]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bfq-iosched.c
block, bfq: add Early Queue Merge (EQM)
[mirror_ubuntu-bionic-kernel.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
59 * BFQ is described in [1], where also a reference to the initial, more
60 * theoretical paper on BFQ can be found. The interested reader can find
61 * in the latter paper full details on the main algorithm, as well as
62 * formulas of the guarantees and formal proofs of all the properties.
63 * With respect to the version of BFQ presented in these papers, this
64 * implementation adds a few more heuristics, such as the one that
65 * guarantees a low latency to soft real-time applications, and a
66 * hierarchical extension based on H-WF2Q+.
67 *
68 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
69 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
70 * with O(log N) complexity derives from the one introduced with EEVDF
71 * in [3].
72 *
73 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
74 * Scheduler", Proceedings of the First Workshop on Mobile System
75 * Technologies (MST-2015), May 2015.
76 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
77 *
78 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
79 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
80 * Oct 1997.
81 *
82 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
83 *
84 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
85 * First: A Flexible and Accurate Mechanism for Proportional Share
86 * Resource Allocation", technical report.
87 *
88 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
89 */
90#include <linux/module.h>
91#include <linux/slab.h>
92#include <linux/blkdev.h>
e21b7a0b 93#include <linux/cgroup.h>
aee69d78
PV
94#include <linux/elevator.h>
95#include <linux/ktime.h>
96#include <linux/rbtree.h>
97#include <linux/ioprio.h>
98#include <linux/sbitmap.h>
99#include <linux/delay.h>
100
101#include "blk.h"
102#include "blk-mq.h"
103#include "blk-mq-tag.h"
104#include "blk-mq-sched.h"
105#include <linux/blktrace_api.h>
106#include <linux/hrtimer.h>
107#include <linux/blk-cgroup.h>
108
109#define BFQ_IOPRIO_CLASSES 3
110#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
111
112#define BFQ_MIN_WEIGHT 1
113#define BFQ_MAX_WEIGHT 1000
114#define BFQ_WEIGHT_CONVERSION_COEFF 10
115
116#define BFQ_DEFAULT_QUEUE_IOPRIO 4
117
e21b7a0b 118#define BFQ_WEIGHT_LEGACY_DFL 100
aee69d78
PV
119#define BFQ_DEFAULT_GRP_IOPRIO 0
120#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
121
77b7dcea
PV
122/*
123 * Soft real-time applications are extremely more latency sensitive
124 * than interactive ones. Over-raise the weight of the former to
125 * privilege them against the latter.
126 */
127#define BFQ_SOFTRT_WEIGHT_FACTOR 100
128
aee69d78
PV
129struct bfq_entity;
130
131/**
132 * struct bfq_service_tree - per ioprio_class service tree.
133 *
134 * Each service tree represents a B-WF2Q+ scheduler on its own. Each
135 * ioprio_class has its own independent scheduler, and so its own
136 * bfq_service_tree. All the fields are protected by the queue lock
137 * of the containing bfqd.
138 */
139struct bfq_service_tree {
140 /* tree for active entities (i.e., those backlogged) */
141 struct rb_root active;
142 /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
143 struct rb_root idle;
144
145 /* idle entity with minimum F_i */
146 struct bfq_entity *first_idle;
147 /* idle entity with maximum F_i */
148 struct bfq_entity *last_idle;
149
150 /* scheduler virtual time */
151 u64 vtime;
152 /* scheduler weight sum; active and idle entities contribute to it */
153 unsigned long wsum;
154};
155
156/**
157 * struct bfq_sched_data - multi-class scheduler.
158 *
159 * bfq_sched_data is the basic scheduler queue. It supports three
e21b7a0b
AA
160 * ioprio_classes, and can be used either as a toplevel queue or as an
161 * intermediate queue on a hierarchical setup. @next_in_service
162 * points to the active entity of the sched_data service trees that
163 * will be scheduled next. It is used to reduce the number of steps
164 * needed for each hierarchical-schedule update.
aee69d78
PV
165 *
166 * The supported ioprio_classes are the same as in CFQ, in descending
167 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
168 * Requests from higher priority queues are served before all the
169 * requests from lower priority queues; among requests of the same
170 * queue requests are served according to B-WF2Q+.
171 * All the fields are protected by the queue lock of the containing bfqd.
172 */
173struct bfq_sched_data {
174 /* entity in service */
175 struct bfq_entity *in_service_entity;
e21b7a0b 176 /* head-of-line entity (see comments above) */
aee69d78
PV
177 struct bfq_entity *next_in_service;
178 /* array of service trees, one per ioprio_class */
179 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
e21b7a0b
AA
180 /* last time CLASS_IDLE was served */
181 unsigned long bfq_class_idle_last_service;
182
aee69d78
PV
183};
184
185/**
186 * struct bfq_entity - schedulable entity.
187 *
e21b7a0b
AA
188 * A bfq_entity is used to represent either a bfq_queue (leaf node in the
189 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
190 * entity belongs to the sched_data of the parent group in the cgroup
191 * hierarchy. Non-leaf entities have also their own sched_data, stored
192 * in @my_sched_data.
aee69d78
PV
193 *
194 * Each entity stores independently its priority values; this would
195 * allow different weights on different devices, but this
196 * functionality is not exported to userspace by now. Priorities and
197 * weights are updated lazily, first storing the new values into the
198 * new_* fields, then setting the @prio_changed flag. As soon as
199 * there is a transition in the entity state that allows the priority
200 * update to take place the effective and the requested priority
201 * values are synchronized.
202 *
e21b7a0b
AA
203 * Unless cgroups are used, the weight value is calculated from the
204 * ioprio to export the same interface as CFQ. When dealing with
205 * ``well-behaved'' queues (i.e., queues that do not spend too much
206 * time to consume their budget and have true sequential behavior, and
207 * when there are no external factors breaking anticipation) the
208 * relative weights at each level of the cgroups hierarchy should be
209 * guaranteed. All the fields are protected by the queue lock of the
210 * containing bfqd.
aee69d78
PV
211 */
212struct bfq_entity {
213 /* service_tree member */
214 struct rb_node rb_node;
215
216 /*
e21b7a0b
AA
217 * Flag, true if the entity is on a tree (either the active or
218 * the idle one of its service_tree) or is in service.
aee69d78 219 */
e21b7a0b 220 bool on_st;
aee69d78
PV
221
222 /* B-WF2Q+ start and finish timestamps [sectors/weight] */
223 u64 start, finish;
224
225 /* tree the entity is enqueued into; %NULL if not on a tree */
226 struct rb_root *tree;
227
228 /*
229 * minimum start time of the (active) subtree rooted at this
230 * entity; used for O(log N) lookups into active trees
231 */
232 u64 min_start;
233
234 /* amount of service received during the last service slot */
235 int service;
236
237 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
238 int budget;
239
240 /* weight of the queue */
241 int weight;
242 /* next weight if a change is in progress */
243 int new_weight;
244
245 /* original weight, used to implement weight boosting */
246 int orig_weight;
247
248 /* parent entity, for hierarchical scheduling */
249 struct bfq_entity *parent;
250
251 /*
252 * For non-leaf nodes in the hierarchy, the associated
253 * scheduler queue, %NULL on leaf nodes.
254 */
255 struct bfq_sched_data *my_sched_data;
256 /* the scheduler queue this entity belongs to */
257 struct bfq_sched_data *sched_data;
258
259 /* flag, set to request a weight, ioprio or ioprio_class change */
260 int prio_changed;
261};
262
e21b7a0b
AA
263struct bfq_group;
264
aee69d78
PV
265/**
266 * struct bfq_ttime - per process thinktime stats.
267 */
268struct bfq_ttime {
269 /* completion time of the last request */
270 u64 last_end_request;
271
272 /* total process thinktime */
273 u64 ttime_total;
274 /* number of thinktime samples */
275 unsigned long ttime_samples;
276 /* average process thinktime */
277 u64 ttime_mean;
278};
279
280/**
281 * struct bfq_queue - leaf schedulable entity.
282 *
283 * A bfq_queue is a leaf request queue; it can be associated with an
36eca894
AA
284 * io_context or more, if it is async or shared between cooperating
285 * processes. @cgroup holds a reference to the cgroup, to be sure that it
286 * does not disappear while a bfqq still references it (mostly to avoid
287 * races between request issuing and task migration followed by cgroup
288 * destruction).
289 * All the fields are protected by the queue lock of the containing bfqd.
aee69d78
PV
290 */
291struct bfq_queue {
292 /* reference counter */
293 int ref;
294 /* parent bfq_data */
295 struct bfq_data *bfqd;
296
297 /* current ioprio and ioprio class */
298 unsigned short ioprio, ioprio_class;
299 /* next ioprio and ioprio class if a change is in progress */
300 unsigned short new_ioprio, new_ioprio_class;
301
36eca894
AA
302 /*
303 * Shared bfq_queue if queue is cooperating with one or more
304 * other queues.
305 */
306 struct bfq_queue *new_bfqq;
307 /* request-position tree member (see bfq_group's @rq_pos_tree) */
308 struct rb_node pos_node;
309 /* request-position tree root (see bfq_group's @rq_pos_tree) */
310 struct rb_root *pos_root;
311
aee69d78
PV
312 /* sorted list of pending requests */
313 struct rb_root sort_list;
314 /* if fifo isn't expired, next request to serve */
315 struct request *next_rq;
316 /* number of sync and async requests queued */
317 int queued[2];
318 /* number of requests currently allocated */
319 int allocated;
320 /* number of pending metadata requests */
321 int meta_pending;
322 /* fifo list of requests in sort_list */
323 struct list_head fifo;
324
325 /* entity representing this queue in the scheduler */
326 struct bfq_entity entity;
327
328 /* maximum budget allowed from the feedback mechanism */
329 int max_budget;
330 /* budget expiration (in jiffies) */
331 unsigned long budget_timeout;
332
333 /* number of requests on the dispatch list or inside driver */
334 int dispatched;
335
336 /* status flags */
337 unsigned long flags;
338
339 /* node for active/idle bfqq list inside parent bfqd */
340 struct list_head bfqq_list;
341
342 /* associated @bfq_ttime struct */
343 struct bfq_ttime ttime;
344
345 /* bit vector: a 1 for each seeky requests in history */
346 u32 seek_history;
347 /* position of the last request enqueued */
348 sector_t last_request_pos;
349
350 /* Number of consecutive pairs of request completion and
351 * arrival, such that the queue becomes idle after the
352 * completion, but the next request arrives within an idle
353 * time slice; used only if the queue's IO_bound flag has been
354 * cleared.
355 */
356 unsigned int requests_within_timer;
357
358 /* pid of the process owning the queue, used for logging purposes */
359 pid_t pid;
44e44a1b 360
36eca894
AA
361 /*
362 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
363 * if the queue is shared.
364 */
365 struct bfq_io_cq *bic;
366
44e44a1b
PV
367 /* current maximum weight-raising time for this queue */
368 unsigned long wr_cur_max_time;
77b7dcea
PV
369 /*
370 * Minimum time instant such that, only if a new request is
371 * enqueued after this time instant in an idle @bfq_queue with
372 * no outstanding requests, then the task associated with the
373 * queue it is deemed as soft real-time (see the comments on
374 * the function bfq_bfqq_softrt_next_start())
375 */
376 unsigned long soft_rt_next_start;
44e44a1b
PV
377 /*
378 * Start time of the current weight-raising period if
379 * the @bfq-queue is being weight-raised, otherwise
380 * finish time of the last weight-raising period.
381 */
382 unsigned long last_wr_start_finish;
383 /* factor by which the weight of this queue is multiplied */
384 unsigned int wr_coeff;
77b7dcea
PV
385 /*
386 * Time of the last transition of the @bfq_queue from idle to
387 * backlogged.
388 */
389 unsigned long last_idle_bklogged;
390 /*
391 * Cumulative service received from the @bfq_queue since the
392 * last transition from idle to backlogged.
393 */
394 unsigned long service_from_backlogged;
36eca894 395
77b7dcea
PV
396 /*
397 * Value of wr start time when switching to soft rt
398 */
399 unsigned long wr_start_at_switch_to_srt;
36eca894
AA
400
401 unsigned long split_time; /* time of last split */
aee69d78
PV
402};
403
404/**
405 * struct bfq_io_cq - per (request_queue, io_context) structure.
406 */
407struct bfq_io_cq {
408 /* associated io_cq structure */
409 struct io_cq icq; /* must be the first member */
410 /* array of two process queues, the sync and the async */
411 struct bfq_queue *bfqq[2];
412 /* per (request_queue, blkcg) ioprio */
413 int ioprio;
e21b7a0b
AA
414#ifdef CONFIG_BFQ_GROUP_IOSCHED
415 uint64_t blkcg_serial_nr; /* the current blkcg serial */
416#endif
36eca894
AA
417 /*
418 * Snapshot of the idle window before merging; taken to
419 * remember this value while the queue is merged, so as to be
420 * able to restore it in case of split.
421 */
422 bool saved_idle_window;
423 /*
424 * Same purpose as the previous two fields for the I/O bound
425 * classification of a queue.
426 */
427 bool saved_IO_bound;
428
429 /*
430 * Similar to previous fields: save wr information.
431 */
432 unsigned long saved_wr_coeff;
433 unsigned long saved_last_wr_start_finish;
434 unsigned long saved_wr_start_at_switch_to_srt;
435 unsigned int saved_wr_cur_max_time;
436 struct bfq_ttime saved_ttime;
aee69d78
PV
437};
438
44e44a1b
PV
439enum bfq_device_speed {
440 BFQ_BFQD_FAST,
441 BFQ_BFQD_SLOW,
442};
443
aee69d78
PV
444/**
445 * struct bfq_data - per-device data structure.
446 *
447 * All the fields are protected by @lock.
448 */
449struct bfq_data {
450 /* device request queue */
451 struct request_queue *queue;
452 /* dispatch queue */
453 struct list_head dispatch;
454
e21b7a0b
AA
455 /* root bfq_group for the device */
456 struct bfq_group *root_group;
aee69d78
PV
457
458 /*
459 * Number of bfq_queues containing requests (including the
460 * queue in service, even if it is idling).
461 */
462 int busy_queues;
cfd69712
PV
463 /* number of weight-raised busy @bfq_queues */
464 int wr_busy_queues;
aee69d78
PV
465 /* number of queued requests */
466 int queued;
467 /* number of requests dispatched and waiting for completion */
468 int rq_in_driver;
469
470 /*
471 * Maximum number of requests in driver in the last
472 * @hw_tag_samples completed requests.
473 */
474 int max_rq_in_driver;
475 /* number of samples used to calculate hw_tag */
476 int hw_tag_samples;
477 /* flag set to one if the driver is showing a queueing behavior */
478 int hw_tag;
479
480 /* number of budgets assigned */
481 int budgets_assigned;
482
483 /*
484 * Timer set when idling (waiting) for the next request from
485 * the queue in service.
486 */
487 struct hrtimer idle_slice_timer;
488
489 /* bfq_queue in service */
490 struct bfq_queue *in_service_queue;
491 /* bfq_io_cq (bic) associated with the @in_service_queue */
492 struct bfq_io_cq *in_service_bic;
493
494 /* on-disk position of the last served request */
495 sector_t last_position;
496
ab0e43e9
PV
497 /* time of last request completion (ns) */
498 u64 last_completion;
499
500 /* time of first rq dispatch in current observation interval (ns) */
501 u64 first_dispatch;
502 /* time of last rq dispatch in current observation interval (ns) */
503 u64 last_dispatch;
504
aee69d78
PV
505 /* beginning of the last budget */
506 ktime_t last_budget_start;
507 /* beginning of the last idle slice */
508 ktime_t last_idling_start;
ab0e43e9
PV
509
510 /* number of samples in current observation interval */
aee69d78 511 int peak_rate_samples;
ab0e43e9
PV
512 /* num of samples of seq dispatches in current observation interval */
513 u32 sequential_samples;
514 /* total num of sectors transferred in current observation interval */
515 u64 tot_sectors_dispatched;
516 /* max rq size seen during current observation interval (sectors) */
517 u32 last_rq_max_size;
518 /* time elapsed from first dispatch in current observ. interval (us) */
519 u64 delta_from_first;
aee69d78 520 /*
ab0e43e9
PV
521 * Current estimate of the device peak rate, measured in
522 * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by
523 * BFQ_RATE_SHIFT is performed to increase precision in
aee69d78
PV
524 * fixed-point calculations.
525 */
ab0e43e9
PV
526 u32 peak_rate;
527
aee69d78
PV
528 /* maximum budget allotted to a bfq_queue before rescheduling */
529 int bfq_max_budget;
530
531 /* list of all the bfq_queues active on the device */
532 struct list_head active_list;
533 /* list of all the bfq_queues idle on the device */
534 struct list_head idle_list;
535
536 /*
537 * Timeout for async/sync requests; when it fires, requests
538 * are served in fifo order.
539 */
540 u64 bfq_fifo_expire[2];
541 /* weight of backward seeks wrt forward ones */
542 unsigned int bfq_back_penalty;
543 /* maximum allowed backward seek */
544 unsigned int bfq_back_max;
545 /* maximum idling time */
546 u32 bfq_slice_idle;
aee69d78
PV
547
548 /* user-configured max budget value (0 for auto-tuning) */
549 int bfq_user_max_budget;
550 /*
551 * Timeout for bfq_queues to consume their budget; used to
552 * prevent seeky queues from imposing long latencies to
553 * sequential or quasi-sequential ones (this also implies that
554 * seeky queues cannot receive guarantees in the service
555 * domain; after a timeout they are charged for the time they
556 * have been in service, to preserve fairness among them, but
557 * without service-domain guarantees).
558 */
559 unsigned int bfq_timeout;
560
561 /*
562 * Number of consecutive requests that must be issued within
563 * the idle time slice to set again idling to a queue which
564 * was marked as non-I/O-bound (see the definition of the
565 * IO_bound flag for further details).
566 */
567 unsigned int bfq_requests_within_timer;
568
569 /*
570 * Force device idling whenever needed to provide accurate
571 * service guarantees, without caring about throughput
572 * issues. CAVEAT: this may even increase latencies, in case
573 * of useless idling for processes that did stop doing I/O.
574 */
575 bool strict_guarantees;
576
44e44a1b
PV
577 /* if set to true, low-latency heuristics are enabled */
578 bool low_latency;
579 /*
580 * Maximum factor by which the weight of a weight-raised queue
581 * is multiplied.
582 */
583 unsigned int bfq_wr_coeff;
584 /* maximum duration of a weight-raising period (jiffies) */
585 unsigned int bfq_wr_max_time;
77b7dcea
PV
586
587 /* Maximum weight-raising duration for soft real-time processes */
588 unsigned int bfq_wr_rt_max_time;
44e44a1b
PV
589 /*
590 * Minimum idle period after which weight-raising may be
591 * reactivated for a queue (in jiffies).
592 */
593 unsigned int bfq_wr_min_idle_time;
594 /*
595 * Minimum period between request arrivals after which
596 * weight-raising may be reactivated for an already busy async
597 * queue (in jiffies).
598 */
599 unsigned long bfq_wr_min_inter_arr_async;
77b7dcea
PV
600
601 /* Max service-rate for a soft real-time queue, in sectors/sec */
602 unsigned int bfq_wr_max_softrt_rate;
44e44a1b
PV
603 /*
604 * Cached value of the product R*T, used for computing the
605 * maximum duration of weight raising automatically.
606 */
607 u64 RT_prod;
608 /* device-speed class for the low-latency heuristic */
609 enum bfq_device_speed device_speed;
610
aee69d78
PV
611 /* fallback dummy bfqq for extreme OOM conditions */
612 struct bfq_queue oom_bfqq;
613
614 spinlock_t lock;
615
616 /*
617 * bic associated with the task issuing current bio for
618 * merging. This and the next field are used as a support to
619 * be able to perform the bic lookup, needed by bio-merge
620 * functions, before the scheduler lock is taken, and thus
621 * avoid taking the request-queue lock while the scheduler
622 * lock is being held.
623 */
624 struct bfq_io_cq *bio_bic;
625 /* bfqq associated with the task issuing current bio for merging */
626 struct bfq_queue *bio_bfqq;
36eca894
AA
627
628 /*
629 * io context to put right after bfqd->lock is released. This
630 * filed is used to perform put_io_context, when needed, to
631 * after the scheduler lock has been released, and thus
632 * prevent an ioc->lock from being possibly taken while the
633 * scheduler lock is being held.
634 */
635 struct io_context *ioc_to_put;
aee69d78
PV
636};
637
638enum bfqq_state_flags {
639 BFQQF_busy = 0, /* has requests or is in service */
640 BFQQF_wait_request, /* waiting for a request */
641 BFQQF_non_blocking_wait_rq, /*
642 * waiting for a request
643 * without idling the device
644 */
645 BFQQF_fifo_expire, /* FIFO checked in this slice */
646 BFQQF_idle_window, /* slice idling enabled */
647 BFQQF_sync, /* synchronous queue */
aee69d78
PV
648 BFQQF_IO_bound, /*
649 * bfqq has timed-out at least once
650 * having consumed at most 2/10 of
651 * its budget
652 */
77b7dcea
PV
653 BFQQF_softrt_update, /*
654 * may need softrt-next-start
655 * update
656 */
36eca894
AA
657 BFQQF_coop, /* bfqq is shared */
658 BFQQF_split_coop /* shared bfqq will be split */
aee69d78
PV
659};
660
661#define BFQ_BFQQ_FNS(name) \
662static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
663{ \
664 __set_bit(BFQQF_##name, &(bfqq)->flags); \
665} \
666static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
667{ \
668 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
669} \
670static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
671{ \
672 return test_bit(BFQQF_##name, &(bfqq)->flags); \
673}
674
675BFQ_BFQQ_FNS(busy);
676BFQ_BFQQ_FNS(wait_request);
677BFQ_BFQQ_FNS(non_blocking_wait_rq);
678BFQ_BFQQ_FNS(fifo_expire);
679BFQ_BFQQ_FNS(idle_window);
680BFQ_BFQQ_FNS(sync);
aee69d78 681BFQ_BFQQ_FNS(IO_bound);
36eca894
AA
682BFQ_BFQQ_FNS(coop);
683BFQ_BFQQ_FNS(split_coop);
77b7dcea 684BFQ_BFQQ_FNS(softrt_update);
aee69d78
PV
685#undef BFQ_BFQQ_FNS
686
687/* Logging facilities. */
e21b7a0b
AA
688#ifdef CONFIG_BFQ_GROUP_IOSCHED
689static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
690static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
691
692#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
693 char __pbuf[128]; \
694 \
695 blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
696 blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid, \
697 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
698 __pbuf, ##args); \
699} while (0)
700
701#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
702 char __pbuf[128]; \
703 \
704 blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
705 blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \
706} while (0)
707
708#else /* CONFIG_BFQ_GROUP_IOSCHED */
709
710#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
711 blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \
712 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
713 ##args)
714#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
715
716#endif /* CONFIG_BFQ_GROUP_IOSCHED */
aee69d78
PV
717
718#define bfq_log(bfqd, fmt, args...) \
719 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
720
721/* Expiration reasons. */
722enum bfqq_expiration {
723 BFQQE_TOO_IDLE = 0, /*
724 * queue has been idling for
725 * too long
726 */
727 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */
728 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */
729 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */
730 BFQQE_PREEMPTED /* preemption in progress */
731};
732
e21b7a0b
AA
733struct bfqg_stats {
734#ifdef CONFIG_BFQ_GROUP_IOSCHED
735 /* number of ios merged */
736 struct blkg_rwstat merged;
737 /* total time spent on device in ns, may not be accurate w/ queueing */
738 struct blkg_rwstat service_time;
739 /* total time spent waiting in scheduler queue in ns */
740 struct blkg_rwstat wait_time;
741 /* number of IOs queued up */
742 struct blkg_rwstat queued;
743 /* total disk time and nr sectors dispatched by this group */
744 struct blkg_stat time;
745 /* sum of number of ios queued across all samples */
746 struct blkg_stat avg_queue_size_sum;
747 /* count of samples taken for average */
748 struct blkg_stat avg_queue_size_samples;
749 /* how many times this group has been removed from service tree */
750 struct blkg_stat dequeue;
751 /* total time spent waiting for it to be assigned a timeslice. */
752 struct blkg_stat group_wait_time;
753 /* time spent idling for this blkcg_gq */
754 struct blkg_stat idle_time;
755 /* total time with empty current active q with other requests queued */
756 struct blkg_stat empty_time;
757 /* fields after this shouldn't be cleared on stat reset */
758 uint64_t start_group_wait_time;
759 uint64_t start_idle_time;
760 uint64_t start_empty_time;
761 uint16_t flags;
762#endif /* CONFIG_BFQ_GROUP_IOSCHED */
763};
764
765#ifdef CONFIG_BFQ_GROUP_IOSCHED
766
767/*
768 * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
769 *
770 * @ps: @blkcg_policy_storage that this structure inherits
771 * @weight: weight of the bfq_group
772 */
773struct bfq_group_data {
774 /* must be the first member */
775 struct blkcg_policy_data pd;
776
44e44a1b 777 unsigned int weight;
e21b7a0b
AA
778};
779
780/**
781 * struct bfq_group - per (device, cgroup) data structure.
782 * @entity: schedulable entity to insert into the parent group sched_data.
783 * @sched_data: own sched_data, to contain child entities (they may be
784 * both bfq_queues and bfq_groups).
785 * @bfqd: the bfq_data for the device this group acts upon.
786 * @async_bfqq: array of async queues for all the tasks belonging to
787 * the group, one queue per ioprio value per ioprio_class,
788 * except for the idle class that has only one queue.
789 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
790 * @my_entity: pointer to @entity, %NULL for the toplevel group; used
791 * to avoid too many special cases during group creation/
792 * migration.
793 * @stats: stats for this bfqg.
36eca894
AA
794 * @rq_pos_tree: rbtree sorted by next_request position, used when
795 * determining if two or more queues have interleaving
796 * requests (see bfq_find_close_cooperator()).
e21b7a0b
AA
797 *
798 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
799 * there is a set of bfq_groups, each one collecting the lower-level
800 * entities belonging to the group that are acting on the same device.
801 *
802 * Locking works as follows:
803 * o @bfqd is protected by the queue lock, RCU is used to access it
804 * from the readers.
805 * o All the other fields are protected by the @bfqd queue lock.
