]> git.proxmox.com Git - mirror_lxcfs.git/blame - bindings.c
implement access(2)
[mirror_lxcfs.git] / bindings.c
CommitLineData
237e200e
SH
1/* lxcfs
2 *
3 * Copyright © 2014-2016 Canonical, Inc
4 * Author: Serge Hallyn <serge.hallyn@ubuntu.com>
5 *
6 * See COPYING file for details.
7 */
8
9#define FUSE_USE_VERSION 26
10
11#include <stdio.h>
12#include <dirent.h>
13#include <fcntl.h>
14#include <fuse.h>
15#include <unistd.h>
16#include <errno.h>
17#include <stdbool.h>
18#include <time.h>
19#include <string.h>
20#include <stdlib.h>
21#include <libgen.h>
22#include <sched.h>
23#include <pthread.h>
24#include <linux/sched.h>
25#include <sys/param.h>
26#include <sys/socket.h>
27#include <sys/mount.h>
28#include <sys/epoll.h>
29#include <wait.h>
30
237e200e
SH
31#include "bindings.h"
32
33#include "config.h" // for VERSION
34
35enum {
36 LXC_TYPE_CGDIR,
37 LXC_TYPE_CGFILE,
38 LXC_TYPE_PROC_MEMINFO,
39 LXC_TYPE_PROC_CPUINFO,
40 LXC_TYPE_PROC_UPTIME,
41 LXC_TYPE_PROC_STAT,
42 LXC_TYPE_PROC_DISKSTATS,
70dcc12e 43 LXC_TYPE_PROC_SWAPS,
237e200e
SH
44};
45
46struct file_info {
47 char *controller;
48 char *cgroup;
49 char *file;
50 int type;
51 char *buf; // unused as of yet
52 int buflen;
53 int size; //actual data size
54 int cached;
55};
56
57/* reserve buffer size, for cpuall in /proc/stat */
58#define BUF_RESERVE_SIZE 256
59
60/*
61 * A table caching which pid is init for a pid namespace.
62 * When looking up which pid is init for $qpid, we first
63 * 1. Stat /proc/$qpid/ns/pid.
64 * 2. Check whether the ino_t is in our store.
65 * a. if not, fork a child in qpid's ns to send us
66 * ucred.pid = 1, and read the initpid. Cache
67 * initpid and creation time for /proc/initpid
68 * in a new store entry.
69 * b. if so, verify that /proc/initpid still matches
70 * what we have saved. If not, clear the store
71 * entry and go back to a. If so, return the
72 * cached initpid.
73 */
74struct pidns_init_store {
75 ino_t ino; // inode number for /proc/$pid/ns/pid
76 pid_t initpid; // the pid of nit in that ns
77 long int ctime; // the time at which /proc/$initpid was created
78 struct pidns_init_store *next;
79 long int lastcheck;
80};
81
82/* lol - look at how they are allocated in the kernel */
83#define PIDNS_HASH_SIZE 4096
84#define HASH(x) ((x) % PIDNS_HASH_SIZE)
85
86static struct pidns_init_store *pidns_hash_table[PIDNS_HASH_SIZE];
87static pthread_mutex_t pidns_store_mutex = PTHREAD_MUTEX_INITIALIZER;
88static void lock_mutex(pthread_mutex_t *l)
89{
90 int ret;
91
92 if ((ret = pthread_mutex_lock(l)) != 0) {
93 fprintf(stderr, "pthread_mutex_lock returned:%d %s\n", ret, strerror(ret));
94 exit(1);
95 }
96}
97
98static void unlock_mutex(pthread_mutex_t *l)
99{
100 int ret;
101
102 if ((ret = pthread_mutex_unlock(l)) != 0) {
103 fprintf(stderr, "pthread_mutex_unlock returned:%d %s\n", ret, strerror(ret));
104 exit(1);
105 }
106}
107
108static void store_lock(void)
109{
110 lock_mutex(&pidns_store_mutex);
111}
112
113static void store_unlock(void)
114{
115 unlock_mutex(&pidns_store_mutex);
116}
117
118/* Must be called under store_lock */
119static bool initpid_still_valid(struct pidns_init_store *e, struct stat *nsfdsb)
120{
121 struct stat initsb;
122 char fnam[100];
123
124 snprintf(fnam, 100, "/proc/%d", e->initpid);
125 if (stat(fnam, &initsb) < 0)
126 return false;
127#if DEBUG
128 fprintf(stderr, "comparing ctime %ld %ld for pid %d\n",
129 e->ctime, initsb.st_ctime, e->initpid);
130#endif
131 if (e->ctime != initsb.st_ctime)
132 return false;
133 return true;
134}
135
136/* Must be called under store_lock */
137static void remove_initpid(struct pidns_init_store *e)
138{
139 struct pidns_init_store *tmp;
140 int h;
141
142#if DEBUG
143 fprintf(stderr, "remove_initpid: removing entry for %d\n", e->initpid);
144#endif
145 h = HASH(e->ino);
146 if (pidns_hash_table[h] == e) {
147 pidns_hash_table[h] = e->next;
148 free(e);
149 return;
150 }
151
152 tmp = pidns_hash_table[h];
153 while (tmp) {
154 if (tmp->next == e) {
155 tmp->next = e->next;
156 free(e);
157 return;
158 }
159 tmp = tmp->next;
160 }
161}
162
163#define PURGE_SECS 5
164/* Must be called under store_lock */
165static void prune_initpid_store(void)
166{
167 static long int last_prune = 0;
168 struct pidns_init_store *e, *prev, *delme;
169 long int now, threshold;
170 int i;
171
172 if (!last_prune) {
173 last_prune = time(NULL);
174 return;
175 }
176 now = time(NULL);
177 if (now < last_prune + PURGE_SECS)
178 return;
179#if DEBUG
180 fprintf(stderr, "pruning\n");
181#endif
182 last_prune = now;
183 threshold = now - 2 * PURGE_SECS;
184
185 for (i = 0; i < PIDNS_HASH_SIZE; i++) {
186 for (prev = NULL, e = pidns_hash_table[i]; e; ) {
187 if (e->lastcheck < threshold) {
188#if DEBUG
189 fprintf(stderr, "Removing cached entry for %d\n", e->initpid);
190#endif
191 delme = e;
192 if (prev)
193 prev->next = e->next;
194 else
195 pidns_hash_table[i] = e->next;
196 e = e->next;
197 free(delme);
198 } else {
199 prev = e;
200 e = e->next;
201 }
202 }
203 }
204}
205
206/* Must be called under store_lock */
207static void save_initpid(struct stat *sb, pid_t pid)
208{
209 struct pidns_init_store *e;
210 char fpath[100];
211 struct stat procsb;
212 int h;
213
214#if DEBUG
215 fprintf(stderr, "save_initpid: adding entry for %d\n", pid);
216#endif
217 snprintf(fpath, 100, "/proc/%d", pid);
218 if (stat(fpath, &procsb) < 0)
219 return;
220 do {
221 e = malloc(sizeof(*e));
222 } while (!e);
223 e->ino = sb->st_ino;
224 e->initpid = pid;
225 e->ctime = procsb.st_ctime;
226 h = HASH(e->ino);
227 e->next = pidns_hash_table[h];
228 e->lastcheck = time(NULL);
229 pidns_hash_table[h] = e;
230}
231
232/*
233 * Given the stat(2) info for a nsfd pid inode, lookup the init_pid_store
234 * entry for the inode number and creation time. Verify that the init pid
235 * is still valid. If not, remove it. Return the entry if valid, NULL
236 * otherwise.
237 * Must be called under store_lock
238 */
239static struct pidns_init_store *lookup_verify_initpid(struct stat *sb)
240{
241 int h = HASH(sb->st_ino);
242 struct pidns_init_store *e = pidns_hash_table[h];
243
244 while (e) {
245 if (e->ino == sb->st_ino) {
246 if (initpid_still_valid(e, sb)) {
247 e->lastcheck = time(NULL);
248 return e;
249 }
250 remove_initpid(e);
251 return NULL;
252 }
253 e = e->next;
254 }
255
256 return NULL;
257}
258
259static int is_dir(const char *path)
260{
261 struct stat statbuf;
262 int ret = stat(path, &statbuf);
263 if (ret == 0 && S_ISDIR(statbuf.st_mode))
264 return 1;
265 return 0;
266}
267
268static char *must_copy_string(const char *str)
269{
270 char *dup = NULL;
271 if (!str)
272 return NULL;
273 do {
274 dup = strdup(str);
275 } while (!dup);
276
277 return dup;
278}
279
280static inline void drop_trailing_newlines(char *s)
281{
282 int l;
283
284 for (l=strlen(s); l>0 && s[l-1] == '\n'; l--)
285 s[l-1] = '\0';
286}
287
288#define BATCH_SIZE 50
289static void dorealloc(char **mem, size_t oldlen, size_t newlen)
290{
291 int newbatches = (newlen / BATCH_SIZE) + 1;
292 int oldbatches = (oldlen / BATCH_SIZE) + 1;
293
294 if (!*mem || newbatches > oldbatches) {
295 char *tmp;
296 do {
297 tmp = realloc(*mem, newbatches * BATCH_SIZE);
298 } while (!tmp);
299 *mem = tmp;
300 }
301}
302static void append_line(char **contents, size_t *len, char *line, ssize_t linelen)
303{
304 size_t newlen = *len + linelen;
305 dorealloc(contents, *len, newlen + 1);
306 memcpy(*contents + *len, line, linelen+1);
307 *len = newlen;
308}
309
310static char *slurp_file(const char *from)
311{
312 char *line = NULL;
313 char *contents = NULL;
314 FILE *f = fopen(from, "r");
315 size_t len = 0, fulllen = 0;
316 ssize_t linelen;
317
318 if (!f)
319 return NULL;
320
321 while ((linelen = getline(&line, &len, f)) != -1) {
322 append_line(&contents, &fulllen, line, linelen);
323 }
324 fclose(f);
325
326 if (contents)
327 drop_trailing_newlines(contents);
328 free(line);
329 return contents;
330}
331
332static bool write_string(const char *fnam, const char *string)
333{
334 FILE *f;
335 size_t len, ret;
336
337 if (!(f = fopen(fnam, "w")))
338 return false;
339 len = strlen(string);
340 ret = fwrite(string, 1, len, f);
341 if (ret != len) {
342 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
343 fclose(f);
344 return false;
345 }
346 if (fclose(f) < 0) {
347 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
348 return false;
349 }
350 return true;
351}
352
353/*
354 * hierarchies, i.e. 'cpu,cpuacct'
355 */
356char **hierarchies;
357int num_hierarchies;
358
359struct cgfs_files {
360 char *name;
361 uint32_t uid, gid;
362 uint32_t mode;
363};
364
0619767c 365#define ALLOC_NUM 20
237e200e
SH
366static bool store_hierarchy(char *stridx, char *h)
367{
0619767c
SH
368 if (num_hierarchies % ALLOC_NUM == 0) {
369 size_t n = (num_hierarchies / ALLOC_NUM) + 1;
370 n *= ALLOC_NUM;
371 char **tmp = realloc(hierarchies, n * sizeof(char *));
0619767c
SH
372 if (!tmp) {
373 fprintf(stderr, "Out of memory\n");
374 exit(1);
375 }
237e200e 376 hierarchies = tmp;
237e200e
SH
377 }
378
0619767c 379 hierarchies[num_hierarchies++] = must_copy_string(h);
237e200e
SH
380 return true;
381}
382
383static void print_subsystems(void)
384{
385 int i;
386
387 fprintf(stderr, "hierarchies:");
388 for (i = 0; i < num_hierarchies; i++) {
389 if (hierarchies[i])
390 fprintf(stderr, " %d: %s\n", i, hierarchies[i]);
391 }
392}
393
394static bool in_comma_list(const char *needle, const char *haystack)
395{
396 const char *s = haystack, *e;
397 size_t nlen = strlen(needle);
398
399 while (*s && (e = index(s, ','))) {
400 if (nlen != e - s) {
401 s = e + 1;
402 continue;
403 }
404 if (strncmp(needle, s, nlen) == 0)
405 return true;
406 s = e + 1;
407 }
408 if (strcmp(needle, s) == 0)
409 return true;
410 return false;
411}
412
413/* do we need to do any massaging here? I'm not sure... */
414static char *find_mounted_controller(const char *controller)
415{
416 int i;
417
418 for (i = 0; i < num_hierarchies; i++) {
419 if (!hierarchies[i])
420 continue;
421 if (strcmp(hierarchies[i], controller) == 0)
422 return hierarchies[i];
423 if (in_comma_list(controller, hierarchies[i]))
424 return hierarchies[i];
425 }
426
427 return NULL;
428}
429
430bool cgfs_set_value(const char *controller, const char *cgroup, const char *file,
431 const char *value)
432{
433 size_t len;
434 char *fnam, *tmpc = find_mounted_controller(controller);
435
436 if (!tmpc)
437 return false;
438 /* basedir / tmpc / cgroup / file \0 */
439 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
440 fnam = alloca(len);
441 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
442
443 return write_string(fnam, value);
444}
445
446// Chown all the files in the cgroup directory. We do this when we create
447// a cgroup on behalf of a user.
448static void chown_all_cgroup_files(const char *dirname, uid_t uid, gid_t gid)
449{
450 struct dirent dirent, *direntp;
451 char path[MAXPATHLEN];
452 size_t len;
453 DIR *d;
454 int ret;
455
456 len = strlen(dirname);
457 if (len >= MAXPATHLEN) {
458 fprintf(stderr, "chown_all_cgroup_files: pathname too long: %s\n", dirname);
459 return;
460 }
461
462 d = opendir(dirname);
463 if (!d) {
464 fprintf(stderr, "chown_all_cgroup_files: failed to open %s\n", dirname);
465 return;
466 }
467
468 while (readdir_r(d, &dirent, &direntp) == 0 && direntp) {
469 if (!strcmp(direntp->d_name, ".") || !strcmp(direntp->d_name, ".."))
470 continue;
471 ret = snprintf(path, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
472 if (ret < 0 || ret >= MAXPATHLEN) {
473 fprintf(stderr, "chown_all_cgroup_files: pathname too long under %s\n", dirname);
474 continue;
475 }
476 if (chown(path, uid, gid) < 0)
477 fprintf(stderr, "Failed to chown file %s to %u:%u", path, uid, gid);
478 }
479 closedir(d);
480}
481
482int cgfs_create(const char *controller, const char *cg, uid_t uid, gid_t gid)
483{
484 size_t len;
485 char *dirnam, *tmpc = find_mounted_controller(controller);
486
487 if (!tmpc)
488 return -EINVAL;
489 /* basedir / tmpc / cg \0 */
490 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
491 dirnam = alloca(len);
492 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
493
494 if (mkdir(dirnam, 0755) < 0)
495 return -errno;
496
497 if (uid == 0 && gid == 0)
498 return 0;
499
500 if (chown(dirnam, uid, gid) < 0)
501 return -errno;
502
503 chown_all_cgroup_files(dirnam, uid, gid);
504
505 return 0;
506}
507
508static bool recursive_rmdir(const char *dirname)
509{
510 struct dirent dirent, *direntp;
511 DIR *dir;
512 bool ret = false;
513 char pathname[MAXPATHLEN];
514
515 dir = opendir(dirname);
516 if (!dir) {
517#if DEBUG
518 fprintf(stderr, "%s: failed to open %s: %s\n", __func__, dirname, strerror(errno));
519#endif
520 return false;
521 }
522
523 while (!readdir_r(dir, &dirent, &direntp)) {
524 struct stat mystat;
525 int rc;
526
527 if (!direntp)
528 break;
529
530 if (!strcmp(direntp->d_name, ".") ||
531 !strcmp(direntp->d_name, ".."))
