 .tpid = tpid,
2022 .wrapped = &pid_to_ns
2023 };
2024 size_t stack_size = sysconf(_SC_PAGESIZE);
2025 void *stack = alloca(stack_size);
2026
2027 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
237e200e
SH
2028 if (cpid < 0)
2029 _exit(1);
2030
237e200e
SH
2031 // give the child 1 second to be done forking and
2032 // write its ack
2033 if (!wait_for_sock(cpipe[0], 1))
2034 _exit(1);
2035 ret = read(cpipe[0], &v, 1);
2036 if (ret != sizeof(char) || v != '1')
2037 _exit(1);
2038
2039 if (!wait_for_pid(cpid))
2040 _exit(1);
2041 _exit(0);
2042}
2043
2044/*
2045 * To read cgroup files with a particular pid, we will setns into the child
2046 * pidns, open a pipe, fork a child - which will be the first to really be in
2047 * the child ns - which does the cgfs_get_value and writes the data to the pipe.
2048 */
2049bool do_read_pids(pid_t tpid, const char *contrl, const char *cg, const char *file, char **d)
2050{
2051 int sock[2] = {-1, -1};
2052 char *tmpdata = NULL;
2053 int ret;
2054 pid_t qpid, cpid = -1;
2055 bool answer = false;
2056 char v = '0';
2057 struct ucred cred;
2058 size_t sz = 0, asz = 0;
2059
2060 if (!cgfs_get_value(contrl, cg, file, &tmpdata))
2061 return false;
2062
2063 /*
2064 * Now we read the pids from returned data one by one, pass
2065 * them into a child in the target namespace, read back the
2066 * translated pids, and put them into our to-return data
2067 */
2068
2069 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2070 perror("socketpair");
2071 free(tmpdata);
2072 return false;
2073 }
2074
2075 cpid = fork();
2076 if (cpid == -1)
2077 goto out;
2078
2079 if (!cpid) // child - exits when done
2080 pid_to_ns_wrapper(sock[1], tpid);
2081
2082 char *ptr = tmpdata;
2083 cred.uid = 0;
2084 cred.gid = 0;
2085 while (sscanf(ptr, "%d\n", &qpid) == 1) {
2086 cred.pid = qpid;
2087 ret = send_creds(sock[0], &cred, v, true);
2088
2089 if (ret == SEND_CREDS_NOTSK)
2090 goto next;
2091 if (ret == SEND_CREDS_FAIL)
2092 goto out;
2093
2094 // read converted results
2095 if (!wait_for_sock(sock[0], 2)) {
2096 fprintf(stderr, "%s: timed out waiting for pid from child: %s\n",
2097 __func__, strerror(errno));
2098 goto out;
2099 }
2100 if (read(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2101 fprintf(stderr, "%s: error reading pid from child: %s\n",
2102 __func__, strerror(errno));
2103 goto out;
2104 }
2105 must_strcat_pid(d, &sz, &asz, qpid);
2106next:
2107 ptr = strchr(ptr, '\n');
2108 if (!ptr)
2109 break;
2110 ptr++;
2111 }
2112
2113 cred.pid = getpid();
2114 v = '1';
2115 if (send_creds(sock[0], &cred, v, true) != SEND_CREDS_OK) {
2116 // failed to ask child to exit
2117 fprintf(stderr, "%s: failed to ask child to exit: %s\n",
2118 __func__, strerror(errno));
2119 goto out;
2120 }
2121
2122 answer = true;
2123
2124out:
2125 free(tmpdata);
2126 if (cpid != -1)
2127 wait_for_pid(cpid);
2128 if (sock[0] != -1) {
2129 close(sock[0]);
2130 close(sock[1]);
2131 }
2132 return answer;
2133}
2134
2135int cg_read(const char *path, char *buf, size_t size, off_t offset,
2136 struct fuse_file_info *fi)
2137{
2138 struct fuse_context *fc = fuse_get_context();
2139 struct file_info *f = (struct file_info *)fi->fh;
2140 struct cgfs_files *k = NULL;
2141 char *data = NULL;
2142 int ret, s;
2143 bool r;
2144
2145 if (f->type != LXC_TYPE_CGFILE) {
2146 fprintf(stderr, "Internal error: directory cache info used in cg_read\n");
2147 return -EIO;
2148 }
2149
2150 if (offset)
2151 return 0;
2152
2153 if (!fc)
2154 return -EIO;
2155
2156 if (!f->controller)
2157 return -EINVAL;
2158
2159 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2160 return -EINVAL;
2161 }
2162 free_key(k);
2163
2164
2165 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_RDONLY)) { // should never get here
2166 ret = -EACCES;
2167 goto out;
2168 }
2169
2170 if (strcmp(f->file, "tasks") == 0 ||
2171 strcmp(f->file, "/tasks") == 0 ||
2172 strcmp(f->file, "/cgroup.procs") == 0 ||
2173 strcmp(f->file, "cgroup.procs") == 0)
2174 // special case - we have to translate the pids
2175 r = do_read_pids(fc->pid, f->controller, f->cgroup, f->file, &data);
2176 else
2177 r = cgfs_get_value(f->controller, f->cgroup, f->file, &data);
2178
2179 if (!r) {
2180 ret = -EINVAL;
2181 goto out;
2182 }
2183
2184 if (!data) {
2185 ret = 0;
2186 goto out;
2187 }
2188 s = strlen(data);
2189 if (s > size)
2190 s = size;
2191 memcpy(buf, data, s);
2192 if (s > 0 && s < size && data[s-1] != '\n')
2193 buf[s++] = '\n';
2194
2195 ret = s;
2196
2197out:
2198 free(data);
2199 return ret;
2200}
2201
35174b0f 2202static int pid_from_ns(int sock, pid_t tpid)
237e200e
SH
2203{
2204 pid_t vpid;
2205 struct ucred cred;
2206 char v;
2207 int ret;
2208
2209 cred.uid = 0;
2210 cred.gid = 0;
2211 while (1) {
2212 if (!wait_for_sock(sock, 2)) {
2213 fprintf(stderr, "%s: timeout reading from parent\n", __func__);
35174b0f 2214 return 1;
237e200e
SH
2215 }
2216 if ((ret = read(sock, &vpid, sizeof(pid_t))) != sizeof(pid_t)) {
2217 fprintf(stderr, "%s: bad read from parent: %s\n",
2218 __func__, strerror(errno));
35174b0f 2219 return 1;
237e200e
SH
2220 }
2221 if (vpid == -1) // done
2222 break;
2223 v = '0';
2224 cred.pid = vpid;
2225 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK) {
2226 v = '1';
2227 cred.pid = getpid();
2228 if (send_creds(sock, &cred, v, false) != SEND_CREDS_OK)
35174b0f 2229 return 1;
237e200e
SH
2230 }
2231 }
35174b0f 2232 return 0;
237e200e
SH
2233}
2234
2235static void pid_from_ns_wrapper(int sock, pid_t tpid)
2236{
2237 int newnsfd = -1, ret, cpipe[2];
2238 char fnam[100];
2239 pid_t cpid;
2240 char v;
2241
2242 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2243 if (ret < 0 || ret >= sizeof(fnam))
2244 _exit(1);
2245 newnsfd = open(fnam, O_RDONLY);
2246 if (newnsfd < 0)
2247 _exit(1);
2248 if (setns(newnsfd, 0) < 0)
2249 _exit(1);
2250 close(newnsfd);
2251
2252 if (pipe(cpipe) < 0)
2253 _exit(1);
2254
35174b0f
FG
2255 struct pid_ns_clone_args args = {
2256 .cpipe = cpipe,
2257 .sock = sock,
2258 .tpid = tpid,
2259 .wrapped = &pid_from_ns
2260 };
f0f8b851
SH
2261 size_t stack_size = sysconf(_SC_PAGESIZE);
2262 void *stack = alloca(stack_size);
35174b0f
FG
2263
2264 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
237e200e
SH
2265 if (cpid < 0)
2266 _exit(1);
2267
237e200e
SH
2268 // give the child 1 second to be done forking and
2269 // write its ack
2270 if (!wait_for_sock(cpipe[0], 1))
f0f8b851 2271 _exit(1);
237e200e 2272 ret = read(cpipe[0], &v, 1);
f0f8b851
SH
2273 if (ret != sizeof(char) || v != '1')
2274 _exit(1);
237e200e
SH
2275
2276 if (!wait_for_pid(cpid))
2277 _exit(1);
2278 _exit(0);
237e200e
SH
2279}
2280
2281/*
2282 * Given host @uid, return the uid to which it maps in
2283 * @pid's user namespace, or -1 if none.