806 */
807struct bfq_group {
808 /* must be the first member */
809 struct blkg_policy_data pd;
810
811 struct bfq_entity entity;
812 struct bfq_sched_data sched_data;
813
814 void *bfqd;
815
816 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
817 struct bfq_queue *async_idle_bfqq;
818
819 struct bfq_entity *my_entity;
820
36eca894
AA
821 struct rb_root rq_pos_tree;
822
e21b7a0b
AA
823 struct bfqg_stats stats;
824};
825
826#else
827struct bfq_group {
828 struct bfq_sched_data sched_data;
829
830 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
831 struct bfq_queue *async_idle_bfqq;
832
833 struct rb_root rq_pos_tree;
834};
835#endif
836
aee69d78
PV
837static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
838
e21b7a0b
AA
839static unsigned int bfq_class_idx(struct bfq_entity *entity)
840{
841 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
842
843 return bfqq ? bfqq->ioprio_class - 1 :
844 BFQ_DEFAULT_GRP_CLASS - 1;
845}
846
aee69d78
PV
847static struct bfq_service_tree *
848bfq_entity_service_tree(struct bfq_entity *entity)
849{
850 struct bfq_sched_data *sched_data = entity->sched_data;
e21b7a0b 851 unsigned int idx = bfq_class_idx(entity);
aee69d78
PV
852
853 return sched_data->service_tree + idx;
854}
855
856static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
857{
858 return bic->bfqq[is_sync];
859}
860
861static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
862 bool is_sync)
863{
864 bic->bfqq[is_sync] = bfqq;
865}
866
867static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
868{
869 return bic->icq.q->elevator->elevator_data;
870}
871
36eca894
AA
872#ifdef CONFIG_BFQ_GROUP_IOSCHED
873
874static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
875{
876 struct bfq_entity *group_entity = bfqq->entity.parent;
877
878 if (!group_entity)
879 group_entity = &bfqq->bfqd->root_group->entity;
880
881 return container_of(group_entity, struct bfq_group, entity);
882}
883
884#else
885
886static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
887{
888 return bfqq->bfqd->root_group;
889}
890
891#endif
892
aee69d78
PV
893static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
894static void bfq_put_queue(struct bfq_queue *bfqq);
895static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
896 struct bio *bio, bool is_sync,
897 struct bfq_io_cq *bic);
44e44a1b
PV
898static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
899 struct bfq_group *bfqg);
e21b7a0b 900static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
aee69d78
PV
901static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
902
aee69d78
PV
903/* Expiration time of sync (0) and async (1) requests, in ns. */
904static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
905
906/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
907static const int bfq_back_max = 16 * 1024;
908
909/* Penalty of a backwards seek, in number of sectors. */
910static const int bfq_back_penalty = 2;
911
912/* Idling period duration, in ns. */
913static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
914
915/* Minimum number of assigned budgets for which stats are safe to compute. */
916static const int bfq_stats_min_budgets = 194;
917
918/* Default maximum budget values, in sectors and number of requests. */
919static const int bfq_default_max_budget = 16 * 1024;
920
c074170e
PV
921/*
922 * Async to sync throughput distribution is controlled as follows:
923 * when an async request is served, the entity is charged the number
924 * of sectors of the request, multiplied by the factor below
925 */
926static const int bfq_async_charge_factor = 10;
927
aee69d78
PV
928/* Default timeout values, in jiffies, approximating CFQ defaults. */
929static const int bfq_timeout = HZ / 8;
930
931static struct kmem_cache *bfq_pool;
932
ab0e43e9 933/* Below this threshold (in ns), we consider thinktime immediate. */
aee69d78
PV
934#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
935
936/* hw_tag detection: parallel requests threshold and min samples needed. */
937#define BFQ_HW_QUEUE_THRESHOLD 4
938#define BFQ_HW_QUEUE_SAMPLES 32
939
940#define BFQQ_SEEK_THR (sector_t)(8 * 100)
941#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
942#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
943#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
944
ab0e43e9
PV
945/* Min number of samples required to perform peak-rate update */
946#define BFQ_RATE_MIN_SAMPLES 32
947/* Min observation time interval required to perform a peak-rate update (ns) */
948#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
949/* Target observation time interval for a peak-rate update (ns) */
950#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78
PV
951
952/* Shift used for peak rate fixed precision calculations. */
953#define BFQ_RATE_SHIFT 16
954
44e44a1b
PV
955/*
956 * By default, BFQ computes the duration of the weight raising for
957 * interactive applications automatically, using the following formula:
958 * duration = (R / r) * T, where r is the peak rate of the device, and
959 * R and T are two reference parameters.
960 * In particular, R is the peak rate of the reference device (see below),
961 * and T is a reference time: given the systems that are likely to be
962 * installed on the reference device according to its speed class, T is
963 * about the maximum time needed, under BFQ and while reading two files in
964 * parallel, to load typical large applications on these systems.
965 * In practice, the slower/faster the device at hand is, the more/less it
966 * takes to load applications with respect to the reference device.
967 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
968 * applications.
969 *
970 * BFQ uses four different reference pairs (R, T), depending on:
971 * . whether the device is rotational or non-rotational;
972 * . whether the device is slow, such as old or portable HDDs, as well as
973 * SD cards, or fast, such as newer HDDs and SSDs.
974 *
975 * The device's speed class is dynamically (re)detected in
976 * bfq_update_peak_rate() every time the estimated peak rate is updated.
977 *
978 * In the following definitions, R_slow[0]/R_fast[0] and
979 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
980 * rotational device, whereas R_slow[1]/R_fast[1] and
981 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
982 * non-rotational device. Finally, device_speed_thresh are the
983 * thresholds used to switch between speed classes. The reference
984 * rates are not the actual peak rates of the devices used as a
985 * reference, but slightly lower values. The reason for using these
986 * slightly lower values is that the peak-rate estimator tends to
987 * yield slightly lower values than the actual peak rate (it can yield
988 * the actual peak rate only if there is only one process doing I/O,
989 * and the process does sequential I/O).
990 *
991 * Both the reference peak rates and the thresholds are measured in
992 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
993 */
994static int R_slow[2] = {1000, 10700};
995static int R_fast[2] = {14000, 33000};
996/*
997 * To improve readability, a conversion function is used to initialize the
998 * following arrays, which entails that they can be initialized only in a
999 * function.
1000 */
1001static int T_slow[2];
1002static int T_fast[2];
1003static int device_speed_thresh[2];
1004
aee69d78
PV
1005#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
1006 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
1007
1008#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
1009#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
1010
1011/**
1012 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
1013 * @icq: the iocontext queue.
1014 */
1015static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
1016{
1017 /* bic->icq is the first member, %NULL will convert to %NULL */
1018 return container_of(icq, struct bfq_io_cq, icq);
1019}
1020
1021/**
1022 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
1023 * @bfqd: the lookup key.
1024 * @ioc: the io_context of the process doing I/O.
1025 * @q: the request queue.
1026 */
1027static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
1028 struct io_context *ioc,
1029 struct request_queue *q)
1030{
1031 if (ioc) {
1032 unsigned long flags;
1033 struct bfq_io_cq *icq;
1034
1035 spin_lock_irqsave(q->queue_lock, flags);
1036 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
1037 spin_unlock_irqrestore(q->queue_lock, flags);
1038
1039 return icq;
1040 }
1041
1042 return NULL;
1043}
1044
1045/*
e21b7a0b
AA
1046 * Scheduler run of queue, if there are requests pending and no one in the
1047 * driver that will restart queueing.
1048 */
1049static void bfq_schedule_dispatch(struct bfq_data *bfqd)
1050{
1051 if (bfqd->queued != 0) {
1052 bfq_log(bfqd, "schedule dispatch");
1053 blk_mq_run_hw_queues(bfqd->queue, true);
1054 }
1055}
1056
36eca894
AA
1057/*
1058 * Next two functions release bfqd->lock and put the io context
1059 * pointed by bfqd->ioc_to_put. This delayed put is used to not risk
1060 * to take an ioc->lock while the scheduler lock is being held.
1061 */
1062static void bfq_unlock_put_ioc(struct bfq_data *bfqd)
1063{
1064 struct io_context *ioc_to_put = bfqd->ioc_to_put;
1065
1066 bfqd->ioc_to_put = NULL;
1067 spin_unlock_irq(&bfqd->lock);
1068
1069 if (ioc_to_put)
1070 put_io_context(ioc_to_put);
1071}
1072
1073static void bfq_unlock_put_ioc_restore(struct bfq_data *bfqd,
1074 unsigned long flags)
1075{
1076 struct io_context *ioc_to_put = bfqd->ioc_to_put;
1077
1078 bfqd->ioc_to_put = NULL;
1079 spin_unlock_irqrestore(&bfqd->lock, flags);
1080
1081 if (ioc_to_put)
1082 put_io_context(ioc_to_put);
1083}
1084
e21b7a0b
AA
1085/**
1086 * bfq_gt - compare two timestamps.
1087 * @a: first ts.
1088 * @b: second ts.
1089 *
1090 * Return @a > @b, dealing with wrapping correctly.
1091 */
1092static int bfq_gt(u64 a, u64 b)
1093{
1094 return (s64)(a - b) > 0;
1095}
1096
1097static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
1098{
1099 struct rb_node *node = tree->rb_node;
1100
1101 return rb_entry(node, struct bfq_entity, rb_node);
1102}
1103
1104static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
1105
1106static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
1107
1108/**
1109 * bfq_update_next_in_service - update sd->next_in_service
1110 * @sd: sched_data for which to perform the update.
1111 * @new_entity: if not NULL, pointer to the entity whose activation,
1112 * requeueing or repositionig triggered the invocation of
1113 * this function.
1114 *
1115 * This function is called to update sd->next_in_service, which, in
1116 * its turn, may change as a consequence of the insertion or
1117 * extraction of an entity into/from one of the active trees of
1118 * sd. These insertions/extractions occur as a consequence of
1119 * activations/deactivations of entities, with some activations being
1120 * 'true' activations, and other activations being requeueings (i.e.,
1121 * implementing the second, requeueing phase of the mechanism used to
1122 * reposition an entity in its active tree; see comments on
1123 * __bfq_activate_entity and __bfq_requeue_entity for details). In
1124 * both the last two activation sub-cases, new_entity points to the
1125 * just activated or requeued entity.
1126 *
1127 * Returns true if sd->next_in_service changes in such a way that
1128 * entity->parent may become the next_in_service for its parent
1129 * entity.
aee69d78 1130 */
e21b7a0b
AA
1131static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
1132 struct bfq_entity *new_entity)
1133{
1134 struct bfq_entity *next_in_service = sd->next_in_service;
1135 bool parent_sched_may_change = false;
1136
1137 /*
1138 * If this update is triggered by the activation, requeueing
1139 * or repositiong of an entity that does not coincide with
1140 * sd->next_in_service, then a full lookup in the active tree
1141 * can be avoided. In fact, it is enough to check whether the
1142 * just-modified entity has a higher priority than
1143 * sd->next_in_service, or, even if it has the same priority
1144 * as sd->next_in_service, is eligible and has a lower virtual
1145 * finish time than sd->next_in_service. If this compound
1146 * condition holds, then the new entity becomes the new
1147 * next_in_service. Otherwise no change is needed.
1148 */
1149 if (new_entity && new_entity != sd->next_in_service) {
1150 /*
1151 * Flag used to decide whether to replace
1152 * sd->next_in_service with new_entity. Tentatively
1153 * set to true, and left as true if
1154 * sd->next_in_service is NULL.
1155 */
1156 bool replace_next = true;
1157
1158 /*
1159 * If there is already a next_in_service candidate
1160 * entity, then compare class priorities or timestamps
1161 * to decide whether to replace sd->service_tree with
1162 * new_entity.
1163 */
1164 if (next_in_service) {
1165 unsigned int new_entity_class_idx =
1166 bfq_class_idx(new_entity);
1167 struct bfq_service_tree *st =
1168 sd->service_tree + new_entity_class_idx;
1169
1170 /*
1171 * For efficiency, evaluate the most likely
1172 * sub-condition first.
1173 */
1174 replace_next =
1175 (new_entity_class_idx ==
1176 bfq_class_idx(next_in_service)
1177 &&
1178 !bfq_gt(new_entity->start, st->vtime)
1179 &&
1180 bfq_gt(next_in_service->finish,
1181 new_entity->finish))
1182 ||
1183 new_entity_class_idx <
1184 bfq_class_idx(next_in_service);
1185 }
1186
1187 if (replace_next)
1188 next_in_service = new_entity;
1189 } else /* invoked because of a deactivation: lookup needed */
1190 next_in_service = bfq_lookup_next_entity(sd);
1191
1192 if (next_in_service) {
1193 parent_sched_may_change = !sd->next_in_service ||
1194 bfq_update_parent_budget(next_in_service);
1195 }
1196
1197 sd->next_in_service = next_in_service;
1198
1199 if (!next_in_service)
1200 return parent_sched_may_change;
1201
1202 return parent_sched_may_change;
1203}
1204
1205#ifdef CONFIG_BFQ_GROUP_IOSCHED
1206/* both next loops stop at one of the child entities of the root group */
aee69d78 1207#define for_each_entity(entity) \
e21b7a0b 1208 for (; entity ; entity = entity->parent)
aee69d78 1209
e21b7a0b
AA
1210/*
1211 * For each iteration, compute parent in advance, so as to be safe if
1212 * entity is deallocated during the iteration. Such a deallocation may
1213 * happen as a consequence of a bfq_put_queue that frees the bfq_queue
1214 * containing entity.
1215 */
aee69d78 1216#define for_each_entity_safe(entity, parent) \
e21b7a0b 1217 for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
aee69d78 1218
e21b7a0b
AA
1219/*
1220 * Returns true if this budget changes may let next_in_service->parent
1221 * become the next_in_service entity for its parent entity.
1222 */
1223static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
aee69d78 1224{
e21b7a0b
AA
1225 struct bfq_entity *bfqg_entity;
1226 struct bfq_group *bfqg;
1227 struct bfq_sched_data *group_sd;
1228 bool ret = false;
1229
1230 group_sd = next_in_service->sched_data;
1231
1232 bfqg = container_of(group_sd, struct bfq_group, sched_data);
1233 /*
1234 * bfq_group's my_entity field is not NULL only if the group
1235 * is not the root group. We must not touch the root entity
1236 * as it must never become an in-service entity.
1237 */
1238 bfqg_entity = bfqg->my_entity;
1239 if (bfqg_entity) {
1240 if (bfqg_entity->budget > next_in_service->budget)
1241 ret = true;
1242 bfqg_entity->budget = next_in_service->budget;
1243 }
1244
1245 return ret;
1246}
1247
1248/*
1249 * This function tells whether entity stops being a candidate for next
1250 * service, according to the following logic.
1251 *
1252 * This function is invoked for an entity that is about to be set in
1253 * service. If such an entity is a queue, then the entity is no longer
1254 * a candidate for next service (i.e, a candidate entity to serve
1255 * after the in-service entity is expired). The function then returns
1256 * true.
1257 */
1258static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
1259{
1260 if (bfq_entity_to_bfqq(entity))
1261 return true;
1262
1263 return false;
aee69d78
PV
1264}
1265
e21b7a0b
AA
1266#else /* CONFIG_BFQ_GROUP_IOSCHED */
1267/*
1268 * Next two macros are fake loops when cgroups support is not
1269 * enabled. I fact, in such a case, there is only one level to go up
1270 * (to reach the root group).
1271 */
1272#define for_each_entity(entity) \
1273 for (; entity ; entity = NULL)
1274
1275#define for_each_entity_safe(entity, parent) \
1276 for (parent = NULL; entity ; entity = parent)
1277
1278static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
aee69d78 1279{
e21b7a0b 1280 return false;
aee69d78
PV
1281}
1282
e21b7a0b 1283static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
aee69d78 1284{
e21b7a0b 1285 return true;
aee69d78
PV
1286}
1287
e21b7a0b
AA
1288#endif /* CONFIG_BFQ_GROUP_IOSCHED */
1289
aee69d78
PV
1290/*
1291 * Shift for timestamp calculations. This actually limits the maximum
1292 * service allowed in one timestamp delta (small shift values increase it),
1293 * the maximum total weight that can be used for the queues in the system
1294 * (big shift values increase it), and the period of virtual time
1295 * wraparounds.
1296 */
1297#define WFQ_SERVICE_SHIFT 22
1298
aee69d78
PV
1299static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
1300{
1301 struct bfq_queue *bfqq = NULL;
1302
1303 if (!entity->my_sched_data)
1304 bfqq = container_of(entity, struct bfq_queue, entity);
1305
1306 return bfqq;
1307}
1308
1309
1310/**
1311 * bfq_delta - map service into the virtual time domain.
1312 * @service: amount of service.
1313 * @weight: scale factor (weight of an entity or weight sum).
1314 */
1315static u64 bfq_delta(unsigned long service, unsigned long weight)
1316{
1317 u64 d = (u64)service << WFQ_SERVICE_SHIFT;
1318
1319 do_div(d, weight);
1320 return d;
1321}
1322
1323/**
1324 * bfq_calc_finish - assign the finish time to an entity.
1325 * @entity: the entity to act upon.
1326 * @service: the service to be charged to the entity.
1327 */
1328static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
1329{
1330 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1331
1332 entity->finish = entity->start +
1333 bfq_delta(service, entity->weight);
1334
1335 if (bfqq) {
1336 bfq_log_bfqq(bfqq->bfqd, bfqq,
1337 "calc_finish: serv %lu, w %d",
1338 service, entity->weight);
1339 bfq_log_bfqq(bfqq->bfqd, bfqq,
1340 "calc_finish: start %llu, finish %llu, delta %llu",
1341 entity->start, entity->finish,
1342 bfq_delta(service, entity->weight));
1343 }
1344}
1345
1346/**
1347 * bfq_entity_of - get an entity from a node.
1348 * @node: the node field of the entity.
1349 *
1350 * Convert a node pointer to the relative entity. This is used only
1351 * to simplify the logic of some functions and not as the generic
1352 * conversion mechanism because, e.g., in the tree walking functions,
1353 * the check for a %NULL value would be redundant.
1354 */
1355static struct bfq_entity *bfq_entity_of(struct rb_node *node)
1356{
1357 struct bfq_entity *entity = NULL;
1358
1359 if (node)
1360 entity = rb_entry(node, struct bfq_entity, rb_node);
1361
1362 return entity;
1363}
1364
1365/**
1366 * bfq_extract - remove an entity from a tree.
1367 * @root: the tree root.
1368 * @entity: the entity to remove.
1369 */
1370static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
1371{
1372 entity->tree = NULL;
1373 rb_erase(&entity->rb_node, root);
1374}
1375
1376/**
1377 * bfq_idle_extract - extract an entity from the idle tree.
1378 * @st: the service tree of the owning @entity.
1379 * @entity: the entity being removed.
1380 */
1381static void bfq_idle_extract(struct bfq_service_tree *st,
1382 struct bfq_entity *entity)
1383{
1384 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1385 struct rb_node *next;
1386
1387 if (entity == st->first_idle) {
1388 next = rb_next(&entity->rb_node);
1389 st->first_idle = bfq_entity_of(next);
1390 }
1391
1392 if (entity == st->last_idle) {
1393 next = rb_prev(&entity->rb_node);
1394 st->last_idle = bfq_entity_of(next);
1395 }
1396
1397 bfq_extract(&st->idle, entity);
1398
1399 if (bfqq)
1400 list_del(&bfqq->bfqq_list);
1401}
1402
1403/**
1404 * bfq_insert - generic tree insertion.
1405 * @root: tree root.
1406 * @entity: entity to insert.
1407 *
1408 * This is used for the idle and the active tree, since they are both
1409 * ordered by finish time.
1410 */
1411static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
1412{
1413 struct bfq_entity *entry;
1414 struct rb_node **node = &root->rb_node;
1415 struct rb_node *parent = NULL;
1416
1417 while (*node) {
1418 parent = *node;
1419 entry = rb_entry(parent, struct bfq_entity, rb_node);
1420
1421 if (bfq_gt(entry->finish, entity->finish))
1422 node = &parent->rb_left;
1423 else
1424 node = &parent->rb_right;
1425 }
1426
1427 rb_link_node(&entity->rb_node, parent, node);
1428 rb_insert_color(&entity->rb_node, root);
1429
1430 entity->tree = root;
1431}
1432
1433/**
1434 * bfq_update_min - update the min_start field of a entity.
1435 * @entity: the entity to update.
1436 * @node: one of its children.
1437 *
1438 * This function is called when @entity may store an invalid value for
1439 * min_start due to updates to the active tree. The function assumes
1440 * that the subtree rooted at @node (which may be its left or its right
1441 * child) has a valid min_start value.
1442 */
1443static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
1444{
1445 struct bfq_entity *child;
1446
1447 if (node) {
1448 child = rb_entry(node, struct bfq_entity, rb_node);
1449 if (bfq_gt(entity->min_start, child->min_start))
1450 entity->min_start = child->min_start;
1451 }
1452}
1453
1454/**
1455 * bfq_update_active_node - recalculate min_start.
1456 * @node: the node to update.
1457 *
1458 * @node may have changed position or one of its children may have moved,
1459 * this function updates its min_start value. The left and right subtrees
1460 * are assumed to hold a correct min_start value.
1461 */
1462static void bfq_update_active_node(struct rb_node *node)
1463{
1464 struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
1465
1466 entity->min_start = entity->start;
1467 bfq_update_min(entity, node->rb_right);
1468 bfq_update_min(entity, node->rb_left);
1469}
1470
1471/**
1472 * bfq_update_active_tree - update min_start for the whole active tree.
1473 * @node: the starting node.
1474 *
1475 * @node must be the deepest modified node after an update. This function
1476 * updates its min_start using the values held by its children, assuming
1477 * that they did not change, and then updates all the nodes that may have
1478 * changed in the path to the root. The only nodes that may have changed
1479 * are the ones in the path or their siblings.
1480 */
1481static void bfq_update_active_tree(struct rb_node *node)
1482{
1483 struct rb_node *parent;
1484
1485up:
1486 bfq_update_active_node(node);
1487
1488 parent = rb_parent(node);
1489 if (!parent)
1490 return;
1491
1492 if (node == parent->rb_left && parent->rb_right)
1493 bfq_update_active_node(parent->rb_right);
1494 else if (parent->rb_left)
1495 bfq_update_active_node(parent->rb_left);
1496
1497 node = parent;
1498 goto up;
1499}
1500
1501/**
1502 * bfq_active_insert - insert an entity in the active tree of its
1503 * group/device.
1504 * @st: the service tree of the entity.
1505 * @entity: the entity being inserted.
1506 *
1507 * The active tree is ordered by finish time, but an extra key is kept
1508 * per each node, containing the minimum value for the start times of
1509 * its children (and the node itself), so it's possible to search for
1510 * the eligible node with the lowest finish time in logarithmic time.
1511 */
1512static void bfq_active_insert(struct bfq_service_tree *st,
1513 struct bfq_entity *entity)
1514{
1515 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1516 struct rb_node *node = &entity->rb_node;
e21b7a0b
AA
1517#ifdef CONFIG_BFQ_GROUP_IOSCHED
1518 struct bfq_sched_data *sd = NULL;
1519 struct bfq_group *bfqg = NULL;
1520 struct bfq_data *bfqd = NULL;
1521#endif
aee69d78
PV
1522
1523 bfq_insert(&st->active, entity);
1524
1525 if (node->rb_left)
1526 node = node->rb_left;
1527 else if (node->rb_right)
1528 node = node->rb_right;
1529
1530 bfq_update_active_tree(node);
1531
e21b7a0b
AA
1532#ifdef CONFIG_BFQ_GROUP_IOSCHED
1533 sd = entity->sched_data;
1534 bfqg = container_of(sd, struct bfq_group, sched_data);
1535 bfqd = (struct bfq_data *)bfqg->bfqd;
1536#endif
aee69d78
PV
1537 if (bfqq)
1538 list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
1539}
1540
1541/**
1542 * bfq_ioprio_to_weight - calc a weight from an ioprio.
1543 * @ioprio: the ioprio value to convert.
1544 */
1545static unsigned short bfq_ioprio_to_weight(int ioprio)
1546{
1547 return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
1548}
1549
1550/**
1551 * bfq_weight_to_ioprio - calc an ioprio from a weight.
1552 * @weight: the weight value to convert.
1553 *
1554 * To preserve as much as possible the old only-ioprio user interface,
1555 * 0 is used as an escape ioprio value for weights (numerically) equal or
1556 * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
1557 */
1558static unsigned short bfq_weight_to_ioprio(int weight)
1559{
1560 return max_t(int, 0,
1561 IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
1562}
1563
1564static void bfq_get_entity(struct bfq_entity *entity)
1565{
1566 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1567
1568 if (bfqq) {
1569 bfqq->ref++;
1570 bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
1571 bfqq, bfqq->ref);
1572 }
1573}
1574
1575/**
1576 * bfq_find_deepest - find the deepest node that an extraction can modify.
1577 * @node: the node being removed.
1578 *
1579 * Do the first step of an extraction in an rb tree, looking for the
1580 * node that will replace @node, and returning the deepest node that
1581 * the following modifications to the tree can touch. If @node is the
1582 * last node in the tree return %NULL.
1583 */
1584static struct rb_node *bfq_find_deepest(struct rb_node *node)
1585{
1586 struct rb_node *deepest;
1587
1588 if (!node->rb_right && !node->rb_left)
1589 deepest = rb_parent(node);
1590 else if (!node->rb_right)
1591 deepest = node->rb_left;
1592 else if (!node->rb_left)
1593 deepest = node->rb_right;
1594 else {
1595 deepest = rb_next(node);
1596 if (deepest->rb_right)
1597 deepest = deepest->rb_right;
1598 else if (rb_parent(deepest) != node)
1599 deepest = rb_parent(deepest);
1600 }
1601
1602 return deepest;
1603}
1604
1605/**
1606 * bfq_active_extract - remove an entity from the active tree.
1607 * @st: the service_tree containing the tree.
1608 * @entity: the entity being removed.
1609 */
1610static void bfq_active_extract(struct bfq_service_tree *st,
1611 struct bfq_entity *entity)
1612{
1613 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1614 struct rb_node *node;
e21b7a0b
AA
1615#ifdef CONFIG_BFQ_GROUP_IOSCHED
1616 struct bfq_sched_data *sd = NULL;
1617 struct bfq_group *bfqg = NULL;
1618 struct bfq_data *bfqd = NULL;
1619#endif
aee69d78
PV
1620
1621 node = bfq_find_deepest(&entity->rb_node);
1622 bfq_extract(&st->active, entity);
1623
1624 if (node)
1625 bfq_update_active_tree(node);
1626
e21b7a0b
AA
1627#ifdef CONFIG_BFQ_GROUP_IOSCHED
1628 sd = entity->sched_data;
1629 bfqg = container_of(sd, struct bfq_group, sched_data);
1630 bfqd = (struct bfq_data *)bfqg->bfqd;
1631#endif
aee69d78
PV
1632 if (bfqq)
1633 list_del(&bfqq->bfqq_list);
1634}
1635
1636/**
1637 * bfq_idle_insert - insert an entity into the idle tree.
1638 * @st: the service tree containing the tree.
1639 * @entity: the entity to insert.
1640 */
1641static void bfq_idle_insert(struct bfq_service_tree *st,
1642 struct bfq_entity *entity)
1643{
1644 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1645 struct bfq_entity *first_idle = st->first_idle;
1646 struct bfq_entity *last_idle = st->last_idle;
1647
1648 if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
1649 st->first_idle = entity;
1650 if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
1651 st->last_idle = entity;
1652
1653 bfq_insert(&st->idle, entity);
1654
1655 if (bfqq)
1656 list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
1657}
1658
1659/**
1660 * bfq_forget_entity - do not consider entity any longer for scheduling
1661 * @st: the service tree.
1662 * @entity: the entity being removed.
1663 * @is_in_service: true if entity is currently the in-service entity.