532 continue;
533
534 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
535 if (rc < 0 || rc >= MAXPATHLEN) {
536 fprintf(stderr, "pathname too long\n");
537 continue;
538 }
539
540 ret = lstat(pathname, &mystat);
541 if (ret) {
542#if DEBUG
543 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
544#endif
545 continue;
546 }
547 if (S_ISDIR(mystat.st_mode)) {
548 if (!recursive_rmdir(pathname)) {
549#if DEBUG
550 fprintf(stderr, "Error removing %s\n", pathname);
551#endif
552 }
553 }
554 }
555
556 ret = true;
557 if (closedir(dir) < 0) {
558 fprintf(stderr, "%s: failed to close directory %s: %s\n", __func__, dirname, strerror(errno));
559 ret = false;
560 }
561
562 if (rmdir(dirname) < 0) {
563#if DEBUG
564 fprintf(stderr, "%s: failed to delete %s: %s\n", __func__, dirname, strerror(errno));
565#endif
566 ret = false;
567 }
568
569 return ret;
570}
571
572bool cgfs_remove(const char *controller, const char *cg)
573{
574 size_t len;
575 char *dirnam, *tmpc = find_mounted_controller(controller);
576
577 if (!tmpc)
578 return false;
579 /* basedir / tmpc / cg \0 */
580 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
581 dirnam = alloca(len);
582 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
583 return recursive_rmdir(dirnam);
584}
585
586bool cgfs_chmod_file(const char *controller, const char *file, mode_t mode)
587{
588 size_t len;
589 char *pathname, *tmpc = find_mounted_controller(controller);
590
591 if (!tmpc)
592 return false;
593 /* basedir / tmpc / file \0 */
594 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
595 pathname = alloca(len);
596 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
597 if (chmod(pathname, mode) < 0)
598 return false;
599 return true;
600}
601
602static int chown_tasks_files(const char *dirname, uid_t uid, gid_t gid)
603{
604 size_t len;
605 char *fname;
606
607 len = strlen(dirname) + strlen("/cgroup.procs") + 1;
608 fname = alloca(len);
609 snprintf(fname, len, "%s/tasks", dirname);
610 if (chown(fname, uid, gid) != 0)
611 return -errno;
612 snprintf(fname, len, "%s/cgroup.procs", dirname);
613 if (chown(fname, uid, gid) != 0)
614 return -errno;
615 return 0;
616}
617
618int cgfs_chown_file(const char *controller, const char *file, uid_t uid, gid_t gid)
619{
620 size_t len;
621 char *pathname, *tmpc = find_mounted_controller(controller);
622
623 if (!tmpc)
624 return -EINVAL;
625 /* basedir / tmpc / file \0 */
626 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
627 pathname = alloca(len);
628 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
629 if (chown(pathname, uid, gid) < 0)
630 return -errno;
631
632 if (is_dir(pathname))
633 // like cgmanager did, we want to chown the tasks file as well
634 return chown_tasks_files(pathname, uid, gid);
635
636 return 0;
637}
638
639FILE *open_pids_file(const char *controller, const char *cgroup)
640{
641 size_t len;
642 char *pathname, *tmpc = find_mounted_controller(controller);
643
644 if (!tmpc)
645 return NULL;
646 /* basedir / tmpc / cgroup / "cgroup.procs" \0 */
647 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 4 + strlen("cgroup.procs");
648 pathname = alloca(len);
649 snprintf(pathname, len, "%s/%s/%s/cgroup.procs", basedir, tmpc, cgroup);
650 return fopen(pathname, "w");
651}
652
f366da65
WB
653static bool cgfs_iterate_cgroup(const char *controller, const char *cgroup, bool directories,
654 void ***list, size_t typesize,
655 void* (*iterator)(const char*, const char*, const char*))
237e200e
SH
656{
657 size_t len;
658 char *dirname, *tmpc = find_mounted_controller(controller);
659 char pathname[MAXPATHLEN];
f366da65 660 size_t sz = 0, asz = 0;
237e200e
SH
661 struct dirent dirent, *direntp;
662 DIR *dir;
663 int ret;
664
f366da65 665 *list = NULL;
237e200e 666 if (!tmpc)
e97c834b 667 return false;
237e200e
SH
668
669 /* basedir / tmpc / cgroup \0 */
670 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
671 dirname = alloca(len);
672 snprintf(dirname, len, "%s/%s/%s", basedir, tmpc, cgroup);
673
674 dir = opendir(dirname);
675 if (!dir)
676 return false;
677
678 while (!readdir_r(dir, &dirent, &direntp)) {
679 struct stat mystat;
680 int rc;
681
682 if (!direntp)
683 break;
684
685 if (!strcmp(direntp->d_name, ".") ||
686 !strcmp(direntp->d_name, ".."))
687 continue;
688
689 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
690 if (rc < 0 || rc >= MAXPATHLEN) {
691 fprintf(stderr, "%s: pathname too long under %s\n", __func__, dirname);
692 continue;
693 }
694
695 ret = lstat(pathname, &mystat);
696 if (ret) {
697 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
698 continue;
699 }
f366da65
WB
700 if ((!directories && !S_ISREG(mystat.st_mode)) ||
701 (directories && !S_ISDIR(mystat.st_mode)))
237e200e
SH
702 continue;
703
704 if (sz+2 >= asz) {
f366da65 705 void **tmp;
237e200e
SH
706 asz += BATCH_SIZE;
707 do {
f366da65 708 tmp = realloc(*list, asz * typesize);
237e200e
SH
709 } while (!tmp);
710 *list = tmp;
711 }
f366da65 712 (*list)[sz] = (*iterator)(controller, cgroup, direntp->d_name);
237e200e
SH
713 (*list)[sz+1] = NULL;
714 sz++;
715 }
716 if (closedir(dir) < 0) {
717 fprintf(stderr, "%s: failed closedir for %s: %s\n", __func__, dirname, strerror(errno));
718 return false;
719 }
720 return true;
721}
722
f366da65
WB
723static void *make_children_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
724{
725 char *dup;
726 do {
727 dup = strdup(dir_entry);
728 } while (!dup);
729 return dup;
730}
731
732bool cgfs_list_children(const char *controller, const char *cgroup, char ***list)
733{
734 return cgfs_iterate_cgroup(controller, cgroup, true, (void***)list, sizeof(*list), &make_children_list_entry);
735}
736
237e200e
SH
737void free_key(struct cgfs_files *k)
738{
739 if (!k)
740 return;
741 free(k->name);
742 free(k);
743}
744
745void free_keys(struct cgfs_files **keys)
746{
747 int i;
748
749 if (!keys)
750 return;
751 for (i = 0; keys[i]; i++) {
752 free_key(keys[i]);
753 }
754 free(keys);
755}
756
757bool cgfs_get_value(const char *controller, const char *cgroup, const char *file, char **value)
758{
759 size_t len;
760 char *fnam, *tmpc = find_mounted_controller(controller);
761
762 if (!tmpc)
763 return false;
764 /* basedir / tmpc / cgroup / file \0 */
765 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
766 fnam = alloca(len);
767 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
768
769 *value = slurp_file(fnam);
770 return *value != NULL;
771}
772
773struct cgfs_files *cgfs_get_key(const char *controller, const char *cgroup, const char *file)
774{
775 size_t len;
776 char *fnam, *tmpc = find_mounted_controller(controller);
777 struct stat sb;
778 struct cgfs_files *newkey;
779 int ret;
780
781 if (!tmpc)
782 return false;
783
784 if (file && *file == '/')
785 file++;
786
787 if (file && index(file, '/'))
788 return NULL;
789
790 /* basedir / tmpc / cgroup / file \0 */
791 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
792 if (file)
793 len += strlen(file) + 1;
794 fnam = alloca(len);
795 snprintf(fnam, len, "%s/%s/%s%s%s", basedir, tmpc, cgroup,
796 file ? "/" : "", file ? file : "");
797
798 ret = stat(fnam, &sb);
799 if (ret < 0)
800 return NULL;
801
802 do {
803 newkey = malloc(sizeof(struct cgfs_files));
804 } while (!newkey);
805 if (file)
806 newkey->name = must_copy_string(file);
807 else if (rindex(cgroup, '/'))
808 newkey->name = must_copy_string(rindex(cgroup, '/'));
809 else
810 newkey->name = must_copy_string(cgroup);
811 newkey->uid = sb.st_uid;
812 newkey->gid = sb.st_gid;
813 newkey->mode = sb.st_mode;
814
815 return newkey;
816}
817
f366da65 818static void *make_key_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
237e200e 819{
f366da65
WB
820 struct cgfs_files *entry = cgfs_get_key(controller, cgroup, dir_entry);
821 if (!entry) {
822 fprintf(stderr, "%s: Error getting files under %s:%s\n",
823 __func__, controller, cgroup);
237e200e 824 }
f366da65
WB
825 return entry;
826}
827
828bool cgfs_list_keys(const char *controller, const char *cgroup, struct cgfs_files ***keys)
829{
830 return cgfs_iterate_cgroup(controller, cgroup, false, (void***)keys, sizeof(*keys), &make_key_list_entry);
237e200e
SH
831}
832
833bool is_child_cgroup(const char *controller, const char *cgroup, const char *f)
834{ size_t len;
835 char *fnam, *tmpc = find_mounted_controller(controller);
836 int ret;
837 struct stat sb;
838
839 if (!tmpc)
840 return false;
841 /* basedir / tmpc / cgroup / f \0 */
842 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(f) + 4;
843 fnam = alloca(len);
844 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, f);
845
846 ret = stat(fnam, &sb);
847 if (ret < 0 || !S_ISDIR(sb.st_mode))
848 return false;
849 return true;
850}
851
852#define SEND_CREDS_OK 0
853#define SEND_CREDS_NOTSK 1
854#define SEND_CREDS_FAIL 2
855static bool recv_creds(int sock, struct ucred *cred, char *v);
856static int wait_for_pid(pid_t pid);
857static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst);
b10bdd6c 858static int send_creds_clone_wrapper(void *arg);
237e200e
SH
859
860/*
b10bdd6c 861 * clone a task which switches to @task's namespace and writes '1'.
237e200e
SH
862 * over a unix sock so we can read the task's reaper's pid in our
863 * namespace
b10bdd6c
FG
864 *
865 * Note: glibc's fork() does not respect pidns, which can lead to failed
866 * assertions inside glibc (and thus failed forks) if the child's pid in
867 * the pidns and the parent pid outside are identical. Using clone prevents
868 * this issue.
237e200e
SH
869 */
870static void write_task_init_pid_exit(int sock, pid_t target)
871{
237e200e
SH
872 char fnam[100];
873 pid_t pid;
237e200e 874 int fd, ret;
b10bdd6c
FG
875 size_t stack_size = sysconf(_SC_PAGESIZE);
876 void *stack = alloca(stack_size);
237e200e
SH
877
878 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", (int)target);
879 if (ret < 0 || ret >= sizeof(fnam))
880 _exit(1);
881
882 fd = open(fnam, O_RDONLY);
883 if (fd < 0) {
884 perror("write_task_init_pid_exit open of ns/pid");
885 _exit(1);
886 }
887 if (setns(fd, 0)) {
888 perror("write_task_init_pid_exit setns 1");
889 close(fd);
890 _exit(1);
891 }
b10bdd6c 892 pid = clone(send_creds_clone_wrapper, stack + stack_size, SIGCHLD, &sock);
237e200e
SH
893 if (pid < 0)
894 _exit(1);
895 if (pid != 0) {
896 if (!wait_for_pid(pid))
897 _exit(1);
898 _exit(0);
899 }
b10bdd6c
FG
900}
901
902static int send_creds_clone_wrapper(void *arg) {
903 struct ucred cred;
904 char v;
905 int sock = *(int *)arg;
237e200e
SH
906
907 /* we are the child */
908 cred.uid = 0;
909 cred.gid = 0;
910 cred.pid = 1;
911 v = '1';
912 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK)
b10bdd6c
FG
913 return 1;
914 return 0;
237e200e
SH
915}
916
917static pid_t get_init_pid_for_task(pid_t task)
918{
919 int sock[2];
920 pid_t pid;
921 pid_t ret = -1;
922 char v = '0';
923 struct ucred cred;
924
925 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
926 perror("socketpair");
927 return -1;
928 }
929
930 pid = fork();
931 if (pid < 0)
932 goto out;
933 if (!pid) {
934 close(sock[1]);
935 write_task_init_pid_exit(sock[0], task);
936 _exit(0);
937 }
938
939 if (!recv_creds(sock[1], &cred, &v))
940 goto out;
941 ret = cred.pid;
942
943out:
944 close(sock[0]);
945 close(sock[1]);
946 if (pid > 0)
947 wait_for_pid(pid);
948 return ret;
949}
950
951static pid_t lookup_initpid_in_store(pid_t qpid)
952{
953 pid_t answer = 0;
954 struct stat sb;
955 struct pidns_init_store *e;
956 char fnam[100];
957
958 snprintf(fnam, 100, "/proc/%d/ns/pid", qpid);
959 store_lock();
960 if (stat(fnam, &sb) < 0)
961 goto out;
962 e = lookup_verify_initpid(&sb);
963 if (e) {
964 answer = e->initpid;
965 goto out;
966 }
967 answer = get_init_pid_for_task(qpid);
968 if (answer > 0)
969 save_initpid(&sb, answer);
970
971out:
972 /* we prune at end in case we are returning
973 * the value we were about to return */
974 prune_initpid_store();
975 store_unlock();
976 return answer;
977}
978
979static int wait_for_pid(pid_t pid)
980{
981 int status, ret;
982
983 if (pid <= 0)
984 return -1;
985
986again:
987 ret = waitpid(pid, &status, 0);
988 if (ret == -1) {
989 if (errno == EINTR)
990 goto again;
991 return -1;
992 }
993 if (ret != pid)
994 goto again;
995 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
996 return -1;
997 return 0;
998}
999
1000
1001/*
1002 * append pid to *src.
1003 * src: a pointer to a char* in which ot append the pid.
1004 * sz: the number of characters printed so far, minus trailing \0.
1005 * asz: the allocated size so far
1006 * pid: the pid to append
1007 */
1008static void must_strcat_pid(char **src, size_t *sz, size_t *asz, pid_t pid)
1009{
1010 char tmp[30];
1011
1012 int tmplen = sprintf(tmp, "%d\n", (int)pid);
1013
1014 if (!*src || tmplen + *sz + 1 >= *asz) {
1015 char *tmp;
1016 do {
1017 tmp = realloc(*src, *asz + BUF_RESERVE_SIZE);
1018 } while (!tmp);
1019 *src = tmp;
1020 *asz += BUF_RESERVE_SIZE;
1021 }
bbfd0e33 1022 memcpy((*src) +*sz , tmp, tmplen+1); /* include the \0 */
237e200e 1023 *sz += tmplen;
237e200e
SH
1024}
1025
1026/*
1027 * Given a open file * to /proc/pid/{u,g}id_map, and an id
1028 * valid in the caller's namespace, return the id mapped into
1029 * pid's namespace.
1030 * Returns the mapped id, or -1 on error.
1031 */
1032unsigned int
1033convert_id_to_ns(FILE *idfile, unsigned int in_id)
1034{
1035 unsigned int nsuid, // base id for a range in the idfile's namespace
1036 hostuid, // base id for a range in the caller's namespace
1037 count; // number of ids in this range
1038 char line[400];
1039 int ret;
1040
1041 fseek(idfile, 0L, SEEK_SET);
1042 while (fgets(line, 400, idfile)) {
1043 ret = sscanf(line, "%u %u %u\n", &nsuid, &hostuid, &count);
1044 if (ret != 3)
1045 continue;
1046 if (hostuid + count < hostuid || nsuid + count < nsuid) {
1047 /*
1048 * uids wrapped around - unexpected as this is a procfile,
1049 * so just bail.