2284 */
2285bool hostuid_to_ns(uid_t uid, pid_t pid, uid_t *answer)
2286{
2287 FILE *f;
2288 char line[400];
2289
2290 sprintf(line, "/proc/%d/uid_map", pid);
2291 if ((f = fopen(line, "r")) == NULL) {
2292 return false;
2293 }
2294
2295 *answer = convert_id_to_ns(f, uid);
2296 fclose(f);
2297
2298 if (*answer == -1)
2299 return false;
2300 return true;
2301}
2302
2303/*
2304 * get_pid_creds: get the real uid and gid of @pid from
2305 * /proc/$$/status
2306 * (XXX should we use euid here?)
2307 */
2308void get_pid_creds(pid_t pid, uid_t *uid, gid_t *gid)
2309{
2310 char line[400];
2311 uid_t u;
2312 gid_t g;
2313 FILE *f;
2314
2315 *uid = -1;
2316 *gid = -1;
2317 sprintf(line, "/proc/%d/status", pid);
2318 if ((f = fopen(line, "r")) == NULL) {
2319 fprintf(stderr, "Error opening %s: %s\n", line, strerror(errno));
2320 return;
2321 }
2322 while (fgets(line, 400, f)) {
2323 if (strncmp(line, "Uid:", 4) == 0) {
2324 if (sscanf(line+4, "%u", &u) != 1) {
2325 fprintf(stderr, "bad uid line for pid %u\n", pid);
2326 fclose(f);
2327 return;
2328 }
2329 *uid = u;
2330 } else if (strncmp(line, "Gid:", 4) == 0) {
2331 if (sscanf(line+4, "%u", &g) != 1) {
2332 fprintf(stderr, "bad gid line for pid %u\n", pid);
2333 fclose(f);
2334 return;
2335 }
2336 *gid = g;
2337 }
2338 }
2339 fclose(f);
2340}
2341
2342/*
2343 * May the requestor @r move victim @v to a new cgroup?
2344 * This is allowed if
2345 * . they are the same task
2346 * . they are ownedy by the same uid
2347 * . @r is root on the host, or
2348 * . @v's uid is mapped into @r's where @r is root.
2349 */
2350bool may_move_pid(pid_t r, uid_t r_uid, pid_t v)
2351{
2352 uid_t v_uid, tmpuid;
2353 gid_t v_gid;
2354
2355 if (r == v)
2356 return true;
2357 if (r_uid == 0)
2358 return true;
2359 get_pid_creds(v, &v_uid, &v_gid);
2360 if (r_uid == v_uid)
2361 return true;
2362 if (hostuid_to_ns(r_uid, r, &tmpuid) && tmpuid == 0
2363 && hostuid_to_ns(v_uid, r, &tmpuid))
2364 return true;
2365 return false;
2366}
2367
2368static bool do_write_pids(pid_t tpid, uid_t tuid, const char *contrl, const char *cg,
2369 const char *file, const char *buf)
2370{
2371 int sock[2] = {-1, -1};
2372 pid_t qpid, cpid = -1;
2373 FILE *pids_file = NULL;
2374 bool answer = false, fail = false;
2375
2376 pids_file = open_pids_file(contrl, cg);
2377 if (!pids_file)
2378 return false;
2379
2380 /*
2381 * write the pids to a socket, have helper in writer's pidns
2382 * call movepid for us
2383 */
2384 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2385 perror("socketpair");
2386 goto out;
2387 }
2388
2389 cpid = fork();
2390 if (cpid == -1)
2391 goto out;
2392
2393 if (!cpid) { // child
2394 fclose(pids_file);
2395 pid_from_ns_wrapper(sock[1], tpid);
2396 }
2397
2398 const char *ptr = buf;
2399 while (sscanf(ptr, "%d", &qpid) == 1) {
2400 struct ucred cred;
2401 char v;
2402
2403 if (write(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2404 fprintf(stderr, "%s: error writing pid to child: %s\n",
2405 __func__, strerror(errno));
2406 goto out;
2407 }
2408
2409 if (recv_creds(sock[0], &cred, &v)) {
2410 if (v == '0') {
2411 if (!may_move_pid(tpid, tuid, cred.pid)) {
2412 fail = true;
2413 break;
2414 }
2415 if (fprintf(pids_file, "%d", (int) cred.pid) < 0)
2416 fail = true;
2417 }
2418 }
2419
2420 ptr = strchr(ptr, '\n');
2421 if (!ptr)
2422 break;
2423 ptr++;
2424 }
2425
2426 /* All good, write the value */
2427 qpid = -1;
2428 if (write(sock[0], &qpid ,sizeof(qpid)) != sizeof(qpid))
2429 fprintf(stderr, "Warning: failed to ask child to exit\n");
2430
2431 if (!fail)
2432 answer = true;
2433
2434out:
2435 if (cpid != -1)
2436 wait_for_pid(cpid);
2437 if (sock[0] != -1) {
2438 close(sock[0]);
2439 close(sock[1]);
2440 }
2441 if (pids_file) {
2442 if (fclose(pids_file) != 0)
2443 answer = false;
2444 }
2445 return answer;
2446}
2447
2448int cg_write(const char *path, const char *buf, size_t size, off_t offset,
2449 struct fuse_file_info *fi)
2450{
2451 struct fuse_context *fc = fuse_get_context();
2452 char *localbuf = NULL;
2453 struct cgfs_files *k = NULL;
2454 struct file_info *f = (struct file_info *)fi->fh;
2455 bool r;
2456
2457 if (f->type != LXC_TYPE_CGFILE) {
2458 fprintf(stderr, "Internal error: directory cache info used in cg_write\n");
2459 return -EIO;
2460 }
2461
2462 if (offset)
2463 return 0;
2464
2465 if (!fc)
2466 return -EIO;
2467
2468 localbuf = alloca(size+1);
2469 localbuf[size] = '\0';
2470 memcpy(localbuf, buf, size);
2471
2472 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2473 size = -EINVAL;
2474 goto out;
2475 }
2476
2477 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_WRONLY)) {
2478 size = -EACCES;
2479 goto out;
2480 }
2481
2482 if (strcmp(f->file, "tasks") == 0 ||
2483 strcmp(f->file, "/tasks") == 0 ||
2484 strcmp(f->file, "/cgroup.procs") == 0 ||
2485 strcmp(f->file, "cgroup.procs") == 0)
2486 // special case - we have to translate the pids
2487 r = do_write_pids(fc->pid, fc->uid, f->controller, f->cgroup, f->file, localbuf);
2488 else
2489 r = cgfs_set_value(f->controller, f->cgroup, f->file, localbuf);
2490
2491 if (!r)
2492 size = -EINVAL;
2493
2494out:
2495 free_key(k);
2496 return size;
2497}
2498
2499int cg_chown(const char *path, uid_t uid, gid_t gid)
2500{
2501 struct fuse_context *fc = fuse_get_context();
2502 char *cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2503 struct cgfs_files *k = NULL;
2504 const char *cgroup;
2505 int ret;
2506
2507 if (!fc)
2508 return -EIO;
2509
2510 if (strcmp(path, "/cgroup") == 0)
2511 return -EINVAL;
2512
2513 controller = pick_controller_from_path(fc, path);
2514 if (!controller)
2515 return -EINVAL;
2516 cgroup = find_cgroup_in_path(path);
2517 if (!cgroup)
2518 /* this is just /cgroup/controller */
2519 return -EINVAL;
2520
2521 get_cgdir_and_path(cgroup, &cgdir, &last);
2522
2523 if (!last) {
2524 path1 = "/";
2525 path2 = cgdir;
2526 } else {
2527 path1 = cgdir;
2528 path2 = last;
2529 }
2530
2531 if (is_child_cgroup(controller, path1, path2)) {
2532 // get uid, gid, from '/tasks' file and make up a mode
2533 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2534 k = cgfs_get_key(controller, cgroup, "tasks");
2535
2536 } else
2537 k = cgfs_get_key(controller, path1, path2);
2538
2539 if (!k) {
2540 ret = -EINVAL;
2541 goto out;
2542 }
2543
2544 /*
2545 * This being a fuse request, the uid and gid must be valid
2546 * in the caller's namespace. So we can just check to make
2547 * sure that the caller is root in his uid, and privileged
2548 * over the file's current owner.