1664 *
1665 * Forget everything about @entity. In addition, if entity represents
1666 * a queue, and the latter is not in service, then release the service
1667 * reference to the queue (the one taken through bfq_get_entity). In
1668 * fact, in this case, there is really no more service reference to
1669 * the queue, as the latter is also outside any service tree. If,
1670 * instead, the queue is in service, then __bfq_bfqd_reset_in_service
1671 * will take care of putting the reference when the queue finally
1672 * stops being served.
1673 */
1674static void bfq_forget_entity(struct bfq_service_tree *st,
1675 struct bfq_entity *entity,
1676 bool is_in_service)
1677{
1678 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1679
e21b7a0b 1680 entity->on_st = false;
aee69d78
PV
1681 st->wsum -= entity->weight;
1682 if (bfqq && !is_in_service)
1683 bfq_put_queue(bfqq);
1684}
1685
1686/**
1687 * bfq_put_idle_entity - release the idle tree ref of an entity.
1688 * @st: service tree for the entity.
1689 * @entity: the entity being released.
1690 */
1691static void bfq_put_idle_entity(struct bfq_service_tree *st,
1692 struct bfq_entity *entity)
1693{
1694 bfq_idle_extract(st, entity);
1695 bfq_forget_entity(st, entity,
1696 entity == entity->sched_data->in_service_entity);
1697}
1698
1699/**
1700 * bfq_forget_idle - update the idle tree if necessary.
1701 * @st: the service tree to act upon.
1702 *
1703 * To preserve the global O(log N) complexity we only remove one entry here;
1704 * as the idle tree will not grow indefinitely this can be done safely.
1705 */
1706static void bfq_forget_idle(struct bfq_service_tree *st)
1707{
1708 struct bfq_entity *first_idle = st->first_idle;
1709 struct bfq_entity *last_idle = st->last_idle;
1710
1711 if (RB_EMPTY_ROOT(&st->active) && last_idle &&
1712 !bfq_gt(last_idle->finish, st->vtime)) {
1713 /*
1714 * Forget the whole idle tree, increasing the vtime past
1715 * the last finish time of idle entities.
1716 */
1717 st->vtime = last_idle->finish;
1718 }
1719
1720 if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
1721 bfq_put_idle_entity(st, first_idle);
1722}
1723
1724static struct bfq_service_tree *
1725__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
e21b7a0b 1726 struct bfq_entity *entity)
aee69d78
PV
1727{
1728 struct bfq_service_tree *new_st = old_st;
1729
1730 if (entity->prio_changed) {
1731 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
44e44a1b 1732 unsigned int prev_weight, new_weight;
aee69d78 1733 struct bfq_data *bfqd = NULL;
e21b7a0b
AA
1734#ifdef CONFIG_BFQ_GROUP_IOSCHED
1735 struct bfq_sched_data *sd;
1736 struct bfq_group *bfqg;
1737#endif
aee69d78
PV
1738
1739 if (bfqq)
1740 bfqd = bfqq->bfqd;
e21b7a0b
AA
1741#ifdef CONFIG_BFQ_GROUP_IOSCHED
1742 else {
1743 sd = entity->my_sched_data;
1744 bfqg = container_of(sd, struct bfq_group, sched_data);
1745 bfqd = (struct bfq_data *)bfqg->bfqd;
1746 }
1747#endif
aee69d78
PV
1748
1749 old_st->wsum -= entity->weight;
1750
1751 if (entity->new_weight != entity->orig_weight) {
1752 if (entity->new_weight < BFQ_MIN_WEIGHT ||
1753 entity->new_weight > BFQ_MAX_WEIGHT) {
1754 pr_crit("update_weight_prio: new_weight %d\n",
1755 entity->new_weight);
1756 if (entity->new_weight < BFQ_MIN_WEIGHT)
1757 entity->new_weight = BFQ_MIN_WEIGHT;
1758 else
1759 entity->new_weight = BFQ_MAX_WEIGHT;
1760 }
1761 entity->orig_weight = entity->new_weight;
1762 if (bfqq)
1763 bfqq->ioprio =
1764 bfq_weight_to_ioprio(entity->orig_weight);
1765 }
1766
1767 if (bfqq)
1768 bfqq->ioprio_class = bfqq->new_ioprio_class;
1769 entity->prio_changed = 0;
1770
1771 /*
1772 * NOTE: here we may be changing the weight too early,
1773 * this will cause unfairness. The correct approach
1774 * would have required additional complexity to defer
1775 * weight changes to the proper time instants (i.e.,
1776 * when entity->finish <= old_st->vtime).
1777 */
1778 new_st = bfq_entity_service_tree(entity);
1779
1780 prev_weight = entity->weight;
44e44a1b
PV
1781 new_weight = entity->orig_weight *
1782 (bfqq ? bfqq->wr_coeff : 1);
aee69d78
PV
1783 entity->weight = new_weight;
1784
1785 new_st->wsum += entity->weight;
1786
1787 if (new_st != old_st)
1788 entity->start = new_st->vtime;
1789 }
1790
1791 return new_st;
1792}
1793
e21b7a0b
AA
1794static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
1795static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1796
aee69d78
PV
1797/**
1798 * bfq_bfqq_served - update the scheduler status after selection for
1799 * service.
1800 * @bfqq: the queue being served.
1801 * @served: bytes to transfer.
1802 *
1803 * NOTE: this can be optimized, as the timestamps of upper level entities
1804 * are synchronized every time a new bfqq is selected for service. By now,
1805 * we keep it to better check consistency.
1806 */
1807static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
1808{
1809 struct bfq_entity *entity = &bfqq->entity;
1810 struct bfq_service_tree *st;
1811
1812 for_each_entity(entity) {
1813 st = bfq_entity_service_tree(entity);
1814
1815 entity->service += served;
1816
1817 st->vtime += bfq_delta(served, st->wsum);
1818 bfq_forget_idle(st);
1819 }
e21b7a0b 1820 bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
aee69d78
PV
1821 bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
1822}
1823
1824/**
c074170e
PV
1825 * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
1826 * of the time interval during which bfqq has been in
1827 * service.
1828 * @bfqd: the device
aee69d78 1829 * @bfqq: the queue that needs a service update.
c074170e 1830 * @time_ms: the amount of time during which the queue has received service
aee69d78 1831 *
c074170e
PV
1832 * If a queue does not consume its budget fast enough, then providing
1833 * the queue with service fairness may impair throughput, more or less
1834 * severely. For this reason, queues that consume their budget slowly
1835 * are provided with time fairness instead of service fairness. This
1836 * goal is achieved through the BFQ scheduling engine, even if such an
1837 * engine works in the service, and not in the time domain. The trick
1838 * is charging these queues with an inflated amount of service, equal
1839 * to the amount of service that they would have received during their
1840 * service slot if they had been fast, i.e., if their requests had
1841 * been dispatched at a rate equal to the estimated peak rate.
1842 *
1843 * It is worth noting that time fairness can cause important
1844 * distortions in terms of bandwidth distribution, on devices with
1845 * internal queueing. The reason is that I/O requests dispatched
1846 * during the service slot of a queue may be served after that service
1847 * slot is finished, and may have a total processing time loosely
1848 * correlated with the duration of the service slot. This is
1849 * especially true for short service slots.
aee69d78 1850 */
c074170e
PV
1851static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1852 unsigned long time_ms)
aee69d78
PV
1853{
1854 struct bfq_entity *entity = &bfqq->entity;
c074170e
PV
1855 int tot_serv_to_charge = entity->service;
1856 unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
1857
1858 if (time_ms > 0 && time_ms < timeout_ms)
1859 tot_serv_to_charge =
1860 (bfqd->bfq_max_budget * time_ms) / timeout_ms;
aee69d78 1861
c074170e
PV
1862 if (tot_serv_to_charge < entity->service)
1863 tot_serv_to_charge = entity->service;
aee69d78 1864
c074170e
PV
1865 /* Increase budget to avoid inconsistencies */
1866 if (tot_serv_to_charge > entity->budget)
1867 entity->budget = tot_serv_to_charge;
1868
1869 bfq_bfqq_served(bfqq,
1870 max_t(int, 0, tot_serv_to_charge - entity->service));
aee69d78
PV
1871}
1872
e21b7a0b
AA
1873static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
1874 struct bfq_service_tree *st,
1875 bool backshifted)
aee69d78 1876{
44e44a1b
PV
1877 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1878
aee69d78
PV
1879 st = __bfq_entity_update_weight_prio(st, entity);
1880 bfq_calc_finish(entity, entity->budget);
1881
1882 /*
1883 * If some queues enjoy backshifting for a while, then their
1884 * (virtual) finish timestamps may happen to become lower and
1885 * lower than the system virtual time. In particular, if
1886 * these queues often happen to be idle for short time
1887 * periods, and during such time periods other queues with
1888 * higher timestamps happen to be busy, then the backshifted
1889 * timestamps of the former queues can become much lower than
1890 * the system virtual time. In fact, to serve the queues with
1891 * higher timestamps while the ones with lower timestamps are
1892 * idle, the system virtual time may be pushed-up to much
1893 * higher values than the finish timestamps of the idle
1894 * queues. As a consequence, the finish timestamps of all new
1895 * or newly activated queues may end up being much larger than
1896 * those of lucky queues with backshifted timestamps. The
1897 * latter queues may then monopolize the device for a lot of
1898 * time. This would simply break service guarantees.
1899 *
1900 * To reduce this problem, push up a little bit the
1901 * backshifted timestamps of the queue associated with this
1902 * entity (only a queue can happen to have the backshifted
1903 * flag set): just enough to let the finish timestamp of the
1904 * queue be equal to the current value of the system virtual
1905 * time. This may introduce a little unfairness among queues
1906 * with backshifted timestamps, but it does not break
1907 * worst-case fairness guarantees.
44e44a1b
PV
1908 *
1909 * As a special case, if bfqq is weight-raised, push up
1910 * timestamps much less, to keep very low the probability that
1911 * this push up causes the backshifted finish timestamps of
1912 * weight-raised queues to become higher than the backshifted
1913 * finish timestamps of non weight-raised queues.
aee69d78
PV
1914 */
1915 if (backshifted && bfq_gt(st->vtime, entity->finish)) {
1916 unsigned long delta = st->vtime - entity->finish;
1917
44e44a1b
PV
1918 if (bfqq)
1919 delta /= bfqq->wr_coeff;
1920
aee69d78
PV
1921 entity->start += delta;
1922 entity->finish += delta;
1923 }
1924
1925 bfq_active_insert(st, entity);
1926}
1927
1928/**
e21b7a0b
AA
1929 * __bfq_activate_entity - handle activation of entity.
1930 * @entity: the entity being activated.
1931 * @non_blocking_wait_rq: true if entity was waiting for a request
1932 *
1933 * Called for a 'true' activation, i.e., if entity is not active and
1934 * one of its children receives a new request.
1935 *
1936 * Basically, this function updates the timestamps of entity and
1937 * inserts entity into its active tree, ater possible extracting it
1938 * from its idle tree.
1939 */
1940static void __bfq_activate_entity(struct bfq_entity *entity,
1941 bool non_blocking_wait_rq)
1942{
1943 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1944 bool backshifted = false;
1945 unsigned long long min_vstart;
1946
1947 /* See comments on bfq_fqq_update_budg_for_activation */
1948 if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
1949 backshifted = true;
1950 min_vstart = entity->finish;
1951 } else
1952 min_vstart = st->vtime;
1953
1954 if (entity->tree == &st->idle) {
1955 /*
1956 * Must be on the idle tree, bfq_idle_extract() will
1957 * check for that.
1958 */
1959 bfq_idle_extract(st, entity);
1960 entity->start = bfq_gt(min_vstart, entity->finish) ?
1961 min_vstart : entity->finish;
1962 } else {
1963 /*
1964 * The finish time of the entity may be invalid, and
1965 * it is in the past for sure, otherwise the queue
1966 * would have been on the idle tree.
1967 */
1968 entity->start = min_vstart;
1969 st->wsum += entity->weight;
1970 /*
1971 * entity is about to be inserted into a service tree,
1972 * and then set in service: get a reference to make
1973 * sure entity does not disappear until it is no
1974 * longer in service or scheduled for service.
1975 */
1976 bfq_get_entity(entity);
1977
1978 entity->on_st = true;
1979 }
1980
1981 bfq_update_fin_time_enqueue(entity, st, backshifted);
1982}
1983
1984/**
1985 * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1986 * @entity: the entity being requeued or repositioned.
1987 *
1988 * Requeueing is needed if this entity stops being served, which
1989 * happens if a leaf descendant entity has expired. On the other hand,
1990 * repositioning is needed if the next_inservice_entity for the child
1991 * entity has changed. See the comments inside the function for
1992 * details.
1993 *
1994 * Basically, this function: 1) removes entity from its active tree if
1995 * present there, 2) updates the timestamps of entity and 3) inserts
1996 * entity back into its active tree (in the new, right position for
1997 * the new values of the timestamps).
1998 */
1999static void __bfq_requeue_entity(struct bfq_entity *entity)
2000{
2001 struct bfq_sched_data *sd = entity->sched_data;
2002 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2003
2004 if (entity == sd->in_service_entity) {
2005 /*
2006 * We are requeueing the current in-service entity,
2007 * which may have to be done for one of the following
2008 * reasons:
2009 * - entity represents the in-service queue, and the
2010 * in-service queue is being requeued after an
2011 * expiration;
2012 * - entity represents a group, and its budget has
2013 * changed because one of its child entities has
2014 * just been either activated or requeued for some
2015 * reason; the timestamps of the entity need then to
2016 * be updated, and the entity needs to be enqueued
2017 * or repositioned accordingly.
2018 *
2019 * In particular, before requeueing, the start time of
2020 * the entity must be moved forward to account for the
2021 * service that the entity has received while in
2022 * service. This is done by the next instructions. The
2023 * finish time will then be updated according to this
2024 * new value of the start time, and to the budget of
2025 * the entity.
2026 */
2027 bfq_calc_finish(entity, entity->service);
2028 entity->start = entity->finish;
2029 /*
2030 * In addition, if the entity had more than one child
2031 * when set in service, then was not extracted from
2032 * the active tree. This implies that the position of
2033 * the entity in the active tree may need to be
2034 * changed now, because we have just updated the start
2035 * time of the entity, and we will update its finish
2036 * time in a moment (the requeueing is then, more
2037 * precisely, a repositioning in this case). To
2038 * implement this repositioning, we: 1) dequeue the
2039 * entity here, 2) update the finish time and
2040 * requeue the entity according to the new
2041 * timestamps below.
2042 */
2043 if (entity->tree)
2044 bfq_active_extract(st, entity);
2045 } else { /* The entity is already active, and not in service */
2046 /*
2047 * In this case, this function gets called only if the
2048 * next_in_service entity below this entity has
2049 * changed, and this change has caused the budget of
2050 * this entity to change, which, finally implies that
2051 * the finish time of this entity must be
2052 * updated. Such an update may cause the scheduling,
2053 * i.e., the position in the active tree, of this
2054 * entity to change. We handle this change by: 1)
2055 * dequeueing the entity here, 2) updating the finish
2056 * time and requeueing the entity according to the new
2057 * timestamps below. This is the same approach as the
2058 * non-extracted-entity sub-case above.
2059 */
2060 bfq_active_extract(st, entity);
2061 }
2062
2063 bfq_update_fin_time_enqueue(entity, st, false);
2064}
2065
2066static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
2067 struct bfq_sched_data *sd,
2068 bool non_blocking_wait_rq)
2069{
2070 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2071
2072 if (sd->in_service_entity == entity || entity->tree == &st->active)
2073 /*
2074 * in service or already queued on the active tree,
2075 * requeue or reposition
2076 */
2077 __bfq_requeue_entity(entity);
2078 else
2079 /*
2080 * Not in service and not queued on its active tree:
2081 * the activity is idle and this is a true activation.
2082 */
2083 __bfq_activate_entity(entity, non_blocking_wait_rq);
2084}
2085
2086
2087/**
2088 * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
2089 * and activate, requeue or reposition all ancestors
2090 * for which such an update becomes necessary.
aee69d78
PV
2091 * @entity: the entity to activate.
2092 * @non_blocking_wait_rq: true if this entity was waiting for a request
e21b7a0b
AA
2093 * @requeue: true if this is a requeue, which implies that bfqq is
2094 * being expired; thus ALL its ancestors stop being served and must
2095 * therefore be requeued
aee69d78 2096 */
e21b7a0b
AA
2097static void bfq_activate_requeue_entity(struct bfq_entity *entity,
2098 bool non_blocking_wait_rq,
2099 bool requeue)
aee69d78
PV
2100{
2101 struct bfq_sched_data *sd;
2102
2103 for_each_entity(entity) {
aee69d78 2104 sd = entity->sched_data;
e21b7a0b
AA
2105 __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
2106
2107 if (!bfq_update_next_in_service(sd, entity) && !requeue)
aee69d78
PV
2108 break;
2109 }
2110}
2111
2112/**
2113 * __bfq_deactivate_entity - deactivate an entity from its service tree.
2114 * @entity: the entity to deactivate.
e21b7a0b
AA
2115 * @ins_into_idle_tree: if false, the entity will not be put into the
2116 * idle tree.
aee69d78 2117 *
e21b7a0b
AA
2118 * Deactivates an entity, independently from its previous state. Must
2119 * be invoked only if entity is on a service tree. Extracts the entity
2120 * from that tree, and if necessary and allowed, puts it on the idle
2121 * tree.
aee69d78 2122 */
e21b7a0b
AA
2123static bool __bfq_deactivate_entity(struct bfq_entity *entity,
2124 bool ins_into_idle_tree)
aee69d78
PV
2125{
2126 struct bfq_sched_data *sd = entity->sched_data;
2127 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2128 int is_in_service = entity == sd->in_service_entity;
aee69d78 2129
e21b7a0b
AA
2130 if (!entity->on_st) /* entity never activated, or already inactive */
2131 return false;
aee69d78 2132
e21b7a0b 2133 if (is_in_service)
aee69d78 2134 bfq_calc_finish(entity, entity->service);
e21b7a0b
AA
2135
2136 if (entity->tree == &st->active)
aee69d78 2137 bfq_active_extract(st, entity);
e21b7a0b 2138 else if (!is_in_service && entity->tree == &st->idle)
aee69d78
PV
2139 bfq_idle_extract(st, entity);
2140
e21b7a0b 2141 if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
aee69d78
PV
2142 bfq_forget_entity(st, entity, is_in_service);
2143 else
2144 bfq_idle_insert(st, entity);
2145
e21b7a0b 2146 return true;
aee69d78
PV
2147}
2148
2149/**
e21b7a0b 2150 * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
aee69d78 2151 * @entity: the entity to deactivate.
e21b7a0b 2152 * @ins_into_idle_tree: true if the entity can be put on the idle tree
aee69d78 2153 */
e21b7a0b
AA
2154static void bfq_deactivate_entity(struct bfq_entity *entity,
2155 bool ins_into_idle_tree,
2156 bool expiration)
aee69d78
PV
2157{
2158 struct bfq_sched_data *sd;
2159 struct bfq_entity *parent = NULL;
2160
2161 for_each_entity_safe(entity, parent) {
2162 sd = entity->sched_data;
2163
e21b7a0b 2164 if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
aee69d78 2165 /*
e21b7a0b
AA
2166 * entity is not in any tree any more, so
2167 * this deactivation is a no-op, and there is
2168 * nothing to change for upper-level entities
2169 * (in case of expiration, this can never
2170 * happen).
aee69d78 2171 */
e21b7a0b
AA
2172 return;
2173 }
2174
2175 if (sd->next_in_service == entity)
2176 /*
2177 * entity was the next_in_service entity,
2178 * then, since entity has just been
2179 * deactivated, a new one must be found.
2180 */
2181 bfq_update_next_in_service(sd, NULL);
aee69d78
PV
2182
2183 if (sd->next_in_service)
2184 /*
e21b7a0b
AA
2185 * The parent entity is still backlogged,
2186 * because next_in_service is not NULL. So, no
2187 * further upwards deactivation must be
2188 * performed. Yet, next_in_service has
2189 * changed. Then the schedule does need to be
2190 * updated upwards.
aee69d78 2191 */
e21b7a0b 2192 break;
aee69d78
PV
2193
2194 /*
e21b7a0b
AA
2195 * If we get here, then the parent is no more
2196 * backlogged and we need to propagate the
2197 * deactivation upwards. Thus let the loop go on.
aee69d78 2198 */
aee69d78 2199
e21b7a0b
AA
2200 /*
2201 * Also let parent be queued into the idle tree on
2202 * deactivation, to preserve service guarantees, and
2203 * assuming that who invoked this function does not
2204 * need parent entities too to be removed completely.
2205 */
2206 ins_into_idle_tree = true;
2207 }
aee69d78 2208
e21b7a0b
AA
2209 /*
2210 * If the deactivation loop is fully executed, then there are
2211 * no more entities to touch and next loop is not executed at
2212 * all. Otherwise, requeue remaining entities if they are
2213 * about to stop receiving service, or reposition them if this
2214 * is not the case.
2215 */
aee69d78
PV
2216 entity = parent;
2217 for_each_entity(entity) {
e21b7a0b
AA
2218 /*
2219 * Invoke __bfq_requeue_entity on entity, even if
2220 * already active, to requeue/reposition it in the
2221 * active tree (because sd->next_in_service has
2222 * changed)
2223 */
2224 __bfq_requeue_entity(entity);
aee69d78
PV
2225
2226 sd = entity->sched_data;
e21b7a0b
AA
2227 if (!bfq_update_next_in_service(sd, entity) &&
2228 !expiration)
2229 /*
2230 * next_in_service unchanged or not causing
2231 * any change in entity->parent->sd, and no
2232 * requeueing needed for expiration: stop
2233 * here.
2234 */
aee69d78
PV
2235 break;
2236 }
2237}
2238
2239/**
e21b7a0b
AA
2240 * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
2241 * if needed, to have at least one entity eligible.
aee69d78
PV
2242 * @st: the service tree to act upon.
2243 *
e21b7a0b 2244 * Assumes that st is not empty.
aee69d78 2245 */
e21b7a0b 2246static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
aee69d78 2247{
e21b7a0b
AA
2248 struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
2249
2250 if (bfq_gt(root_entity->min_start, st->vtime))
2251 return root_entity->min_start;
2252
2253 return st->vtime;
2254}
aee69d78 2255
e21b7a0b
AA
2256static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
2257{
2258 if (new_value > st->vtime) {
2259 st->vtime = new_value;
aee69d78
PV
2260 bfq_forget_idle(st);
2261 }
2262}
2263
2264/**
2265 * bfq_first_active_entity - find the eligible entity with
2266 * the smallest finish time
2267 * @st: the service tree to select from.
e21b7a0b 2268 * @vtime: the system virtual to use as a reference for eligibility
aee69d78
PV
2269 *
2270 * This function searches the first schedulable entity, starting from the
2271 * root of the tree and going on the left every time on this side there is
2272 * a subtree with at least one eligible (start >= vtime) entity. The path on
2273 * the right is followed only if a) the left subtree contains no eligible
2274 * entities and b) no eligible entity has been found yet.
2275 */
e21b7a0b
AA
2276static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
2277 u64 vtime)
aee69d78
PV
2278{
2279 struct bfq_entity *entry, *first = NULL;
2280 struct rb_node *node = st->active.rb_node;
2281
2282 while (node) {
2283 entry = rb_entry(node, struct bfq_entity, rb_node);
2284left:
e21b7a0b 2285 if (!bfq_gt(entry->start, vtime))
aee69d78
PV
2286 first = entry;
2287
2288 if (node->rb_left) {
2289 entry = rb_entry(node->rb_left,
2290 struct bfq_entity, rb_node);
e21b7a0b 2291 if (!bfq_gt(entry->min_start, vtime)) {
aee69d78
PV
2292 node = node->rb_left;
2293 goto left;
2294 }
2295 }
2296 if (first)
2297 break;
2298 node = node->rb_right;
2299 }
2300
e21b7a0b
AA
2301 return first;
2302}
2303
2304/**
2305 * __bfq_lookup_next_entity - return the first eligible entity in @st.
2306 * @st: the service tree.
2307 *
2308 * If there is no in-service entity for the sched_data st belongs to,
2309 * then return the entity that will be set in service if:
2310 * 1) the parent entity this st belongs to is set in service;
2311 * 2) no entity belonging to such parent entity undergoes a state change
2312 * that would influence the timestamps of the entity (e.g., becomes idle,
2313 * becomes backlogged, changes its budget, ...).
2314 *
2315 * In this first case, update the virtual time in @st too (see the
2316 * comments on this update inside the function).
2317 *
2318 * In constrast, if there is an in-service entity, then return the
2319 * entity that would be set in service if not only the above
2320 * conditions, but also the next one held true: the currently
2321 * in-service entity, on expiration,
2322 * 1) gets a finish time equal to the current one, or
2323 * 2) is not eligible any more, or
2324 * 3) is idle.
2325 */
2326static struct bfq_entity *
2327__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
2328{
2329 struct bfq_entity *entity;
2330 u64 new_vtime;
2331
2332 if (RB_EMPTY_ROOT(&st->active))
2333 return NULL;
2334
2335 /*
2336 * Get the value of the system virtual time for which at
2337 * least one entity is eligible.
2338 */
2339 new_vtime = bfq_calc_vtime_jump(st);
2340
2341 /*
2342 * If there is no in-service entity for the sched_data this
2343 * active tree belongs to, then push the system virtual time
2344 * up to the value that guarantees that at least one entity is
2345 * eligible. If, instead, there is an in-service entity, then
2346 * do not make any such update, because there is already an
2347 * eligible entity, namely the in-service one (even if the
2348 * entity is not on st, because it was extracted when set in
2349 * service).
2350 */
2351 if (!in_service)
2352 bfq_update_vtime(st, new_vtime);
2353
2354 entity = bfq_first_active_entity(st, new_vtime);
2355
2356 return entity;
2357}
2358
2359/**
2360 * bfq_lookup_next_entity - return the first eligible entity in @sd.
2361 * @sd: the sched_data.
2362 *
2363 * This function is invoked when there has been a change in the trees
2364 * for sd, and we need know what is the new next entity after this
2365 * change.
2366 */
2367static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
2368{
2369 struct bfq_service_tree *st = sd->service_tree;
2370 struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
2371 struct bfq_entity *entity = NULL;
2372 int class_idx = 0;
2373
2374 /*
2375 * Choose from idle class, if needed to guarantee a minimum
2376 * bandwidth to this class (and if there is some active entity
2377 * in idle class). This should also mitigate
2378 * priority-inversion problems in case a low priority task is
2379 * holding file system resources.
2380 */
2381 if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
2382 BFQ_CL_IDLE_TIMEOUT)) {
2383 if (!RB_EMPTY_ROOT(&idle_class_st->active))
2384 class_idx = BFQ_IOPRIO_CLASSES - 1;
2385 /* About to be served if backlogged, or not yet backlogged */
2386 sd->bfq_class_idle_last_service = jiffies;
2387 }
2388
2389 /*
2390 * Find the next entity to serve for the highest-priority
2391 * class, unless the idle class needs to be served.
2392 */
2393 for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
2394 entity = __bfq_lookup_next_entity(st + class_idx,
2395 sd->in_service_entity);
2396
2397 if (entity)
2398 break;
2399 }
2400
2401 if (!entity)
2402 return NULL;
2403
2404 return entity;
2405}
2406
2407static bool next_queue_may_preempt(struct bfq_data *bfqd)
2408{
2409 struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
2410
2411 return sd->next_in_service != sd->in_service_entity;
2412}
2413
2414/*
2415 * Get next queue for service.