1050 */
1051 fprintf(stderr, "pid wrapparound at entry %u %u %u in %s\n",
1052 nsuid, hostuid, count, line);
1053 return -1;
1054 }
1055 if (hostuid <= in_id && hostuid+count > in_id) {
1056 /*
1057 * now since hostuid <= in_id < hostuid+count, and
1058 * hostuid+count and nsuid+count do not wrap around,
1059 * we know that nsuid+(in_id-hostuid) which must be
1060 * less that nsuid+(count) must not wrap around
1061 */
1062 return (in_id - hostuid) + nsuid;
1063 }
1064 }
1065
1066 // no answer found
1067 return -1;
1068}
1069
1070/*
1071 * for is_privileged_over,
1072 * specify whether we require the calling uid to be root in his
1073 * namespace
1074 */
1075#define NS_ROOT_REQD true
1076#define NS_ROOT_OPT false
1077
1078#define PROCLEN 100
1079
1080static bool is_privileged_over(pid_t pid, uid_t uid, uid_t victim, bool req_ns_root)
1081{
1082 char fpath[PROCLEN];
1083 int ret;
1084 bool answer = false;
1085 uid_t nsuid;
1086
1087 if (victim == -1 || uid == -1)
1088 return false;
1089
1090 /*
1091 * If the request is one not requiring root in the namespace,
1092 * then having the same uid suffices. (i.e. uid 1000 has write
1093 * access to files owned by uid 1000
1094 */
1095 if (!req_ns_root && uid == victim)
1096 return true;
1097
1098 ret = snprintf(fpath, PROCLEN, "/proc/%d/uid_map", pid);
1099 if (ret < 0 || ret >= PROCLEN)
1100 return false;
1101 FILE *f = fopen(fpath, "r");
1102 if (!f)
1103 return false;
1104
1105 /* if caller's not root in his namespace, reject */
1106 nsuid = convert_id_to_ns(f, uid);
1107 if (nsuid)
1108 goto out;
1109
1110 /*
1111 * If victim is not mapped into caller's ns, reject.
1112 * XXX I'm not sure this check is needed given that fuse
1113 * will be sending requests where the vfs has converted
1114 */
1115 nsuid = convert_id_to_ns(f, victim);
1116 if (nsuid == -1)
1117 goto out;
1118
1119 answer = true;
1120
1121out:
1122 fclose(f);
1123 return answer;
1124}
1125
1126static bool perms_include(int fmode, mode_t req_mode)
1127{
1128 mode_t r;
1129
1130 switch (req_mode & O_ACCMODE) {
1131 case O_RDONLY:
1132 r = S_IROTH;
1133 break;
1134 case O_WRONLY:
1135 r = S_IWOTH;
1136 break;
1137 case O_RDWR:
1138 r = S_IROTH | S_IWOTH;
1139 break;
1140 default:
1141 return false;
1142 }
1143 return ((fmode & r) == r);
1144}
1145
1146
1147/*
1148 * taskcg is a/b/c
1149 * querycg is /a/b/c/d/e
1150 * we return 'd'
1151 */
1152static char *get_next_cgroup_dir(const char *taskcg, const char *querycg)
1153{
1154 char *start, *end;
1155
1156 if (strlen(taskcg) <= strlen(querycg)) {
1157 fprintf(stderr, "%s: I was fed bad input\n", __func__);
1158 return NULL;
1159 }
1160
1161 if (strcmp(querycg, "/") == 0)
1162 start = strdup(taskcg + 1);
1163 else
1164 start = strdup(taskcg + strlen(querycg) + 1);
1165 if (!start)
1166 return NULL;
1167 end = strchr(start, '/');
1168 if (end)
1169 *end = '\0';
1170 return start;
1171}
1172
1173static void stripnewline(char *x)
1174{
1175 size_t l = strlen(x);
1176 if (l && x[l-1] == '\n')
1177 x[l-1] = '\0';
1178}
1179
1180static char *get_pid_cgroup(pid_t pid, const char *contrl)
1181{
1182 char fnam[PROCLEN];
1183 FILE *f;
1184 char *answer = NULL;
1185 char *line = NULL;
1186 size_t len = 0;
1187 int ret;
1188 const char *h = find_mounted_controller(contrl);
1189 if (!h)
1190 return NULL;
1191
1192 ret = snprintf(fnam, PROCLEN, "/proc/%d/cgroup", pid);
1193 if (ret < 0 || ret >= PROCLEN)
1194 return NULL;
1195 if (!(f = fopen(fnam, "r")))
1196 return NULL;
1197
1198 while (getline(&line, &len, f) != -1) {
1199 char *c1, *c2;
1200 if (!line[0])
1201 continue;
1202 c1 = strchr(line, ':');
1203 if (!c1)
1204 goto out;
1205 c1++;
1206 c2 = strchr(c1, ':');
1207 if (!c2)
1208 goto out;
1209 *c2 = '\0';
1210 if (strcmp(c1, h) != 0)
1211 continue;
1212 c2++;
1213 stripnewline(c2);
1214 do {
1215 answer = strdup(c2);
1216 } while (!answer);
1217 break;
1218 }
1219
1220out:
1221 fclose(f);
1222 free(line);
1223 return answer;
1224}
1225
1226/*
1227 * check whether a fuse context may access a cgroup dir or file
1228 *
1229 * If file is not null, it is a cgroup file to check under cg.
1230 * If file is null, then we are checking perms on cg itself.
1231 *
1232 * For files we can check the mode of the list_keys result.
1233 * For cgroups, we must make assumptions based on the files under the
1234 * cgroup, because cgmanager doesn't tell us ownership/perms of cgroups
1235 * yet.
1236 */
1237static bool fc_may_access(struct fuse_context *fc, const char *contrl, const char *cg, const char *file, mode_t mode)
1238{
1239 struct cgfs_files *k = NULL;
1240 bool ret = false;
1241
1242 k = cgfs_get_key(contrl, cg, file);
1243 if (!k)
1244 return false;
1245
1246 if (is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
1247 if (perms_include(k->mode >> 6, mode)) {
1248 ret = true;
1249 goto out;
1250 }
1251 }
1252 if (fc->gid == k->gid) {
1253 if (perms_include(k->mode >> 3, mode)) {
1254 ret = true;
1255 goto out;
1256 }
1257 }
1258 ret = perms_include(k->mode, mode);
1259
1260out:
1261 free_key(k);
1262 return ret;
1263}
1264
1265#define INITSCOPE "/init.scope"
1266static void prune_init_slice(char *cg)
1267{
1268 char *point;
1269 size_t cg_len = strlen(cg), initscope_len = strlen(INITSCOPE);
1270
1271 if (cg_len < initscope_len)
1272 return;
1273
1274 point = cg + cg_len - initscope_len;
1275 if (strcmp(point, INITSCOPE) == 0) {
1276 if (point == cg)
1277 *(point+1) = '\0';
1278 else
1279 *point = '\0';
1280 }
1281}
1282
1283/*
1284 * If pid is in /a/b/c/d, he may only act on things under cg=/a/b/c/d.
1285 * If pid is in /a, he may act on /a/b, but not on /b.
1286 * if the answer is false and nextcg is not NULL, then *nextcg will point
1287 * to a string containing the next cgroup directory under cg, which must be
1288 * freed by the caller.
1289 */
1290static bool caller_is_in_ancestor(pid_t pid, const char *contrl, const char *cg, char **nextcg)
1291{
1292 bool answer = false;
1293 char *c2 = get_pid_cgroup(pid, contrl);
1294 char *linecmp;
1295
1296 if (!c2)
1297 return false;
1298 prune_init_slice(c2);
1299
1300 /*
1301 * callers pass in '/' for root cgroup, otherwise they pass
1302 * in a cgroup without leading '/'
1303 */
1304 linecmp = *cg == '/' ? c2 : c2+1;
1305 if (strncmp(linecmp, cg, strlen(linecmp)) != 0) {
1306 if (nextcg) {
1307 *nextcg = get_next_cgroup_dir(linecmp, cg);
1308 }
1309 goto out;
1310 }
1311 answer = true;
1312
1313out:
1314 free(c2);
1315 return answer;
1316}
1317
1318/*
1319 * If pid is in /a/b/c, he may see that /a exists, but not /b or /a/c.
1320 */
1321static bool caller_may_see_dir(pid_t pid, const char *contrl, const char *cg)
1322{
1323 bool answer = false;
1324 char *c2, *task_cg;
1325 size_t target_len, task_len;
1326
1327 if (strcmp(cg, "/") == 0)
1328 return true;
1329
1330 c2 = get_pid_cgroup(pid, contrl);
1331 if (!c2)
1332 return false;
1333 prune_init_slice(c2);
1334
1335 task_cg = c2 + 1;
1336 target_len = strlen(cg);
1337 task_len = strlen(task_cg);
1338 if (task_len == 0) {
1339 /* Task is in the root cg, it can see everything. This case is
1340 * not handled by the strmcps below, since they test for the
1341 * last /, but that is the first / that we've chopped off
1342 * above.
1343 */
1344 answer = true;
1345 goto out;
1346 }
1347 if (strcmp(cg, task_cg) == 0) {
1348 answer = true;
1349 goto out;
1350 }
1351 if (target_len < task_len) {
1352 /* looking up a parent dir */
1353 if (strncmp(task_cg, cg, target_len) == 0 && task_cg[target_len] == '/')
1354 answer = true;
1355 goto out;
1356 }
1357 if (target_len > task_len) {
1358 /* looking up a child dir */
1359 if (strncmp(task_cg, cg, task_len) == 0 && cg[task_len] == '/')
1360 answer = true;
1361 goto out;
1362 }
1363
1364out:
1365 free(c2);
1366 return answer;
1367}
1368
1369/*
1370 * given /cgroup/freezer/a/b, return "freezer".
1371 * the returned char* should NOT be freed.
1372 */
1373static char *pick_controller_from_path(struct fuse_context *fc, const char *path)
1374{
1375 const char *p1;
1376 char *contr, *slash;
1377
1378 if (strlen(path) < 9)
1379 return NULL;
1380 if (*(path+7) != '/')
1381 return NULL;
1382 p1 = path+8;
1383 contr = strdupa(p1);
1384 if (!contr)
1385 return NULL;
1386 slash = strstr(contr, "/");
1387 if (slash)
1388 *slash = '\0';
1389
1390 int i;
1391 for (i = 0; i < num_hierarchies; i++) {
1392 if (hierarchies[i] && strcmp(hierarchies[i], contr) == 0)
1393 return hierarchies[i];
1394 }
1395 return NULL;
1396}
1397
1398/*
1399 * Find the start of cgroup in /cgroup/controller/the/cgroup/path
1400 * Note that the returned value may include files (keynames) etc
1401 */
1402static const char *find_cgroup_in_path(const char *path)
1403{
1404 const char *p1;
1405
1406 if (strlen(path) < 9)
1407 return NULL;
1408 p1 = strstr(path+8, "/");
1409 if (!p1)
1410 return NULL;
1411 return p1+1;
1412}
1413
1414/*
1415 * split the last path element from the path in @cg.
1416 * @dir is newly allocated and should be freed, @last not
1417*/
1418static void get_cgdir_and_path(const char *cg, char **dir, char **last)
1419{
1420 char *p;
1421
1422 do {
1423 *dir = strdup(cg);
1424 } while (!*dir);
1425 *last = strrchr(cg, '/');
1426 if (!*last) {
1427 *last = NULL;
1428 return;
1429 }
1430 p = strrchr(*dir, '/');
1431 *p = '\0';
1432}
1433
1434/*
1435 * FUSE ops for /cgroup
1436 */
1437
1438int cg_getattr(const char *path, struct stat *sb)
1439{
1440 struct timespec now;
1441 struct fuse_context *fc = fuse_get_context();
1442 char * cgdir = NULL;
1443 char *last = NULL, *path1, *path2;
1444 struct cgfs_files *k = NULL;
1445 const char *cgroup;
1446 const char *controller = NULL;
1447 int ret = -ENOENT;
1448
1449
1450 if (!fc)
1451 return -EIO;
1452
1453 memset(sb, 0, sizeof(struct stat));
1454
1455 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
1456 return -EINVAL;
1457
1458 sb->st_uid = sb->st_gid = 0;
1459 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
1460 sb->st_size = 0;
1461
1462 if (strcmp(path, "/cgroup") == 0) {
1463 sb->st_mode = S_IFDIR | 00755;
1464 sb->st_nlink = 2;
1465 return 0;
1466 }
1467
1468 controller = pick_controller_from_path(fc, path);
1469 if (!controller)
1470 return -EIO;
1471 cgroup = find_cgroup_in_path(path);
1472 if (!cgroup) {
1473 /* this is just /cgroup/controller, return it as a dir */
1474 sb->st_mode = S_IFDIR | 00755;
1475 sb->st_nlink = 2;
1476 return 0;
1477 }
1478
1479 get_cgdir_and_path(cgroup, &cgdir, &last);
1480
1481 if (!last) {
1482 path1 = "/";
1483 path2 = cgdir;
1484 } else {
1485 path1 = cgdir;
1486 path2 = last;
1487 }
1488
1489 pid_t initpid = lookup_initpid_in_store(fc->pid);
1490 if (initpid <= 0)
1491 initpid = fc->pid;
1492 /* check that cgcopy is either a child cgroup of cgdir, or listed in its keys.