2549 */
2550 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_REQD)) {
2551 ret = -EACCES;
2552 goto out;
2553 }
2554
2555 ret = cgfs_chown_file(controller, cgroup, uid, gid);
2556
2557out:
2558 free_key(k);
2559 free(cgdir);
2560
2561 return ret;
2562}
2563
2564int cg_chmod(const char *path, mode_t mode)
2565{
2566 struct fuse_context *fc = fuse_get_context();
2567 char * cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2568 struct cgfs_files *k = NULL;
2569 const char *cgroup;
2570 int ret;
2571
2572 if (!fc)
2573 return -EIO;
2574
2575 if (strcmp(path, "/cgroup") == 0)
2576 return -EINVAL;
2577
2578 controller = pick_controller_from_path(fc, path);
2579 if (!controller)
2580 return -EINVAL;
2581 cgroup = find_cgroup_in_path(path);
2582 if (!cgroup)
2583 /* this is just /cgroup/controller */
2584 return -EINVAL;
2585
2586 get_cgdir_and_path(cgroup, &cgdir, &last);
2587
2588 if (!last) {
2589 path1 = "/";
2590 path2 = cgdir;
2591 } else {
2592 path1 = cgdir;
2593 path2 = last;
2594 }
2595
2596 if (is_child_cgroup(controller, path1, path2)) {
2597 // get uid, gid, from '/tasks' file and make up a mode
2598 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2599 k = cgfs_get_key(controller, cgroup, "tasks");
2600
2601 } else
2602 k = cgfs_get_key(controller, path1, path2);
2603
2604 if (!k) {
2605 ret = -EINVAL;
2606 goto out;
2607 }
2608
2609 /*
2610 * This being a fuse request, the uid and gid must be valid
2611 * in the caller's namespace. So we can just check to make
2612 * sure that the caller is root in his uid, and privileged
2613 * over the file's current owner.
2614 */
2615 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
2616 ret = -EPERM;
2617 goto out;
2618 }
2619
2620 if (!cgfs_chmod_file(controller, cgroup, mode)) {
2621 ret = -EINVAL;
2622 goto out;
2623 }
2624
2625 ret = 0;
2626out:
2627 free_key(k);
2628 free(cgdir);
2629 return ret;
2630}
2631
2632int cg_mkdir(const char *path, mode_t mode)
2633{
2634 struct fuse_context *fc = fuse_get_context();
2635 char *last = NULL, *path1, *cgdir = NULL, *controller, *next = NULL;
2636 const char *cgroup;
2637 int ret;
2638
2639 if (!fc)
2640 return -EIO;
2641
2642
2643 controller = pick_controller_from_path(fc, path);
2644 if (!controller)
2645 return -EINVAL;
2646
2647 cgroup = find_cgroup_in_path(path);
2648 if (!cgroup)
2649 return -EINVAL;
2650
2651 get_cgdir_and_path(cgroup, &cgdir, &last);
2652 if (!last)
2653 path1 = "/";
2654 else
2655 path1 = cgdir;
2656
2657 pid_t initpid = lookup_initpid_in_store(fc->pid);
2658 if (initpid <= 0)
2659 initpid = fc->pid;
2660 if (!caller_is_in_ancestor(initpid, controller, path1, &next)) {
2661 if (!next)
2662 ret = -EINVAL;
2663 else if (last && strcmp(next, last) == 0)
2664 ret = -EEXIST;
2665 else
2666 ret = -ENOENT;
2667 goto out;
2668 }
2669
2670 if (!fc_may_access(fc, controller, path1, NULL, O_RDWR)) {
2671 ret = -EACCES;
2672 goto out;
2673 }
2674 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
2675 ret = -EACCES;
2676 goto out;
2677 }
2678
2679 ret = cgfs_create(controller, cgroup, fc->uid, fc->gid);
2680
2681out:
2682 free(cgdir);
2683 free(next);
2684 return ret;
2685}
2686
2687int cg_rmdir(const char *path)
2688{
2689 struct fuse_context *fc = fuse_get_context();
2690 char *last = NULL, *cgdir = NULL, *controller, *next = NULL;
2691 const char *cgroup;
2692 int ret;
2693
2694 if (!fc)
2695 return -EIO;
2696
2697 controller = pick_controller_from_path(fc, path);
2698 if (!controller)
2699 return -EINVAL;
2700
2701 cgroup = find_cgroup_in_path(path);
2702 if (!cgroup)
2703 return -EINVAL;
2704
2705 get_cgdir_and_path(cgroup, &cgdir, &last);
2706 if (!last) {
2707 ret = -EINVAL;
2708 goto out;
2709 }
2710
2711 pid_t initpid = lookup_initpid_in_store(fc->pid);
2712 if (initpid <= 0)
2713 initpid = fc->pid;
2714 if (!caller_is_in_ancestor(initpid, controller, cgroup, &next)) {
2715 if (!last || strcmp(next, last) == 0)
2716 ret = -EBUSY;
2717 else
2718 ret = -ENOENT;
2719 goto out;
2720 }
2721
2722 if (!fc_may_access(fc, controller, cgdir, NULL, O_WRONLY)) {
2723 ret = -EACCES;
2724 goto out;
2725 }
2726 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
2727 ret = -EACCES;
2728 goto out;
2729 }
2730
2731 if (!cgfs_remove(controller, cgroup)) {
2732 ret = -EINVAL;
2733 goto out;
2734 }
2735
2736 ret = 0;
2737
2738out:
2739 free(cgdir);
2740 free(next);
2741 return ret;
2742}
2743
2744static bool startswith(const char *line, const char *pref)
2745{
2746 if (strncmp(line, pref, strlen(pref)) == 0)
2747 return true;
2748 return false;
2749}
2750
2751static void get_mem_cached(char *memstat, unsigned long *v)
2752{
2753 char *eol;
2754
2755 *v = 0;
2756 while (*memstat) {
2757 if (startswith(memstat, "total_cache")) {
2758 sscanf(memstat + 11, "%lu", v);
2759 *v /= 1024;
2760 return;
2761 }
2762 eol = strchr(memstat, '\n');
2763 if (!eol)
2764 return;
2765 memstat = eol+1;
2766 }
2767}
2768
2769static void get_blkio_io_value(char *str, unsigned major, unsigned minor, char *iotype, unsigned long *v)
2770{
2771 char *eol;
2772 char key[32];
2773
2774 memset(key, 0, 32);
2775 snprintf(key, 32, "%u:%u %s", major, minor, iotype);
2776
2777 size_t len = strlen(key);
2778 *v = 0;
2779
2780 while (*str) {
2781 if (startswith(str, key)) {
2782 sscanf(str + len, "%lu", v);
2783 return;
2784 }
2785 eol = strchr(str, '\n');
2786 if (!eol)
2787 return;
2788 str = eol+1;
2789 }
2790}
2791
2792static int read_file(const char *path, char *buf, size_t size,
2793 struct file_info *d)
2794{
2795 size_t linelen = 0, total_len = 0, rv = 0;
2796 char *line = NULL;
2797 char *cache = d->buf;
2798 size_t cache_size = d->buflen;
2799 FILE *f = fopen(path, "r");
2800 if (!f)
2801 return 0;
2802
2803 while (getline(&line, &linelen, f) != -1) {