2416 */
2417static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
2418{
2419 struct bfq_entity *entity = NULL;
2420 struct bfq_sched_data *sd;
2421 struct bfq_queue *bfqq;
2422
2423 if (bfqd->busy_queues == 0)
2424 return NULL;
2425
2426 /*
2427 * Traverse the path from the root to the leaf entity to
2428 * serve. Set in service all the entities visited along the
2429 * way.
2430 */
2431 sd = &bfqd->root_group->sched_data;
2432 for (; sd ; sd = entity->my_sched_data) {
2433 /*
2434 * WARNING. We are about to set the in-service entity
2435 * to sd->next_in_service, i.e., to the (cached) value
2436 * returned by bfq_lookup_next_entity(sd) the last
2437 * time it was invoked, i.e., the last time when the
2438 * service order in sd changed as a consequence of the
2439 * activation or deactivation of an entity. In this
2440 * respect, if we execute bfq_lookup_next_entity(sd)
2441 * in this very moment, it may, although with low
2442 * probability, yield a different entity than that
2443 * pointed to by sd->next_in_service. This rare event
2444 * happens in case there was no CLASS_IDLE entity to
2445 * serve for sd when bfq_lookup_next_entity(sd) was
2446 * invoked for the last time, while there is now one
2447 * such entity.
2448 *
2449 * If the above event happens, then the scheduling of
2450 * such entity in CLASS_IDLE is postponed until the
2451 * service of the sd->next_in_service entity
2452 * finishes. In fact, when the latter is expired,
2453 * bfq_lookup_next_entity(sd) gets called again,
2454 * exactly to update sd->next_in_service.
2455 */
2456
2457 /* Make next_in_service entity become in_service_entity */
2458 entity = sd->next_in_service;
2459 sd->in_service_entity = entity;
2460
2461 /*
2462 * Reset the accumulator of the amount of service that
2463 * the entity is about to receive.
2464 */
2465 entity->service = 0;
2466
2467 /*
2468 * If entity is no longer a candidate for next
2469 * service, then we extract it from its active tree,
2470 * for the following reason. To further boost the
2471 * throughput in some special case, BFQ needs to know
2472 * which is the next candidate entity to serve, while
2473 * there is already an entity in service. In this
2474 * respect, to make it easy to compute/update the next
2475 * candidate entity to serve after the current
2476 * candidate has been set in service, there is a case
2477 * where it is necessary to extract the current
2478 * candidate from its service tree. Such a case is
2479 * when the entity just set in service cannot be also
2480 * a candidate for next service. Details about when
2481 * this conditions holds are reported in the comments
2482 * on the function bfq_no_longer_next_in_service()
2483 * invoked below.
2484 */
2485 if (bfq_no_longer_next_in_service(entity))
2486 bfq_active_extract(bfq_entity_service_tree(entity),
2487 entity);
2488
2489 /*
2490 * For the same reason why we may have just extracted
2491 * entity from its active tree, we may need to update
2492 * next_in_service for the sched_data of entity too,
2493 * regardless of whether entity has been extracted.
2494 * In fact, even if entity has not been extracted, a
2495 * descendant entity may get extracted. Such an event
2496 * would cause a change in next_in_service for the
2497 * level of the descendant entity, and thus possibly
2498 * back to upper levels.
2499 *
2500 * We cannot perform the resulting needed update
2501 * before the end of this loop, because, to know which
2502 * is the correct next-to-serve candidate entity for
2503 * each level, we need first to find the leaf entity
2504 * to set in service. In fact, only after we know
2505 * which is the next-to-serve leaf entity, we can
2506 * discover whether the parent entity of the leaf
2507 * entity becomes the next-to-serve, and so on.
2508 */
2509
2510 }
2511
2512 bfqq = bfq_entity_to_bfqq(entity);
2513
2514 /*
2515 * We can finally update all next-to-serve entities along the
2516 * path from the leaf entity just set in service to the root.
2517 */
2518 for_each_entity(entity) {
2519 struct bfq_sched_data *sd = entity->sched_data;
2520
2521 if (!bfq_update_next_in_service(sd, NULL))
2522 break;
2523 }
2524
2525 return bfqq;
2526}
2527
2528static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
2529{
2530 struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
2531 struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
2532 struct bfq_entity *entity = in_serv_entity;
2533
2534 if (bfqd->in_service_bic) {
36eca894
AA
2535 /*
2536 * Schedule the release of a reference to
2537 * bfqd->in_service_bic->icq.ioc to right after the
2538 * scheduler lock is released. This ioc is not
2539 * released immediately, to not risk to possibly take
2540 * an ioc->lock while holding the scheduler lock.
2541 */
2542 bfqd->ioc_to_put = bfqd->in_service_bic->icq.ioc;
e21b7a0b
AA
2543 bfqd->in_service_bic = NULL;
2544 }
2545
2546 bfq_clear_bfqq_wait_request(in_serv_bfqq);
2547 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
2548 bfqd->in_service_queue = NULL;
2549
2550 /*
2551 * When this function is called, all in-service entities have
2552 * been properly deactivated or requeued, so we can safely
2553 * execute the final step: reset in_service_entity along the
2554 * path from entity to the root.
2555 */
2556 for_each_entity(entity)
2557 entity->sched_data->in_service_entity = NULL;
2558
2559 /*
2560 * in_serv_entity is no longer in service, so, if it is in no
2561 * service tree either, then release the service reference to
2562 * the queue it represents (taken with bfq_get_entity).
2563 */
2564 if (!in_serv_entity->on_st)
2565 bfq_put_queue(in_serv_bfqq);
2566}
2567
2568static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2569 bool ins_into_idle_tree, bool expiration)
2570{
2571 struct bfq_entity *entity = &bfqq->entity;
2572
2573 bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
2574}
2575
2576static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2577{
2578 struct bfq_entity *entity = &bfqq->entity;
2579
2580 bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
2581 false);
2582 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
2583}
2584
2585static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2586{
2587 struct bfq_entity *entity = &bfqq->entity;
2588
2589 bfq_activate_requeue_entity(entity, false,
2590 bfqq == bfqd->in_service_queue);
2591}
2592
2593static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
2594
2595/*
2596 * Called when the bfqq no longer has requests pending, remove it from
2597 * the service tree. As a special case, it can be invoked during an
2598 * expiration.
2599 */
2600static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2601 bool expiration)
2602{
2603 bfq_log_bfqq(bfqd, bfqq, "del from busy");
2604
2605 bfq_clear_bfqq_busy(bfqq);
2606
2607 bfqd->busy_queues--;
2608
cfd69712
PV
2609 if (bfqq->wr_coeff > 1)
2610 bfqd->wr_busy_queues--;
2611
e21b7a0b
AA
2612 bfqg_stats_update_dequeue(bfqq_group(bfqq));
2613
2614 bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
2615}
2616
2617/*
2618 * Called when an inactive queue receives a new request.
2619 */
2620static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2621{
2622 bfq_log_bfqq(bfqd, bfqq, "add to busy");
2623
2624 bfq_activate_bfqq(bfqd, bfqq);
2625
2626 bfq_mark_bfqq_busy(bfqq);
2627 bfqd->busy_queues++;
cfd69712
PV
2628
2629 if (bfqq->wr_coeff > 1)
2630 bfqd->wr_busy_queues++;
e21b7a0b
AA
2631}
2632
2633#ifdef CONFIG_BFQ_GROUP_IOSCHED
2634
2635/* bfqg stats flags */
2636enum bfqg_stats_flags {
2637 BFQG_stats_waiting = 0,
2638 BFQG_stats_idling,
2639 BFQG_stats_empty,
2640};
2641
2642#define BFQG_FLAG_FNS(name) \
2643static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \
2644{ \
2645 stats->flags |= (1 << BFQG_stats_##name); \
2646} \
2647static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \
2648{ \
2649 stats->flags &= ~(1 << BFQG_stats_##name); \
2650} \
2651static int bfqg_stats_##name(struct bfqg_stats *stats) \
2652{ \
2653 return (stats->flags & (1 << BFQG_stats_##name)) != 0; \
2654} \
2655
2656BFQG_FLAG_FNS(waiting)
2657BFQG_FLAG_FNS(idling)
2658BFQG_FLAG_FNS(empty)
2659#undef BFQG_FLAG_FNS
2660
2661/* This should be called with the queue_lock held. */
2662static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
2663{
2664 unsigned long long now;
2665
2666 if (!bfqg_stats_waiting(stats))
2667 return;
2668
2669 now = sched_clock();
2670 if (time_after64(now, stats->start_group_wait_time))
2671 blkg_stat_add(&stats->group_wait_time,
2672 now - stats->start_group_wait_time);
2673 bfqg_stats_clear_waiting(stats);
2674}
2675
2676/* This should be called with the queue_lock held. */
2677static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
2678 struct bfq_group *curr_bfqg)
2679{
2680 struct bfqg_stats *stats = &bfqg->stats;
2681
2682 if (bfqg_stats_waiting(stats))
2683 return;
2684 if (bfqg == curr_bfqg)
2685 return;
2686 stats->start_group_wait_time = sched_clock();
2687 bfqg_stats_mark_waiting(stats);
2688}
2689
2690/* This should be called with the queue_lock held. */
2691static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
2692{
2693 unsigned long long now;
2694
2695 if (!bfqg_stats_empty(stats))
2696 return;
2697
2698 now = sched_clock();
2699 if (time_after64(now, stats->start_empty_time))
2700 blkg_stat_add(&stats->empty_time,
2701 now - stats->start_empty_time);
2702 bfqg_stats_clear_empty(stats);
2703}
2704
2705static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
2706{
2707 blkg_stat_add(&bfqg->stats.dequeue, 1);
2708}
2709
2710static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
2711{
2712 struct bfqg_stats *stats = &bfqg->stats;
2713
2714 if (blkg_rwstat_total(&stats->queued))
2715 return;
2716
2717 /*
2718 * group is already marked empty. This can happen if bfqq got new
2719 * request in parent group and moved to this group while being added
2720 * to service tree. Just ignore the event and move on.
2721 */
2722 if (bfqg_stats_empty(stats))
2723 return;
2724
2725 stats->start_empty_time = sched_clock();
2726 bfqg_stats_mark_empty(stats);
2727}
2728
2729static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
2730{
2731 struct bfqg_stats *stats = &bfqg->stats;
2732
2733 if (bfqg_stats_idling(stats)) {
2734 unsigned long long now = sched_clock();
2735
2736 if (time_after64(now, stats->start_idle_time))
2737 blkg_stat_add(&stats->idle_time,
2738 now - stats->start_idle_time);
2739 bfqg_stats_clear_idling(stats);
2740 }
2741}
2742
2743static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
2744{
2745 struct bfqg_stats *stats = &bfqg->stats;
2746
2747 stats->start_idle_time = sched_clock();
2748 bfqg_stats_mark_idling(stats);
2749}
2750
2751static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
2752{
2753 struct bfqg_stats *stats = &bfqg->stats;
2754
2755 blkg_stat_add(&stats->avg_queue_size_sum,
2756 blkg_rwstat_total(&stats->queued));
2757 blkg_stat_add(&stats->avg_queue_size_samples, 1);
2758 bfqg_stats_update_group_wait_time(stats);
2759}
2760
2761/*
2762 * blk-cgroup policy-related handlers
2763 * The following functions help in converting between blk-cgroup
2764 * internal structures and BFQ-specific structures.
2765 */
2766
2767static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
2768{
2769 return pd ? container_of(pd, struct bfq_group, pd) : NULL;
2770}
2771
2772static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
2773{
2774 return pd_to_blkg(&bfqg->pd);
2775}
2776
2777static struct blkcg_policy blkcg_policy_bfq;
2778
2779static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
2780{
2781 return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq));
2782}
2783
2784/*
2785 * bfq_group handlers
2786 * The following functions help in navigating the bfq_group hierarchy
2787 * by allowing to find the parent of a bfq_group or the bfq_group
2788 * associated to a bfq_queue.
2789 */
2790
2791static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
2792{
2793 struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
2794
2795 return pblkg ? blkg_to_bfqg(pblkg) : NULL;
2796}
2797
2798static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
2799{
2800 struct bfq_entity *group_entity = bfqq->entity.parent;
2801
2802 return group_entity ? container_of(group_entity, struct bfq_group,
2803 entity) :
2804 bfqq->bfqd->root_group;
2805}
2806
2807/*
2808 * The following two functions handle get and put of a bfq_group by
2809 * wrapping the related blk-cgroup hooks.
2810 */
2811
2812static void bfqg_get(struct bfq_group *bfqg)
2813{
2814 return blkg_get(bfqg_to_blkg(bfqg));
2815}
2816
2817static void bfqg_put(struct bfq_group *bfqg)
2818{
2819 return blkg_put(bfqg_to_blkg(bfqg));
2820}
2821
2822static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
2823 struct bfq_queue *bfqq,
2824 unsigned int op)
2825{
2826 blkg_rwstat_add(&bfqg->stats.queued, op, 1);
2827 bfqg_stats_end_empty_time(&bfqg->stats);
2828 if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
2829 bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
2830}
2831
2832static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
2833{
2834 blkg_rwstat_add(&bfqg->stats.queued, op, -1);
2835}
2836
2837static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
2838{
2839 blkg_rwstat_add(&bfqg->stats.merged, op, 1);
2840}
2841
2842static void bfqg_stats_update_completion(struct bfq_group *bfqg,
2843 uint64_t start_time, uint64_t io_start_time,
2844 unsigned int op)
2845{
2846 struct bfqg_stats *stats = &bfqg->stats;
2847 unsigned long long now = sched_clock();
2848
2849 if (time_after64(now, io_start_time))
2850 blkg_rwstat_add(&stats->service_time, op,
2851 now - io_start_time);
2852 if (time_after64(io_start_time, start_time))
2853 blkg_rwstat_add(&stats->wait_time, op,
2854 io_start_time - start_time);
2855}
2856
2857/* @stats = 0 */
2858static void bfqg_stats_reset(struct bfqg_stats *stats)
2859{
2860 /* queued stats shouldn't be cleared */
2861 blkg_rwstat_reset(&stats->merged);
2862 blkg_rwstat_reset(&stats->service_time);
2863 blkg_rwstat_reset(&stats->wait_time);
2864 blkg_stat_reset(&stats->time);
2865 blkg_stat_reset(&stats->avg_queue_size_sum);
2866 blkg_stat_reset(&stats->avg_queue_size_samples);
2867 blkg_stat_reset(&stats->dequeue);
2868 blkg_stat_reset(&stats->group_wait_time);
2869 blkg_stat_reset(&stats->idle_time);
2870 blkg_stat_reset(&stats->empty_time);
2871}
2872
2873/* @to += @from */
2874static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
2875{
2876 if (!to || !from)
2877 return;
2878
2879 /* queued stats shouldn't be cleared */
2880 blkg_rwstat_add_aux(&to->merged, &from->merged);
2881 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
2882 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
2883 blkg_stat_add_aux(&from->time, &from->time);
2884 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
2885 blkg_stat_add_aux(&to->avg_queue_size_samples,
2886 &from->avg_queue_size_samples);
2887 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
2888 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
2889 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
2890 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
2891}
2892
2893/*
2894 * Transfer @bfqg's stats to its parent's aux counts so that the ancestors'
2895 * recursive stats can still account for the amount used by this bfqg after
2896 * it's gone.
2897 */
2898static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
2899{
2900 struct bfq_group *parent;
2901
2902 if (!bfqg) /* root_group */
2903 return;
2904
2905 parent = bfqg_parent(bfqg);
2906
2907 lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
2908
2909 if (unlikely(!parent))
2910 return;
2911
2912 bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
2913 bfqg_stats_reset(&bfqg->stats);
2914}
2915
2916static void bfq_init_entity(struct bfq_entity *entity,
2917 struct bfq_group *bfqg)
2918{
2919 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
2920
2921 entity->weight = entity->new_weight;
2922 entity->orig_weight = entity->new_weight;
2923 if (bfqq) {
2924 bfqq->ioprio = bfqq->new_ioprio;
2925 bfqq->ioprio_class = bfqq->new_ioprio_class;
2926 bfqg_get(bfqg);
2927 }
2928 entity->parent = bfqg->my_entity; /* NULL for root group */
2929 entity->sched_data = &bfqg->sched_data;
2930}
2931
2932static void bfqg_stats_exit(struct bfqg_stats *stats)
2933{
2934 blkg_rwstat_exit(&stats->merged);
2935 blkg_rwstat_exit(&stats->service_time);
2936 blkg_rwstat_exit(&stats->wait_time);
2937 blkg_rwstat_exit(&stats->queued);
2938 blkg_stat_exit(&stats->time);
2939 blkg_stat_exit(&stats->avg_queue_size_sum);
2940 blkg_stat_exit(&stats->avg_queue_size_samples);
2941 blkg_stat_exit(&stats->dequeue);
2942 blkg_stat_exit(&stats->group_wait_time);
2943 blkg_stat_exit(&stats->idle_time);
2944 blkg_stat_exit(&stats->empty_time);
2945}
2946
2947static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
2948{
2949 if (blkg_rwstat_init(&stats->merged, gfp) ||
2950 blkg_rwstat_init(&stats->service_time, gfp) ||
2951 blkg_rwstat_init(&stats->wait_time, gfp) ||
2952 blkg_rwstat_init(&stats->queued, gfp) ||
2953 blkg_stat_init(&stats->time, gfp) ||
2954 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
2955 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
2956 blkg_stat_init(&stats->dequeue, gfp) ||
2957 blkg_stat_init(&stats->group_wait_time, gfp) ||
2958 blkg_stat_init(&stats->idle_time, gfp) ||
2959 blkg_stat_init(&stats->empty_time, gfp)) {
2960 bfqg_stats_exit(stats);
2961 return -ENOMEM;
2962 }
2963
2964 return 0;
2965}
2966
2967static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
2968{
2969 return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
2970}
2971
2972static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
2973{
2974 return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
2975}
2976
2977static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
2978{
2979 struct bfq_group_data *bgd;
2980
2981 bgd = kzalloc(sizeof(*bgd), gfp);
2982 if (!bgd)
2983 return NULL;
2984 return &bgd->pd;
2985}
2986
2987static void bfq_cpd_init(struct blkcg_policy_data *cpd)
2988{
2989 struct bfq_group_data *d = cpd_to_bfqgd(cpd);
2990
2991 d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
2992 CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
2993}
2994
2995static void bfq_cpd_free(struct blkcg_policy_data *cpd)
2996{
2997 kfree(cpd_to_bfqgd(cpd));
2998}
2999
3000static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
3001{
3002 struct bfq_group *bfqg;
3003
3004 bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
3005 if (!bfqg)
3006 return NULL;
3007
3008 if (bfqg_stats_init(&bfqg->stats, gfp)) {
3009 kfree(bfqg);
3010 return NULL;
3011 }
3012
3013 return &bfqg->pd;
3014}
3015
3016static void bfq_pd_init(struct blkg_policy_data *pd)
3017{
3018 struct blkcg_gq *blkg = pd_to_blkg(pd);
3019 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3020 struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
3021 struct bfq_entity *entity = &bfqg->entity;
3022 struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
3023
3024 entity->orig_weight = entity->weight = entity->new_weight = d->weight;
3025 entity->my_sched_data = &bfqg->sched_data;
3026 bfqg->my_entity = entity; /*
3027 * the root_group's will be set to NULL
3028 * in bfq_init_queue()
3029 */
3030 bfqg->bfqd = bfqd;
36eca894 3031 bfqg->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
3032}
3033
3034static void bfq_pd_free(struct blkg_policy_data *pd)
3035{
3036 struct bfq_group *bfqg = pd_to_bfqg(pd);
3037
3038 bfqg_stats_exit(&bfqg->stats);
3039 return kfree(bfqg);
3040}
3041
3042static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
3043{
3044 struct bfq_group *bfqg = pd_to_bfqg(pd);
3045
3046 bfqg_stats_reset(&bfqg->stats);
3047}
3048
3049static void bfq_group_set_parent(struct bfq_group *bfqg,
3050 struct bfq_group *parent)
3051{
3052 struct bfq_entity *entity;
3053
3054 entity = &bfqg->entity;
3055 entity->parent = parent->my_entity;
3056 entity->sched_data = &parent->sched_data;
3057}
3058
3059static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
3060 struct blkcg *blkcg)
3061{
3062 struct blkcg_gq *blkg;
3063
3064 blkg = blkg_lookup(blkcg, bfqd->queue);
3065 if (likely(blkg))
3066 return blkg_to_bfqg(blkg);
3067 return NULL;
3068}
3069
3070static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
3071 struct blkcg *blkcg)
3072{
3073 struct bfq_group *bfqg, *parent;
3074 struct bfq_entity *entity;
3075
3076 bfqg = bfq_lookup_bfqg(bfqd, blkcg);
3077
3078 if (unlikely(!bfqg))
3079 return NULL;
3080
3081 /*
3082 * Update chain of bfq_groups as we might be handling a leaf group
3083 * which, along with some of its relatives, has not been hooked yet
3084 * to the private hierarchy of BFQ.
3085 */
3086 entity = &bfqg->entity;
3087 for_each_entity(entity) {
3088 bfqg = container_of(entity, struct bfq_group, entity);
3089 if (bfqg != bfqd->root_group) {
3090 parent = bfqg_parent(bfqg);
3091 if (!parent)
3092 parent = bfqd->root_group;
3093 bfq_group_set_parent(bfqg, parent);
3094 }
3095 }
3096
3097 return bfqg;
3098}
3099
36eca894
AA
3100static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
3101 struct bfq_queue *bfqq);
e21b7a0b
AA
3102static void bfq_bfqq_expire(struct bfq_data *bfqd,
3103 struct bfq_queue *bfqq,
3104 bool compensate,
3105 enum bfqq_expiration reason);
3106
3107/**
3108 * bfq_bfqq_move - migrate @bfqq to @bfqg.
3109 * @bfqd: queue descriptor.
3110 * @bfqq: the queue to move.
3111 * @bfqg: the group to move to.
3112 *
3113 * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
3114 * it on the new one. Avoid putting the entity on the old group idle tree.
3115 *
3116 * Must be called under the queue lock; the cgroup owning @bfqg must
3117 * not disappear (by now this just means that we are called under
3118 * rcu_read_lock()).
3119 */
3120static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3121 struct bfq_group *bfqg)
3122{
3123 struct bfq_entity *entity = &bfqq->entity;
3124
3125 /* If bfqq is empty, then bfq_bfqq_expire also invokes
3126 * bfq_del_bfqq_busy, thereby removing bfqq and its entity
3127 * from data structures related to current group. Otherwise we
3128 * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
3129 * we do below.
3130 */
3131 if (bfqq == bfqd->in_service_queue)
3132 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
3133 false, BFQQE_PREEMPTED);
3134
3135 if (bfq_bfqq_busy(bfqq))
3136 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
3137 else if (entity->on_st)
3138 bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
3139 bfqg_put(bfqq_group(bfqq));
3140
3141 /*
3142 * Here we use a reference to bfqg. We don't need a refcounter
3143 * as the cgroup reference will not be dropped, so that its
3144 * destroy() callback will not be invoked.
3145 */
3146 entity->parent = bfqg->my_entity;
3147 entity->sched_data = &bfqg->sched_data;
3148 bfqg_get(bfqg);
3149
36eca894
AA
3150 if (bfq_bfqq_busy(bfqq)) {
3151 bfq_pos_tree_add_move(bfqd, bfqq);
e21b7a0b 3152 bfq_activate_bfqq(bfqd, bfqq);
36eca894 3153 }
e21b7a0b
AA
3154
3155 if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
3156 bfq_schedule_dispatch(bfqd);
3157}
3158
3159/**
3160 * __bfq_bic_change_cgroup - move @bic to @cgroup.
3161 * @bfqd: the queue descriptor.
3162 * @bic: the bic to move.
3163 * @blkcg: the blk-cgroup to move to.
3164 *
3165 * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
3166 * has to make sure that the reference to cgroup is valid across the call.
3167 *
3168 * NOTE: an alternative approach might have been to store the current
3169 * cgroup in bfqq and getting a reference to it, reducing the lookup
3170 * time here, at the price of slightly more complex code.
3171 */
3172static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
3173 struct bfq_io_cq *bic,
3174 struct blkcg *blkcg)
3175{
3176 struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
3177 struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
3178 struct bfq_group *bfqg;
3179 struct bfq_entity *entity;
3180
3181 bfqg = bfq_find_set_group(bfqd, blkcg);
3182
3183 if (unlikely(!bfqg))
3184 bfqg = bfqd->root_group;
3185
3186 if (async_bfqq) {
3187 entity = &async_bfqq->entity;
3188
3189 if (entity->sched_data != &bfqg->sched_data) {
3190 bic_set_bfqq(bic, NULL, 0);
3191 bfq_log_bfqq(bfqd, async_bfqq,
3192 "bic_change_group: %p %d",
36eca894 3193 async_bfqq, async_bfqq->ref);
e21b7a0b
AA
3194 bfq_put_queue(async_bfqq);
3195 }
3196 }
3197
3198 if (sync_bfqq) {
3199 entity = &sync_bfqq->entity;
3200 if (entity->sched_data != &bfqg->sched_data)
3201 bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
3202 }
3203
3204 return bfqg;
3205}
3206
3207static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
3208{
3209 struct bfq_data *bfqd = bic_to_bfqd(bic);
3210 struct bfq_group *bfqg = NULL;
3211 uint64_t serial_nr;
3212
3213 rcu_read_lock();
3214 serial_nr = bio_blkcg(bio)->css.serial_nr;
3215
3216 /*
3217 * Check whether blkcg has changed. The condition may trigger
3218 * spuriously on a newly created cic but there's no harm.
3219 */
3220 if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
3221 goto out;
3222
3223 bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
3224 bic->blkcg_serial_nr = serial_nr;
3225out:
3226 rcu_read_unlock();
3227}
3228
3229/**
3230 * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
3231 * @st: the service tree being flushed.
3232 */
3233static void bfq_flush_idle_tree(struct bfq_service_tree *st)
3234{
3235 struct bfq_entity *entity = st->first_idle;
3236
3237 for (; entity ; entity = st->first_idle)
3238 __bfq_deactivate_entity(entity, false);
3239}
3240
3241/**
3242 * bfq_reparent_leaf_entity - move leaf entity to the root_group.
3243 * @bfqd: the device data structure with the root group.
3244 * @entity: the entity to move.
3245 */
3246static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
3247 struct bfq_entity *entity)
3248{
3249 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3250
3251 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
aee69d78
PV
3252}
3253
3254/**
e21b7a0b
AA
3255 * bfq_reparent_active_entities - move to the root group all active
3256 * entities.
3257 * @bfqd: the device data structure with the root group.
3258 * @bfqg: the group to move from.