1493 * Then check that caller's cgroup is under path if last is a child
1494 * cgroup, or cgdir if last is a file */
1495
1496 if (is_child_cgroup(controller, path1, path2)) {
1497 if (!caller_may_see_dir(initpid, controller, cgroup)) {
1498 ret = -ENOENT;
1499 goto out;
1500 }
1501 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
1502 /* this is just /cgroup/controller, return it as a dir */
1503 sb->st_mode = S_IFDIR | 00555;
1504 sb->st_nlink = 2;
1505 ret = 0;
1506 goto out;
1507 }
1508 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY)) {
1509 ret = -EACCES;
1510 goto out;
1511 }
1512
1513 // get uid, gid, from '/tasks' file and make up a mode
1514 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
1515 sb->st_mode = S_IFDIR | 00755;
1516 k = cgfs_get_key(controller, cgroup, NULL);
1517 if (!k) {
1518 sb->st_uid = sb->st_gid = 0;
1519 } else {
1520 sb->st_uid = k->uid;
1521 sb->st_gid = k->gid;
1522 }
1523 free_key(k);
1524 sb->st_nlink = 2;
1525 ret = 0;
1526 goto out;
1527 }
1528
1529 if ((k = cgfs_get_key(controller, path1, path2)) != NULL) {
1530 sb->st_mode = S_IFREG | k->mode;
1531 sb->st_nlink = 1;
1532 sb->st_uid = k->uid;
1533 sb->st_gid = k->gid;
1534 sb->st_size = 0;
1535 free_key(k);
1536 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
1537 ret = -ENOENT;
1538 goto out;
1539 }
1540 if (!fc_may_access(fc, controller, path1, path2, O_RDONLY)) {
1541 ret = -EACCES;
1542 goto out;
1543 }
1544
1545 ret = 0;
1546 }
1547
1548out:
1549 free(cgdir);
1550 return ret;
1551}
1552
1553int cg_opendir(const char *path, struct fuse_file_info *fi)
1554{
1555 struct fuse_context *fc = fuse_get_context();
1556 const char *cgroup;
1557 struct file_info *dir_info;
1558 char *controller = NULL;
1559
1560 if (!fc)
1561 return -EIO;
1562
1563 if (strcmp(path, "/cgroup") == 0) {
1564 cgroup = NULL;
1565 controller = NULL;
1566 } else {
1567 // return list of keys for the controller, and list of child cgroups
1568 controller = pick_controller_from_path(fc, path);
1569 if (!controller)
1570 return -EIO;
1571
1572 cgroup = find_cgroup_in_path(path);
1573 if (!cgroup) {
1574 /* this is just /cgroup/controller, return its contents */
1575 cgroup = "/";
1576 }
1577 }
1578
1579 pid_t initpid = lookup_initpid_in_store(fc->pid);
1580 if (initpid <= 0)
1581 initpid = fc->pid;
1582 if (cgroup) {
1583 if (!caller_may_see_dir(initpid, controller, cgroup))
1584 return -ENOENT;
1585 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY))
1586 return -EACCES;
1587 }
1588
1589 /* we'll free this at cg_releasedir */
1590 dir_info = malloc(sizeof(*dir_info));
1591 if (!dir_info)
1592 return -ENOMEM;
1593 dir_info->controller = must_copy_string(controller);
1594 dir_info->cgroup = must_copy_string(cgroup);
1595 dir_info->type = LXC_TYPE_CGDIR;
1596 dir_info->buf = NULL;
1597 dir_info->file = NULL;
1598 dir_info->buflen = 0;
1599
1600 fi->fh = (unsigned long)dir_info;
1601 return 0;
1602}
1603
1604int cg_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
1605 struct fuse_file_info *fi)
1606{
1607 struct file_info *d = (struct file_info *)fi->fh;
1608 struct cgfs_files **list = NULL;
1609 int i, ret;
1610 char *nextcg = NULL;
1611 struct fuse_context *fc = fuse_get_context();
1612 char **clist = NULL;
1613
1614 if (d->type != LXC_TYPE_CGDIR) {
1615 fprintf(stderr, "Internal error: file cache info used in readdir\n");
1616 return -EIO;
1617 }
1618 if (!d->cgroup && !d->controller) {
1619 // ls /var/lib/lxcfs/cgroup - just show list of controllers
1620 int i;
1621
1622 for (i = 0; i < num_hierarchies; i++) {
1623 if (hierarchies[i] && filler(buf, hierarchies[i], NULL, 0) != 0) {
1624 return -EIO;
1625 }
1626 }
1627 return 0;
1628 }
1629
1630 if (!cgfs_list_keys(d->controller, d->cgroup, &list)) {
1631 // not a valid cgroup
1632 ret = -EINVAL;
1633 goto out;
1634 }
1635
1636 pid_t initpid = lookup_initpid_in_store(fc->pid);
1637 if (initpid <= 0)
1638 initpid = fc->pid;
1639 if (!caller_is_in_ancestor(initpid, d->controller, d->cgroup, &nextcg)) {
1640 if (nextcg) {
1641 ret = filler(buf, nextcg, NULL, 0);
1642 free(nextcg);
1643 if (ret != 0) {
1644 ret = -EIO;
1645 goto out;
1646 }
1647 }
1648 ret = 0;
1649 goto out;
1650 }
1651
1652 for (i = 0; list[i]; i++) {
1653 if (filler(buf, list[i]->name, NULL, 0) != 0) {
1654 ret = -EIO;
1655 goto out;
1656 }
1657 }
1658
1659 // now get the list of child cgroups
1660
1661 if (!cgfs_list_children(d->controller, d->cgroup, &clist)) {
1662 ret = 0;
1663 goto out;
1664 }
f366da65
WB
1665 if (clist) {
1666 for (i = 0; clist[i]; i++) {
1667 if (filler(buf, clist[i], NULL, 0) != 0) {
1668 ret = -EIO;
1669 goto out;
1670 }
237e200e
SH
1671 }
1672 }
1673 ret = 0;
1674
1675out:
1676 free_keys(list);
1677 if (clist) {
1678 for (i = 0; clist[i]; i++)
1679 free(clist[i]);
1680 free(clist);
1681 }
1682 return ret;
1683}
1684
1685static void do_release_file_info(struct file_info *f)
1686{
1687 if (!f)
1688 return;
1689 free(f->controller);
1690 free(f->cgroup);
1691 free(f->file);
1692 free(f->buf);
1693 free(f);
1694}
1695
1696int cg_releasedir(const char *path, struct fuse_file_info *fi)
1697{
1698 struct file_info *d = (struct file_info *)fi->fh;
1699
1700 do_release_file_info(d);
1701 return 0;
1702}
1703
1704int cg_open(const char *path, struct fuse_file_info *fi)
1705{
1706 const char *cgroup;
1707 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1708 struct cgfs_files *k = NULL;
1709 struct file_info *file_info;
1710 struct fuse_context *fc = fuse_get_context();
1711 int ret;
1712
1713 if (!fc)
1714 return -EIO;
1715
1716 controller = pick_controller_from_path(fc, path);
1717 if (!controller)
1718 return -EIO;
1719 cgroup = find_cgroup_in_path(path);
1720 if (!cgroup)
1721 return -EINVAL;
1722
1723 get_cgdir_and_path(cgroup, &cgdir, &last);
1724 if (!last) {
1725 path1 = "/";
1726 path2 = cgdir;
1727 } else {
1728 path1 = cgdir;
1729 path2 = last;
1730 }
1731
1732 k = cgfs_get_key(controller, path1, path2);
1733 if (!k) {
1734 ret = -EINVAL;
1735 goto out;
1736 }
1737 free_key(k);
1738
1739 pid_t initpid = lookup_initpid_in_store(fc->pid);
1740 if (initpid <= 0)
1741 initpid = fc->pid;
1742 if (!caller_may_see_dir(initpid, controller, path1)) {
1743 ret = -ENOENT;
1744 goto out;
1745 }
1746 if (!fc_may_access(fc, controller, path1, path2, fi->flags)) {
1747 // should never get here
1748 ret = -EACCES;
1749 goto out;
1750 }
1751
1752 /* we'll free this at cg_release */
1753 file_info = malloc(sizeof(*file_info));
1754 if (!file_info) {
1755 ret = -ENOMEM;
1756 goto out;
1757 }
1758 file_info->controller = must_copy_string(controller);
1759 file_info->cgroup = must_copy_string(path1);
1760 file_info->file = must_copy_string(path2);
1761 file_info->type = LXC_TYPE_CGFILE;
1762 file_info->buf = NULL;
1763 file_info->buflen = 0;
1764
1765 fi->fh = (unsigned long)file_info;
1766 ret = 0;
1767
1768out:
1769 free(cgdir);
1770 return ret;
1771}
1772
bddbb106
SH
1773int cg_access(const char *path, int mode)
1774{
1775 const char *cgroup;
1776 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1777 struct cgfs_files *k = NULL;
1778 struct fuse_context *fc = fuse_get_context();
1779 int ret;
1780
1781 if (!fc)
1782 return -EIO;
1783
1784 controller = pick_controller_from_path(fc, path);
1785 if (!controller)
1786 return -EIO;
1787 cgroup = find_cgroup_in_path(path);
1788 if (!cgroup)
1789 return -EINVAL;
1790
1791 get_cgdir_and_path(cgroup, &cgdir, &last);
1792 if (!last) {
1793 path1 = "/";
1794 path2 = cgdir;
1795 } else {
1796 path1 = cgdir;
1797 path2 = last;
1798 }
1799
1800 k = cgfs_get_key(controller, path1, path2);
1801 if (!k) {
1802 ret = -EINVAL;
1803 goto out;
1804 }
1805 free_key(k);
1806
1807 pid_t initpid = lookup_initpid_in_store(fc->pid);
1808 if (initpid <= 0)
1809 initpid = fc->pid;
1810 if (!caller_may_see_dir(initpid, controller, path1)) {
1811 ret = -ENOENT;
1812 goto out;
1813 }
1814 if (!fc_may_access(fc, controller, path1, path2, mode)) {
1815 ret = -EACCES;
1816 goto out;
1817 }
1818
1819 ret = 0;
1820
1821out:
1822 free(cgdir);
1823 return ret;
1824}
1825
237e200e
SH
1826int cg_release(const char *path, struct fuse_file_info *fi)
1827{
1828 struct file_info *f = (struct file_info *)fi->fh;
1829
1830 do_release_file_info(f);
1831 return 0;
1832}
1833
1834#define POLLIN_SET ( EPOLLIN | EPOLLHUP | EPOLLRDHUP )
1835
1836static bool wait_for_sock(int sock, int timeout)
1837{
1838 struct epoll_event ev;
1839 int epfd, ret, now, starttime, deltatime, saved_errno;
1840
1841 if ((starttime = time(NULL)) < 0)
1842 return false;
1843
1844 if ((epfd = epoll_create(1)) < 0) {
1845 fprintf(stderr, "Failed to create epoll socket: %m\n");
1846 return false;
1847 }
1848
1849 ev.events = POLLIN_SET;
1850 ev.data.fd = sock;
1851 if (epoll_ctl(epfd, EPOLL_CTL_ADD, sock, &ev) < 0) {
1852 fprintf(stderr, "Failed adding socket to epoll: %m\n");
1853 close(epfd);
1854 return false;
1855 }
1856
1857again:
1858 if ((now = time(NULL)) < 0) {
1859 close(epfd);
1860 return false;
1861 }
1862
1863 deltatime = (starttime + timeout) - now;
1864 if (deltatime < 0) { // timeout
1865 errno = 0;
1866 close(epfd);
1867 return false;
1868 }
1869 ret = epoll_wait(epfd, &ev, 1, 1000*deltatime + 1);
1870 if (ret < 0 && errno == EINTR)
1871 goto again;
1872 saved_errno = errno;
1873 close(epfd);
1874
1875 if (ret <= 0) {
1876 errno = saved_errno;
1877 return false;
1878 }
1879 return true;
1880}
1881
1882static int msgrecv(int sockfd, void *buf, size_t len)
1883{
1884 if (!wait_for_sock(sockfd, 2))
1885 return -1;
1886 return recv(sockfd, buf, len, MSG_DONTWAIT);
1887}
1888
1889static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst)
1890{
1891 struct msghdr msg = { 0 };
1892 struct iovec iov;
1893 struct cmsghdr *cmsg;
1894 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1895 char buf[1];
1896 buf[0] = 'p';
1897
1898 if (pingfirst) {
1899 if (msgrecv(sock, buf, 1) != 1) {
1900 fprintf(stderr, "%s: Error getting reply from server over socketpair\n",
1901 __func__);
1902 return SEND_CREDS_FAIL;
1903 }
1904 }
1905
1906 msg.msg_control = cmsgbuf;
1907 msg.msg_controllen = sizeof(cmsgbuf);
1908
1909 cmsg = CMSG_FIRSTHDR(&msg);
1910 cmsg->cmsg_len = CMSG_LEN(sizeof(struct ucred));
1911 cmsg->cmsg_level = SOL_SOCKET;
1912 cmsg->cmsg_type = SCM_CREDENTIALS;
1913 memcpy(CMSG_DATA(cmsg), cred, sizeof(*cred));
1914
1915 msg.msg_name = NULL;
1916 msg.msg_namelen = 0;
1917
1918 buf[0] = v;
1919 iov.iov_base = buf;
1920 iov.iov_len = sizeof(buf);
1921 msg.msg_iov = &iov;
1922 msg.msg_iovlen = 1;
1923
1924 if (sendmsg(sock, &msg, 0) < 0) {
1925 fprintf(stderr, "%s: failed at sendmsg: %s\n", __func__,
1926 strerror(errno));
1927 if (errno == 3)
1928 return SEND_CREDS_NOTSK;
1929 return SEND_CREDS_FAIL;
1930 }
1931
1932 return SEND_CREDS_OK;
1933}
1934
1935static bool recv_creds(int sock, struct ucred *cred, char *v)
1936{
1937 struct msghdr msg = { 0 };
1938 struct iovec iov;
1939 struct cmsghdr *cmsg;
1940 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1941 char buf[1];
1942 int ret;
1943 int optval = 1;
1944
1945 *v = '1';
1946
1947 cred->pid = -1;
1948 cred->uid = -1;
1949 cred->gid = -1;
1950
1951 if (setsockopt(sock, SOL_SOCKET, SO_PASSCRED, &optval, sizeof(optval)) == -1) {
1952 fprintf(stderr, "Failed to set passcred: %s\n", strerror(errno));
1953 return false;
1954 }
1955 buf[0] = '1';
1956 if (write(sock, buf, 1) != 1) {
1957 fprintf(stderr, "Failed to start write on scm fd: %s\n", strerror(errno));
1958 return false;
1959 }
1960
1961 msg.msg_name = NULL;
1962 msg.msg_namelen = 0;
1963 msg.msg_control = cmsgbuf;
1964 msg.msg_controllen = sizeof(cmsgbuf);
1965
1966 iov.iov_base = buf;
1967 iov.iov_len = sizeof(buf);
1968 msg.msg_iov = &iov;
1969 msg.msg_iovlen = 1;
1970
1971 if (!wait_for_sock(sock, 2)) {
1972 fprintf(stderr, "Timed out waiting for scm_cred: %s\n",
1973 strerror(errno));
1974 return false;
1975 }
1976 ret = recvmsg(sock, &msg, MSG_DONTWAIT);
1977 if (ret < 0) {
1978 fprintf(stderr, "Failed to receive scm_cred: %s\n",
1979 strerror(errno));
1980 return false;
1981 }
1982
1983 cmsg = CMSG_FIRSTHDR(&msg);
1984
1985 if (cmsg && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred)) &&
1986 cmsg->cmsg_level == SOL_SOCKET &&
1987 cmsg->cmsg_type == SCM_CREDENTIALS) {
1988 memcpy(cred, CMSG_DATA(cmsg), sizeof(*cred));
1989 }
1990 *v = buf[0];
1991
1992 return true;
1993}
1994
35174b0f
FG
1995struct pid_ns_clone_args {
1996 int *cpipe;
1997 int sock;
1998 pid_t tpid;
1999 int (*wrapped) (int, pid_t); // pid_from_ns or pid_to_ns
2000};
2001
2002/*
2003 * pid_ns_clone_wrapper - wraps pid_to_ns or pid_from_ns for usage
2004 * with clone(). This simply writes '1' as ACK back to the parent
2005 * before calling the actual wrapped function.
2006 */
2007static int pid_ns_clone_wrapper(void *arg) {
2008 struct pid_ns_clone_args* args = (struct pid_ns_clone_args *) arg;
2009 char b = '1';
2010
2011 close(args->cpipe[0]);
2012 if (write(args->cpipe[1], &b, sizeof(char)) < 0) {
2013 fprintf(stderr, "%s (child): error on write: %s\n",
2014 __func__, strerror(errno));
2015 }
2016 close(args->cpipe[1]);
2017 return args->wrapped(args->sock, args->tpid);
2018}
237e200e
SH
2019
2020/*
2021 * pid_to_ns - reads pids from a ucred over a socket, then writes the
2022 * int value back over the socket. This shifts the pid from the
2023 * sender's pidns into tpid's pidns.