2804 size_t l = snprintf(cache, cache_size, "%s", line);
2805 if (l < 0) {
2806 perror("Error writing to cache");
2807 rv = 0;
2808 goto err;
2809 }
2810 if (l >= cache_size) {
2811 fprintf(stderr, "Internal error: truncated write to cache\n");
2812 rv = 0;
2813 goto err;
2814 }
2815 cache += l;
2816 cache_size -= l;
2817 total_len += l;
2818 }
2819
2820 d->size = total_len;
2821 if (total_len > size ) total_len = size;
2822
2823 /* read from off 0 */
2824 memcpy(buf, d->buf, total_len);
2825 rv = total_len;
2826 err:
2827 fclose(f);
2828 free(line);
2829 return rv;
2830}
2831
2832/*
2833 * FUSE ops for /proc
2834 */
2835
2836static unsigned long get_memlimit(const char *cgroup)
2837{
2838 char *memlimit_str = NULL;
2839 unsigned long memlimit = -1;
2840
2841 if (cgfs_get_value("memory", cgroup, "memory.limit_in_bytes", &memlimit_str))
2842 memlimit = strtoul(memlimit_str, NULL, 10);
2843
2844 free(memlimit_str);
2845
2846 return memlimit;
2847}
2848
2849static unsigned long get_min_memlimit(const char *cgroup)
2850{
2851 char *copy = strdupa(cgroup);
2852 unsigned long memlimit = 0, retlimit;
2853
2854 retlimit = get_memlimit(copy);
2855
2856 while (strcmp(copy, "/") != 0) {
2857 copy = dirname(copy);
2858 memlimit = get_memlimit(copy);
2859 if (memlimit != -1 && memlimit < retlimit)
2860 retlimit = memlimit;
2861 };
2862
2863 return retlimit;
2864}
2865
2866static int proc_meminfo_read(char *buf, size_t size, off_t offset,
2867 struct fuse_file_info *fi)
2868{
2869 struct fuse_context *fc = fuse_get_context();
2870 struct file_info *d = (struct file_info *)fi->fh;
2871 char *cg;
2872 char *memusage_str = NULL, *memstat_str = NULL,
2873 *memswlimit_str = NULL, *memswusage_str = NULL,
2874 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
2875 unsigned long memlimit = 0, memusage = 0, memswlimit = 0, memswusage = 0,
2876 cached = 0, hosttotal = 0;
2877 char *line = NULL;
2878 size_t linelen = 0, total_len = 0, rv = 0;
2879 char *cache = d->buf;
2880 size_t cache_size = d->buflen;
2881 FILE *f = NULL;
2882
2883 if (offset){
2884 if (offset > d->size)
2885 return -EINVAL;
2886 if (!d->cached)
2887 return 0;
2888 int left = d->size - offset;
2889 total_len = left > size ? size: left;
2890 memcpy(buf, cache + offset, total_len);
2891 return total_len;
2892 }
2893
2894 pid_t initpid = lookup_initpid_in_store(fc->pid);
2895 if (initpid <= 0)
2896 initpid = fc->pid;
2897 cg = get_pid_cgroup(initpid, "memory");
2898 if (!cg)
2899 return read_file("/proc/meminfo", buf, size, d);
2900
2901 memlimit = get_min_memlimit(cg);
2902 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
2903 goto err;
2904 if (!cgfs_get_value("memory", cg, "memory.stat", &memstat_str))
2905 goto err;
2906
2907 // Following values are allowed to fail, because swapaccount might be turned
2908 // off for current kernel
2909 if(cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str) &&
2910 cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str))
2911 {
2912 /* If swapaccounting is turned on, then default value is assumed to be that of cgroup / */
2913 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
2914 goto err;
2915 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
2916 goto err;
2917
2918 memswlimit = strtoul(memswlimit_str, NULL, 10);
2919 memswusage = strtoul(memswusage_str, NULL, 10);
2920
2921 if (!strcmp(memswlimit_str, memswlimit_default_str))
2922 memswlimit = 0;
2923 if (!strcmp(memswusage_str, memswusage_default_str))
2924 memswusage = 0;
2925
2926 memswlimit = memswlimit / 1024;
2927 memswusage = memswusage / 1024;
2928 }
2929
2930 memusage = strtoul(memusage_str, NULL, 10);
2931 memlimit /= 1024;
2932 memusage /= 1024;
2933
2934 get_mem_cached(memstat_str, &cached);
2935
2936 f = fopen("/proc/meminfo", "r");
2937 if (!f)
2938 goto err;
2939
2940 while (getline(&line, &linelen, f) != -1) {
2941 size_t l;
2942 char *printme, lbuf[100];
2943
2944 memset(lbuf, 0, 100);
2945 if (startswith(line, "MemTotal:")) {
2946 sscanf(line+14, "%lu", &hosttotal);
2947 if (hosttotal < memlimit)
2948 memlimit = hosttotal;
2949 snprintf(lbuf, 100, "MemTotal: %8lu kB\n", memlimit);
2950 printme = lbuf;
2951 } else if (startswith(line, "MemFree:")) {
2952 snprintf(lbuf, 100, "MemFree: %8lu kB\n", memlimit - memusage);
2953 printme = lbuf;
2954 } else if (startswith(line, "MemAvailable:")) {
2955 snprintf(lbuf, 100, "MemAvailable: %8lu kB\n", memlimit - memusage);
2956 printme = lbuf;
2957 } else if (startswith(line, "SwapTotal:") && memswlimit > 0) {
2958 snprintf(lbuf, 100, "SwapTotal: %8lu kB\n", memswlimit - memlimit);
2959 printme = lbuf;
2960 } else if (startswith(line, "SwapFree:") && memswlimit > 0 && memswusage > 0) {
2961 snprintf(lbuf, 100, "SwapFree: %8lu kB\n",
2962 (memswlimit - memlimit) - (memswusage - memusage));
2963 printme = lbuf;
2964 } else if (startswith(line, "Buffers:")) {
2965 snprintf(lbuf, 100, "Buffers: %8lu kB\n", 0UL);
2966 printme = lbuf;
2967 } else if (startswith(line, "Cached:")) {
2968 snprintf(lbuf, 100, "Cached: %8lu kB\n", cached);
2969 printme = lbuf;
2970 } else if (startswith(line, "SwapCached:")) {
2971 snprintf(lbuf, 100, "SwapCached: %8lu kB\n", 0UL);
2972 printme = lbuf;
2973 } else
2974 printme = line;
2975
2976 l = snprintf(cache, cache_size, "%s", printme);
2977 if (l < 0) {
2978 perror("Error writing to cache");
2979 rv = 0;
2980 goto err;
2981
2982 }
2983 if (l >= cache_size) {
2984 fprintf(stderr, "Internal error: truncated write to cache\n");
2985 rv = 0;
2986 goto err;
2987 }
2988
2989 cache += l;
2990 cache_size -= l;
2991 total_len += l;
2992 }
2993
2994 d->cached = 1;
2995 d->size = total_len;
2996 if (total_len > size ) total_len = size;
2997 memcpy(buf, d->buf, total_len);
2998
2999 rv = total_len;