3259 * @st: the service tree with the entities.
aee69d78 3260 *
e21b7a0b 3261 * Needs queue_lock to be taken and reference to be valid over the call.
aee69d78 3262 */
e21b7a0b
AA
3263static void bfq_reparent_active_entities(struct bfq_data *bfqd,
3264 struct bfq_group *bfqg,
3265 struct bfq_service_tree *st)
aee69d78 3266{
e21b7a0b
AA
3267 struct rb_root *active = &st->active;
3268 struct bfq_entity *entity = NULL;
aee69d78 3269
e21b7a0b
AA
3270 if (!RB_EMPTY_ROOT(&st->active))
3271 entity = bfq_entity_of(rb_first(active));
aee69d78 3272
e21b7a0b
AA
3273 for (; entity ; entity = bfq_entity_of(rb_first(active)))
3274 bfq_reparent_leaf_entity(bfqd, entity);
aee69d78 3275
e21b7a0b
AA
3276 if (bfqg->sched_data.in_service_entity)
3277 bfq_reparent_leaf_entity(bfqd,
3278 bfqg->sched_data.in_service_entity);
aee69d78
PV
3279}
3280
3281/**
e21b7a0b
AA
3282 * bfq_pd_offline - deactivate the entity associated with @pd,
3283 * and reparent its children entities.
3284 * @pd: descriptor of the policy going offline.
aee69d78 3285 *
e21b7a0b
AA
3286 * blkio already grabs the queue_lock for us, so no need to use
3287 * RCU-based magic
aee69d78 3288 */
e21b7a0b 3289static void bfq_pd_offline(struct blkg_policy_data *pd)
aee69d78 3290{
e21b7a0b
AA
3291 struct bfq_service_tree *st;
3292 struct bfq_group *bfqg = pd_to_bfqg(pd);
3293 struct bfq_data *bfqd = bfqg->bfqd;
3294 struct bfq_entity *entity = bfqg->my_entity;
3295 unsigned long flags;
3296 int i;
aee69d78 3297
e21b7a0b
AA
3298 if (!entity) /* root group */
3299 return;
3300
3301 spin_lock_irqsave(&bfqd->lock, flags);
aee69d78 3302 /*
e21b7a0b
AA
3303 * Empty all service_trees belonging to this group before
3304 * deactivating the group itself.
aee69d78 3305 */
e21b7a0b
AA
3306 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
3307 st = bfqg->sched_data.service_tree + i;
3308
3309 /*
3310 * The idle tree may still contain bfq_queues belonging
3311 * to exited task because they never migrated to a different
3312 * cgroup from the one being destroyed now. No one else
3313 * can access them so it's safe to act without any lock.
3314 */
3315 bfq_flush_idle_tree(st);
3316
3317 /*
3318 * It may happen that some queues are still active
3319 * (busy) upon group destruction (if the corresponding
3320 * processes have been forced to terminate). We move
3321 * all the leaf entities corresponding to these queues
3322 * to the root_group.
3323 * Also, it may happen that the group has an entity
3324 * in service, which is disconnected from the active
3325 * tree: it must be moved, too.
3326 * There is no need to put the sync queues, as the
3327 * scheduler has taken no reference.
3328 */
3329 bfq_reparent_active_entities(bfqd, bfqg, st);
aee69d78
PV
3330 }
3331
e21b7a0b
AA
3332 __bfq_deactivate_entity(entity, false);
3333 bfq_put_async_queues(bfqd, bfqg);
3334
36eca894 3335 bfq_unlock_put_ioc_restore(bfqd, flags);
e21b7a0b
AA
3336 /*
3337 * @blkg is going offline and will be ignored by
3338 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
3339 * that they don't get lost. If IOs complete after this point, the
3340 * stats for them will be lost. Oh well...
3341 */
3342 bfqg_stats_xfer_dead(bfqg);
aee69d78
PV
3343}
3344
44e44a1b
PV
3345static void bfq_end_wr_async(struct bfq_data *bfqd)
3346{
3347 struct blkcg_gq *blkg;
3348
3349 list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
3350 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3351
3352 bfq_end_wr_async_queues(bfqd, bfqg);
3353 }
3354 bfq_end_wr_async_queues(bfqd, bfqd->root_group);
3355}
3356
e21b7a0b 3357static int bfq_io_show_weight(struct seq_file *sf, void *v)
aee69d78 3358{
e21b7a0b
AA
3359 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3360 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3361 unsigned int val = 0;
aee69d78 3362
e21b7a0b
AA
3363 if (bfqgd)
3364 val = bfqgd->weight;
aee69d78 3365
e21b7a0b 3366 seq_printf(sf, "%u\n", val);
aee69d78 3367
e21b7a0b
AA
3368 return 0;
3369}
3370
3371static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
3372 struct cftype *cftype,
3373 u64 val)
aee69d78 3374{
e21b7a0b
AA
3375 struct blkcg *blkcg = css_to_blkcg(css);
3376 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3377 struct blkcg_gq *blkg;
3378 int ret = -ERANGE;
aee69d78 3379
e21b7a0b
AA
3380 if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
3381 return ret;
aee69d78 3382
e21b7a0b
AA
3383 ret = 0;
3384 spin_lock_irq(&blkcg->lock);
3385 bfqgd->weight = (unsigned short)val;
3386 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3387 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3388
3389 if (!bfqg)
3390 continue;
3391 /*
3392 * Setting the prio_changed flag of the entity
3393 * to 1 with new_weight == weight would re-set
3394 * the value of the weight to its ioprio mapping.
3395 * Set the flag only if necessary.
3396 */
3397 if ((unsigned short)val != bfqg->entity.new_weight) {
3398 bfqg->entity.new_weight = (unsigned short)val;
3399 /*
3400 * Make sure that the above new value has been
3401 * stored in bfqg->entity.new_weight before
3402 * setting the prio_changed flag. In fact,
3403 * this flag may be read asynchronously (in
3404 * critical sections protected by a different
3405 * lock than that held here), and finding this
3406 * flag set may cause the execution of the code
3407 * for updating parameters whose value may
3408 * depend also on bfqg->entity.new_weight (in
3409 * __bfq_entity_update_weight_prio).
3410 * This barrier makes sure that the new value
3411 * of bfqg->entity.new_weight is correctly
3412 * seen in that code.
3413 */
3414 smp_wmb();
3415 bfqg->entity.prio_changed = 1;
3416 }
aee69d78 3417 }
e21b7a0b 3418 spin_unlock_irq(&blkcg->lock);
aee69d78 3419
e21b7a0b
AA
3420 return ret;
3421}
aee69d78 3422
e21b7a0b
AA
3423static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
3424 char *buf, size_t nbytes,
3425 loff_t off)
3426{
3427 u64 weight;
3428 /* First unsigned long found in the file is used */
3429 int ret = kstrtoull(strim(buf), 0, &weight);
3430
3431 if (ret)
3432 return ret;
3433
3434 return bfq_io_set_weight_legacy(of_css(of), NULL, weight);
aee69d78
PV
3435}
3436
e21b7a0b 3437static int bfqg_print_stat(struct seq_file *sf, void *v)
aee69d78 3438{
e21b7a0b
AA
3439 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
3440 &blkcg_policy_bfq, seq_cft(sf)->private, false);
3441 return 0;
3442}
aee69d78 3443
e21b7a0b
AA
3444static int bfqg_print_rwstat(struct seq_file *sf, void *v)
3445{
3446 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
3447 &blkcg_policy_bfq, seq_cft(sf)->private, true);
3448 return 0;
3449}
aee69d78 3450
e21b7a0b
AA
3451static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
3452 struct blkg_policy_data *pd, int off)
3453{
3454 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
3455 &blkcg_policy_bfq, off);
3456 return __blkg_prfill_u64(sf, pd, sum);
3457}
aee69d78 3458
e21b7a0b
AA
3459static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
3460 struct blkg_policy_data *pd, int off)
3461{
3462 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
3463 &blkcg_policy_bfq,
3464 off);
3465 return __blkg_prfill_rwstat(sf, pd, &sum);
aee69d78
PV
3466}
3467
e21b7a0b 3468static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
aee69d78 3469{
e21b7a0b
AA
3470 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3471 bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
3472 seq_cft(sf)->private, false);
3473 return 0;
3474}
aee69d78 3475
e21b7a0b
AA
3476static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
3477{
3478 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3479 bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
3480 seq_cft(sf)->private, true);
3481 return 0;
aee69d78
PV
3482}
3483
e21b7a0b
AA
3484static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
3485 int off)
aee69d78 3486{
e21b7a0b 3487 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
aee69d78 3488
e21b7a0b 3489 return __blkg_prfill_u64(sf, pd, sum >> 9);
aee69d78
PV
3490}
3491
e21b7a0b 3492static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
aee69d78 3493{
e21b7a0b
AA
3494 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3495 bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
3496 return 0;
3497}
aee69d78 3498
e21b7a0b
AA
3499static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
3500 struct blkg_policy_data *pd, int off)
3501{
3502 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
3503 offsetof(struct blkcg_gq, stat_bytes));
3504 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
3505 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
aee69d78 3506
e21b7a0b
AA
3507 return __blkg_prfill_u64(sf, pd, sum >> 9);
3508}
aee69d78 3509
e21b7a0b
AA
3510static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
3511{
3512 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3513 bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
3514 false);
3515 return 0;
aee69d78
PV
3516}
3517
e21b7a0b
AA
3518static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
3519 struct blkg_policy_data *pd, int off)
aee69d78 3520{
e21b7a0b
AA
3521 struct bfq_group *bfqg = pd_to_bfqg(pd);
3522 u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
3523 u64 v = 0;
aee69d78 3524
e21b7a0b
AA
3525 if (samples) {
3526 v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
3527 v = div64_u64(v, samples);
3528 }
3529 __blkg_prfill_u64(sf, pd, v);
3530 return 0;
3531}
aee69d78 3532
e21b7a0b
AA
3533/* print avg_queue_size */
3534static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
3535{
3536 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3537 bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
3538 0, false);
3539 return 0;
3540}
3541
3542static struct bfq_group *
3543bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
3544{
3545 int ret;
3546
3547 ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
3548 if (ret)
3549 return NULL;
3550
3551 return blkg_to_bfqg(bfqd->queue->root_blkg);
aee69d78
PV
3552}
3553
e21b7a0b
AA
3554static struct cftype bfq_blkcg_legacy_files[] = {
3555 {
3556 .name = "bfq.weight",
3557 .flags = CFTYPE_NOT_ON_ROOT,
3558 .seq_show = bfq_io_show_weight,
3559 .write_u64 = bfq_io_set_weight_legacy,
3560 },
3561
3562 /* statistics, covers only the tasks in the bfqg */
3563 {
3564 .name = "bfq.time",
3565 .private = offsetof(struct bfq_group, stats.time),
3566 .seq_show = bfqg_print_stat,
3567 },
3568 {
3569 .name = "bfq.sectors",
3570 .seq_show = bfqg_print_stat_sectors,
3571 },
3572 {
3573 .name = "bfq.io_service_bytes",
3574 .private = (unsigned long)&blkcg_policy_bfq,
3575 .seq_show = blkg_print_stat_bytes,
3576 },
3577 {
3578 .name = "bfq.io_serviced",
3579 .private = (unsigned long)&blkcg_policy_bfq,
3580 .seq_show = blkg_print_stat_ios,
3581 },
3582 {
3583 .name = "bfq.io_service_time",
3584 .private = offsetof(struct bfq_group, stats.service_time),
3585 .seq_show = bfqg_print_rwstat,
3586 },
3587 {
3588 .name = "bfq.io_wait_time",
3589 .private = offsetof(struct bfq_group, stats.wait_time),
3590 .seq_show = bfqg_print_rwstat,
3591 },
3592 {
3593 .name = "bfq.io_merged",
3594 .private = offsetof(struct bfq_group, stats.merged),
3595 .seq_show = bfqg_print_rwstat,
3596 },
3597 {
3598 .name = "bfq.io_queued",
3599 .private = offsetof(struct bfq_group, stats.queued),
3600 .seq_show = bfqg_print_rwstat,
3601 },
3602
3603 /* the same statictics which cover the bfqg and its descendants */
3604 {
3605 .name = "bfq.time_recursive",
3606 .private = offsetof(struct bfq_group, stats.time),
3607 .seq_show = bfqg_print_stat_recursive,
3608 },
3609 {
3610 .name = "bfq.sectors_recursive",
3611 .seq_show = bfqg_print_stat_sectors_recursive,
3612 },
3613 {
3614 .name = "bfq.io_service_bytes_recursive",
3615 .private = (unsigned long)&blkcg_policy_bfq,
3616 .seq_show = blkg_print_stat_bytes_recursive,
3617 },
3618 {
3619 .name = "bfq.io_serviced_recursive",
3620 .private = (unsigned long)&blkcg_policy_bfq,
3621 .seq_show = blkg_print_stat_ios_recursive,
3622 },
3623 {
3624 .name = "bfq.io_service_time_recursive",
3625 .private = offsetof(struct bfq_group, stats.service_time),
3626 .seq_show = bfqg_print_rwstat_recursive,
3627 },
3628 {
3629 .name = "bfq.io_wait_time_recursive",
3630 .private = offsetof(struct bfq_group, stats.wait_time),
3631 .seq_show = bfqg_print_rwstat_recursive,
3632 },
3633 {
3634 .name = "bfq.io_merged_recursive",
3635 .private = offsetof(struct bfq_group, stats.merged),
3636 .seq_show = bfqg_print_rwstat_recursive,
3637 },
3638 {
3639 .name = "bfq.io_queued_recursive",
3640 .private = offsetof(struct bfq_group, stats.queued),
3641 .seq_show = bfqg_print_rwstat_recursive,
3642 },
3643 {
3644 .name = "bfq.avg_queue_size",
3645 .seq_show = bfqg_print_avg_queue_size,
3646 },
3647 {
3648 .name = "bfq.group_wait_time",
3649 .private = offsetof(struct bfq_group, stats.group_wait_time),
3650 .seq_show = bfqg_print_stat,
3651 },
3652 {
3653 .name = "bfq.idle_time",
3654 .private = offsetof(struct bfq_group, stats.idle_time),
3655 .seq_show = bfqg_print_stat,
3656 },
3657 {
3658 .name = "bfq.empty_time",
3659 .private = offsetof(struct bfq_group, stats.empty_time),
3660 .seq_show = bfqg_print_stat,
3661 },
3662 {
3663 .name = "bfq.dequeue",
3664 .private = offsetof(struct bfq_group, stats.dequeue),
3665 .seq_show = bfqg_print_stat,
3666 },
3667 { } /* terminate */
3668};
3669
3670static struct cftype bfq_blkg_files[] = {
3671 {
3672 .name = "bfq.weight",
3673 .flags = CFTYPE_NOT_ON_ROOT,
3674 .seq_show = bfq_io_show_weight,
3675 .write = bfq_io_set_weight,
3676 },
3677 {} /* terminate */
3678};
3679
3680#else /* CONFIG_BFQ_GROUP_IOSCHED */
3681
3682static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
3683 struct bfq_queue *bfqq, unsigned int op) { }
3684static inline void
3685bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
3686static inline void
3687bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
3688static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
3689 uint64_t start_time, uint64_t io_start_time,
3690 unsigned int op) { }
3691static inline void
3692bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
3693 struct bfq_group *curr_bfqg) { }
3694static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
3695static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
3696static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
3697static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
3698static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
3699static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
3700
3701static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3702 struct bfq_group *bfqg) {}
3703
3704static void bfq_init_entity(struct bfq_entity *entity,
3705 struct bfq_group *bfqg)
aee69d78
PV
3706{
3707 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3708
3709 entity->weight = entity->new_weight;
3710 entity->orig_weight = entity->new_weight;
e21b7a0b
AA
3711 if (bfqq) {
3712 bfqq->ioprio = bfqq->new_ioprio;
3713 bfqq->ioprio_class = bfqq->new_ioprio_class;
3714 }
3715 entity->sched_data = &bfqg->sched_data;
3716}
3717
3718static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
3719
44e44a1b
PV
3720static void bfq_end_wr_async(struct bfq_data *bfqd)
3721{
3722 bfq_end_wr_async_queues(bfqd, bfqd->root_group);
3723}
3724
e21b7a0b
AA
3725static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
3726 struct blkcg *blkcg)
3727{
3728 return bfqd->root_group;
3729}
3730
3731static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
3732{
3733 return bfqq->bfqd->root_group;
3734}
aee69d78 3735
e21b7a0b
AA
3736static struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd,
3737 int node)
3738{
3739 struct bfq_group *bfqg;
3740 int i;
3741
3742 bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
3743 if (!bfqg)
3744 return NULL;
aee69d78 3745
e21b7a0b
AA
3746 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
3747 bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
3748
3749 return bfqg;
aee69d78 3750}
e21b7a0b 3751#endif /* CONFIG_BFQ_GROUP_IOSCHED */
aee69d78
PV
3752
3753#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
3754#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
3755
3756#define bfq_sample_valid(samples) ((samples) > 80)
3757
aee69d78
PV
3758/*
3759 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
3760 * We choose the request that is closesr to the head right now. Distance
3761 * behind the head is penalized and only allowed to a certain extent.
3762 */
3763static struct request *bfq_choose_req(struct bfq_data *bfqd,
3764 struct request *rq1,
3765 struct request *rq2,
3766 sector_t last)
3767{
3768 sector_t s1, s2, d1 = 0, d2 = 0;
3769 unsigned long back_max;
3770#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
3771#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
3772 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
3773
3774 if (!rq1 || rq1 == rq2)
3775 return rq2;
3776 if (!rq2)
3777 return rq1;
3778
3779 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
3780 return rq1;
3781 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
3782 return rq2;
3783 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
3784 return rq1;
3785 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
3786 return rq2;
3787
3788 s1 = blk_rq_pos(rq1);
3789 s2 = blk_rq_pos(rq2);
3790
3791 /*
3792 * By definition, 1KiB is 2 sectors.
3793 */
3794 back_max = bfqd->bfq_back_max * 2;
3795
3796 /*
3797 * Strict one way elevator _except_ in the case where we allow
3798 * short backward seeks which are biased as twice the cost of a
3799 * similar forward seek.
3800 */
3801 if (s1 >= last)
3802 d1 = s1 - last;
3803 else if (s1 + back_max >= last)
3804 d1 = (last - s1) * bfqd->bfq_back_penalty;
3805 else
3806 wrap |= BFQ_RQ1_WRAP;
3807
3808 if (s2 >= last)
3809 d2 = s2 - last;
3810 else if (s2 + back_max >= last)
3811 d2 = (last - s2) * bfqd->bfq_back_penalty;
3812 else
3813 wrap |= BFQ_RQ2_WRAP;
3814
3815 /* Found required data */
3816
3817 /*
3818 * By doing switch() on the bit mask "wrap" we avoid having to
3819 * check two variables for all permutations: --> faster!
3820 */
3821 switch (wrap) {
3822 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
3823 if (d1 < d2)
3824 return rq1;
3825 else if (d2 < d1)
3826 return rq2;
3827
3828 if (s1 >= s2)
3829 return rq1;
3830 else
3831 return rq2;
3832
3833 case BFQ_RQ2_WRAP:
3834 return rq1;
3835 case BFQ_RQ1_WRAP:
3836 return rq2;
3837 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
3838 default:
3839 /*
3840 * Since both rqs are wrapped,
3841 * start with the one that's further behind head
3842 * (--> only *one* back seek required),
3843 * since back seek takes more time than forward.
3844 */
3845 if (s1 <= s2)
3846 return rq1;
3847 else
3848 return rq2;
3849 }
3850}
3851
36eca894
AA
3852static struct bfq_queue *
3853bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
3854 sector_t sector, struct rb_node **ret_parent,
3855 struct rb_node ***rb_link)
3856{
3857 struct rb_node **p, *parent;
3858 struct bfq_queue *bfqq = NULL;
3859
3860 parent = NULL;
3861 p = &root->rb_node;
3862 while (*p) {
3863 struct rb_node **n;
3864
3865 parent = *p;
3866 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
3867
3868 /*
3869 * Sort strictly based on sector. Smallest to the left,
3870 * largest to the right.
3871 */
3872 if (sector > blk_rq_pos(bfqq->next_rq))
3873 n = &(*p)->rb_right;
3874 else if (sector < blk_rq_pos(bfqq->next_rq))
3875 n = &(*p)->rb_left;
3876 else
3877 break;
3878 p = n;
3879 bfqq = NULL;
3880 }
3881
3882 *ret_parent = parent;
3883 if (rb_link)
3884 *rb_link = p;
3885
3886 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
3887 (unsigned long long)sector,
3888 bfqq ? bfqq->pid : 0);
3889
3890 return bfqq;
3891}
3892
3893static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3894{
3895 struct rb_node **p, *parent;
3896 struct bfq_queue *__bfqq;
3897
3898 if (bfqq->pos_root) {
3899 rb_erase(&bfqq->pos_node, bfqq->pos_root);
3900 bfqq->pos_root = NULL;
3901 }
3902
3903 if (bfq_class_idle(bfqq))
3904 return;
3905 if (!bfqq->next_rq)
3906 return;
3907
3908 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
3909 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
3910 blk_rq_pos(bfqq->next_rq), &parent, &p);
3911 if (!__bfqq) {
3912 rb_link_node(&bfqq->pos_node, parent, p);
3913 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
3914 } else
3915 bfqq->pos_root = NULL;
3916}
3917
aee69d78
PV
3918/*
3919 * Return expired entry, or NULL to just start from scratch in rbtree.
3920 */
3921static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
3922 struct request *last)
3923{
3924 struct request *rq;
3925
3926 if (bfq_bfqq_fifo_expire(bfqq))
3927 return NULL;
3928
3929 bfq_mark_bfqq_fifo_expire(bfqq);
3930
3931 rq = rq_entry_fifo(bfqq->fifo.next);
3932
3933 if (rq == last || ktime_get_ns() < rq->fifo_time)
3934 return NULL;
3935
3936 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
3937 return rq;
3938}
3939
3940static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
3941 struct bfq_queue *bfqq,
3942 struct request *last)
3943{
3944 struct rb_node *rbnext = rb_next(&last->rb_node);
3945 struct rb_node *rbprev = rb_prev(&last->rb_node);
3946 struct request *next, *prev = NULL;
3947
3948 /* Follow expired path, else get first next available. */
3949 next = bfq_check_fifo(bfqq, last);
3950 if (next)
3951 return next;
3952
3953 if (rbprev)
3954 prev = rb_entry_rq(rbprev);
3955
3956 if (rbnext)
3957 next = rb_entry_rq(rbnext);
3958 else {
3959 rbnext = rb_first(&bfqq->sort_list);
3960 if (rbnext && rbnext != &last->rb_node)
3961 next = rb_entry_rq(rbnext);
3962 }
3963
3964 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
3965}
3966
c074170e 3967/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
3968static unsigned long bfq_serv_to_charge(struct request *rq,
3969 struct bfq_queue *bfqq)
3970{
44e44a1b 3971 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
3972 return blk_rq_sectors(rq);
3973
cfd69712
PV
3974 /*
3975 * If there are no weight-raised queues, then amplify service
3976 * by just the async charge factor; otherwise amplify service
3977 * by twice the async charge factor, to further reduce latency
3978 * for weight-raised queues.
3979 */
3980 if (bfqq->bfqd->wr_busy_queues == 0)
3981 return blk_rq_sectors(rq) * bfq_async_charge_factor;
3982
3983 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
3984}
3985
3986/**
3987 * bfq_updated_next_req - update the queue after a new next_rq selection.
3988 * @bfqd: the device data the queue belongs to.
3989 * @bfqq: the queue to update.
3990 *
3991 * If the first request of a queue changes we make sure that the queue
3992 * has enough budget to serve at least its first request (if the
3993 * request has grown). We do this because if the queue has not enough
3994 * budget for its first request, it has to go through two dispatch
3995 * rounds to actually get it dispatched.
3996 */
3997static void bfq_updated_next_req(struct bfq_data *bfqd,
3998 struct bfq_queue *bfqq)
3999{
4000 struct bfq_entity *entity = &bfqq->entity;
4001 struct request *next_rq = bfqq->next_rq;
4002 unsigned long new_budget;
4003
4004 if (!next_rq)
4005 return;
4006
4007 if (bfqq == bfqd->in_service_queue)
4008 /*
4009 * In order not to break guarantees, budgets cannot be
4010 * changed after an entity has been selected.
4011 */
4012 return;
4013
4014 new_budget = max_t(unsigned long, bfqq->max_budget,
4015 bfq_serv_to_charge(next_rq, bfqq));
4016 if (entity->budget != new_budget) {
4017 entity->budget = new_budget;
4018 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
4019 new_budget);
e21b7a0b 4020 bfq_requeue_bfqq(bfqd, bfqq);
aee69d78
PV
4021 }
4022}
4023
36eca894
AA
4024static void
4025bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4026{
4027 if (bic->saved_idle_window)
4028 bfq_mark_bfqq_idle_window(bfqq);
4029 else
4030 bfq_clear_bfqq_idle_window(bfqq);
4031
4032 if (bic->saved_IO_bound)
4033 bfq_mark_bfqq_IO_bound(bfqq);
4034 else
4035 bfq_clear_bfqq_IO_bound(bfqq);
4036
4037 bfqq->ttime = bic->saved_ttime;
4038 bfqq->wr_coeff = bic->saved_wr_coeff;
4039 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
4040 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
4041 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
4042
4043 if (bfqq->wr_coeff > 1 &&
4044 time_is_before_jiffies(bfqq->last_wr_start_finish +
4045 bfqq->wr_cur_max_time)) {
4046 bfq_log_bfqq(bfqq->bfqd, bfqq,
4047 "resume state: switching off wr");
4048
4049 bfqq->wr_coeff = 1;
4050 }
4051
4052 /* make sure weight will be updated, however we got here */
4053 bfqq->entity.prio_changed = 1;
4054}
4055
4056static int bfqq_process_refs(struct bfq_queue *bfqq)
4057{
4058 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
4059}
4060
aee69d78
PV
4061static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
4062{
4063 struct bfq_entity *entity = &bfqq->entity;
4064
4065 return entity->budget - entity->service;
4066}
4067
4068/*
4069 * If enough samples have been computed, return the current max budget
4070 * stored in bfqd, which is dynamically updated according to the
4071 * estimated disk peak rate; otherwise return the default max budget
4072 */
4073static int bfq_max_budget(struct bfq_data *bfqd)
4074{
4075 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
4076 return bfq_default_max_budget;
4077 else
4078 return bfqd->bfq_max_budget;
4079}
4080
4081/*
4082 * Return min budget, which is a fraction of the current or default
4083 * max budget (trying with 1/32)
4084 */
4085static int bfq_min_budget(struct bfq_data *bfqd)
4086{
4087 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
4088 return bfq_default_max_budget / 32;
4089 else
4090 return bfqd->bfq_max_budget / 32;
4091}
4092
4093static void bfq_bfqq_expire(struct bfq_data *bfqd,
4094 struct bfq_queue *bfqq,
4095 bool compensate,
4096 enum bfqq_expiration reason);
4097
4098/*
4099 * The next function, invoked after the input queue bfqq switches from
4100 * idle to busy, updates the budget of bfqq. The function also tells
4101 * whether the in-service queue should be expired, by returning
4102 * true. The purpose of expiring the in-service queue is to give bfqq
4103 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
4104 * for preempting the in-service queue is to achieve one of the two
4105 * goals below.
aee69d78 4106 *
44e44a1b
PV
4107 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
4108 * expired because it has remained idle. In particular, bfqq may have
4109 * expired for one of the following two reasons:
aee69d78
PV
4110 *
4111 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
4112 * and did not make it to issue a new request before its last
4113 * request was served;
4114 *
4115 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
4116 * a new request before the expiration of the idling-time.