2024 */
35174b0f 2025static int pid_to_ns(int sock, pid_t tpid)
237e200e
SH
2026{
2027 char v = '0';
2028 struct ucred cred;
2029
2030 while (recv_creds(sock, &cred, &v)) {
2031 if (v == '1')
35174b0f 2032 return 0;
237e200e 2033 if (write(sock, &cred.pid, sizeof(pid_t)) != sizeof(pid_t))
35174b0f 2034 return 1;
237e200e 2035 }
35174b0f 2036 return 0;
237e200e
SH
2037}
2038
35174b0f 2039
237e200e
SH
2040/*
2041 * pid_to_ns_wrapper: when you setns into a pidns, you yourself remain
35174b0f
FG
2042 * in your old pidns. Only children which you clone will be in the target
2043 * pidns. So the pid_to_ns_wrapper does the setns, then clones a child to
2044 * actually convert pids.
2045 *
2046 * Note: glibc's fork() does not respect pidns, which can lead to failed
2047 * assertions inside glibc (and thus failed forks) if the child's pid in
2048 * the pidns and the parent pid outside are identical. Using clone prevents
2049 * this issue.
237e200e
SH
2050 */
2051static void pid_to_ns_wrapper(int sock, pid_t tpid)
2052{
2053 int newnsfd = -1, ret, cpipe[2];
2054 char fnam[100];
2055 pid_t cpid;
2056 char v;
2057
2058 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2059 if (ret < 0 || ret >= sizeof(fnam))
2060 _exit(1);
2061 newnsfd = open(fnam, O_RDONLY);
2062 if (newnsfd < 0)
2063 _exit(1);
2064 if (setns(newnsfd, 0) < 0)
2065 _exit(1);
2066 close(newnsfd);
2067
2068 if (pipe(cpipe) < 0)
2069 _exit(1);
2070
35174b0f
FG
2071 struct pid_ns_clone_args args = {
2072 .cpipe = cpipe,
2073 .sock = sock,
2074 .tpid = tpid,
2075 .wrapped = &pid_to_ns
2076 };
2077 size_t stack_size = sysconf(_SC_PAGESIZE);
2078 void *stack = alloca(stack_size);
2079
2080 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
237e200e
SH
2081 if (cpid < 0)
2082 _exit(1);
2083
237e200e
SH
2084 // give the child 1 second to be done forking and
2085 // write its ack
2086 if (!wait_for_sock(cpipe[0], 1))
2087 _exit(1);
2088 ret = read(cpipe[0], &v, 1);
2089 if (ret != sizeof(char) || v != '1')
2090 _exit(1);
2091
2092 if (!wait_for_pid(cpid))
2093 _exit(1);
2094 _exit(0);
2095}
2096
2097/*
2098 * To read cgroup files with a particular pid, we will setns into the child
2099 * pidns, open a pipe, fork a child - which will be the first to really be in
2100 * the child ns - which does the cgfs_get_value and writes the data to the pipe.
2101 */
2102bool do_read_pids(pid_t tpid, const char *contrl, const char *cg, const char *file, char **d)
2103{
2104 int sock[2] = {-1, -1};
2105 char *tmpdata = NULL;
2106 int ret;
2107 pid_t qpid, cpid = -1;
2108 bool answer = false;
2109 char v = '0';
2110 struct ucred cred;
2111 size_t sz = 0, asz = 0;
2112
2113 if (!cgfs_get_value(contrl, cg, file, &tmpdata))
2114 return false;
2115
2116 /*
2117 * Now we read the pids from returned data one by one, pass
2118 * them into a child in the target namespace, read back the
2119 * translated pids, and put them into our to-return data
2120 */
2121
2122 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2123 perror("socketpair");
2124 free(tmpdata);
2125 return false;
2126 }
2127
2128 cpid = fork();
2129 if (cpid == -1)
2130 goto out;
2131
2132 if (!cpid) // child - exits when done
2133 pid_to_ns_wrapper(sock[1], tpid);
2134
2135 char *ptr = tmpdata;
2136 cred.uid = 0;
2137 cred.gid = 0;
2138 while (sscanf(ptr, "%d\n", &qpid) == 1) {
2139 cred.pid = qpid;
2140 ret = send_creds(sock[0], &cred, v, true);
2141
2142 if (ret == SEND_CREDS_NOTSK)
2143 goto next;
2144 if (ret == SEND_CREDS_FAIL)
2145 goto out;
2146
2147 // read converted results
2148 if (!wait_for_sock(sock[0], 2)) {
2149 fprintf(stderr, "%s: timed out waiting for pid from child: %s\n",
2150 __func__, strerror(errno));
2151 goto out;
2152 }
2153 if (read(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2154 fprintf(stderr, "%s: error reading pid from child: %s\n",
2155 __func__, strerror(errno));
2156 goto out;
2157 }
2158 must_strcat_pid(d, &sz, &asz, qpid);
2159next:
2160 ptr = strchr(ptr, '\n');
2161 if (!ptr)
2162 break;
2163 ptr++;
2164 }
2165
2166 cred.pid = getpid();
2167 v = '1';
2168 if (send_creds(sock[0], &cred, v, true) != SEND_CREDS_OK) {
2169 // failed to ask child to exit
2170 fprintf(stderr, "%s: failed to ask child to exit: %s\n",
2171 __func__, strerror(errno));
2172 goto out;
2173 }
2174
2175 answer = true;
2176
2177out:
2178 free(tmpdata);
2179 if (cpid != -1)
2180 wait_for_pid(cpid);
2181 if (sock[0] != -1) {
2182 close(sock[0]);
2183 close(sock[1]);
2184 }
2185 return answer;
2186}
2187
2188int cg_read(const char *path, char *buf, size_t size, off_t offset,
2189 struct fuse_file_info *fi)
2190{
2191 struct fuse_context *fc = fuse_get_context();
2192 struct file_info *f = (struct file_info *)fi->fh;
2193 struct cgfs_files *k = NULL;
2194 char *data = NULL;
2195 int ret, s;
2196 bool r;
2197
2198 if (f->type != LXC_TYPE_CGFILE) {
2199 fprintf(stderr, "Internal error: directory cache info used in cg_read\n");
2200 return -EIO;
2201 }
2202
2203 if (offset)
2204 return 0;
2205
2206 if (!fc)
2207 return -EIO;
2208
2209 if (!f->controller)
2210 return -EINVAL;
2211
2212 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2213 return -EINVAL;
2214 }
2215 free_key(k);
2216
2217
2218 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_RDONLY)) { // should never get here
2219 ret = -EACCES;
2220 goto out;
2221 }
2222
2223 if (strcmp(f->file, "tasks") == 0 ||
2224 strcmp(f->file, "/tasks") == 0 ||
2225 strcmp(f->file, "/cgroup.procs") == 0 ||
2226 strcmp(f->file, "cgroup.procs") == 0)
2227 // special case - we have to translate the pids
2228 r = do_read_pids(fc->pid, f->controller, f->cgroup, f->file, &data);
2229 else
2230 r = cgfs_get_value(f->controller, f->cgroup, f->file, &data);
2231
2232 if (!r) {
2233 ret = -EINVAL;
2234 goto out;
2235 }
2236
2237 if (!data) {
2238 ret = 0;
2239 goto out;
2240 }
2241 s = strlen(data);
2242 if (s > size)
2243 s = size;
2244 memcpy(buf, data, s);
2245 if (s > 0 && s < size && data[s-1] != '\n')
2246 buf[s++] = '\n';
2247
2248 ret = s;
2249
2250out:
2251 free(data);
2252 return ret;
2253}
2254
35174b0f 2255static int pid_from_ns(int sock, pid_t tpid)
237e200e
SH
2256{
2257 pid_t vpid;
2258 struct ucred cred;
2259 char v;
2260 int ret;
2261
2262 cred.uid = 0;
2263 cred.gid = 0;
2264 while (1) {
2265 if (!wait_for_sock(sock, 2)) {
2266 fprintf(stderr, "%s: timeout reading from parent\n", __func__);
35174b0f 2267 return 1;
237e200e
SH
2268 }
2269 if ((ret = read(sock, &vpid, sizeof(pid_t))) != sizeof(pid_t)) {
2270 fprintf(stderr, "%s: bad read from parent: %s\n",
2271 __func__, strerror(errno));
35174b0f 2272 return 1;
237e200e
SH
2273 }
2274 if (vpid == -1) // done
2275 break;
2276 v = '0';
2277 cred.pid = vpid;
2278 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK) {
2279 v = '1';
2280 cred.pid = getpid();
2281 if (send_creds(sock, &cred, v, false) != SEND_CREDS_OK)
35174b0f 2282 return 1;
237e200e
SH
2283 }
2284 }
35174b0f 2285 return 0;
237e200e
SH
2286}
2287
2288static void pid_from_ns_wrapper(int sock, pid_t tpid)
2289{
2290 int newnsfd = -1, ret, cpipe[2];
2291 char fnam[100];
2292 pid_t cpid;
2293 char v;
2294
2295 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2296 if (ret < 0 || ret >= sizeof(fnam))
2297 _exit(1);
2298 newnsfd = open(fnam, O_RDONLY);
2299 if (newnsfd < 0)
2300 _exit(1);
2301 if (setns(newnsfd, 0) < 0)
2302 _exit(1);
2303 close(newnsfd);
2304
2305 if (pipe(cpipe) < 0)
2306 _exit(1);
2307
35174b0f
FG
2308 struct pid_ns_clone_args args = {
2309 .cpipe = cpipe,
2310 .sock = sock,
2311 .tpid = tpid,
2312 .wrapped = &pid_from_ns
2313 };
f0f8b851
SH
2314 size_t stack_size = sysconf(_SC_PAGESIZE);
2315 void *stack = alloca(stack_size);
35174b0f
FG
2316
2317 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
237e200e
SH
2318 if (cpid < 0)
2319 _exit(1);
2320
237e200e
SH
2321 // give the child 1 second to be done forking and
2322 // write its ack
2323 if (!wait_for_sock(cpipe[0], 1))
f0f8b851 2324 _exit(1);
237e200e 2325 ret = read(cpipe[0], &v, 1);
f0f8b851
SH
2326 if (ret != sizeof(char) || v != '1')
2327 _exit(1);
237e200e
SH
2328
2329 if (!wait_for_pid(cpid))
2330 _exit(1);
2331 _exit(0);
237e200e
SH
2332}
2333
2334/*
2335 * Given host @uid, return the uid to which it maps in
2336 * @pid's user namespace, or -1 if none.
2337 */
2338bool hostuid_to_ns(uid_t uid, pid_t pid, uid_t *answer)
2339{
2340 FILE *f;
2341 char line[400];
2342
2343 sprintf(line, "/proc/%d/uid_map", pid);
2344 if ((f = fopen(line, "r")) == NULL) {
2345 return false;
2346 }
2347
2348 *answer = convert_id_to_ns(f, uid);
2349 fclose(f);
2350
2351 if (*answer == -1)
2352 return false;
2353 return true;
2354}
2355
2356/*
2357 * get_pid_creds: get the real uid and gid of @pid from
2358 * /proc/$$/status
2359 * (XXX should we use euid here?)
2360 */
2361void get_pid_creds(pid_t pid, uid_t *uid, gid_t *gid)
2362{
2363 char line[400];
2364 uid_t u;
2365 gid_t g;
2366 FILE *f;
2367
2368 *uid = -1;
2369 *gid = -1;
2370 sprintf(line, "/proc/%d/status", pid);
2371 if ((f = fopen(line, "r")) == NULL) {
2372 fprintf(stderr, "Error opening %s: %s\n", line, strerror(errno));
2373 return;
2374 }
2375 while (fgets(line, 400, f)) {
2376 if (strncmp(line, "Uid:", 4) == 0) {
2377 if (sscanf(line+4, "%u", &u) != 1) {
2378 fprintf(stderr, "bad uid line for pid %u\n", pid);
2379 fclose(f);
2380 return;
2381 }
2382 *uid = u;
2383 } else if (strncmp(line, "Gid:", 4) == 0) {
2384 if (sscanf(line+4, "%u", &g) != 1) {
2385 fprintf(stderr, "bad gid line for pid %u\n", pid);
2386 fclose(f);
2387 return;
2388 }
2389 *gid = g;
2390 }
2391 }
2392 fclose(f);
2393}
2394
2395/*
2396 * May the requestor @r move victim @v to a new cgroup?
2397 * This is allowed if
2398 * . they are the same task
2399 * . they are ownedy by the same uid
2400 * . @r is root on the host, or
2401 * . @v's uid is mapped into @r's where @r is root.
2402 */
2403bool may_move_pid(pid_t r, uid_t r_uid, pid_t v)
2404{
2405 uid_t v_uid, tmpuid;
2406 gid_t v_gid;
2407
2408 if (r == v)
2409 return true;
2410 if (r_uid == 0)
2411 return true;
2412 get_pid_creds(v, &v_uid, &v_gid);
2413 if (r_uid == v_uid)
2414 return true;
2415 if (hostuid_to_ns(r_uid, r, &tmpuid) && tmpuid == 0
2416 && hostuid_to_ns(v_uid, r, &tmpuid))
2417 return true;
2418 return false;
2419}
2420
2421static bool do_write_pids(pid_t tpid, uid_t tuid, const char *contrl, const char *cg,
2422 const char *file, const char *buf)
2423{
2424 int sock[2] = {-1, -1};
2425 pid_t qpid, cpid = -1;
2426 FILE *pids_file = NULL;
2427 bool answer = false, fail = false;
2428
2429 pids_file = open_pids_file(contrl, cg);
2430 if (!pids_file)
2431 return false;
2432
2433 /*
2434 * write the pids to a socket, have helper in writer's pidns
2435 * call movepid for us
2436 */
2437 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2438 perror("socketpair");
2439 goto out;
2440 }
2441
2442 cpid = fork();
2443 if (cpid == -1)
2444 goto out;
2445
2446 if (!cpid) { // child
2447 fclose(pids_file);
2448 pid_from_ns_wrapper(sock[1], tpid);
2449 }
2450
2451 const char *ptr = buf;
2452 while (sscanf(ptr, "%d", &qpid) == 1) {
2453 struct ucred cred;
2454 char v;
2455
2456 if (write(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2457 fprintf(stderr, "%s: error writing pid to child: %s\n",
2458 __func__, strerror(errno));
2459 goto out;
2460 }
2461
2462 if (recv_creds(sock[0], &cred, &v)) {
2463 if (v == '0') {
2464 if (!may_move_pid(tpid, tuid, cred.pid)) {
2465 fail = true;
2466 break;
2467 }
2468 if (fprintf(pids_file, "%d", (int) cred.pid) < 0)
2469 fail = true;
2470 }
2471 }
2472
2473 ptr = strchr(ptr, '\n');
2474 if (!ptr)
2475 break;
2476 ptr++;
2477 }
2478
2479 /* All good, write the value */
2480 qpid = -1;
2481 if (write(sock[0], &qpid ,sizeof(qpid)) != sizeof(qpid))
2482 fprintf(stderr, "Warning: failed to ask child to exit\n");
2483
2484 if (!fail)
2485 answer = true;
2486
2487out:
2488 if (cpid != -1)
2489 wait_for_pid(cpid);
2490 if (sock[0] != -1) {
2491 close(sock[0]);
2492 close(sock[1]);
2493 }
2494 if (pids_file) {
2495 if (fclose(pids_file) != 0)
2496 answer = false;
2497 }
2498 return answer;
2499}
2500
2501int cg_write(const char *path, const char *buf, size_t size, off_t offset,
2502 struct fuse_file_info *fi)
2503{
2504 struct fuse_context *fc = fuse_get_context();
2505 char *localbuf = NULL;
2506 struct cgfs_files *k = NULL;
2507 struct file_info *f = (struct file_info *)fi->fh;
2508 bool r;
2509
2510 if (f->type != LXC_TYPE_CGFILE) {
2511 fprintf(stderr, "Internal error: directory cache info used in cg_write\n");
2512 return -EIO;
2513 }
2514
2515 if (offset)
2516 return 0;
2517
2518 if (!fc)
2519 return -EIO;
2520
2521 localbuf = alloca(size+1);
2522 localbuf[size] = '\0';
2523 memcpy(localbuf, buf, size);
2524
2525 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2526 size = -EINVAL;
2527 goto out;
2528 }
2529
2530 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_WRONLY)) {
2531 size = -EACCES;
2532 goto out;
2533 }
2534
2535 if (strcmp(f->file, "tasks") == 0 ||
2536 strcmp(f->file, "/tasks") == 0 ||
2537 strcmp(f->file, "/cgroup.procs") == 0 ||
2538 strcmp(f->file, "cgroup.procs") == 0)
2539 // special case - we have to translate the pids
2540 r = do_write_pids(fc->pid, fc->uid, f->controller, f->cgroup, f->file, localbuf);
2541 else
2542 r = cgfs_set_value(f->controller, f->cgroup, f->file, localbuf);
2543
2544 if (!r)
2545 size = -EINVAL;
2546
2547out:
2548 free_key(k);
2549 return size;
2550}
2551
2552int cg_chown(const char *path, uid_t uid, gid_t gid)
2553{
2554 struct fuse_context *fc = fuse_get_context();
2555 char *cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2556 struct cgfs_files *k = NULL;
2557 const char *cgroup;
2558 int ret;
2559
2560 if (!fc)
2561 return -EIO;
2562
2563 if (strcmp(path, "/cgroup") == 0)
2564 return -EINVAL;
2565
2566 controller = pick_controller_from_path(fc, path);
2567 if (!controller)
2568 return -EINVAL;
2569 cgroup = find_cgroup_in_path(path);
2570 if (!cgroup)
2571 /* this is just /cgroup/controller */
2572 return -EINVAL;
2573
2574 get_cgdir_and_path(cgroup, &cgdir, &last);
2575
2576 if (!last) {
2577 path1 = "/";
2578 path2 = cgdir;
2579 } else {
2580 path1 = cgdir;
2581 path2 = last;
2582 }
2583
2584 if (is_child_cgroup(controller, path1, path2)) {
2585 // get uid, gid, from '/tasks' file and make up a mode
2586 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2587 k = cgfs_get_key(controller, cgroup, "tasks");
2588
2589 } else
2590 k = cgfs_get_key(controller, path1, path2);
2591
2592 if (!k) {
2593 ret = -EINVAL;
2594 goto out;
2595 }
2596
2597 /*
2598 * This being a fuse request, the uid and gid must be valid
2599 * in the caller's namespace. So we can just check to make
2600 * sure that the caller is root in his uid, and privileged
2601 * over the file's current owner.