3000err:
3001 if (f)
3002 fclose(f);
3003 free(line);
3004 free(cg);
3005 free(memusage_str);
3006 free(memswlimit_str);
3007 free(memswusage_str);
3008 free(memstat_str);
3009 free(memswlimit_default_str);
3010 free(memswusage_default_str);
3011 return rv;
3012}
3013
3014/*
3015 * Read the cpuset.cpus for cg
3016 * Return the answer in a newly allocated string which must be freed
3017 */
3018static char *get_cpuset(const char *cg)
3019{
3020 char *answer;
3021
3022 if (!cgfs_get_value("cpuset", cg, "cpuset.cpus", &answer))
3023 return NULL;
3024 return answer;
3025}
3026
3027bool cpu_in_cpuset(int cpu, const char *cpuset);
3028
3029static bool cpuline_in_cpuset(const char *line, const char *cpuset)
3030{
3031 int cpu;
3032
3033 if (sscanf(line, "processor : %d", &cpu) != 1)
3034 return false;
3035 return cpu_in_cpuset(cpu, cpuset);
3036}
3037
3038/*
3039 * check whether this is a '^processor" line in /proc/cpuinfo
3040 */
3041static bool is_processor_line(const char *line)
3042{
3043 int cpu;
3044
3045 if (sscanf(line, "processor : %d", &cpu) == 1)
3046 return true;
3047 return false;
3048}
3049
3050static int proc_cpuinfo_read(char *buf, size_t size, off_t offset,
3051 struct fuse_file_info *fi)
3052{
3053 struct fuse_context *fc = fuse_get_context();
3054 struct file_info *d = (struct file_info *)fi->fh;
3055 char *cg;
3056 char *cpuset = NULL;
3057 char *line = NULL;
3058 size_t linelen = 0, total_len = 0, rv = 0;
3059 bool am_printing = false;
3060 int curcpu = -1;
3061 char *cache = d->buf;
3062 size_t cache_size = d->buflen;
3063 FILE *f = NULL;
3064
3065 if (offset){
3066 if (offset > d->size)
3067 return -EINVAL;
3068 if (!d->cached)
3069 return 0;
3070 int left = d->size - offset;
3071 total_len = left > size ? size: left;
3072 memcpy(buf, cache + offset, total_len);
3073 return total_len;
3074 }
3075
3076 pid_t initpid = lookup_initpid_in_store(fc->pid);
3077 if (initpid <= 0)
3078 initpid = fc->pid;
3079 cg = get_pid_cgroup(initpid, "cpuset");
3080 if (!cg)
3081 return read_file("proc/cpuinfo", buf, size, d);
3082
3083 cpuset = get_cpuset(cg);
3084 if (!cpuset)
3085 goto err;
3086
3087 f = fopen("/proc/cpuinfo", "r");
3088 if (!f)
3089 goto err;
3090
3091 while (getline(&line, &linelen, f) != -1) {
3092 size_t l;
3093 if (is_processor_line(line)) {
3094 am_printing = cpuline_in_cpuset(line, cpuset);
3095 if (am_printing) {
3096 curcpu ++;
3097 l = snprintf(cache, cache_size, "processor : %d\n", curcpu);
3098 if (l < 0) {
3099 perror("Error writing to cache");
3100 rv = 0;
3101 goto err;
3102 }
3103 if (l >= cache_size) {
3104 fprintf(stderr, "Internal error: truncated write to cache\n");
3105 rv = 0;
3106 goto err;
3107 }
3108 cache += l;
3109 cache_size -= l;
3110 total_len += l;
3111 }
3112 continue;
3113 }
3114 if (am_printing) {
3115 l = snprintf(cache, cache_size, "%s", line);
3116 if (l < 0) {
3117 perror("Error writing to cache");
3118 rv = 0;
3119 goto err;
3120 }
3121 if (l >= cache_size) {
3122 fprintf(stderr, "Internal error: truncated write to cache\n");
3123 rv = 0;
3124 goto err;
3125 }
3126 cache += l;
3127 cache_size -= l;
3128 total_len += l;
3129 }
3130 }
3131
3132 d->cached = 1;
3133 d->size = total_len;
3134 if (total_len > size ) total_len = size;
3135
3136 /* read from off 0 */
3137 memcpy(buf, d->buf, total_len);
3138 rv = total_len;
3139err:
3140 if (f)
3141 fclose(f);
3142 free(line);
3143 free(cpuset);
3144 free(cg);
3145 return rv;
3146}
3147
3148static int proc_stat_read(char *buf, size_t size, off_t offset,
3149 struct fuse_file_info *fi)
3150{
3151 struct fuse_context *fc = fuse_get_context();
3152 struct file_info *d = (struct file_info *)fi->fh;
3153 char *cg;
3154 char *cpuset = NULL;
3155 char *line = NULL;
3156 size_t linelen = 0, total_len = 0, rv = 0;
3157 int curcpu = -1; /* cpu numbering starts at 0 */
3158 unsigned long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0;
3159 unsigned long user_sum = 0, nice_sum = 0, system_sum = 0, idle_sum = 0, iowait_sum = 0,
3160 irq_sum = 0, softirq_sum = 0, steal_sum = 0, guest_sum = 0;
3161#define CPUALL_MAX_SIZE BUF_RESERVE_SIZE
3162 char cpuall[CPUALL_MAX_SIZE];
3163 /* reserve for cpu all */
3164 char *cache = d->buf + CPUALL_MAX_SIZE;
3165 size_t cache_size = d->buflen - CPUALL_MAX_SIZE;
3166 FILE *f = NULL;
3167
3168 if (offset){
3169 if (offset > d->size)
3170 return -EINVAL;
3171 if (!d->cached)
3172 return 0;
3173 int left = d->size - offset;
3174 total_len = left > size ? size: left;
3175 memcpy(buf, d->buf + offset, total_len);
3176 return total_len;
3177 }
3178
3179 pid_t initpid = lookup_initpid_in_store(fc->pid);
3180 if (initpid <= 0)
3181 initpid = fc->pid;
3182 cg = get_pid_cgroup(initpid, "cpuset");
3183 if (!cg)
3184 return read_file("/proc/stat", buf, size, d);
3185
3186 cpuset = get_cpuset(cg);
3187 if (!cpuset)
3188 goto err;
3189
3190 f = fopen("/proc/stat", "r");
3191 if (!f)
3192 goto err;
3193
3194 //skip first line
3195 if (getline(&line, &linelen, f) < 0) {
3196 fprintf(stderr, "proc_stat_read read first line failed\n");
3197 goto err;
3198 }
3199
3200 while (getline(&line, &linelen, f) != -1) {
3201 size_t l;
3202 int cpu;
3203 char cpu_char[10]; /* That's a lot of cores */
3204 char *c;
3205
3206 if (sscanf(line, "cpu%9[^ ]", cpu_char) != 1) {
3207 /* not a ^cpuN line containing a number N, just print it */
3208 l = snprintf(cache, cache_size, "%s", line);
3209 if (l < 0) {
3210 perror("Error writing to cache");
3211 rv = 0;
3212 goto err;
3213 }
3214 if (l >= cache_size) {
3215 fprintf(stderr, "Internal error: truncated write to cache\n");
3216 rv = 0;
3217 goto err;
3218 }
3219 cache += l;
3220 cache_size -= l;
3221 total_len += l;
3222 continue;
3223 }
3224
3225 if (sscanf(cpu_char, "%d", &cpu) != 1)