4117 *
4118 * Even if bfqq has expired for one of the above reasons, the process
4119 * associated with the queue may be however issuing requests greedily,
4120 * and thus be sensitive to the bandwidth it receives (bfqq may have
4121 * remained idle for other reasons: CPU high load, bfqq not enjoying
4122 * idling, I/O throttling somewhere in the path from the process to
4123 * the I/O scheduler, ...). But if, after every expiration for one of
4124 * the above two reasons, bfqq has to wait for the service of at least
4125 * one full budget of another queue before being served again, then
4126 * bfqq is likely to get a much lower bandwidth or resource time than
4127 * its reserved ones. To address this issue, two countermeasures need
4128 * to be taken.
4129 *
4130 * First, the budget and the timestamps of bfqq need to be updated in
4131 * a special way on bfqq reactivation: they need to be updated as if
4132 * bfqq did not remain idle and did not expire. In fact, if they are
4133 * computed as if bfqq expired and remained idle until reactivation,
4134 * then the process associated with bfqq is treated as if, instead of
4135 * being greedy, it stopped issuing requests when bfqq remained idle,
4136 * and restarts issuing requests only on this reactivation. In other
4137 * words, the scheduler does not help the process recover the "service
4138 * hole" between bfqq expiration and reactivation. As a consequence,
4139 * the process receives a lower bandwidth than its reserved one. In
4140 * contrast, to recover this hole, the budget must be updated as if
4141 * bfqq was not expired at all before this reactivation, i.e., it must
4142 * be set to the value of the remaining budget when bfqq was
4143 * expired. Along the same line, timestamps need to be assigned the
4144 * value they had the last time bfqq was selected for service, i.e.,
4145 * before last expiration. Thus timestamps need to be back-shifted
4146 * with respect to their normal computation (see [1] for more details
4147 * on this tricky aspect).
4148 *
4149 * Secondly, to allow the process to recover the hole, the in-service
4150 * queue must be expired too, to give bfqq the chance to preempt it
4151 * immediately. In fact, if bfqq has to wait for a full budget of the
4152 * in-service queue to be completed, then it may become impossible to
4153 * let the process recover the hole, even if the back-shifted
4154 * timestamps of bfqq are lower than those of the in-service queue. If
4155 * this happens for most or all of the holes, then the process may not
4156 * receive its reserved bandwidth. In this respect, it is worth noting
4157 * that, being the service of outstanding requests unpreemptible, a
4158 * little fraction of the holes may however be unrecoverable, thereby
4159 * causing a little loss of bandwidth.
4160 *
4161 * The last important point is detecting whether bfqq does need this
4162 * bandwidth recovery. In this respect, the next function deems the
4163 * process associated with bfqq greedy, and thus allows it to recover
4164 * the hole, if: 1) the process is waiting for the arrival of a new
4165 * request (which implies that bfqq expired for one of the above two
4166 * reasons), and 2) such a request has arrived soon. The first
4167 * condition is controlled through the flag non_blocking_wait_rq,
4168 * while the second through the flag arrived_in_time. If both
4169 * conditions hold, then the function computes the budget in the
4170 * above-described special way, and signals that the in-service queue
4171 * should be expired. Timestamp back-shifting is done later in
4172 * __bfq_activate_entity.
44e44a1b
PV
4173 *
4174 * 2. Reduce latency. Even if timestamps are not backshifted to let
4175 * the process associated with bfqq recover a service hole, bfqq may
4176 * however happen to have, after being (re)activated, a lower finish
4177 * timestamp than the in-service queue. That is, the next budget of
4178 * bfqq may have to be completed before the one of the in-service
4179 * queue. If this is the case, then preempting the in-service queue
4180 * allows this goal to be achieved, apart from the unpreemptible,
4181 * outstanding requests mentioned above.
4182 *
4183 * Unfortunately, regardless of which of the above two goals one wants
4184 * to achieve, service trees need first to be updated to know whether
4185 * the in-service queue must be preempted. To have service trees
4186 * correctly updated, the in-service queue must be expired and
4187 * rescheduled, and bfqq must be scheduled too. This is one of the
4188 * most costly operations (in future versions, the scheduling
4189 * mechanism may be re-designed in such a way to make it possible to
4190 * know whether preemption is needed without needing to update service
4191 * trees). In addition, queue preemptions almost always cause random
4192 * I/O, and thus loss of throughput. Because of these facts, the next
4193 * function adopts the following simple scheme to avoid both costly
4194 * operations and too frequent preemptions: it requests the expiration
4195 * of the in-service queue (unconditionally) only for queues that need
4196 * to recover a hole, or that either are weight-raised or deserve to
4197 * be weight-raised.
aee69d78
PV
4198 */
4199static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
4200 struct bfq_queue *bfqq,
44e44a1b
PV
4201 bool arrived_in_time,
4202 bool wr_or_deserves_wr)
aee69d78
PV
4203{
4204 struct bfq_entity *entity = &bfqq->entity;
4205
4206 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
4207 /*
4208 * We do not clear the flag non_blocking_wait_rq here, as
4209 * the latter is used in bfq_activate_bfqq to signal
4210 * that timestamps need to be back-shifted (and is
4211 * cleared right after).
4212 */
4213
4214 /*
4215 * In next assignment we rely on that either
4216 * entity->service or entity->budget are not updated
4217 * on expiration if bfqq is empty (see
4218 * __bfq_bfqq_recalc_budget). Thus both quantities
4219 * remain unchanged after such an expiration, and the
4220 * following statement therefore assigns to
4221 * entity->budget the remaining budget on such an
4222 * expiration. For clarity, entity->service is not
4223 * updated on expiration in any case, and, in normal
4224 * operation, is reset only when bfqq is selected for
4225 * service (see bfq_get_next_queue).
4226 */
4227 entity->budget = min_t(unsigned long,
4228 bfq_bfqq_budget_left(bfqq),
4229 bfqq->max_budget);
4230
4231 return true;
4232 }
4233
4234 entity->budget = max_t(unsigned long, bfqq->max_budget,
4235 bfq_serv_to_charge(bfqq->next_rq, bfqq));
4236 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
4237 return wr_or_deserves_wr;
4238}
4239
4240static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
4241{
4242 u64 dur;
4243
4244 if (bfqd->bfq_wr_max_time > 0)
4245 return bfqd->bfq_wr_max_time;
4246
4247 dur = bfqd->RT_prod;
4248 do_div(dur, bfqd->peak_rate);
4249
4250 /*
4251 * Limit duration between 3 and 13 seconds. Tests show that
4252 * higher values than 13 seconds often yield the opposite of
4253 * the desired result, i.e., worsen responsiveness by letting
4254 * non-interactive and non-soft-real-time applications
4255 * preserve weight raising for a too long time interval.
4256 *
4257 * On the other end, lower values than 3 seconds make it
4258 * difficult for most interactive tasks to complete their jobs
4259 * before weight-raising finishes.
4260 */
4261 if (dur > msecs_to_jiffies(13000))
4262 dur = msecs_to_jiffies(13000);
4263 else if (dur < msecs_to_jiffies(3000))
4264 dur = msecs_to_jiffies(3000);
4265
4266 return dur;
4267}
4268
4269static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
4270 struct bfq_queue *bfqq,
4271 unsigned int old_wr_coeff,
4272 bool wr_or_deserves_wr,
77b7dcea
PV
4273 bool interactive,
4274 bool soft_rt)
44e44a1b
PV
4275{
4276 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
4277 /* start a weight-raising period */
77b7dcea
PV
4278 if (interactive) {
4279 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
4280 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
4281 } else {
4282 bfqq->wr_start_at_switch_to_srt = jiffies;
4283 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
4284 BFQ_SOFTRT_WEIGHT_FACTOR;
4285 bfqq->wr_cur_max_time =
4286 bfqd->bfq_wr_rt_max_time;
4287 }
44e44a1b
PV
4288
4289 /*
4290 * If needed, further reduce budget to make sure it is
4291 * close to bfqq's backlog, so as to reduce the
4292 * scheduling-error component due to a too large
4293 * budget. Do not care about throughput consequences,
4294 * but only about latency. Finally, do not assign a
4295 * too small budget either, to avoid increasing
4296 * latency by causing too frequent expirations.
4297 */
4298 bfqq->entity.budget = min_t(unsigned long,
4299 bfqq->entity.budget,
4300 2 * bfq_min_budget(bfqd));
4301 } else if (old_wr_coeff > 1) {
77b7dcea
PV
4302 if (interactive) { /* update wr coeff and duration */
4303 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
4304 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
4305 } else if (soft_rt) {
4306 /*
4307 * The application is now or still meeting the
4308 * requirements for being deemed soft rt. We
4309 * can then correctly and safely (re)charge
4310 * the weight-raising duration for the
4311 * application with the weight-raising
4312 * duration for soft rt applications.
4313 *
4314 * In particular, doing this recharge now, i.e.,
4315 * before the weight-raising period for the
4316 * application finishes, reduces the probability
4317 * of the following negative scenario:
4318 * 1) the weight of a soft rt application is
4319 * raised at startup (as for any newly
4320 * created application),
4321 * 2) since the application is not interactive,
4322 * at a certain time weight-raising is
4323 * stopped for the application,
4324 * 3) at that time the application happens to
4325 * still have pending requests, and hence
4326 * is destined to not have a chance to be
4327 * deemed soft rt before these requests are
4328 * completed (see the comments to the
4329 * function bfq_bfqq_softrt_next_start()
4330 * for details on soft rt detection),
4331 * 4) these pending requests experience a high
4332 * latency because the application is not
4333 * weight-raised while they are pending.
4334 */
4335 if (bfqq->wr_cur_max_time !=
4336 bfqd->bfq_wr_rt_max_time) {
4337 bfqq->wr_start_at_switch_to_srt =
4338 bfqq->last_wr_start_finish;
4339
4340 bfqq->wr_cur_max_time =
4341 bfqd->bfq_wr_rt_max_time;
4342 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
4343 BFQ_SOFTRT_WEIGHT_FACTOR;
4344 }
4345 bfqq->last_wr_start_finish = jiffies;
4346 }
44e44a1b
PV
4347 }
4348}
4349
4350static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
4351 struct bfq_queue *bfqq)
4352{
4353 return bfqq->dispatched == 0 &&
4354 time_is_before_jiffies(
4355 bfqq->budget_timeout +
4356 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
4357}
4358
4359static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
4360 struct bfq_queue *bfqq,
44e44a1b
PV
4361 int old_wr_coeff,
4362 struct request *rq,
4363 bool *interactive)
aee69d78 4364{
77b7dcea 4365 bool soft_rt, wr_or_deserves_wr, bfqq_wants_to_preempt,
44e44a1b 4366 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
4367 /*
4368 * See the comments on
4369 * bfq_bfqq_update_budg_for_activation for
4370 * details on the usage of the next variable.
4371 */
4372 arrived_in_time = ktime_get_ns() <=
4373 bfqq->ttime.last_end_request +
4374 bfqd->bfq_slice_idle * 3;
4375
e21b7a0b
AA
4376 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
4377
aee69d78 4378 /*
44e44a1b
PV
4379 * bfqq deserves to be weight-raised if:
4380 * - it is sync,
36eca894
AA
4381 * - it has been idle for enough time or is soft real-time,
4382 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 4383 */
77b7dcea
PV
4384 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
4385 time_is_before_jiffies(bfqq->soft_rt_next_start);
44e44a1b
PV
4386 *interactive = idle_for_long_time;
4387 wr_or_deserves_wr = bfqd->low_latency &&
4388 (bfqq->wr_coeff > 1 ||
36eca894
AA
4389 (bfq_bfqq_sync(bfqq) &&
4390 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
4391
4392 /*
4393 * Using the last flag, update budget and check whether bfqq
4394 * may want to preempt the in-service queue.
aee69d78
PV
4395 */
4396 bfqq_wants_to_preempt =
4397 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
4398 arrived_in_time,
4399 wr_or_deserves_wr);
aee69d78
PV
4400
4401 if (!bfq_bfqq_IO_bound(bfqq)) {
4402 if (arrived_in_time) {
4403 bfqq->requests_within_timer++;
4404 if (bfqq->requests_within_timer >=
4405 bfqd->bfq_requests_within_timer)
4406 bfq_mark_bfqq_IO_bound(bfqq);
4407 } else
4408 bfqq->requests_within_timer = 0;
4409 }
4410
44e44a1b 4411 if (bfqd->low_latency) {
36eca894
AA
4412 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
4413 /* wraparound */
4414 bfqq->split_time =
4415 jiffies - bfqd->bfq_wr_min_idle_time - 1;
4416
4417 if (time_is_before_jiffies(bfqq->split_time +
4418 bfqd->bfq_wr_min_idle_time)) {
4419 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
4420 old_wr_coeff,
4421 wr_or_deserves_wr,
4422 *interactive,
4423 soft_rt);
4424
4425 if (old_wr_coeff != bfqq->wr_coeff)
4426 bfqq->entity.prio_changed = 1;
4427 }
44e44a1b
PV
4428 }
4429
77b7dcea
PV
4430 bfqq->last_idle_bklogged = jiffies;
4431 bfqq->service_from_backlogged = 0;
4432 bfq_clear_bfqq_softrt_update(bfqq);
4433
aee69d78
PV
4434 bfq_add_bfqq_busy(bfqd, bfqq);
4435
4436 /*
4437 * Expire in-service queue only if preemption may be needed
4438 * for guarantees. In this respect, the function
4439 * next_queue_may_preempt just checks a simple, necessary
4440 * condition, and not a sufficient condition based on
4441 * timestamps. In fact, for the latter condition to be
4442 * evaluated, timestamps would need first to be updated, and
4443 * this operation is quite costly (see the comments on the
4444 * function bfq_bfqq_update_budg_for_activation).
4445 */
4446 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 4447 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
4448 next_queue_may_preempt(bfqd))
4449 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
4450 false, BFQQE_PREEMPTED);
4451}
4452
4453static void bfq_add_request(struct request *rq)
4454{
4455 struct bfq_queue *bfqq = RQ_BFQQ(rq);
4456 struct bfq_data *bfqd = bfqq->bfqd;
4457 struct request *next_rq, *prev;
44e44a1b
PV
4458 unsigned int old_wr_coeff = bfqq->wr_coeff;
4459 bool interactive = false;
aee69d78
PV
4460
4461 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
4462 bfqq->queued[rq_is_sync(rq)]++;
4463 bfqd->queued++;
4464
4465 elv_rb_add(&bfqq->sort_list, rq);
4466
4467 /*
4468 * Check if this request is a better next-serve candidate.
4469 */
4470 prev = bfqq->next_rq;
4471 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
4472 bfqq->next_rq = next_rq;
4473
36eca894
AA
4474 /*
4475 * Adjust priority tree position, if next_rq changes.
4476 */
4477 if (prev != bfqq->next_rq)
4478 bfq_pos_tree_add_move(bfqd, bfqq);
4479
aee69d78 4480 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
4481 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
4482 rq, &interactive);
4483 else {
4484 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
4485 time_is_before_jiffies(
4486 bfqq->last_wr_start_finish +
4487 bfqd->bfq_wr_min_inter_arr_async)) {
4488 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
4489 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
4490
cfd69712 4491 bfqd->wr_busy_queues++;
44e44a1b
PV
4492 bfqq->entity.prio_changed = 1;
4493 }
4494 if (prev != bfqq->next_rq)
4495 bfq_updated_next_req(bfqd, bfqq);
4496 }
4497
4498 /*
4499 * Assign jiffies to last_wr_start_finish in the following
4500 * cases:
4501 *
4502 * . if bfqq is not going to be weight-raised, because, for
4503 * non weight-raised queues, last_wr_start_finish stores the
4504 * arrival time of the last request; as of now, this piece
4505 * of information is used only for deciding whether to
4506 * weight-raise async queues
4507 *
4508 * . if bfqq is not weight-raised, because, if bfqq is now
4509 * switching to weight-raised, then last_wr_start_finish
4510 * stores the time when weight-raising starts
4511 *
4512 * . if bfqq is interactive, because, regardless of whether
4513 * bfqq is currently weight-raised, the weight-raising
4514 * period must start or restart (this case is considered
4515 * separately because it is not detected by the above
4516 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
4517 *
4518 * last_wr_start_finish has to be updated also if bfqq is soft
4519 * real-time, because the weight-raising period is constantly
4520 * restarted on idle-to-busy transitions for these queues, but
4521 * this is already done in bfq_bfqq_handle_idle_busy_switch if
4522 * needed.
44e44a1b
PV
4523 */
4524 if (bfqd->low_latency &&
4525 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
4526 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
4527}
4528
4529static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
4530 struct bio *bio,
4531 struct request_queue *q)
4532{
4533 struct bfq_queue *bfqq = bfqd->bio_bfqq;
4534
4535
4536 if (bfqq)
4537 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
4538
4539 return NULL;
4540}
4541
ab0e43e9
PV
4542static sector_t get_sdist(sector_t last_pos, struct request *rq)
4543{
4544 if (last_pos)
4545 return abs(blk_rq_pos(rq) - last_pos);
4546
4547 return 0;
4548}
4549
aee69d78
PV
4550#if 0 /* Still not clear if we can do without next two functions */
4551static void bfq_activate_request(struct request_queue *q, struct request *rq)
4552{
4553 struct bfq_data *bfqd = q->elevator->elevator_data;
4554
4555 bfqd->rq_in_driver++;
aee69d78
PV
4556}
4557
4558static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
4559{
4560 struct bfq_data *bfqd = q->elevator->elevator_data;
4561
4562 bfqd->rq_in_driver--;
4563}
4564#endif
4565
4566static void bfq_remove_request(struct request_queue *q,
4567 struct request *rq)
4568{
4569 struct bfq_queue *bfqq = RQ_BFQQ(rq);
4570 struct bfq_data *bfqd = bfqq->bfqd;
4571 const int sync = rq_is_sync(rq);
4572
4573 if (bfqq->next_rq == rq) {
4574 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
4575 bfq_updated_next_req(bfqd, bfqq);
4576 }
4577
4578 if (rq->queuelist.prev != &rq->queuelist)
4579 list_del_init(&rq->queuelist);
4580 bfqq->queued[sync]--;
4581 bfqd->queued--;
4582 elv_rb_del(&bfqq->sort_list, rq);
4583
4584 elv_rqhash_del(q, rq);
4585 if (q->last_merge == rq)
4586 q->last_merge = NULL;
4587
4588 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
4589 bfqq->next_rq = NULL;
4590
4591 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 4592 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
4593 /*
4594 * bfqq emptied. In normal operation, when
4595 * bfqq is empty, bfqq->entity.service and
4596 * bfqq->entity.budget must contain,
4597 * respectively, the service received and the
4598 * budget used last time bfqq emptied. These
4599 * facts do not hold in this case, as at least
4600 * this last removal occurred while bfqq is
4601 * not in service. To avoid inconsistencies,
4602 * reset both bfqq->entity.service and
4603 * bfqq->entity.budget, if bfqq has still a
4604 * process that may issue I/O requests to it.
4605 */
4606 bfqq->entity.budget = bfqq->entity.service = 0;
4607 }
36eca894
AA
4608
4609 /*
4610 * Remove queue from request-position tree as it is empty.
4611 */
4612 if (bfqq->pos_root) {
4613 rb_erase(&bfqq->pos_node, bfqq->pos_root);
4614 bfqq->pos_root = NULL;
4615 }
aee69d78
PV
4616 }
4617
4618 if (rq->cmd_flags & REQ_META)
4619 bfqq->meta_pending--;
e21b7a0b
AA
4620
4621 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
aee69d78
PV
4622}
4623
4624static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
4625{
4626 struct request_queue *q = hctx->queue;
4627 struct bfq_data *bfqd = q->elevator->elevator_data;
4628 struct request *free = NULL;
4629 /*
4630 * bfq_bic_lookup grabs the queue_lock: invoke it now and
4631 * store its return value for later use, to avoid nesting
4632 * queue_lock inside the bfqd->lock. We assume that the bic
4633 * returned by bfq_bic_lookup does not go away before
4634 * bfqd->lock is taken.
4635 */
4636 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
4637 bool ret;
4638
4639 spin_lock_irq(&bfqd->lock);
4640
4641 if (bic)
4642 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
4643 else
4644 bfqd->bio_bfqq = NULL;
4645 bfqd->bio_bic = bic;
4646
4647 ret = blk_mq_sched_try_merge(q, bio, &free);
4648
4649 if (free)
4650 blk_mq_free_request(free);
4651 spin_unlock_irq(&bfqd->lock);
4652
4653 return ret;
4654}
4655
4656static int bfq_request_merge(struct request_queue *q, struct request **req,
4657 struct bio *bio)
4658{
4659 struct bfq_data *bfqd = q->elevator->elevator_data;
4660 struct request *__rq;
4661
4662 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
4663 if (__rq && elv_bio_merge_ok(__rq, bio)) {
4664 *req = __rq;
4665 return ELEVATOR_FRONT_MERGE;
4666 }
4667
4668 return ELEVATOR_NO_MERGE;
4669}
4670
4671static void bfq_request_merged(struct request_queue *q, struct request *req,
4672 enum elv_merge type)
4673{
4674 if (type == ELEVATOR_FRONT_MERGE &&
4675 rb_prev(&req->rb_node) &&
4676 blk_rq_pos(req) <
4677 blk_rq_pos(container_of(rb_prev(&req->rb_node),
4678 struct request, rb_node))) {
4679 struct bfq_queue *bfqq = RQ_BFQQ(req);
4680 struct bfq_data *bfqd = bfqq->bfqd;
4681 struct request *prev, *next_rq;
4682
4683 /* Reposition request in its sort_list */
4684 elv_rb_del(&bfqq->sort_list, req);
4685 elv_rb_add(&bfqq->sort_list, req);
4686
4687 /* Choose next request to be served for bfqq */
4688 prev = bfqq->next_rq;
4689 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
4690 bfqd->last_position);
4691 bfqq->next_rq = next_rq;
4692 /*
36eca894
AA
4693 * If next_rq changes, update both the queue's budget to
4694 * fit the new request and the queue's position in its
4695 * rq_pos_tree.
aee69d78 4696 */
36eca894 4697 if (prev != bfqq->next_rq) {
aee69d78 4698 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
4699 bfq_pos_tree_add_move(bfqd, bfqq);
4700 }
aee69d78
PV
4701 }
4702}
4703
4704static void bfq_requests_merged(struct request_queue *q, struct request *rq,
4705 struct request *next)
4706{
4707 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
4708
4709 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 4710 goto end;
aee69d78
PV
4711 spin_lock_irq(&bfqq->bfqd->lock);
4712
4713 /*
4714 * If next and rq belong to the same bfq_queue and next is older
4715 * than rq, then reposition rq in the fifo (by substituting next
4716 * with rq). Otherwise, if next and rq belong to different
4717 * bfq_queues, never reposition rq: in fact, we would have to
4718 * reposition it with respect to next's position in its own fifo,
4719 * which would most certainly be too expensive with respect to
4720 * the benefits.
4721 */
4722 if (bfqq == next_bfqq &&
4723 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
4724 next->fifo_time < rq->fifo_time) {
4725 list_del_init(&rq->queuelist);
4726 list_replace_init(&next->queuelist, &rq->queuelist);
4727 rq->fifo_time = next->fifo_time;
4728 }
4729
4730 if (bfqq->next_rq == next)
4731 bfqq->next_rq = rq;
4732
4733 bfq_remove_request(q, next);
4734
4735 spin_unlock_irq(&bfqq->bfqd->lock);
e21b7a0b
AA
4736end:
4737 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
4738}
4739
44e44a1b
PV
4740/* Must be called with bfqq != NULL */
4741static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
4742{
cfd69712
PV
4743 if (bfq_bfqq_busy(bfqq))
4744 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
4745 bfqq->wr_coeff = 1;
4746 bfqq->wr_cur_max_time = 0;
77b7dcea 4747 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
4748 /*
4749 * Trigger a weight change on the next invocation of
4750 * __bfq_entity_update_weight_prio.
4751 */
4752 bfqq->entity.prio_changed = 1;
4753}
4754
4755static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
4756 struct bfq_group *bfqg)
4757{
4758 int i, j;
4759
4760 for (i = 0; i < 2; i++)
4761 for (j = 0; j < IOPRIO_BE_NR; j++)
4762 if (bfqg->async_bfqq[i][j])
4763 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
4764 if (bfqg->async_idle_bfqq)
4765 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
4766}
4767
4768static void bfq_end_wr(struct bfq_data *bfqd)
4769{
4770 struct bfq_queue *bfqq;
4771
4772 spin_lock_irq(&bfqd->lock);
4773
4774 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4775 bfq_bfqq_end_wr(bfqq);
4776 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
4777 bfq_bfqq_end_wr(bfqq);
4778 bfq_end_wr_async(bfqd);
4779
4780 spin_unlock_irq(&bfqd->lock);
4781}
4782
36eca894
AA
4783static sector_t bfq_io_struct_pos(void *io_struct, bool request)
4784{
4785 if (request)
4786 return blk_rq_pos(io_struct);
4787 else
4788 return ((struct bio *)io_struct)->bi_iter.bi_sector;
4789}
4790
4791static int bfq_rq_close_to_sector(void *io_struct, bool request,
4792 sector_t sector)
4793{
4794 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
4795 BFQQ_CLOSE_THR;
4796}
4797
4798static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
4799 struct bfq_queue *bfqq,
4800 sector_t sector)
4801{
4802 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
4803 struct rb_node *parent, *node;
4804 struct bfq_queue *__bfqq;
4805
4806 if (RB_EMPTY_ROOT(root))
4807 return NULL;
4808
4809 /*
4810 * First, if we find a request starting at the end of the last
4811 * request, choose it.
4812 */
4813 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
4814 if (__bfqq)
4815 return __bfqq;
4816
4817 /*
4818 * If the exact sector wasn't found, the parent of the NULL leaf
4819 * will contain the closest sector (rq_pos_tree sorted by
4820 * next_request position).
4821 */
4822 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
4823 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
4824 return __bfqq;
4825
4826 if (blk_rq_pos(__bfqq->next_rq) < sector)
4827 node = rb_next(&__bfqq->pos_node);
4828 else
4829 node = rb_prev(&__bfqq->pos_node);
4830 if (!node)
4831 return NULL;
4832
4833 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
4834 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
4835 return __bfqq;
4836
4837 return NULL;
4838}
4839
4840static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
4841 struct bfq_queue *cur_bfqq,
4842 sector_t sector)
4843{
4844 struct bfq_queue *bfqq;
4845
4846 /*
4847 * We shall notice if some of the queues are cooperating,
4848 * e.g., working closely on the same area of the device. In
4849 * that case, we can group them together and: 1) don't waste
4850 * time idling, and 2) serve the union of their requests in
4851 * the best possible order for throughput.
4852 */
4853 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
4854 if (!bfqq || bfqq == cur_bfqq)
4855 return NULL;
4856
4857 return bfqq;
4858}
4859
4860static struct bfq_queue *
4861bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
4862{
4863 int process_refs, new_process_refs;
4864 struct bfq_queue *__bfqq;
4865
4866 /*
4867 * If there are no process references on the new_bfqq, then it is
4868 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
4869 * may have dropped their last reference (not just their last process
4870 * reference).