2602 */
2603 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_REQD)) {
2604 ret = -EACCES;
2605 goto out;
2606 }
2607
2608 ret = cgfs_chown_file(controller, cgroup, uid, gid);
2609
2610out:
2611 free_key(k);
2612 free(cgdir);
2613
2614 return ret;
2615}
2616
2617int cg_chmod(const char *path, mode_t mode)
2618{
2619 struct fuse_context *fc = fuse_get_context();
2620 char * cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2621 struct cgfs_files *k = NULL;
2622 const char *cgroup;
2623 int ret;
2624
2625 if (!fc)
2626 return -EIO;
2627
2628 if (strcmp(path, "/cgroup") == 0)
2629 return -EINVAL;
2630
2631 controller = pick_controller_from_path(fc, path);
2632 if (!controller)
2633 return -EINVAL;
2634 cgroup = find_cgroup_in_path(path);
2635 if (!cgroup)
2636 /* this is just /cgroup/controller */
2637 return -EINVAL;
2638
2639 get_cgdir_and_path(cgroup, &cgdir, &last);
2640
2641 if (!last) {
2642 path1 = "/";
2643 path2 = cgdir;
2644 } else {
2645 path1 = cgdir;
2646 path2 = last;
2647 }
2648
2649 if (is_child_cgroup(controller, path1, path2)) {
2650 // get uid, gid, from '/tasks' file and make up a mode
2651 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2652 k = cgfs_get_key(controller, cgroup, "tasks");
2653
2654 } else
2655 k = cgfs_get_key(controller, path1, path2);
2656
2657 if (!k) {
2658 ret = -EINVAL;
2659 goto out;
2660 }
2661
2662 /*
2663 * This being a fuse request, the uid and gid must be valid
2664 * in the caller's namespace. So we can just check to make
2665 * sure that the caller is root in his uid, and privileged
2666 * over the file's current owner.
2667 */
2668 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
2669 ret = -EPERM;
2670 goto out;
2671 }
2672
2673 if (!cgfs_chmod_file(controller, cgroup, mode)) {
2674 ret = -EINVAL;
2675 goto out;
2676 }
2677
2678 ret = 0;
2679out:
2680 free_key(k);
2681 free(cgdir);
2682 return ret;
2683}
2684
2685int cg_mkdir(const char *path, mode_t mode)
2686{
2687 struct fuse_context *fc = fuse_get_context();
2688 char *last = NULL, *path1, *cgdir = NULL, *controller, *next = NULL;
2689 const char *cgroup;
2690 int ret;
2691
2692 if (!fc)
2693 return -EIO;
2694
2695
2696 controller = pick_controller_from_path(fc, path);
2697 if (!controller)
2698 return -EINVAL;
2699
2700 cgroup = find_cgroup_in_path(path);
2701 if (!cgroup)
2702 return -EINVAL;
2703
2704 get_cgdir_and_path(cgroup, &cgdir, &last);
2705 if (!last)
2706 path1 = "/";
2707 else
2708 path1 = cgdir;
2709
2710 pid_t initpid = lookup_initpid_in_store(fc->pid);
2711 if (initpid <= 0)
2712 initpid = fc->pid;
2713 if (!caller_is_in_ancestor(initpid, controller, path1, &next)) {
2714 if (!next)
2715 ret = -EINVAL;
2716 else if (last && strcmp(next, last) == 0)
2717 ret = -EEXIST;
2718 else
2719 ret = -ENOENT;
2720 goto out;
2721 }
2722
2723 if (!fc_may_access(fc, controller, path1, NULL, O_RDWR)) {
2724 ret = -EACCES;
2725 goto out;
2726 }
2727 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
2728 ret = -EACCES;
2729 goto out;
2730 }
2731
2732 ret = cgfs_create(controller, cgroup, fc->uid, fc->gid);
2733
2734out:
2735 free(cgdir);
2736 free(next);
2737 return ret;
2738}
2739
2740int cg_rmdir(const char *path)
2741{
2742 struct fuse_context *fc = fuse_get_context();
2743 char *last = NULL, *cgdir = NULL, *controller, *next = NULL;
2744 const char *cgroup;
2745 int ret;
2746
2747 if (!fc)
2748 return -EIO;
2749
2750 controller = pick_controller_from_path(fc, path);
2751 if (!controller)
2752 return -EINVAL;
2753
2754 cgroup = find_cgroup_in_path(path);
2755 if (!cgroup)
2756 return -EINVAL;
2757
2758 get_cgdir_and_path(cgroup, &cgdir, &last);
2759 if (!last) {
2760 ret = -EINVAL;
2761 goto out;
2762 }
2763
2764 pid_t initpid = lookup_initpid_in_store(fc->pid);
2765 if (initpid <= 0)
2766 initpid = fc->pid;
2767 if (!caller_is_in_ancestor(initpid, controller, cgroup, &next)) {
2768 if (!last || strcmp(next, last) == 0)
2769 ret = -EBUSY;
2770 else
2771 ret = -ENOENT;
2772 goto out;
2773 }
2774
2775 if (!fc_may_access(fc, controller, cgdir, NULL, O_WRONLY)) {
2776 ret = -EACCES;
2777 goto out;
2778 }
2779 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
2780 ret = -EACCES;
2781 goto out;
2782 }
2783
2784 if (!cgfs_remove(controller, cgroup)) {
2785 ret = -EINVAL;
2786 goto out;
2787 }
2788
2789 ret = 0;
2790
2791out:
2792 free(cgdir);
2793 free(next);
2794 return ret;
2795}
2796
2797static bool startswith(const char *line, const char *pref)
2798{
2799 if (strncmp(line, pref, strlen(pref)) == 0)
2800 return true;
2801 return false;
2802}
2803
2804static void get_mem_cached(char *memstat, unsigned long *v)
2805{
2806 char *eol;
2807
2808 *v = 0;
2809 while (*memstat) {
2810 if (startswith(memstat, "total_cache")) {
2811 sscanf(memstat + 11, "%lu", v);
2812 *v /= 1024;
2813 return;
2814 }
2815 eol = strchr(memstat, '\n');
2816 if (!eol)
2817 return;
2818 memstat = eol+1;
2819 }
2820}
2821
2822static void get_blkio_io_value(char *str, unsigned major, unsigned minor, char *iotype, unsigned long *v)
2823{
2824 char *eol;
2825 char key[32];
2826
2827 memset(key, 0, 32);
2828 snprintf(key, 32, "%u:%u %s", major, minor, iotype);
2829
2830 size_t len = strlen(key);
2831 *v = 0;
2832
2833 while (*str) {
2834 if (startswith(str, key)) {
2835 sscanf(str + len, "%lu", v);
2836 return;
2837 }
2838 eol = strchr(str, '\n');
2839 if (!eol)
2840 return;
2841 str = eol+1;
2842 }
2843}
2844
2845static int read_file(const char *path, char *buf, size_t size,
2846 struct file_info *d)
2847{
2848 size_t linelen = 0, total_len = 0, rv = 0;
2849 char *line = NULL;
2850 char *cache = d->buf;
2851 size_t cache_size = d->buflen;
2852 FILE *f = fopen(path, "r");
2853 if (!f)
2854 return 0;
2855
2856 while (getline(&line, &linelen, f) != -1) {
2857 size_t l = snprintf(cache, cache_size, "%s", line);
2858 if (l < 0) {
2859 perror("Error writing to cache");
2860 rv = 0;
2861 goto err;
2862 }
2863 if (l >= cache_size) {
2864 fprintf(stderr, "Internal error: truncated write to cache\n");
2865 rv = 0;
2866 goto err;
2867 }
2868 cache += l;
2869 cache_size -= l;
2870 total_len += l;
2871 }
2872
2873 d->size = total_len;
2874 if (total_len > size ) total_len = size;
2875
2876 /* read from off 0 */
2877 memcpy(buf, d->buf, total_len);
2878 rv = total_len;
2879 err:
2880 fclose(f);
2881 free(line);
2882 return rv;
2883}
2884
2885/*
2886 * FUSE ops for /proc
2887 */
2888
2889static unsigned long get_memlimit(const char *cgroup)
2890{
2891 char *memlimit_str = NULL;
2892 unsigned long memlimit = -1;
2893
2894 if (cgfs_get_value("memory", cgroup, "memory.limit_in_bytes", &memlimit_str))
2895 memlimit = strtoul(memlimit_str, NULL, 10);
2896
2897 free(memlimit_str);
2898
2899 return memlimit;
2900}
2901
2902static unsigned long get_min_memlimit(const char *cgroup)
2903{
2904 char *copy = strdupa(cgroup);
2905 unsigned long memlimit = 0, retlimit;
2906
2907 retlimit = get_memlimit(copy);
2908
2909 while (strcmp(copy, "/") != 0) {
2910 copy = dirname(copy);
2911 memlimit = get_memlimit(copy);
2912 if (memlimit != -1 && memlimit < retlimit)
2913 retlimit = memlimit;
2914 };
2915
2916 return retlimit;
2917}
2918
2919static int proc_meminfo_read(char *buf, size_t size, off_t offset,
2920 struct fuse_file_info *fi)
2921{
2922 struct fuse_context *fc = fuse_get_context();
2923 struct file_info *d = (struct file_info *)fi->fh;
2924 char *cg;
2925 char *memusage_str = NULL, *memstat_str = NULL,
2926 *memswlimit_str = NULL, *memswusage_str = NULL,
2927 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
2928 unsigned long memlimit = 0, memusage = 0, memswlimit = 0, memswusage = 0,
2929 cached = 0, hosttotal = 0;
2930 char *line = NULL;
2931 size_t linelen = 0, total_len = 0, rv = 0;
2932 char *cache = d->buf;
2933 size_t cache_size = d->buflen;
2934 FILE *f = NULL;
2935
2936 if (offset){
2937 if (offset > d->size)
2938 return -EINVAL;
2939 if (!d->cached)
2940 return 0;
2941 int left = d->size - offset;
2942 total_len = left > size ? size: left;
2943 memcpy(buf, cache + offset, total_len);
2944 return total_len;
2945 }
2946
2947 pid_t initpid = lookup_initpid_in_store(fc->pid);
2948 if (initpid <= 0)
2949 initpid = fc->pid;
2950 cg = get_pid_cgroup(initpid, "memory");
2951 if (!cg)
2952 return read_file("/proc/meminfo", buf, size, d);
6d2f6996 2953 prune_init_slice(cg);
237e200e
SH
2954
2955 memlimit = get_min_memlimit(cg);
2956 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
2957 goto err;
2958 if (!cgfs_get_value("memory", cg, "memory.stat", &memstat_str))
2959 goto err;
2960
2961 // Following values are allowed to fail, because swapaccount might be turned
2962 // off for current kernel
2963 if(cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str) &&
2964 cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str))
2965 {
2966 /* If swapaccounting is turned on, then default value is assumed to be that of cgroup / */
2967 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
2968 goto err;
2969 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
2970 goto err;
2971
2972 memswlimit = strtoul(memswlimit_str, NULL, 10);
2973 memswusage = strtoul(memswusage_str, NULL, 10);
2974
2975 if (!strcmp(memswlimit_str, memswlimit_default_str))
2976 memswlimit = 0;
2977 if (!strcmp(memswusage_str, memswusage_default_str))
2978 memswusage = 0;
2979
2980 memswlimit = memswlimit / 1024;
2981 memswusage = memswusage / 1024;
2982 }
2983
2984 memusage = strtoul(memusage_str, NULL, 10);
2985 memlimit /= 1024;
2986 memusage /= 1024;
2987
2988 get_mem_cached(memstat_str, &cached);
2989
2990 f = fopen("/proc/meminfo", "r");
2991 if (!f)
2992 goto err;
2993
2994 while (getline(&line, &linelen, f) != -1) {
2995 size_t l;
2996 char *printme, lbuf[100];
2997
2998 memset(lbuf, 0, 100);
2999 if (startswith(line, "MemTotal:")) {
3000 sscanf(line+14, "%lu", &hosttotal);
3001 if (hosttotal < memlimit)
3002 memlimit = hosttotal;
3003 snprintf(lbuf, 100, "MemTotal: %8lu kB\n", memlimit);
3004 printme = lbuf;
3005 } else if (startswith(line, "MemFree:")) {
3006 snprintf(lbuf, 100, "MemFree: %8lu kB\n", memlimit - memusage);
3007 printme = lbuf;
3008 } else if (startswith(line, "MemAvailable:")) {
3009 snprintf(lbuf, 100, "MemAvailable: %8lu kB\n", memlimit - memusage);
3010 printme = lbuf;
3011 } else if (startswith(line, "SwapTotal:") && memswlimit > 0) {
3012 snprintf(lbuf, 100, "SwapTotal: %8lu kB\n", memswlimit - memlimit);