3226 continue;
3227 if (!cpu_in_cpuset(cpu, cpuset))
3228 continue;
3229 curcpu ++;
3230
3231 c = strchr(line, ' ');
3232 if (!c)
3233 continue;
3234 l = snprintf(cache, cache_size, "cpu%d%s", curcpu, c);
3235 if (l < 0) {
3236 perror("Error writing to cache");
3237 rv = 0;
3238 goto err;
3239
3240 }
3241 if (l >= cache_size) {
3242 fprintf(stderr, "Internal error: truncated write to cache\n");
3243 rv = 0;
3244 goto err;
3245 }
3246
3247 cache += l;
3248 cache_size -= l;
3249 total_len += l;
3250
3251 if (sscanf(line, "%*s %lu %lu %lu %lu %lu %lu %lu %lu %lu", &user, &nice, &system, &idle, &iowait, &irq,
3252 &softirq, &steal, &guest) != 9)
3253 continue;
3254 user_sum += user;
3255 nice_sum += nice;
3256 system_sum += system;
3257 idle_sum += idle;
3258 iowait_sum += iowait;
3259 irq_sum += irq;
3260 softirq_sum += softirq;
3261 steal_sum += steal;
3262 guest_sum += guest;
3263 }
3264
3265 cache = d->buf;
3266
3267 int cpuall_len = snprintf(cpuall, CPUALL_MAX_SIZE, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3268 "cpu ", user_sum, nice_sum, system_sum, idle_sum, iowait_sum, irq_sum, softirq_sum, steal_sum, guest_sum);
3269 if (cpuall_len > 0 && cpuall_len < CPUALL_MAX_SIZE){
3270 memcpy(cache, cpuall, cpuall_len);
3271 cache += cpuall_len;
3272 } else{
3273 /* shouldn't happen */
3274 fprintf(stderr, "proc_stat_read copy cpuall failed, cpuall_len=%d\n", cpuall_len);
3275 cpuall_len = 0;
3276 }
3277
3278 memmove(cache, d->buf + CPUALL_MAX_SIZE, total_len);
3279 total_len += cpuall_len;
3280 d->cached = 1;
3281 d->size = total_len;
3282 if (total_len > size ) total_len = size;
3283
3284 memcpy(buf, d->buf, total_len);
3285 rv = total_len;
3286
3287err:
3288 if (f)
3289 fclose(f);
3290 free(line);
3291 free(cpuset);
3292 free(cg);
3293 return rv;
3294}
3295
3296static long int getreaperage(pid_t pid)
3297{
3298 char fnam[100];
3299 struct stat sb;
3300 int ret;
3301 pid_t qpid;
3302
3303 qpid = lookup_initpid_in_store(pid);
3304 if (qpid <= 0)
3305 return 0;
3306
3307 ret = snprintf(fnam, 100, "/proc/%d", qpid);
3308 if (ret < 0 || ret >= 100)
3309 return 0;
3310
3311 if (lstat(fnam, &sb) < 0)
3312 return 0;
3313
3314 return time(NULL) - sb.st_ctime;
3315}
3316
3317static unsigned long get_reaper_busy(pid_t task)
3318{
3319 pid_t initpid = lookup_initpid_in_store(task);
3320 char *cgroup = NULL, *usage_str = NULL;
3321 unsigned long usage = 0;
3322
3323 if (initpid <= 0)
3324 return 0;
3325
3326 cgroup = get_pid_cgroup(initpid, "cpuacct");
3327 if (!cgroup)
3328 goto out;
3329 if (!cgfs_get_value("cpuacct", cgroup, "cpuacct.usage", &usage_str))
3330 goto out;
3331 usage = strtoul(usage_str, NULL, 10);
3332 usage /= 1000000000;
3333
3334out:
3335 free(cgroup);
3336 free(usage_str);
3337 return usage;
3338}
3339
3340#if RELOADTEST
3341void iwashere(void)
3342{
3343 char *name, *cwd = get_current_dir_name();
3344 size_t len;
3345 int fd;
3346
3347 if (!cwd)
3348 exit(1);
3349 len = strlen(cwd) + strlen("/iwashere") + 1;
3350 name = alloca(len);
3351 snprintf(name, len, "%s/iwashere", cwd);
3352 free(cwd);
3353 fd = creat(name, 0755);
3354 if (fd >= 0)
3355 close(fd);
3356}
3357#endif
3358
3359/*
3360 * We read /proc/uptime and reuse its second field.
3361 * For the first field, we use the mtime for the reaper for
3362 * the calling pid as returned by getreaperage
3363 */
3364static int proc_uptime_read(char *buf, size_t size, off_t offset,
3365 struct fuse_file_info *fi)
3366{
3367 struct fuse_context *fc = fuse_get_context();
3368 struct file_info *d = (struct file_info *)fi->fh;
3369 long int reaperage = getreaperage(fc->pid);
3370 unsigned long int busytime = get_reaper_busy(fc->pid), idletime;
3371 char *cache = d->buf;
3372 size_t total_len = 0;
3373
3374#if RELOADTEST
3375 iwashere();
3376#endif
3377
3378 if (offset){
3379 if (offset > d->size)
3380 return -EINVAL;
3381 if (!d->cached)
3382 return 0;
3383 int left = d->size - offset;
3384 total_len = left > size ? size: left;
3385 memcpy(buf, cache + offset, total_len);
3386 return total_len;
3387 }
3388
3389 idletime = reaperage - busytime;
3390 if (idletime > reaperage)
3391 idletime = reaperage;
3392
3393 total_len = snprintf(d->buf, d->size, "%ld.0 %lu.0\n", reaperage, idletime);
3394 if (total_len < 0){
3395 perror("Error writing to cache");
3396 return 0;
3397 }
3398
3399 d->size = (int)total_len;
3400 d->cached = 1;
3401
3402 if (total_len > size) total_len = size;
3403
3404 memcpy(buf, d->buf, total_len);
3405 return total_len;
3406}
3407
3408static int proc_diskstats_read(char *buf, size_t size, off_t offset,
3409 struct fuse_file_info *fi)
3410{
3411 char dev_name[72];
3412 struct fuse_context *fc = fuse_get_context();
3413 struct file_info *d = (struct file_info *)fi->fh;
3414 char *cg;
3415 char *io_serviced_str = NULL, *io_merged_str = NULL, *io_service_bytes_str = NULL,
3416 *io_wait_time_str = NULL, *io_service_time_str = NULL;
3417 unsigned long read = 0, write = 0;
3418 unsigned long read_merged = 0, write_merged = 0;
3419 unsigned long read_sectors = 0, write_sectors = 0;
3420 unsigned long read_ticks = 0, write_ticks = 0;
3421 unsigned long ios_pgr = 0, tot_ticks = 0, rq_ticks = 0;
3422 unsigned long rd_svctm = 0, wr_svctm = 0, rd_wait = 0, wr_wait = 0;
3423 char *cache = d->buf;
3424 size_t cache_size = d->buflen;
3425 char *line = NULL;
3426 size_t linelen = 0, total_len = 0, rv = 0;
3427 unsigned int major = 0, minor = 0;
3428 int i = 0;
3429 FILE *f = NULL;
3430
3431 if (offset){
3432 if (offset > d->size)
3433 return -EINVAL;
3434 if (!d->cached)
3435 return 0;
3436 int left = d->size - offset;
3437 total_len = left > size ? size: left;
3438 memcpy(buf, cache + offset, total_len);
3439 return total_len;
3440 }
3441
3442 pid_t initpid = lookup_initpid_in_store(fc->pid);