4871 */
4872 if (!bfqq_process_refs(new_bfqq))
4873 return NULL;
4874
4875 /* Avoid a circular list and skip interim queue merges. */
4876 while ((__bfqq = new_bfqq->new_bfqq)) {
4877 if (__bfqq == bfqq)
4878 return NULL;
4879 new_bfqq = __bfqq;
4880 }
4881
4882 process_refs = bfqq_process_refs(bfqq);
4883 new_process_refs = bfqq_process_refs(new_bfqq);
4884 /*
4885 * If the process for the bfqq has gone away, there is no
4886 * sense in merging the queues.
4887 */
4888 if (process_refs == 0 || new_process_refs == 0)
4889 return NULL;
4890
4891 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
4892 new_bfqq->pid);
4893
4894 /*
4895 * Merging is just a redirection: the requests of the process
4896 * owning one of the two queues are redirected to the other queue.
4897 * The latter queue, in its turn, is set as shared if this is the
4898 * first time that the requests of some process are redirected to
4899 * it.
4900 *
4901 * We redirect bfqq to new_bfqq and not the opposite, because we
4902 * are in the context of the process owning bfqq, hence we have
4903 * the io_cq of this process. So we can immediately configure this
4904 * io_cq to redirect the requests of the process to new_bfqq.
4905 *
4906 * NOTE, even if new_bfqq coincides with the in-service queue, the
4907 * io_cq of new_bfqq is not available, because, if the in-service
4908 * queue is shared, bfqd->in_service_bic may not point to the
4909 * io_cq of the in-service queue.
4910 * Redirecting the requests of the process owning bfqq to the
4911 * currently in-service queue is in any case the best option, as
4912 * we feed the in-service queue with new requests close to the
4913 * last request served and, by doing so, hopefully increase the
4914 * throughput.
4915 */
4916 bfqq->new_bfqq = new_bfqq;
4917 new_bfqq->ref += process_refs;
4918 return new_bfqq;
4919}
4920
4921static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
4922 struct bfq_queue *new_bfqq)
4923{
4924 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
4925 (bfqq->ioprio_class != new_bfqq->ioprio_class))
4926 return false;
4927
4928 /*
4929 * If either of the queues has already been detected as seeky,
4930 * then merging it with the other queue is unlikely to lead to
4931 * sequential I/O.
4932 */
4933 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
4934 return false;
4935
4936 /*
4937 * Interleaved I/O is known to be done by (some) applications
4938 * only for reads, so it does not make sense to merge async
4939 * queues.
4940 */
4941 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
4942 return false;
4943
4944 return true;
4945}
4946
4947/*
4948 * If this function returns true, then bfqq cannot be merged. The idea
4949 * is that true cooperation happens very early after processes start
4950 * to do I/O. Usually, late cooperations are just accidental false
4951 * positives. In case bfqq is weight-raised, such false positives
4952 * would evidently degrade latency guarantees for bfqq.
4953 */
4954static bool wr_from_too_long(struct bfq_queue *bfqq)
4955{
4956 return bfqq->wr_coeff > 1 &&
4957 time_is_before_jiffies(bfqq->last_wr_start_finish +
4958 msecs_to_jiffies(100));
4959}
4960
4961/*
4962 * Attempt to schedule a merge of bfqq with the currently in-service
4963 * queue or with a close queue among the scheduled queues. Return
4964 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
4965 * structure otherwise.
4966 *
4967 * The OOM queue is not allowed to participate to cooperation: in fact, since
4968 * the requests temporarily redirected to the OOM queue could be redirected
4969 * again to dedicated queues at any time, the state needed to correctly
4970 * handle merging with the OOM queue would be quite complex and expensive
4971 * to maintain. Besides, in such a critical condition as an out of memory,
4972 * the benefits of queue merging may be little relevant, or even negligible.
4973 *
4974 * Weight-raised queues can be merged only if their weight-raising
4975 * period has just started. In fact cooperating processes are usually
4976 * started together. Thus, with this filter we avoid false positives
4977 * that would jeopardize low-latency guarantees.
4978 *
4979 * WARNING: queue merging may impair fairness among non-weight raised
4980 * queues, for at least two reasons: 1) the original weight of a
4981 * merged queue may change during the merged state, 2) even being the
4982 * weight the same, a merged queue may be bloated with many more
4983 * requests than the ones produced by its originally-associated
4984 * process.
4985 */
4986static struct bfq_queue *
4987bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4988 void *io_struct, bool request)
4989{
4990 struct bfq_queue *in_service_bfqq, *new_bfqq;
4991
4992 if (bfqq->new_bfqq)
4993 return bfqq->new_bfqq;
4994
4995 if (!io_struct ||
4996 wr_from_too_long(bfqq) ||
4997 unlikely(bfqq == &bfqd->oom_bfqq))
4998 return NULL;
4999
5000 /* If there is only one backlogged queue, don't search. */
5001 if (bfqd->busy_queues == 1)
5002 return NULL;
5003
5004 in_service_bfqq = bfqd->in_service_queue;
5005
5006 if (!in_service_bfqq || in_service_bfqq == bfqq ||
5007 !bfqd->in_service_bic || wr_from_too_long(in_service_bfqq) ||
5008 unlikely(in_service_bfqq == &bfqd->oom_bfqq))
5009 goto check_scheduled;
5010
5011 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
5012 bfqq->entity.parent == in_service_bfqq->entity.parent &&
5013 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
5014 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
5015 if (new_bfqq)
5016 return new_bfqq;
5017 }
5018 /*
5019 * Check whether there is a cooperator among currently scheduled
5020 * queues. The only thing we need is that the bio/request is not
5021 * NULL, as we need it to establish whether a cooperator exists.
5022 */
5023check_scheduled:
5024 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
5025 bfq_io_struct_pos(io_struct, request));
5026
5027 if (new_bfqq && !wr_from_too_long(new_bfqq) &&
5028 likely(new_bfqq != &bfqd->oom_bfqq) &&
5029 bfq_may_be_close_cooperator(bfqq, new_bfqq))
5030 return bfq_setup_merge(bfqq, new_bfqq);
5031
5032 return NULL;
5033}
5034
5035static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
5036{
5037 struct bfq_io_cq *bic = bfqq->bic;
5038
5039 /*
5040 * If !bfqq->bic, the queue is already shared or its requests
5041 * have already been redirected to a shared queue; both idle window
5042 * and weight raising state have already been saved. Do nothing.
5043 */
5044 if (!bic)
5045 return;
5046
5047 bic->saved_ttime = bfqq->ttime;
5048 bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
5049 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
5050 bic->saved_wr_coeff = bfqq->wr_coeff;
5051 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
5052 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
5053 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
5054}
5055
5056static void bfq_get_bic_reference(struct bfq_queue *bfqq)
5057{
5058 /*
5059 * If bfqq->bic has a non-NULL value, the bic to which it belongs
5060 * is about to begin using a shared bfq_queue.
5061 */
5062 if (bfqq->bic)
5063 atomic_long_inc(&bfqq->bic->icq.ioc->refcount);
5064}
5065
5066static void
5067bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
5068 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
5069{
5070 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
5071 (unsigned long)new_bfqq->pid);
5072 /* Save weight raising and idle window of the merged queues */
5073 bfq_bfqq_save_state(bfqq);
5074 bfq_bfqq_save_state(new_bfqq);
5075 if (bfq_bfqq_IO_bound(bfqq))
5076 bfq_mark_bfqq_IO_bound(new_bfqq);
5077 bfq_clear_bfqq_IO_bound(bfqq);
5078
5079 /*
5080 * If bfqq is weight-raised, then let new_bfqq inherit
5081 * weight-raising. To reduce false positives, neglect the case
5082 * where bfqq has just been created, but has not yet made it
5083 * to be weight-raised (which may happen because EQM may merge
5084 * bfqq even before bfq_add_request is executed for the first
5085 * time for bfqq).
5086 */
5087 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
5088 new_bfqq->wr_coeff = bfqq->wr_coeff;
5089 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
5090 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
5091 new_bfqq->wr_start_at_switch_to_srt =
5092 bfqq->wr_start_at_switch_to_srt;
5093 if (bfq_bfqq_busy(new_bfqq))
5094 bfqd->wr_busy_queues++;
5095 new_bfqq->entity.prio_changed = 1;
5096 }
5097
5098 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
5099 bfqq->wr_coeff = 1;
5100 bfqq->entity.prio_changed = 1;
5101 if (bfq_bfqq_busy(bfqq))
5102 bfqd->wr_busy_queues--;
5103 }
5104
5105 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
5106 bfqd->wr_busy_queues);
5107
5108 /*
5109 * Grab a reference to the bic, to prevent it from being destroyed
5110 * before being possibly touched by a bfq_split_bfqq().
5111 */
5112 bfq_get_bic_reference(bfqq);
5113 bfq_get_bic_reference(new_bfqq);
5114 /*
5115 * Merge queues (that is, let bic redirect its requests to new_bfqq)
5116 */
5117 bic_set_bfqq(bic, new_bfqq, 1);
5118 bfq_mark_bfqq_coop(new_bfqq);
5119 /*
5120 * new_bfqq now belongs to at least two bics (it is a shared queue):
5121 * set new_bfqq->bic to NULL. bfqq either:
5122 * - does not belong to any bic any more, and hence bfqq->bic must
5123 * be set to NULL, or
5124 * - is a queue whose owning bics have already been redirected to a
5125 * different queue, hence the queue is destined to not belong to
5126 * any bic soon and bfqq->bic is already NULL (therefore the next
5127 * assignment causes no harm).
5128 */
5129 new_bfqq->bic = NULL;
5130 bfqq->bic = NULL;
5131 /* release process reference to bfqq */
5132 bfq_put_queue(bfqq);
5133}
5134
aee69d78
PV
5135static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
5136 struct bio *bio)
5137{
5138 struct bfq_data *bfqd = q->elevator->elevator_data;
5139 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 5140 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
5141
5142 /*
5143 * Disallow merge of a sync bio into an async request.
5144 */
5145 if (is_sync && !rq_is_sync(rq))
5146 return false;
5147
5148 /*
5149 * Lookup the bfqq that this bio will be queued with. Allow
5150 * merge only if rq is queued there.
5151 */
5152 if (!bfqq)
5153 return false;
5154
36eca894
AA
5155 /*
5156 * We take advantage of this function to perform an early merge
5157 * of the queues of possible cooperating processes.
5158 */
5159 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
5160 if (new_bfqq) {
5161 /*
5162 * bic still points to bfqq, then it has not yet been
5163 * redirected to some other bfq_queue, and a queue
5164 * merge beween bfqq and new_bfqq can be safely
5165 * fulfillled, i.e., bic can be redirected to new_bfqq
5166 * and bfqq can be put.
5167 */
5168 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
5169 new_bfqq);
5170 /*
5171 * If we get here, bio will be queued into new_queue,
5172 * so use new_bfqq to decide whether bio and rq can be
5173 * merged.
5174 */
5175 bfqq = new_bfqq;
5176
5177 /*
5178 * Change also bqfd->bio_bfqq, as
5179 * bfqd->bio_bic now points to new_bfqq, and
5180 * this function may be invoked again (and then may
5181 * use again bqfd->bio_bfqq).
5182 */
5183 bfqd->bio_bfqq = bfqq;
5184 }
5185
aee69d78
PV
5186 return bfqq == RQ_BFQQ(rq);
5187}
5188
44e44a1b
PV
5189/*
5190 * Set the maximum time for the in-service queue to consume its
5191 * budget. This prevents seeky processes from lowering the throughput.
5192 * In practice, a time-slice service scheme is used with seeky
5193 * processes.
5194 */
5195static void bfq_set_budget_timeout(struct bfq_data *bfqd,
5196 struct bfq_queue *bfqq)
5197{
77b7dcea
PV
5198 unsigned int timeout_coeff;
5199
5200 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
5201 timeout_coeff = 1;
5202 else
5203 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
5204
44e44a1b
PV
5205 bfqd->last_budget_start = ktime_get();
5206
5207 bfqq->budget_timeout = jiffies +
77b7dcea 5208 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
5209}
5210
aee69d78
PV
5211static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
5212 struct bfq_queue *bfqq)
5213{
5214 if (bfqq) {
e21b7a0b 5215 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
aee69d78
PV
5216 bfq_clear_bfqq_fifo_expire(bfqq);
5217
5218 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
5219
77b7dcea
PV
5220 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
5221 bfqq->wr_coeff > 1 &&
5222 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5223 time_is_before_jiffies(bfqq->budget_timeout)) {
5224 /*
5225 * For soft real-time queues, move the start
5226 * of the weight-raising period forward by the
5227 * time the queue has not received any
5228 * service. Otherwise, a relatively long
5229 * service delay is likely to cause the
5230 * weight-raising period of the queue to end,
5231 * because of the short duration of the
5232 * weight-raising period of a soft real-time
5233 * queue. It is worth noting that this move
5234 * is not so dangerous for the other queues,
5235 * because soft real-time queues are not
5236 * greedy.
5237 *
5238 * To not add a further variable, we use the
5239 * overloaded field budget_timeout to
5240 * determine for how long the queue has not
5241 * received service, i.e., how much time has
5242 * elapsed since the queue expired. However,
5243 * this is a little imprecise, because
5244 * budget_timeout is set to jiffies if bfqq
5245 * not only expires, but also remains with no
5246 * request.
5247 */
5248 if (time_after(bfqq->budget_timeout,
5249 bfqq->last_wr_start_finish))
5250 bfqq->last_wr_start_finish +=
5251 jiffies - bfqq->budget_timeout;
5252 else
5253 bfqq->last_wr_start_finish = jiffies;
5254 }
5255
44e44a1b 5256 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
5257 bfq_log_bfqq(bfqd, bfqq,
5258 "set_in_service_queue, cur-budget = %d",
5259 bfqq->entity.budget);
5260 }
5261
5262 bfqd->in_service_queue = bfqq;
5263}
5264
5265/*
5266 * Get and set a new queue for service.
5267 */
5268static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
5269{
5270 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
5271
5272 __bfq_set_in_service_queue(bfqd, bfqq);
5273 return bfqq;
5274}
5275
aee69d78
PV
5276static void bfq_arm_slice_timer(struct bfq_data *bfqd)
5277{
5278 struct bfq_queue *bfqq = bfqd->in_service_queue;
5279 struct bfq_io_cq *bic;
5280 u32 sl;
5281
5282 /* Processes have exited, don't wait. */
5283 bic = bfqd->in_service_bic;
5284 if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
5285 return;
5286
5287 bfq_mark_bfqq_wait_request(bfqq);
5288
5289 /*
5290 * We don't want to idle for seeks, but we do want to allow
5291 * fair distribution of slice time for a process doing back-to-back
5292 * seeks. So allow a little bit of time for him to submit a new rq.
5293 */
5294 sl = bfqd->bfq_slice_idle;
5295 /*
44e44a1b
PV
5296 * Unless the queue is being weight-raised, grant only minimum
5297 * idle time if the queue is seeky. A long idling is preserved
5298 * for a weight-raised queue, because it is needed for
5299 * guaranteeing to the queue its reserved share of the
5300 * throughput.
aee69d78 5301 */
44e44a1b 5302 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1)
aee69d78
PV
5303 sl = min_t(u64, sl, BFQ_MIN_TT);
5304
5305 bfqd->last_idling_start = ktime_get();
5306 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
5307 HRTIMER_MODE_REL);
e21b7a0b 5308 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
5309}
5310
ab0e43e9
PV
5311/*
5312 * In autotuning mode, max_budget is dynamically recomputed as the
5313 * amount of sectors transferred in timeout at the estimated peak
5314 * rate. This enables BFQ to utilize a full timeslice with a full
5315 * budget, even if the in-service queue is served at peak rate. And
5316 * this maximises throughput with sequential workloads.
5317 */
5318static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
5319{
5320 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
5321 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
5322}
5323
44e44a1b
PV
5324/*
5325 * Update parameters related to throughput and responsiveness, as a
5326 * function of the estimated peak rate. See comments on
5327 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
5328 */
5329static void update_thr_responsiveness_params(struct bfq_data *bfqd)
5330{
5331 int dev_type = blk_queue_nonrot(bfqd->queue);
5332
5333 if (bfqd->bfq_user_max_budget == 0)
5334 bfqd->bfq_max_budget =
5335 bfq_calc_max_budget(bfqd);
5336
5337 if (bfqd->device_speed == BFQ_BFQD_FAST &&
5338 bfqd->peak_rate < device_speed_thresh[dev_type]) {
5339 bfqd->device_speed = BFQ_BFQD_SLOW;
5340 bfqd->RT_prod = R_slow[dev_type] *
5341 T_slow[dev_type];
5342 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
5343 bfqd->peak_rate > device_speed_thresh[dev_type]) {
5344 bfqd->device_speed = BFQ_BFQD_FAST;
5345 bfqd->RT_prod = R_fast[dev_type] *
5346 T_fast[dev_type];
5347 }
5348
5349 bfq_log(bfqd,
5350"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
5351 dev_type == 0 ? "ROT" : "NONROT",
5352 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
5353 bfqd->device_speed == BFQ_BFQD_FAST ?
5354 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
5355 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
5356 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
5357 BFQ_RATE_SHIFT);
5358}
5359
ab0e43e9
PV
5360static void bfq_reset_rate_computation(struct bfq_data *bfqd,
5361 struct request *rq)
5362{
5363 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
5364 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
5365 bfqd->peak_rate_samples = 1;
5366 bfqd->sequential_samples = 0;
5367 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
5368 blk_rq_sectors(rq);
5369 } else /* no new rq dispatched, just reset the number of samples */
5370 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
5371
5372 bfq_log(bfqd,
5373 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
5374 bfqd->peak_rate_samples, bfqd->sequential_samples,
5375 bfqd->tot_sectors_dispatched);
5376}
5377
5378static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
5379{
5380 u32 rate, weight, divisor;
5381
5382 /*
5383 * For the convergence property to hold (see comments on
5384 * bfq_update_peak_rate()) and for the assessment to be
5385 * reliable, a minimum number of samples must be present, and
5386 * a minimum amount of time must have elapsed. If not so, do
5387 * not compute new rate. Just reset parameters, to get ready
5388 * for a new evaluation attempt.
5389 */
5390 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
5391 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
5392 goto reset_computation;
5393
5394 /*
5395 * If a new request completion has occurred after last
5396 * dispatch, then, to approximate the rate at which requests
5397 * have been served by the device, it is more precise to
5398 * extend the observation interval to the last completion.
5399 */
5400 bfqd->delta_from_first =
5401 max_t(u64, bfqd->delta_from_first,
5402 bfqd->last_completion - bfqd->first_dispatch);
5403
5404 /*
5405 * Rate computed in sects/usec, and not sects/nsec, for
5406 * precision issues.
5407 */
5408 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
5409 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
5410
5411 /*
5412 * Peak rate not updated if:
5413 * - the percentage of sequential dispatches is below 3/4 of the
5414 * total, and rate is below the current estimated peak rate
5415 * - rate is unreasonably high (> 20M sectors/sec)
5416 */
5417 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
5418 rate <= bfqd->peak_rate) ||
5419 rate > 20<<BFQ_RATE_SHIFT)
5420 goto reset_computation;
5421
5422 /*
5423 * We have to update the peak rate, at last! To this purpose,
5424 * we use a low-pass filter. We compute the smoothing constant
5425 * of the filter as a function of the 'weight' of the new
5426 * measured rate.
5427 *
5428 * As can be seen in next formulas, we define this weight as a
5429 * quantity proportional to how sequential the workload is,
5430 * and to how long the observation time interval is.
5431 *
5432 * The weight runs from 0 to 8. The maximum value of the
5433 * weight, 8, yields the minimum value for the smoothing
5434 * constant. At this minimum value for the smoothing constant,
5435 * the measured rate contributes for half of the next value of
5436 * the estimated peak rate.
5437 *
5438 * So, the first step is to compute the weight as a function
5439 * of how sequential the workload is. Note that the weight
5440 * cannot reach 9, because bfqd->sequential_samples cannot
5441 * become equal to bfqd->peak_rate_samples, which, in its
5442 * turn, holds true because bfqd->sequential_samples is not
5443 * incremented for the first sample.
5444 */
5445 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
5446
5447 /*
5448 * Second step: further refine the weight as a function of the
5449 * duration of the observation interval.
5450 */
5451 weight = min_t(u32, 8,
5452 div_u64(weight * bfqd->delta_from_first,
5453 BFQ_RATE_REF_INTERVAL));
5454
5455 /*
5456 * Divisor ranging from 10, for minimum weight, to 2, for
5457 * maximum weight.
5458 */
5459 divisor = 10 - weight;
5460
5461 /*
5462 * Finally, update peak rate:
5463 *
5464 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
5465 */
5466 bfqd->peak_rate *= divisor-1;
5467 bfqd->peak_rate /= divisor;
5468 rate /= divisor; /* smoothing constant alpha = 1/divisor */
5469
5470 bfqd->peak_rate += rate;
44e44a1b 5471 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
5472
5473reset_computation:
5474 bfq_reset_rate_computation(bfqd, rq);
5475}
5476
5477/*
5478 * Update the read/write peak rate (the main quantity used for
5479 * auto-tuning, see update_thr_responsiveness_params()).
5480 *
5481 * It is not trivial to estimate the peak rate (correctly): because of
5482 * the presence of sw and hw queues between the scheduler and the
5483 * device components that finally serve I/O requests, it is hard to
5484 * say exactly when a given dispatched request is served inside the
5485 * device, and for how long. As a consequence, it is hard to know
5486 * precisely at what rate a given set of requests is actually served
5487 * by the device.
5488 *
5489 * On the opposite end, the dispatch time of any request is trivially
5490 * available, and, from this piece of information, the "dispatch rate"
5491 * of requests can be immediately computed. So, the idea in the next
5492 * function is to use what is known, namely request dispatch times
5493 * (plus, when useful, request completion times), to estimate what is
5494 * unknown, namely in-device request service rate.
5495 *
5496 * The main issue is that, because of the above facts, the rate at
5497 * which a certain set of requests is dispatched over a certain time
5498 * interval can vary greatly with respect to the rate at which the
5499 * same requests are then served. But, since the size of any
5500 * intermediate queue is limited, and the service scheme is lossless
5501 * (no request is silently dropped), the following obvious convergence
5502 * property holds: the number of requests dispatched MUST become
5503 * closer and closer to the number of requests completed as the
5504 * observation interval grows. This is the key property used in
5505 * the next function to estimate the peak service rate as a function
5506 * of the observed dispatch rate. The function assumes to be invoked
5507 * on every request dispatch.
5508 */
5509static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
5510{
5511 u64 now_ns = ktime_get_ns();
5512
5513 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
5514 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
5515 bfqd->peak_rate_samples);
5516 bfq_reset_rate_computation(bfqd, rq);
5517 goto update_last_values; /* will add one sample */
5518 }
5519
5520 /*
5521 * Device idle for very long: the observation interval lasting
5522 * up to this dispatch cannot be a valid observation interval
5523 * for computing a new peak rate (similarly to the late-
5524 * completion event in bfq_completed_request()). Go to
5525 * update_rate_and_reset to have the following three steps
5526 * taken:
5527 * - close the observation interval at the last (previous)
5528 * request dispatch or completion
5529 * - compute rate, if possible, for that observation interval
5530 * - start a new observation interval with this dispatch
5531 */
5532 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
5533 bfqd->rq_in_driver == 0)
5534 goto update_rate_and_reset;
5535
5536 /* Update sampling information */
5537 bfqd->peak_rate_samples++;
5538
5539 if ((bfqd->rq_in_driver > 0 ||
5540 now_ns - bfqd->last_completion < BFQ_MIN_TT)
5541 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
5542 bfqd->sequential_samples++;
5543
5544 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
5545
5546 /* Reset max observed rq size every 32 dispatches */
5547 if (likely(bfqd->peak_rate_samples % 32))
5548 bfqd->last_rq_max_size =
5549 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
5550 else
5551 bfqd->last_rq_max_size = blk_rq_sectors(rq);
5552
5553 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
5554
5555 /* Target observation interval not yet reached, go on sampling */
5556 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
5557 goto update_last_values;
5558
5559update_rate_and_reset:
5560 bfq_update_rate_reset(bfqd, rq);
5561update_last_values:
5562 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
5563 bfqd->last_dispatch = now_ns;
5564}
5565
aee69d78
PV
5566/*
5567 * Remove request from internal lists.
5568 */
5569static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
5570{
5571 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5572
5573 /*
5574 * For consistency, the next instruction should have been
5575 * executed after removing the request from the queue and
5576 * dispatching it. We execute instead this instruction before
5577 * bfq_remove_request() (and hence introduce a temporary
5578 * inconsistency), for efficiency. In fact, should this
5579 * dispatch occur for a non in-service bfqq, this anticipated
5580 * increment prevents two counters related to bfqq->dispatched
5581 * from risking to be, first, uselessly decremented, and then
5582 * incremented again when the (new) value of bfqq->dispatched
5583 * happens to be taken into account.
5584 */
5585 bfqq->dispatched++;
ab0e43e9 5586 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
5587
5588 bfq_remove_request(q, rq);
5589}
5590
5591static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5592{
36eca894
AA
5593 /*
5594 * If this bfqq is shared between multiple processes, check
5595 * to make sure that those processes are still issuing I/Os
5596 * within the mean seek distance. If not, it may be time to
5597 * break the queues apart again.
5598 */
5599 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
5600 bfq_mark_bfqq_split_coop(bfqq);
5601
44e44a1b
PV
5602 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
5603 if (bfqq->dispatched == 0)
5604 /*
5605 * Overloading budget_timeout field to store
5606 * the time at which the queue remains with no
5607 * backlog and no outstanding request; used by
5608 * the weight-raising mechanism.
5609 */
5610 bfqq->budget_timeout = jiffies;
5611
e21b7a0b 5612 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 5613 } else {
e21b7a0b 5614 bfq_requeue_bfqq(bfqd, bfqq);
36eca894
AA
5615 /*
5616 * Resort priority tree of potential close cooperators.
5617 */
5618 bfq_pos_tree_add_move(bfqd, bfqq);
5619 }
e21b7a0b
AA
5620
5621 /*
5622 * All in-service entities must have been properly deactivated
5623 * or requeued before executing the next function, which
5624 * resets all in-service entites as no more in service.
5625 */
5626 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
5627}
5628
5629/**
5630 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
5631 * @bfqd: device data.
5632 * @bfqq: queue to update.
5633 * @reason: reason for expiration.
5634 *
5635 * Handle the feedback on @bfqq budget at queue expiration.
5636 * See the body for detailed comments.
5637 */
5638static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
5639 struct bfq_queue *bfqq,
5640 enum bfqq_expiration reason)
5641{
5642 struct request *next_rq;
5643 int budget, min_budget;
5644
aee69d78
PV
5645 min_budget = bfq_min_budget(bfqd);
5646
44e44a1b
PV
5647 if (bfqq->wr_coeff == 1)
5648 budget = bfqq->max_budget;
5649 else /*
5650 * Use a constant, low budget for weight-raised queues,
5651 * to help achieve a low latency. Keep it slightly higher
5652 * than the minimum possible budget, to cause a little
5653 * bit fewer expirations.