3013 printme = lbuf;
3014 } else if (startswith(line, "SwapFree:") && memswlimit > 0 && memswusage > 0) {
3015 snprintf(lbuf, 100, "SwapFree: %8lu kB\n",
3016 (memswlimit - memlimit) - (memswusage - memusage));
3017 printme = lbuf;
da35d72a
SH
3018 } else if (startswith(line, "Slab:")) {
3019 snprintf(lbuf, 100, "Slab: %8lu kB\n", 0UL);
3020 printme = lbuf;
237e200e
SH
3021 } else if (startswith(line, "Buffers:")) {
3022 snprintf(lbuf, 100, "Buffers: %8lu kB\n", 0UL);
3023 printme = lbuf;
3024 } else if (startswith(line, "Cached:")) {
3025 snprintf(lbuf, 100, "Cached: %8lu kB\n", cached);
3026 printme = lbuf;
3027 } else if (startswith(line, "SwapCached:")) {
3028 snprintf(lbuf, 100, "SwapCached: %8lu kB\n", 0UL);
3029 printme = lbuf;
3030 } else
3031 printme = line;
3032
3033 l = snprintf(cache, cache_size, "%s", printme);
3034 if (l < 0) {
3035 perror("Error writing to cache");
3036 rv = 0;
3037 goto err;
3038
3039 }
3040 if (l >= cache_size) {
3041 fprintf(stderr, "Internal error: truncated write to cache\n");
3042 rv = 0;
3043 goto err;
3044 }
3045
3046 cache += l;
3047 cache_size -= l;
3048 total_len += l;
3049 }
3050
3051 d->cached = 1;
3052 d->size = total_len;
3053 if (total_len > size ) total_len = size;
3054 memcpy(buf, d->buf, total_len);
3055
3056 rv = total_len;
3057err:
3058 if (f)
3059 fclose(f);
3060 free(line);
3061 free(cg);
3062 free(memusage_str);
3063 free(memswlimit_str);
3064 free(memswusage_str);
3065 free(memstat_str);
3066 free(memswlimit_default_str);
3067 free(memswusage_default_str);
3068 return rv;
3069}
3070
3071/*
3072 * Read the cpuset.cpus for cg
3073 * Return the answer in a newly allocated string which must be freed
3074 */
3075static char *get_cpuset(const char *cg)
3076{
3077 char *answer;
3078
3079 if (!cgfs_get_value("cpuset", cg, "cpuset.cpus", &answer))
3080 return NULL;
3081 return answer;
3082}
3083
3084bool cpu_in_cpuset(int cpu, const char *cpuset);
3085
3086static bool cpuline_in_cpuset(const char *line, const char *cpuset)
3087{
3088 int cpu;
3089
3090 if (sscanf(line, "processor : %d", &cpu) != 1)
3091 return false;
3092 return cpu_in_cpuset(cpu, cpuset);
3093}
3094
3095/*
3096 * check whether this is a '^processor" line in /proc/cpuinfo
3097 */
3098static bool is_processor_line(const char *line)
3099{
3100 int cpu;
3101
3102 if (sscanf(line, "processor : %d", &cpu) == 1)
3103 return true;
3104 return false;
3105}
3106
3107static int proc_cpuinfo_read(char *buf, size_t size, off_t offset,
3108 struct fuse_file_info *fi)
3109{
3110 struct fuse_context *fc = fuse_get_context();
3111 struct file_info *d = (struct file_info *)fi->fh;
3112 char *cg;
3113 char *cpuset = NULL;
3114 char *line = NULL;
3115 size_t linelen = 0, total_len = 0, rv = 0;
3116 bool am_printing = false;
3117 int curcpu = -1;
3118 char *cache = d->buf;
3119 size_t cache_size = d->buflen;
3120 FILE *f = NULL;
3121
3122 if (offset){
3123 if (offset > d->size)
3124 return -EINVAL;
3125 if (!d->cached)
3126 return 0;
3127 int left = d->size - offset;
3128 total_len = left > size ? size: left;
3129 memcpy(buf, cache + offset, total_len);
3130 return total_len;
3131 }
3132
3133 pid_t initpid = lookup_initpid_in_store(fc->pid);
3134 if (initpid <= 0)
3135 initpid = fc->pid;
3136 cg = get_pid_cgroup(initpid, "cpuset");
3137 if (!cg)
3138 return read_file("proc/cpuinfo", buf, size, d);
6d2f6996 3139 prune_init_slice(cg);
237e200e
SH
3140
3141 cpuset = get_cpuset(cg);
3142 if (!cpuset)
3143 goto err;
3144
3145 f = fopen("/proc/cpuinfo", "r");
3146 if (!f)
3147 goto err;
3148
3149 while (getline(&line, &linelen, f) != -1) {
3150 size_t l;
3151 if (is_processor_line(line)) {
3152 am_printing = cpuline_in_cpuset(line, cpuset);
3153 if (am_printing) {
3154 curcpu ++;
3155 l = snprintf(cache, cache_size, "processor : %d\n", curcpu);
3156 if (l < 0) {
3157 perror("Error writing to cache");
3158 rv = 0;
3159 goto err;
3160 }
3161 if (l >= cache_size) {
3162 fprintf(stderr, "Internal error: truncated write to cache\n");
3163 rv = 0;
3164 goto err;
3165 }
3166 cache += l;
3167 cache_size -= l;
3168 total_len += l;
3169 }
3170 continue;
3171 }
3172 if (am_printing) {
3173 l = snprintf(cache, cache_size, "%s", line);
3174 if (l < 0) {
3175 perror("Error writing to cache");
3176 rv = 0;
3177 goto err;
3178 }
3179 if (l >= cache_size) {
3180 fprintf(stderr, "Internal error: truncated write to cache\n");
3181 rv = 0;
3182 goto err;
3183 }
3184 cache += l;
3185 cache_size -= l;
3186 total_len += l;
3187 }
3188 }
3189
3190 d->cached = 1;
3191 d->size = total_len;
3192 if (total_len > size ) total_len = size;
3193
3194 /* read from off 0 */
3195 memcpy(buf, d->buf, total_len);
3196 rv = total_len;
3197err:
3198 if (f)
3199 fclose(f);
3200 free(line);
3201 free(cpuset);
3202 free(cg);
3203 return rv;
3204}
3205
3206static int proc_stat_read(char *buf, size_t size, off_t offset,
3207 struct fuse_file_info *fi)
3208{
3209 struct fuse_context *fc = fuse_get_context();
3210 struct file_info *d = (struct file_info *)fi->fh;
3211 char *cg;
3212 char *cpuset = NULL;
3213 char *line = NULL;
3214 size_t linelen = 0, total_len = 0, rv = 0;
3215 int curcpu = -1; /* cpu numbering starts at 0 */
3216 unsigned long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0;
3217 unsigned long user_sum = 0, nice_sum = 0, system_sum = 0, idle_sum = 0, iowait_sum = 0,
3218 irq_sum = 0, softirq_sum = 0, steal_sum = 0, guest_sum = 0;
3219#define CPUALL_MAX_SIZE BUF_RESERVE_SIZE
3220 char cpuall[CPUALL_MAX_SIZE];
3221 /* reserve for cpu all */
3222 char *cache = d->buf + CPUALL_MAX_SIZE;
3223 size_t cache_size = d->buflen - CPUALL_MAX_SIZE;
3224 FILE *f = NULL;
3225
3226 if (offset){
3227 if (offset > d->size)
3228 return -EINVAL;
3229 if (!d->cached)
3230 return 0;
3231 int left = d->size - offset;
3232 total_len = left > size ? size: left;
3233 memcpy(buf, d->buf + offset, total_len);
3234 return total_len;
3235 }
3236
3237 pid_t initpid = lookup_initpid_in_store(fc->pid);
3238 if (initpid <= 0)
3239 initpid = fc->pid;
3240 cg = get_pid_cgroup(initpid, "cpuset");
3241 if (!cg)
3242 return read_file("/proc/stat", buf, size, d);
6d2f6996 3243 prune_init_slice(cg);
237e200e
SH
3244
3245 cpuset = get_cpuset(cg);
3246 if (!cpuset)
3247 goto err;
3248
3249 f = fopen("/proc/stat", "r");
3250 if (!f)
3251 goto err;
3252
3253 //skip first line
3254 if (getline(&line, &linelen, f) < 0) {
3255 fprintf(stderr, "proc_stat_read read first line failed\n");
3256 goto err;
3257 }
3258
3259 while (getline(&line, &linelen, f) != -1) {
3260 size_t l;
3261 int cpu;
3262 char cpu_char[10]; /* That's a lot of cores */
3263 char *c;
3264
3265 if (sscanf(line, "cpu%9[^ ]", cpu_char) != 1) {
3266 /* not a ^cpuN line containing a number N, just print it */
3267 l = snprintf(cache, cache_size, "%s", line);
3268 if (l < 0) {
3269 perror("Error writing to cache");
3270 rv = 0;
3271 goto err;
3272 }
3273 if (l >= cache_size) {
3274 fprintf(stderr, "Internal error: truncated write to cache\n");
3275 rv = 0;
3276 goto err;
3277 }
3278 cache += l;
3279 cache_size -= l;
3280 total_len += l;
3281 continue;
3282 }
3283
3284 if (sscanf(cpu_char, "%d", &cpu) != 1)
3285 continue;
3286 if (!cpu_in_cpuset(cpu, cpuset))
3287 continue;
3288 curcpu ++;
3289
3290 c = strchr(line, ' ');
3291 if (!c)
3292 continue;
3293 l = snprintf(cache, cache_size, "cpu%d%s", curcpu, c);
3294 if (l < 0) {
3295 perror("Error writing to cache");
3296 rv = 0;
3297 goto err;
3298
3299 }
3300 if (l >= cache_size) {
3301 fprintf(stderr, "Internal error: truncated write to cache\n");
3302 rv = 0;
3303 goto err;
3304 }
3305
3306 cache += l;
3307 cache_size -= l;
3308 total_len += l;
3309
3310 if (sscanf(line, "%*s %lu %lu %lu %lu %lu %lu %lu %lu %lu", &user, &nice, &system, &idle, &iowait, &irq,
3311 &softirq, &steal, &guest) != 9)
3312 continue;
3313 user_sum += user;
3314 nice_sum += nice;
3315 system_sum += system;
3316 idle_sum += idle;
3317 iowait_sum += iowait;
3318 irq_sum += irq;
3319 softirq_sum += softirq;
3320 steal_sum += steal;
3321 guest_sum += guest;
3322 }
3323
3324 cache = d->buf;
3325
3326 int cpuall_len = snprintf(cpuall, CPUALL_MAX_SIZE, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3327 "cpu ", user_sum, nice_sum, system_sum, idle_sum, iowait_sum, irq_sum, softirq_sum, steal_sum, guest_sum);
3328 if (cpuall_len > 0 && cpuall_len < CPUALL_MAX_SIZE){
3329 memcpy(cache, cpuall, cpuall_len);
3330 cache += cpuall_len;
3331 } else{
3332 /* shouldn't happen */
3333 fprintf(stderr, "proc_stat_read copy cpuall failed, cpuall_len=%d\n", cpuall_len);
3334 cpuall_len = 0;
3335 }
3336
3337 memmove(cache, d->buf + CPUALL_MAX_SIZE, total_len);
3338 total_len += cpuall_len;
3339 d->cached = 1;
3340 d->size = total_len;
3341 if (total_len > size ) total_len = size;
3342
3343 memcpy(buf, d->buf, total_len);
3344 rv = total_len;
3345
3346err:
3347 if (f)
3348 fclose(f);
3349 free(line);
3350 free(cpuset);
3351 free(cg);
3352 return rv;
3353}
3354
3355static long int getreaperage(pid_t pid)
3356{
3357 char fnam[100];
3358 struct stat sb;
3359 int ret;
3360 pid_t qpid;
3361
3362 qpid = lookup_initpid_in_store(pid);
3363 if (qpid <= 0)
3364 return 0;
3365
3366 ret = snprintf(fnam, 100, "/proc/%d", qpid);
3367 if (ret < 0 || ret >= 100)
3368 return 0;
3369
3370 if (lstat(fnam, &sb) < 0)
3371 return 0;
3372
3373 return time(NULL) - sb.st_ctime;
3374}
3375
3376static unsigned long get_reaper_busy(pid_t task)
3377{
3378 pid_t initpid = lookup_initpid_in_store(task);
3379 char *cgroup = NULL, *usage_str = NULL;
3380 unsigned long usage = 0;
3381
3382 if (initpid <= 0)
3383 return 0;
3384
3385 cgroup = get_pid_cgroup(initpid, "cpuacct");
3386 if (!cgroup)
3387 goto out;
6d2f6996 3388 prune_init_slice(cgroup);
237e200e
SH
3389 if (!cgfs_get_value("cpuacct", cgroup, "cpuacct.usage", &usage_str))
3390 goto out;
3391 usage = strtoul(usage_str, NULL, 10);
3392 usage /= 1000000000;
3393
3394out:
3395 free(cgroup);
3396 free(usage_str);
3397 return usage;
3398}
3399
3400#if RELOADTEST
3401void iwashere(void)
3402{
3403 char *name, *cwd = get_current_dir_name();
3404 size_t len;
3405 int fd;
3406
3407 if (!cwd)
3408 exit(1);
3409 len = strlen(cwd) + strlen("/iwashere") + 1;
3410 name = alloca(len);
3411 snprintf(name, len, "%s/iwashere", cwd);
3412 free(cwd);
3413 fd = creat(name, 0755);
3414 if (fd >= 0)
3415 close(fd);
3416}
3417#endif
3418
3419/*
3420 * We read /proc/uptime and reuse its second field.