3443 if (initpid <= 0)
3444 initpid = fc->pid;
3445 cg = get_pid_cgroup(initpid, "blkio");
3446 if (!cg)
3447 return read_file("/proc/diskstats", buf, size, d);
3448
3449 if (!cgfs_get_value("blkio", cg, "blkio.io_serviced", &io_serviced_str))
3450 goto err;
3451 if (!cgfs_get_value("blkio", cg, "blkio.io_merged", &io_merged_str))
3452 goto err;
3453 if (!cgfs_get_value("blkio", cg, "blkio.io_service_bytes", &io_service_bytes_str))
3454 goto err;
3455 if (!cgfs_get_value("blkio", cg, "blkio.io_wait_time", &io_wait_time_str))
3456 goto err;
3457 if (!cgfs_get_value("blkio", cg, "blkio.io_service_time", &io_service_time_str))
3458 goto err;
3459
3460
3461 f = fopen("/proc/diskstats", "r");
3462 if (!f)
3463 goto err;
3464
3465 while (getline(&line, &linelen, f) != -1) {
3466 size_t l;
3467 char *printme, lbuf[256];
3468
3469 i = sscanf(line, "%u %u %71s", &major, &minor, dev_name);
3470 if(i == 3){
3471 get_blkio_io_value(io_serviced_str, major, minor, "Read", &read);
3472 get_blkio_io_value(io_serviced_str, major, minor, "Write", &write);
3473 get_blkio_io_value(io_merged_str, major, minor, "Read", &read_merged);
3474 get_blkio_io_value(io_merged_str, major, minor, "Write", &write_merged);
3475 get_blkio_io_value(io_service_bytes_str, major, minor, "Read", &read_sectors);
3476 read_sectors = read_sectors/512;
3477 get_blkio_io_value(io_service_bytes_str, major, minor, "Write", &write_sectors);
3478 write_sectors = write_sectors/512;
3479
3480 get_blkio_io_value(io_service_time_str, major, minor, "Read", &rd_svctm);
3481 rd_svctm = rd_svctm/1000000;
3482 get_blkio_io_value(io_wait_time_str, major, minor, "Read", &rd_wait);
3483 rd_wait = rd_wait/1000000;
3484 read_ticks = rd_svctm + rd_wait;
3485
3486 get_blkio_io_value(io_service_time_str, major, minor, "Write", &wr_svctm);
3487 wr_svctm = wr_svctm/1000000;
3488 get_blkio_io_value(io_wait_time_str, major, minor, "Write", &wr_wait);
3489 wr_wait = wr_wait/1000000;
3490 write_ticks = wr_svctm + wr_wait;
3491
3492 get_blkio_io_value(io_service_time_str, major, minor, "Total", &tot_ticks);
3493 tot_ticks = tot_ticks/1000000;
3494 }else{
3495 continue;
3496 }
3497
3498 memset(lbuf, 0, 256);
3499 if (read || write || read_merged || write_merged || read_sectors || write_sectors || read_ticks || write_ticks) {
3500 snprintf(lbuf, 256, "%u %u %s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3501 major, minor, dev_name, read, read_merged, read_sectors, read_ticks,
3502 write, write_merged, write_sectors, write_ticks, ios_pgr, tot_ticks, rq_ticks);
3503 printme = lbuf;
3504 } else
3505 continue;
3506
3507 l = snprintf(cache, cache_size, "%s", printme);
3508 if (l < 0) {
3509 perror("Error writing to fuse buf");
3510 rv = 0;
3511 goto err;
3512 }
3513 if (l >= cache_size) {
3514 fprintf(stderr, "Internal error: truncated write to cache\n");
3515 rv = 0;
3516 goto err;
3517 }
3518 cache += l;
3519 cache_size -= l;
3520 total_len += l;
3521 }
3522
3523 d->cached = 1;
3524 d->size = total_len;
3525 if (total_len > size ) total_len = size;
3526 memcpy(buf, d->buf, total_len);
3527
3528 rv = total_len;
3529err:
3530 free(cg);
3531 if (f)
3532 fclose(f);
3533 free(line);
3534 free(io_serviced_str);
3535 free(io_merged_str);
3536 free(io_service_bytes_str);
3537 free(io_wait_time_str);
3538 free(io_service_time_str);
3539 return rv;
3540}
3541
70dcc12e
SH
3542static int proc_swaps_read(char *buf, size_t size, off_t offset,
3543 struct fuse_file_info *fi)
3544{
3545 struct fuse_context *fc = fuse_get_context();
3546 struct file_info *d = (struct file_info *)fi->fh;
3547 char *cg = NULL;
3548 char *memswlimit_str = NULL, *memlimit_str = NULL, *memusage_str = NULL, *memswusage_str = NULL,
3549 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
3550 unsigned long memswlimit = 0, memlimit = 0, memusage = 0, memswusage = 0, swap_total = 0, swap_free = 0;
3551 size_t total_len = 0, rv = 0;
3552 char *cache = d->buf;
3553
3554 if (offset) {
3555 if (offset > d->size)
3556 return -EINVAL;
3557 if (!d->cached)
3558 return 0;
3559 int left = d->size - offset;
3560 total_len = left > size ? size: left;
3561 memcpy(buf, cache + offset, total_len);
3562 return total_len;
3563 }
3564
3565 pid_t initpid = lookup_initpid_in_store(fc->pid);
3566 if (initpid <= 0)
3567 initpid = fc->pid;
3568 cg = get_pid_cgroup(initpid, "memory");
3569 if (!cg)
3570 return read_file("/proc/swaps", buf, size, d);
3571
3572 if (!cgfs_get_value("memory", cg, "memory.limit_in_bytes", &memlimit_str))
3573 goto err;
3574
3575 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
3576 goto err;
3577
3578 memlimit = strtoul(memlimit_str, NULL, 10);
3579 memusage = strtoul(memusage_str, NULL, 10);
3580
3581 if (cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str) &&
3582 cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str)) {
3583
3584 /* If swap accounting is turned on, then default value is assumed to be that of cgroup / */
3585 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
3586 goto err;
3587 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
3588 goto err;
3589
3590 memswlimit = strtoul(memswlimit_str, NULL, 10);
3591 memswusage = strtoul(memswusage_str, NULL, 10);
3592
3593 if (!strcmp(memswlimit_str, memswlimit_default_str))
3594 memswlimit = 0;
3595 if (!strcmp(memswusage_str, memswusage_default_str))
3596 memswusage = 0;
3597
3598 swap_total = (memswlimit - memlimit) / 1024;
3599 swap_free = (memswusage - memusage) / 1024;
3600 }
3601
3602 total_len = snprintf(d->buf, d->size, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
3603
3604 /* When no mem + swap limit is specified or swapaccount=0*/
3605 if (!memswlimit) {
3606 char *line = NULL;
3607 size_t linelen = 0;