3421 * For the first field, we use the mtime for the reaper for
3422 * the calling pid as returned by getreaperage
3423 */
3424static int proc_uptime_read(char *buf, size_t size, off_t offset,
3425 struct fuse_file_info *fi)
3426{
3427 struct fuse_context *fc = fuse_get_context();
3428 struct file_info *d = (struct file_info *)fi->fh;
3429 long int reaperage = getreaperage(fc->pid);
3430 unsigned long int busytime = get_reaper_busy(fc->pid), idletime;
3431 char *cache = d->buf;
3432 size_t total_len = 0;
3433
3434#if RELOADTEST
3435 iwashere();
3436#endif
3437
3438 if (offset){
3439 if (offset > d->size)
3440 return -EINVAL;
3441 if (!d->cached)
3442 return 0;
3443 int left = d->size - offset;
3444 total_len = left > size ? size: left;
3445 memcpy(buf, cache + offset, total_len);
3446 return total_len;
3447 }
3448
3449 idletime = reaperage - busytime;
3450 if (idletime > reaperage)
3451 idletime = reaperage;
3452
3453 total_len = snprintf(d->buf, d->size, "%ld.0 %lu.0\n", reaperage, idletime);
3454 if (total_len < 0){
3455 perror("Error writing to cache");
3456 return 0;
3457 }
3458
3459 d->size = (int)total_len;
3460 d->cached = 1;
3461
3462 if (total_len > size) total_len = size;
3463
3464 memcpy(buf, d->buf, total_len);
3465 return total_len;
3466}
3467
3468static int proc_diskstats_read(char *buf, size_t size, off_t offset,
3469 struct fuse_file_info *fi)
3470{
3471 char dev_name[72];
3472 struct fuse_context *fc = fuse_get_context();
3473 struct file_info *d = (struct file_info *)fi->fh;
3474 char *cg;
3475 char *io_serviced_str = NULL, *io_merged_str = NULL, *io_service_bytes_str = NULL,
3476 *io_wait_time_str = NULL, *io_service_time_str = NULL;
3477 unsigned long read = 0, write = 0;
3478 unsigned long read_merged = 0, write_merged = 0;
3479 unsigned long read_sectors = 0, write_sectors = 0;
3480 unsigned long read_ticks = 0, write_ticks = 0;
3481 unsigned long ios_pgr = 0, tot_ticks = 0, rq_ticks = 0;
3482 unsigned long rd_svctm = 0, wr_svctm = 0, rd_wait = 0, wr_wait = 0;
3483 char *cache = d->buf;
3484 size_t cache_size = d->buflen;
3485 char *line = NULL;
3486 size_t linelen = 0, total_len = 0, rv = 0;
3487 unsigned int major = 0, minor = 0;
3488 int i = 0;
3489 FILE *f = NULL;
3490
3491 if (offset){
3492 if (offset > d->size)
3493 return -EINVAL;
3494 if (!d->cached)
3495 return 0;
3496 int left = d->size - offset;
3497 total_len = left > size ? size: left;
3498 memcpy(buf, cache + offset, total_len);
3499 return total_len;
3500 }
3501
3502 pid_t initpid = lookup_initpid_in_store(fc->pid);
3503 if (initpid <= 0)
3504 initpid = fc->pid;
3505 cg = get_pid_cgroup(initpid, "blkio");
3506 if (!cg)
3507 return read_file("/proc/diskstats", buf, size, d);
6d2f6996 3508 prune_init_slice(cg);
237e200e
SH
3509
3510 if (!cgfs_get_value("blkio", cg, "blkio.io_serviced", &io_serviced_str))
3511 goto err;
3512 if (!cgfs_get_value("blkio", cg, "blkio.io_merged", &io_merged_str))
3513 goto err;
3514 if (!cgfs_get_value("blkio", cg, "blkio.io_service_bytes", &io_service_bytes_str))
3515 goto err;
3516 if (!cgfs_get_value("blkio", cg, "blkio.io_wait_time", &io_wait_time_str))
3517 goto err;
3518 if (!cgfs_get_value("blkio", cg, "blkio.io_service_time", &io_service_time_str))
3519 goto err;
3520
3521
3522 f = fopen("/proc/diskstats", "r");
3523 if (!f)
3524 goto err;
3525
3526 while (getline(&line, &linelen, f) != -1) {
3527 size_t l;
3528 char *printme, lbuf[256];
3529
3530 i = sscanf(line, "%u %u %71s", &major, &minor, dev_name);
3531 if(i == 3){
3532 get_blkio_io_value(io_serviced_str, major, minor, "Read", &read);
3533 get_blkio_io_value(io_serviced_str, major, minor, "Write", &write);
3534 get_blkio_io_value(io_merged_str, major, minor, "Read", &read_merged);
3535 get_blkio_io_value(io_merged_str, major, minor, "Write", &write_merged);
3536 get_blkio_io_value(io_service_bytes_str, major, minor, "Read", &read_sectors);
3537 read_sectors = read_sectors/512;
3538 get_blkio_io_value(io_service_bytes_str, major, minor, "Write", &write_sectors);
3539 write_sectors = write_sectors/512;
3540
3541 get_blkio_io_value(io_service_time_str, major, minor, "Read", &rd_svctm);
3542 rd_svctm = rd_svctm/1000000;
3543 get_blkio_io_value(io_wait_time_str, major, minor, "Read", &rd_wait);
3544 rd_wait = rd_wait/1000000;
3545 read_ticks = rd_svctm + rd_wait;
3546
3547 get_blkio_io_value(io_service_time_str, major, minor, "Write", &wr_svctm);
3548 wr_svctm = wr_svctm/1000000;
3549 get_blkio_io_value(io_wait_time_str, major, minor, "Write", &wr_wait);
3550 wr_wait = wr_wait/1000000;
3551 write_ticks = wr_svctm + wr_wait;
3552
3553 get_blkio_io_value(io_service_time_str, major, minor, "Total", &tot_ticks);
3554 tot_ticks = tot_ticks/1000000;
3555 }else{
3556 continue;
3557 }
3558
3559 memset(lbuf, 0, 256);
3560 if (read || write || read_merged || write_merged || read_sectors || write_sectors || read_ticks || write_ticks) {
3561 snprintf(lbuf, 256, "%u %u %s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3562 major, minor, dev_name, read, read_merged, read_sectors, read_ticks,
3563 write, write_merged, write_sectors, write_ticks, ios_pgr, tot_ticks, rq_ticks);
3564 printme = lbuf;
3565 } else
3566 continue;
3567
3568 l = snprintf(cache, cache_size, "%s", printme);
3569 if (l < 0) {
3570 perror("Error writing to fuse buf");
3571 rv = 0;
3572 goto err;
3573 }
3574 if (l >= cache_size) {
3575 fprintf(stderr, "Internal error: truncated write to cache\n");
3576 rv = 0;
3577 goto err;
3578 }
3579 cache += l;
3580 cache_size -= l;
3581 total_len += l;
3582 }
3583
3584 d->cached = 1;
3585 d->size = total_len;
3586 if (total_len > size ) total_len = size;
3587 memcpy(buf, d->buf, total_len);
3588
3589 rv = total_len;
3590err:
3591 free(cg);
3592 if (f)
3593 fclose(f);
3594 free(line);
3595 free(io_serviced_str);
3596 free(io_merged_str);
3597 free(io_service_bytes_str);
3598 free(io_wait_time_str);
3599 free(io_service_time_str);
3600 return rv;
3601}
3602
70dcc12e
SH
3603static int proc_swaps_read(char *buf, size_t size, off_t offset,
3604 struct fuse_file_info *fi)
3605{
3606 struct fuse_context *fc = fuse_get_context();
3607 struct file_info *d = (struct file_info *)fi->fh;
3608 char *cg = NULL;
3609 char *memswlimit_str = NULL, *memlimit_str = NULL, *memusage_str = NULL, *memswusage_str = NULL,
3610 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
3611 unsigned long memswlimit = 0, memlimit = 0, memusage = 0, memswusage = 0, swap_total = 0, swap_free = 0;
3612 size_t total_len = 0, rv = 0;
3613 char *cache = d->buf;
3614
3615 if (offset) {
3616 if (offset > d->size)
3617 return -EINVAL;
3618 if (!d->cached)
3619 return 0;
3620 int left = d->size - offset;
3621 total_len = left > size ? size: left;
3622 memcpy(buf, cache + offset, total_len);
3623 return total_len;
3624 }
3625
3626 pid_t initpid = lookup_initpid_in_store(fc->pid);
3627 if (initpid <= 0)
3628 initpid = fc->pid;
3629 cg = get_pid_cgroup(initpid, "memory");
3630 if (!cg)
3631 return read_file("/proc/swaps", buf, size, d);
6d2f6996 3632 prune_init_slice(cg);
70dcc12e
SH
3633
3634 if (!cgfs_get_value("memory", cg, "memory.limit_in_bytes", &memlimit_str))
3635 goto err;
3636
3637 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
3638 goto err;
3639
3640 memlimit = strtoul(memlimit_str, NULL, 10);
3641 memusage = strtoul(memusage_str, NULL, 10);
3642
3643 if (cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str) &&
3644 cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str)) {
3645
3646 /* If swap accounting is turned on, then default value is assumed to be that of cgroup / */
3647 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
3648 goto err;
3649 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
3650 goto err;
3651
3652 memswlimit = strtoul(memswlimit_str, NULL, 10);
3653 memswusage = strtoul(memswusage_str, NULL, 10);
3654
3655 if (!strcmp(memswlimit_str, memswlimit_default_str))
3656 memswlimit = 0;
3657 if (!strcmp(memswusage_str, memswusage_default_str))
3658 memswusage = 0;
3659
3660 swap_total = (memswlimit - memlimit) / 1024;
3661 swap_free = (memswusage - memusage) / 1024;
3662 }
3663
3664 total_len = snprintf(d->buf, d->size, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
3665
3666 /* When no mem + swap limit is specified or swapaccount=0*/
3667 if (!memswlimit) {
3668 char *line = NULL;
3669 size_t linelen = 0;
3670 FILE *f = fopen("/proc/meminfo", "r");
3671
3672 if (!f)
3673 goto err;
3674
3675 while (getline(&line, &linelen, f) != -1) {
3676 if (startswith(line, "SwapTotal:")) {
3677 sscanf(line, "SwapTotal: %8lu kB", &swap_total);
3678 } else if (startswith(line, "SwapFree:")) {
3679 sscanf(line, "SwapFree: %8lu kB", &swap_free);
3680 }
3681 }
3682
3683 free(line);
3684 fclose(f);
3685 }
3686
3687 if (swap_total > 0) {
42eba700 3688 total_len += snprintf(d->buf + total_len, d->size - total_len,
70dcc12e
SH
3689 "none%*svirtual\t\t%lu\t%lu\t0\n", 36, " ",
3690 swap_total, swap_free);
3691 }
3692
3693 if (total_len < 0) {
3694 perror("Error writing to cache");
3695 rv = 0;
3696 goto err;
3697 }
3698
3699 d->cached = 1;
3700 d->size = (int)total_len;
3701
3702 if (total_len > size) total_len = size;
3703 memcpy(buf, d->buf, total_len);
3704 rv = total_len;
3705
3706err:
3707 free(cg);
3708 free(memswlimit_str);
3709 free(memlimit_str);
3710 free(memusage_str);
3711 free(memswusage_str);
3712 free(memswusage_default_str);
3713 free(memswlimit_default_str);
3714 return rv;
3715}
3716
237e200e
SH
3717static off_t get_procfile_size(const char *which)
3718{
3719 FILE *f = fopen(which, "r");
3720 char *line = NULL;
3721 size_t len = 0;
3722 ssize_t sz, answer = 0;
3723 if (!f)
3724 return 0;
3725
3726 while ((sz = getline(&line, &len, f)) != -1)
3727 answer += sz;
3728 fclose (f);
3729 free(line);
3730
3731 return answer;
3732}
3733
3734int proc_getattr(const char *path, struct stat *sb)
3735{
3736 struct timespec now;
3737
3738 memset(sb, 0, sizeof(struct stat));
3739 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
3740 return -EINVAL;
3741 sb->st_uid = sb->st_gid = 0;
3742 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
3743 if (strcmp(path, "/proc") == 0) {
3744 sb->st_mode = S_IFDIR | 00555;
3745 sb->st_nlink = 2;
3746 return 0;
3747 }
3748 if (strcmp(path, "/proc/meminfo") == 0 ||
3749 strcmp(path, "/proc/cpuinfo") == 0 ||
3750 strcmp(path, "/proc/uptime") == 0 ||
3751 strcmp(path, "/proc/stat") == 0 ||
70dcc12e
SH
3752 strcmp(path, "/proc/diskstats") == 0 ||
3753 strcmp(path, "/proc/swaps") == 0) {
237e200e
SH
3754 sb->st_size = 0;
3755 sb->st_mode = S_IFREG | 00444;
3756 sb->st_nlink = 1;
3757 return 0;
3758 }
3759
3760 return -ENOENT;
3761}
3762
3763int proc_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
3764 struct fuse_file_info *fi)
3765{
3766 if (filler(buf, "cpuinfo", NULL, 0) != 0 ||
3767 filler(buf, "meminfo", NULL, 0) != 0 ||
3768 filler(buf, "stat", NULL, 0) != 0 ||
3769 filler(buf, "uptime", NULL, 0) != 0 ||
70dcc12e
SH
3770 filler(buf, "diskstats", NULL, 0) != 0 ||
3771 filler(buf, "swaps", NULL, 0) != 0)
237e200e
SH
3772 return -EINVAL;
3773 return 0;
3774}
3775
3776int proc_open(const char *path, struct fuse_file_info *fi)
3777{
3778 int type = -1;
3779 struct file_info *info;
3780
3781 if (strcmp(path, "/proc/meminfo") == 0)
3782 type = LXC_TYPE_PROC_MEMINFO;
3783 else if (strcmp(path, "/proc/cpuinfo") == 0)
3784 type = LXC_TYPE_PROC_CPUINFO;
3785 else if (strcmp(path, "/proc/uptime") == 0)
3786 type = LXC_TYPE_PROC_UPTIME;
3787 else if (strcmp(path, "/proc/stat") == 0)
3788 type = LXC_TYPE_PROC_STAT;
3789 else if (strcmp(path, "/proc/diskstats") == 0)
3790 type = LXC_TYPE_PROC_DISKSTATS;
70dcc12e
SH
3791 else if (strcmp(path, "/proc/swaps") == 0)
3792 type = LXC_TYPE_PROC_SWAPS;
237e200e
SH
3793 if (type == -1)
3794 return -ENOENT;
3795
3796 info = malloc(sizeof(*info));
3797 if (!info)
3798 return -ENOMEM;
3799
3800 memset(info, 0, sizeof(*info));
3801 info->type = type;
3802
3803 info->buflen = get_procfile_size(path) + BUF_RESERVE_SIZE;
3804 do {
3805 info->buf = malloc(info->buflen);
3806 } while (!info->buf);
3807 memset(info->buf, 0, info->buflen);
3808 /* set actual size to buffer size */
3809 info->size = info->buflen;
3810
3811 fi->fh = (unsigned long)info;
3812 return 0;
3813}
3814
bddbb106
SH
3815int proc_access(const char *path, int mask)
3816{
3817 /* these are all read-only */
3818 if ((mask & ~R_OK) != 0)
3819 return -EPERM;
3820 return 0;
3821}
3822
237e200e
SH
3823int proc_release(const char *path, struct fuse_file_info *fi)
3824{
3825 struct file_info *f = (struct file_info *)fi->fh;
3826
3827 do_release_file_info(f);
3828 return 0;
3829}
3830
3831int proc_read(const char *path, char *buf, size_t size, off_t offset,
3832 struct fuse_file_info *fi)
3833{
3834 struct file_info *f = (struct file_info *) fi->fh;
3835
3836 switch (f->type) {
3837 case LXC_TYPE_PROC_MEMINFO:
3838 return proc_meminfo_read(buf, size, offset, fi);
3839 case LXC_TYPE_PROC_CPUINFO:
3840 return proc_cpuinfo_read(buf, size, offset, fi);
3841 case LXC_TYPE_PROC_UPTIME:
3842 return proc_uptime_read(buf, size, offset, fi);
3843 case LXC_TYPE_PROC_STAT:
3844 return proc_stat_read(buf, size, offset, fi);
3845 case LXC_TYPE_PROC_DISKSTATS:
3846 return proc_diskstats_read(buf, size, offset, fi);
70dcc12e
SH
3847 case LXC_TYPE_PROC_SWAPS:
3848 return proc_swaps_read(buf, size, offset, fi);
237e200e
SH
3849 default:
3850 return -EINVAL;
3851 }
3852}
3853
3854static void __attribute__((constructor)) collect_subsystems(void)
3855{
3856 FILE *f;
3857 char *line = NULL;
3858 size_t len = 0;
3859
3860 if ((f = fopen("/proc/self/cgroup", "r")) == NULL) {
3861 fprintf(stderr, "Error opening /proc/self/cgroup: %s\n", strerror(errno));
3862 return;
3863 }
3864 while (getline(&line, &len, f) != -1) {
3865 char *p, *p2;
3866
3867 p = strchr(line, ':');
3868 if (!p)
3869 goto out;
3870 *(p++) = '\0';
3871
3872 p2 = strrchr(p, ':');
3873 if (!p2)
3874 goto out;
3875 *p2 = '\0';
3876
3877 if (!store_hierarchy(line, p))
3878 goto out;
3879 }
3880
3881 print_subsystems();
3882
3883out:
3884 free(line);
3885 fclose(f);
3886}
3887
3888static void __attribute__((destructor)) free_subsystems(void)
3889{
3890 int i;
3891
3892 for (i = 0; i < num_hierarchies; i++)
3893 if (hierarchies[i])
3894 free(hierarchies[i]);
3895 free(hierarchies);
3896}