3608 FILE *f = fopen("/proc/meminfo", "r");
3609
3610 if (!f)
3611 goto err;
3612
3613 while (getline(&line, &linelen, f) != -1) {
3614 if (startswith(line, "SwapTotal:")) {
3615 sscanf(line, "SwapTotal: %8lu kB", &swap_total);
3616 } else if (startswith(line, "SwapFree:")) {
3617 sscanf(line, "SwapFree: %8lu kB", &swap_free);
3618 }
3619 }
3620
3621 free(line);
3622 fclose(f);
3623 }
3624
3625 if (swap_total > 0) {
42eba700 3626 total_len += snprintf(d->buf + total_len, d->size - total_len,
70dcc12e
SH
3627 "none%*svirtual\t\t%lu\t%lu\t0\n", 36, " ",
3628 swap_total, swap_free);
3629 }
3630
3631 if (total_len < 0) {
3632 perror("Error writing to cache");
3633 rv = 0;
3634 goto err;
3635 }
3636
3637 d->cached = 1;
3638 d->size = (int)total_len;
3639
3640 if (total_len > size) total_len = size;
3641 memcpy(buf, d->buf, total_len);
3642 rv = total_len;
3643
3644err:
3645 free(cg);
3646 free(memswlimit_str);
3647 free(memlimit_str);
3648 free(memusage_str);
3649 free(memswusage_str);
3650 free(memswusage_default_str);
3651 free(memswlimit_default_str);
3652 return rv;
3653}
3654
237e200e
SH
3655static off_t get_procfile_size(const char *which)
3656{
3657 FILE *f = fopen(which, "r");
3658 char *line = NULL;
3659 size_t len = 0;
3660 ssize_t sz, answer = 0;
3661 if (!f)
3662 return 0;
3663
3664 while ((sz = getline(&line, &len, f)) != -1)
3665 answer += sz;
3666 fclose (f);
3667 free(line);
3668
3669 return answer;
3670}
3671
3672int proc_getattr(const char *path, struct stat *sb)
3673{
3674 struct timespec now;
3675
3676 memset(sb, 0, sizeof(struct stat));
3677 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
3678 return -EINVAL;
3679 sb->st_uid = sb->st_gid = 0;
3680 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
3681 if (strcmp(path, "/proc") == 0) {
3682 sb->st_mode = S_IFDIR | 00555;
3683 sb->st_nlink = 2;
3684 return 0;
3685 }
3686 if (strcmp(path, "/proc/meminfo") == 0 ||
3687 strcmp(path, "/proc/cpuinfo") == 0 ||
3688 strcmp(path, "/proc/uptime") == 0 ||
3689 strcmp(path, "/proc/stat") == 0 ||
70dcc12e
SH
3690 strcmp(path, "/proc/diskstats") == 0 ||
3691 strcmp(path, "/proc/swaps") == 0) {
237e200e
SH
3692 sb->st_size = 0;
3693 sb->st_mode = S_IFREG | 00444;
3694 sb->st_nlink = 1;
3695 return 0;
3696 }
3697
3698 return -ENOENT;
3699}
3700
3701int proc_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
3702 struct fuse_file_info *fi)
3703{
3704 if (filler(buf, "cpuinfo", NULL, 0) != 0 ||
3705 filler(buf, "meminfo", NULL, 0) != 0 ||
3706 filler(buf, "stat", NULL, 0) != 0 ||
3707 filler(buf, "uptime", NULL, 0) != 0 ||
70dcc12e
SH
3708 filler(buf, "diskstats", NULL, 0) != 0 ||
3709 filler(buf, "swaps", NULL, 0) != 0)
237e200e
SH
3710 return -EINVAL;
3711 return 0;
3712}
3713
3714int proc_open(const char *path, struct fuse_file_info *fi)
3715{
3716 int type = -1;
3717 struct file_info *info;
3718
3719 if (strcmp(path, "/proc/meminfo") == 0)
3720 type = LXC_TYPE_PROC_MEMINFO;
3721 else if (strcmp(path, "/proc/cpuinfo") == 0)
3722 type = LXC_TYPE_PROC_CPUINFO;
3723 else if (strcmp(path, "/proc/uptime") == 0)
3724 type = LXC_TYPE_PROC_UPTIME;
3725 else if (strcmp(path, "/proc/stat") == 0)
3726 type = LXC_TYPE_PROC_STAT;
3727 else if (strcmp(path, "/proc/diskstats") == 0)
3728 type = LXC_TYPE_PROC_DISKSTATS;
70dcc12e
SH
3729 else if (strcmp(path, "/proc/swaps") == 0)
3730 type = LXC_TYPE_PROC_SWAPS;
237e200e
SH
3731 if (type == -1)
3732 return -ENOENT;
3733
3734 info = malloc(sizeof(*info));
3735 if (!info)
3736 return -ENOMEM;
3737
3738 memset(info, 0, sizeof(*info));
3739 info->type = type;
3740
3741 info->buflen = get_procfile_size(path) + BUF_RESERVE_SIZE;
3742 do {
3743 info->buf = malloc(info->buflen);
3744 } while (!info->buf);
3745 memset(info->buf, 0, info->buflen);
3746 /* set actual size to buffer size */
3747 info->size = info->buflen;
3748
3749 fi->fh = (unsigned long)info;
3750 return 0;
3751}
3752
3753int proc_release(const char *path, struct fuse_file_info *fi)
3754{
3755 struct file_info *f = (struct file_info *)fi->fh;
3756
3757 do_release_file_info(f);
3758 return 0;
3759}
3760
3761int proc_read(const char *path, char *buf, size_t size, off_t offset,
3762 struct fuse_file_info *fi)
3763{
3764 struct file_info *f = (struct file_info *) fi->fh;
3765
3766 switch (f->type) {
3767 case LXC_TYPE_PROC_MEMINFO:
3768 return proc_meminfo_read(buf, size, offset, fi);
3769 case LXC_TYPE_PROC_CPUINFO:
3770 return proc_cpuinfo_read(buf, size, offset, fi);
3771 case LXC_TYPE_PROC_UPTIME:
3772 return proc_uptime_read(buf, size, offset, fi);
3773 case LXC_TYPE_PROC_STAT:
3774 return proc_stat_read(buf, size, offset, fi);
3775 case LXC_TYPE_PROC_DISKSTATS:
3776 return proc_diskstats_read(buf, size, offset, fi);
70dcc12e
SH
3777 case LXC_TYPE_PROC_SWAPS:
3778 return proc_swaps_read(buf, size, offset, fi);
237e200e
SH
3779 default:
3780 return -EINVAL;
3781 }
3782}
3783
3784static void __attribute__((constructor)) collect_subsystems(void)
3785{
3786 FILE *f;
3787 char *line = NULL;
3788 size_t len = 0;
3789
3790 if ((f = fopen("/proc/self/cgroup", "r")) == NULL) {
3791 fprintf(stderr, "Error opening /proc/self/cgroup: %s\n", strerror(errno));
3792 return;
3793 }
3794 while (getline(&line, &len, f) != -1) {
3795 char *p, *p2;
3796
3797 p = strchr(line, ':');
3798 if (!p)
3799 goto out;
3800 *(p++) = '\0';
3801
3802 p2 = strrchr(p, ':');
3803 if (!p2)
3804 goto out;
3805 *p2 = '\0';
3806
3807 if (!store_hierarchy(line, p))
3808 goto out;
3809 }
3810
3811 print_subsystems();
3812
3813out:
3814 free(line);
3815 fclose(f);
3816}
3817
3818static void __attribute__((destructor)) free_subsystems(void)
3819{
3820 int i;
3821
3822 for (i = 0; i < num_hierarchies; i++)
3823 if (hierarchies[i])
3824 free(hierarchies[i]);
3825 free(hierarchies);
3826}