5654 */
5655 budget = 2 * min_budget;
5656
aee69d78
PV
5657 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
5658 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
5659 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
5660 budget, bfq_min_budget(bfqd));
5661 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
5662 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
5663
44e44a1b 5664 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
5665 switch (reason) {
5666 /*
5667 * Caveat: in all the following cases we trade latency
5668 * for throughput.
5669 */
5670 case BFQQE_TOO_IDLE:
54b60456
PV
5671 /*
5672 * This is the only case where we may reduce
5673 * the budget: if there is no request of the
5674 * process still waiting for completion, then
5675 * we assume (tentatively) that the timer has
5676 * expired because the batch of requests of
5677 * the process could have been served with a
5678 * smaller budget. Hence, betting that
5679 * process will behave in the same way when it
5680 * becomes backlogged again, we reduce its
5681 * next budget. As long as we guess right,
5682 * this budget cut reduces the latency
5683 * experienced by the process.
5684 *
5685 * However, if there are still outstanding
5686 * requests, then the process may have not yet
5687 * issued its next request just because it is
5688 * still waiting for the completion of some of
5689 * the still outstanding ones. So in this
5690 * subcase we do not reduce its budget, on the
5691 * contrary we increase it to possibly boost
5692 * the throughput, as discussed in the
5693 * comments to the BUDGET_TIMEOUT case.
5694 */
5695 if (bfqq->dispatched > 0) /* still outstanding reqs */
5696 budget = min(budget * 2, bfqd->bfq_max_budget);
5697 else {
5698 if (budget > 5 * min_budget)
5699 budget -= 4 * min_budget;
5700 else
5701 budget = min_budget;
5702 }
aee69d78
PV
5703 break;
5704 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
5705 /*
5706 * We double the budget here because it gives
5707 * the chance to boost the throughput if this
5708 * is not a seeky process (and has bumped into
5709 * this timeout because of, e.g., ZBR).
5710 */
5711 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
5712 break;
5713 case BFQQE_BUDGET_EXHAUSTED:
5714 /*
5715 * The process still has backlog, and did not
5716 * let either the budget timeout or the disk
5717 * idling timeout expire. Hence it is not
5718 * seeky, has a short thinktime and may be
5719 * happy with a higher budget too. So
5720 * definitely increase the budget of this good
5721 * candidate to boost the disk throughput.
5722 */
54b60456 5723 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
5724 break;
5725 case BFQQE_NO_MORE_REQUESTS:
5726 /*
5727 * For queues that expire for this reason, it
5728 * is particularly important to keep the
5729 * budget close to the actual service they
5730 * need. Doing so reduces the timestamp
5731 * misalignment problem described in the
5732 * comments in the body of
5733 * __bfq_activate_entity. In fact, suppose
5734 * that a queue systematically expires for
5735 * BFQQE_NO_MORE_REQUESTS and presents a
5736 * new request in time to enjoy timestamp
5737 * back-shifting. The larger the budget of the
5738 * queue is with respect to the service the
5739 * queue actually requests in each service
5740 * slot, the more times the queue can be
5741 * reactivated with the same virtual finish
5742 * time. It follows that, even if this finish
5743 * time is pushed to the system virtual time
5744 * to reduce the consequent timestamp
5745 * misalignment, the queue unjustly enjoys for
5746 * many re-activations a lower finish time
5747 * than all newly activated queues.
5748 *
5749 * The service needed by bfqq is measured
5750 * quite precisely by bfqq->entity.service.
5751 * Since bfqq does not enjoy device idling,
5752 * bfqq->entity.service is equal to the number
5753 * of sectors that the process associated with
5754 * bfqq requested to read/write before waiting
5755 * for request completions, or blocking for
5756 * other reasons.
5757 */
5758 budget = max_t(int, bfqq->entity.service, min_budget);
5759 break;
5760 default:
5761 return;
5762 }
44e44a1b 5763 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
5764 /*
5765 * Async queues get always the maximum possible
5766 * budget, as for them we do not care about latency
5767 * (in addition, their ability to dispatch is limited
5768 * by the charging factor).
5769 */
5770 budget = bfqd->bfq_max_budget;
5771 }
5772
5773 bfqq->max_budget = budget;
5774
5775 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
5776 !bfqd->bfq_user_max_budget)
5777 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
5778
5779 /*
5780 * If there is still backlog, then assign a new budget, making
5781 * sure that it is large enough for the next request. Since
5782 * the finish time of bfqq must be kept in sync with the
5783 * budget, be sure to call __bfq_bfqq_expire() *after* this
5784 * update.
5785 *
5786 * If there is no backlog, then no need to update the budget;
5787 * it will be updated on the arrival of a new request.
5788 */
5789 next_rq = bfqq->next_rq;
5790 if (next_rq)
5791 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
5792 bfq_serv_to_charge(next_rq, bfqq));
5793
5794 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
5795 next_rq ? blk_rq_sectors(next_rq) : 0,
5796 bfqq->entity.budget);
5797}
5798
aee69d78 5799/*
ab0e43e9
PV
5800 * Return true if the process associated with bfqq is "slow". The slow
5801 * flag is used, in addition to the budget timeout, to reduce the
5802 * amount of service provided to seeky processes, and thus reduce
5803 * their chances to lower the throughput. More details in the comments
5804 * on the function bfq_bfqq_expire().
5805 *
5806 * An important observation is in order: as discussed in the comments
5807 * on the function bfq_update_peak_rate(), with devices with internal
5808 * queues, it is hard if ever possible to know when and for how long
5809 * an I/O request is processed by the device (apart from the trivial
5810 * I/O pattern where a new request is dispatched only after the
5811 * previous one has been completed). This makes it hard to evaluate
5812 * the real rate at which the I/O requests of each bfq_queue are
5813 * served. In fact, for an I/O scheduler like BFQ, serving a
5814 * bfq_queue means just dispatching its requests during its service
5815 * slot (i.e., until the budget of the queue is exhausted, or the
5816 * queue remains idle, or, finally, a timeout fires). But, during the
5817 * service slot of a bfq_queue, around 100 ms at most, the device may
5818 * be even still processing requests of bfq_queues served in previous
5819 * service slots. On the opposite end, the requests of the in-service
5820 * bfq_queue may be completed after the service slot of the queue
5821 * finishes.
5822 *
5823 * Anyway, unless more sophisticated solutions are used
5824 * (where possible), the sum of the sizes of the requests dispatched
5825 * during the service slot of a bfq_queue is probably the only
5826 * approximation available for the service received by the bfq_queue
5827 * during its service slot. And this sum is the quantity used in this
5828 * function to evaluate the I/O speed of a process.
aee69d78 5829 */
ab0e43e9
PV
5830static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5831 bool compensate, enum bfqq_expiration reason,
5832 unsigned long *delta_ms)
aee69d78 5833{
ab0e43e9
PV
5834 ktime_t delta_ktime;
5835 u32 delta_usecs;
5836 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 5837
ab0e43e9 5838 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
5839 return false;
5840
5841 if (compensate)
ab0e43e9 5842 delta_ktime = bfqd->last_idling_start;
aee69d78 5843 else
ab0e43e9
PV
5844 delta_ktime = ktime_get();
5845 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
5846 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
5847
5848 /* don't use too short time intervals */
ab0e43e9
PV
5849 if (delta_usecs < 1000) {
5850 if (blk_queue_nonrot(bfqd->queue))
5851 /*
5852 * give same worst-case guarantees as idling
5853 * for seeky
5854 */
5855 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
5856 else /* charge at least one seek */
5857 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
5858
5859 return slow;
5860 }
aee69d78 5861
ab0e43e9 5862 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
5863
5864 /*
ab0e43e9
PV
5865 * Use only long (> 20ms) intervals to filter out excessive
5866 * spikes in service rate estimation.
aee69d78 5867 */
ab0e43e9
PV
5868 if (delta_usecs > 20000) {
5869 /*
5870 * Caveat for rotational devices: processes doing I/O
5871 * in the slower disk zones tend to be slow(er) even
5872 * if not seeky. In this respect, the estimated peak
5873 * rate is likely to be an average over the disk
5874 * surface. Accordingly, to not be too harsh with
5875 * unlucky processes, a process is deemed slow only if
5876 * its rate has been lower than half of the estimated
5877 * peak rate.
5878 */
5879 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
5880 }
5881
ab0e43e9 5882 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 5883
ab0e43e9 5884 return slow;
aee69d78
PV
5885}
5886
77b7dcea
PV
5887/*
5888 * To be deemed as soft real-time, an application must meet two
5889 * requirements. First, the application must not require an average
5890 * bandwidth higher than the approximate bandwidth required to playback or
5891 * record a compressed high-definition video.
5892 * The next function is invoked on the completion of the last request of a
5893 * batch, to compute the next-start time instant, soft_rt_next_start, such
5894 * that, if the next request of the application does not arrive before
5895 * soft_rt_next_start, then the above requirement on the bandwidth is met.
5896 *
5897 * The second requirement is that the request pattern of the application is
5898 * isochronous, i.e., that, after issuing a request or a batch of requests,
5899 * the application stops issuing new requests until all its pending requests
5900 * have been completed. After that, the application may issue a new batch,
5901 * and so on.
5902 * For this reason the next function is invoked to compute
5903 * soft_rt_next_start only for applications that meet this requirement,
5904 * whereas soft_rt_next_start is set to infinity for applications that do
5905 * not.
5906 *
5907 * Unfortunately, even a greedy application may happen to behave in an
5908 * isochronous way if the CPU load is high. In fact, the application may
5909 * stop issuing requests while the CPUs are busy serving other processes,
5910 * then restart, then stop again for a while, and so on. In addition, if
5911 * the disk achieves a low enough throughput with the request pattern
5912 * issued by the application (e.g., because the request pattern is random
5913 * and/or the device is slow), then the application may meet the above
5914 * bandwidth requirement too. To prevent such a greedy application to be
5915 * deemed as soft real-time, a further rule is used in the computation of
5916 * soft_rt_next_start: soft_rt_next_start must be higher than the current
5917 * time plus the maximum time for which the arrival of a request is waited
5918 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
5919 * This filters out greedy applications, as the latter issue instead their
5920 * next request as soon as possible after the last one has been completed
5921 * (in contrast, when a batch of requests is completed, a soft real-time
5922 * application spends some time processing data).
5923 *
5924 * Unfortunately, the last filter may easily generate false positives if
5925 * only bfqd->bfq_slice_idle is used as a reference time interval and one
5926 * or both the following cases occur:
5927 * 1) HZ is so low that the duration of a jiffy is comparable to or higher
5928 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
5929 * HZ=100.
5930 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
5931 * for a while, then suddenly 'jump' by several units to recover the lost
5932 * increments. This seems to happen, e.g., inside virtual machines.
5933 * To address this issue, we do not use as a reference time interval just
5934 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
5935 * particular we add the minimum number of jiffies for which the filter
5936 * seems to be quite precise also in embedded systems and KVM/QEMU virtual
5937 * machines.
5938 */
5939static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
5940 struct bfq_queue *bfqq)
5941{
5942 return max(bfqq->last_idle_bklogged +
5943 HZ * bfqq->service_from_backlogged /
5944 bfqd->bfq_wr_max_softrt_rate,
5945 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
5946}
5947
5948/*
5949 * Return the farthest future time instant according to jiffies
5950 * macros.
5951 */
5952static unsigned long bfq_greatest_from_now(void)
5953{
5954 return jiffies + MAX_JIFFY_OFFSET;
5955}
5956
aee69d78
PV
5957/*
5958 * Return the farthest past time instant according to jiffies
5959 * macros.
5960 */
5961static unsigned long bfq_smallest_from_now(void)
5962{
5963 return jiffies - MAX_JIFFY_OFFSET;
5964}
5965
5966/**
5967 * bfq_bfqq_expire - expire a queue.
5968 * @bfqd: device owning the queue.
5969 * @bfqq: the queue to expire.
5970 * @compensate: if true, compensate for the time spent idling.
5971 * @reason: the reason causing the expiration.
5972 *
c074170e
PV
5973 * If the process associated with bfqq does slow I/O (e.g., because it
5974 * issues random requests), we charge bfqq with the time it has been
5975 * in service instead of the service it has received (see
5976 * bfq_bfqq_charge_time for details on how this goal is achieved). As
5977 * a consequence, bfqq will typically get higher timestamps upon
5978 * reactivation, and hence it will be rescheduled as if it had
5979 * received more service than what it has actually received. In the
5980 * end, bfqq receives less service in proportion to how slowly its
5981 * associated process consumes its budgets (and hence how seriously it
5982 * tends to lower the throughput). In addition, this time-charging
5983 * strategy guarantees time fairness among slow processes. In
5984 * contrast, if the process associated with bfqq is not slow, we
5985 * charge bfqq exactly with the service it has received.
aee69d78 5986 *
c074170e
PV
5987 * Charging time to the first type of queues and the exact service to
5988 * the other has the effect of using the WF2Q+ policy to schedule the
5989 * former on a timeslice basis, without violating service domain
5990 * guarantees among the latter.
aee69d78
PV
5991 */
5992static void bfq_bfqq_expire(struct bfq_data *bfqd,
5993 struct bfq_queue *bfqq,
5994 bool compensate,
5995 enum bfqq_expiration reason)
5996{
5997 bool slow;
ab0e43e9
PV
5998 unsigned long delta = 0;
5999 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
6000 int ref;
6001
6002 /*
ab0e43e9 6003 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 6004 */
ab0e43e9 6005 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78 6006
77b7dcea
PV
6007 /*
6008 * Increase service_from_backlogged before next statement,
6009 * because the possible next invocation of
6010 * bfq_bfqq_charge_time would likely inflate
6011 * entity->service. In contrast, service_from_backlogged must
6012 * contain real service, to enable the soft real-time
6013 * heuristic to correctly compute the bandwidth consumed by
6014 * bfqq.
6015 */
6016 bfqq->service_from_backlogged += entity->service;
6017
aee69d78 6018 /*
c074170e
PV
6019 * As above explained, charge slow (typically seeky) and
6020 * timed-out queues with the time and not the service
6021 * received, to favor sequential workloads.
6022 *
6023 * Processes doing I/O in the slower disk zones will tend to
6024 * be slow(er) even if not seeky. Therefore, since the
6025 * estimated peak rate is actually an average over the disk
6026 * surface, these processes may timeout just for bad luck. To
6027 * avoid punishing them, do not charge time to processes that
6028 * succeeded in consuming at least 2/3 of their budget. This
6029 * allows BFQ to preserve enough elasticity to still perform
6030 * bandwidth, and not time, distribution with little unlucky
6031 * or quasi-sequential processes.
aee69d78 6032 */
44e44a1b
PV
6033 if (bfqq->wr_coeff == 1 &&
6034 (slow ||
6035 (reason == BFQQE_BUDGET_TIMEOUT &&
6036 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 6037 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
6038
6039 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 6040 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
6041 bfq_clear_bfqq_IO_bound(bfqq);
6042
44e44a1b
PV
6043 if (bfqd->low_latency && bfqq->wr_coeff == 1)
6044 bfqq->last_wr_start_finish = jiffies;
6045
77b7dcea
PV
6046 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
6047 RB_EMPTY_ROOT(&bfqq->sort_list)) {
6048 /*
6049 * If we get here, and there are no outstanding
6050 * requests, then the request pattern is isochronous
6051 * (see the comments on the function
6052 * bfq_bfqq_softrt_next_start()). Thus we can compute
6053 * soft_rt_next_start. If, instead, the queue still
6054 * has outstanding requests, then we have to wait for
6055 * the completion of all the outstanding requests to
6056 * discover whether the request pattern is actually
6057 * isochronous.
6058 */
6059 if (bfqq->dispatched == 0)
6060 bfqq->soft_rt_next_start =
6061 bfq_bfqq_softrt_next_start(bfqd, bfqq);
6062 else {
6063 /*
6064 * The application is still waiting for the
6065 * completion of one or more requests:
6066 * prevent it from possibly being incorrectly
6067 * deemed as soft real-time by setting its
6068 * soft_rt_next_start to infinity. In fact,
6069 * without this assignment, the application
6070 * would be incorrectly deemed as soft
6071 * real-time if:
6072 * 1) it issued a new request before the
6073 * completion of all its in-flight
6074 * requests, and
6075 * 2) at that time, its soft_rt_next_start
6076 * happened to be in the past.
6077 */
6078 bfqq->soft_rt_next_start =
6079 bfq_greatest_from_now();
6080 /*
6081 * Schedule an update of soft_rt_next_start to when
6082 * the task may be discovered to be isochronous.
6083 */
6084 bfq_mark_bfqq_softrt_update(bfqq);
6085 }
6086 }
6087
aee69d78
PV
6088 bfq_log_bfqq(bfqd, bfqq,
6089 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
6090 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
6091
6092 /*
6093 * Increase, decrease or leave budget unchanged according to
6094 * reason.
6095 */
6096 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
6097 ref = bfqq->ref;
6098 __bfq_bfqq_expire(bfqd, bfqq);
6099
6100 /* mark bfqq as waiting a request only if a bic still points to it */
6101 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
6102 reason != BFQQE_BUDGET_TIMEOUT &&
6103 reason != BFQQE_BUDGET_EXHAUSTED)
6104 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
6105}
6106
6107/*
6108 * Budget timeout is not implemented through a dedicated timer, but
6109 * just checked on request arrivals and completions, as well as on
6110 * idle timer expirations.
6111 */
6112static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
6113{
44e44a1b 6114 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
6115}
6116
6117/*
6118 * If we expire a queue that is actively waiting (i.e., with the
6119 * device idled) for the arrival of a new request, then we may incur
6120 * the timestamp misalignment problem described in the body of the
6121 * function __bfq_activate_entity. Hence we return true only if this
6122 * condition does not hold, or if the queue is slow enough to deserve
6123 * only to be kicked off for preserving a high throughput.
6124 */
6125static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
6126{
6127 bfq_log_bfqq(bfqq->bfqd, bfqq,
6128 "may_budget_timeout: wait_request %d left %d timeout %d",
6129 bfq_bfqq_wait_request(bfqq),
6130 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
6131 bfq_bfqq_budget_timeout(bfqq));
6132
6133 return (!bfq_bfqq_wait_request(bfqq) ||
6134 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
6135 &&
6136 bfq_bfqq_budget_timeout(bfqq);
6137}
6138
6139/*
6140 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
6141 * this function returns true for the queue. As a consequence, since
6142 * device idling plays a critical role in both throughput boosting and
6143 * service guarantees, the return value of this function plays a
6144 * critical role in both these aspects as well.
6145 *
6146 * In a nutshell, this function returns true only if idling is
6147 * beneficial for throughput or, even if detrimental for throughput,
6148 * idling is however necessary to preserve service guarantees (low
6149 * latency, desired throughput distribution, ...). In particular, on
6150 * NCQ-capable devices, this function tries to return false, so as to
6151 * help keep the drives' internal queues full, whenever this helps the
6152 * device boost the throughput without causing any service-guarantee
6153 * issue.
6154 *
6155 * In more detail, the return value of this function is obtained by,
6156 * first, computing a number of boolean variables that take into
6157 * account throughput and service-guarantee issues, and, then,
6158 * combining these variables in a logical expression. Most of the
6159 * issues taken into account are not trivial. We discuss these issues
6160 * individually while introducing the variables.
aee69d78
PV
6161 */
6162static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
6163{
6164 struct bfq_data *bfqd = bfqq->bfqd;
cfd69712
PV
6165 bool idling_boosts_thr, idling_boosts_thr_without_issues,
6166 asymmetric_scenario;
aee69d78
PV
6167
6168 if (bfqd->strict_guarantees)
6169 return true;
6170
6171 /*
44e44a1b
PV
6172 * The next variable takes into account the cases where idling
6173 * boosts the throughput.
6174 *
6175 * The value of the variable is computed considering that
aee69d78
PV
6176 * idling is usually beneficial for the throughput if:
6177 * (a) the device is not NCQ-capable, or
6178 * (b) regardless of the presence of NCQ, the request pattern
6179 * for bfqq is I/O-bound (possible throughput losses
6180 * caused by granting idling to seeky queues are mitigated
6181 * by the fact that, in all scenarios where boosting
6182 * throughput is the best thing to do, i.e., in all
6183 * symmetric scenarios, only a minimal idle time is
6184 * allowed to seeky queues).
6185 */
6186 idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq);
6187
cfd69712
PV
6188 /*
6189 * The value of the next variable,
6190 * idling_boosts_thr_without_issues, is equal to that of
6191 * idling_boosts_thr, unless a special case holds. In this
6192 * special case, described below, idling may cause problems to
6193 * weight-raised queues.
6194 *
6195 * When the request pool is saturated (e.g., in the presence
6196 * of write hogs), if the processes associated with
6197 * non-weight-raised queues ask for requests at a lower rate,
6198 * then processes associated with weight-raised queues have a
6199 * higher probability to get a request from the pool
6200 * immediately (or at least soon) when they need one. Thus
6201 * they have a higher probability to actually get a fraction
6202 * of the device throughput proportional to their high
6203 * weight. This is especially true with NCQ-capable drives,
6204 * which enqueue several requests in advance, and further
6205 * reorder internally-queued requests.
6206 *
6207 * For this reason, we force to false the value of
6208 * idling_boosts_thr_without_issues if there are weight-raised
6209 * busy queues. In this case, and if bfqq is not weight-raised,
6210 * this guarantees that the device is not idled for bfqq (if,
6211 * instead, bfqq is weight-raised, then idling will be
6212 * guaranteed by another variable, see below). Combined with
6213 * the timestamping rules of BFQ (see [1] for details), this
6214 * behavior causes bfqq, and hence any sync non-weight-raised
6215 * queue, to get a lower number of requests served, and thus
6216 * to ask for a lower number of requests from the request
6217 * pool, before the busy weight-raised queues get served
6218 * again. This often mitigates starvation problems in the
6219 * presence of heavy write workloads and NCQ, thereby
6220 * guaranteeing a higher application and system responsiveness
6221 * in these hostile scenarios.
6222 */
6223 idling_boosts_thr_without_issues = idling_boosts_thr &&
6224 bfqd->wr_busy_queues == 0;
6225
aee69d78 6226 /*
44e44a1b
PV
6227 * There is then a case where idling must be performed not for
6228 * throughput concerns, but to preserve service guarantees. To
6229 * introduce it, we can note that allowing the drive to
6230 * enqueue more than one request at a time, and hence
6231 * delegating de facto final scheduling decisions to the
6232 * drive's internal scheduler, causes loss of control on the
6233 * actual request service order. In particular, the critical
6234 * situation is when requests from different processes happens
6235 * to be present, at the same time, in the internal queue(s)
6236 * of the drive. In such a situation, the drive, by deciding
6237 * the service order of the internally-queued requests, does
6238 * determine also the actual throughput distribution among
6239 * these processes. But the drive typically has no notion or
6240 * concern about per-process throughput distribution, and
6241 * makes its decisions only on a per-request basis. Therefore,
6242 * the service distribution enforced by the drive's internal
6243 * scheduler is likely to coincide with the desired
6244 * device-throughput distribution only in a completely
6245 * symmetric scenario where: (i) each of these processes must
6246 * get the same throughput as the others; (ii) all these
6247 * processes have the same I/O pattern (either sequential or
6248 * random). In fact, in such a scenario, the drive will tend
6249 * to treat the requests of each of these processes in about
6250 * the same way as the requests of the others, and thus to
6251 * provide each of these processes with about the same
6252 * throughput (which is exactly the desired throughput
6253 * distribution). In contrast, in any asymmetric scenario,
6254 * device idling is certainly needed to guarantee that bfqq
6255 * receives its assigned fraction of the device throughput
6256 * (see [1] for details).
6257 *
6258 * As for sub-condition (i), actually we check only whether
6259 * bfqq is being weight-raised. In fact, if bfqq is not being
6260 * weight-raised, we have that:
6261 * - if the process associated with bfqq is not I/O-bound, then
6262 * it is not either latency- or throughput-critical; therefore
6263 * idling is not needed for bfqq;
6264 * - if the process asociated with bfqq is I/O-bound, then
6265 * idling is already granted with bfqq (see the comments on
6266 * idling_boosts_thr).
6267 *
6268 * We do not check sub-condition (ii) at all, i.e., the next
6269 * variable is true if and only if bfqq is being
6270 * weight-raised. We do not need to control sub-condition (ii)
6271 * for the following reason:
6272 * - if bfqq is being weight-raised, then idling is already
6273 * guaranteed to bfqq by sub-condition (i);
6274 * - if bfqq is not being weight-raised, then idling is
6275 * already guaranteed to bfqq (only) if it matters, i.e., if
6276 * bfqq is associated to a currently I/O-bound process (see
6277 * the above comment on sub-condition (i)).
6278 *
6279 * As a side note, it is worth considering that the above
6280 * device-idling countermeasures may however fail in the
6281 * following unlucky scenario: if idling is (correctly)
6282 * disabled in a time period during which the symmetry
6283 * sub-condition holds, and hence the device is allowed to
6284 * enqueue many requests, but at some later point in time some
6285 * sub-condition stops to hold, then it may become impossible
6286 * to let requests be served in the desired order until all
6287 * the requests already queued in the device have been served.
6288 */
6289 asymmetric_scenario = bfqq->wr_coeff > 1;
6290
6291 /*
6292 * We have now all the components we need to compute the return
6293 * value of the function, which is true only if both the following
6294 * conditions hold:
aee69d78 6295 * 1) bfqq is sync, because idling make sense only for sync queues;
44e44a1b
PV
6296 * 2) idling either boosts the throughput (without issues), or
6297 * is necessary to preserve service guarantees.
aee69d78 6298 */
44e44a1b 6299 return bfq_bfqq_sync(bfqq) &&
cfd69712 6300 (idling_boosts_thr_without_issues || asymmetric_scenario);
aee69d78
PV
6301}
6302
6303/*
6304 * If the in-service queue is empty but the function bfq_bfqq_may_idle
6305 * returns true, then:
6306 * 1) the queue must remain in service and cannot be expired, and
6307 * 2) the device must be idled to wait for the possible arrival of a new
6308 * request for the queue.
6309 * See the comments on the function bfq_bfqq_may_idle for the reasons
6310 * why performing device idling is the best choice to boost the throughput
6311 * and preserve service guarantees when bfq_bfqq_may_idle itself
6312 * returns true.
6313 */
6314static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
6315{
6316 struct bfq_data *bfqd = bfqq->bfqd;
6317
6318 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
6319 bfq_bfqq_may_idle(bfqq);
6320}
6321
6322/*
6323 * Select a queue for service. If we have a current queue in service,
6324 * check whether to continue servicing it, or retrieve and set a new one.
6325 */
6326static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
6327{
6328 struct bfq_queue *bfqq;
6329 struct request *next_rq;
6330 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
6331
6332 bfqq = bfqd->in_service_queue;
6333 if (!bfqq)
6334 goto new_queue;
6335
6336 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
6337
6338 if (bfq_may_expire_for_budg_timeout(bfqq) &&
6339 !bfq_bfqq_wait_request(bfqq) &&
6340 !bfq_bfqq_must_idle(bfqq))
6341 goto expire;
6342
6343check_queue:
6344 /*
6345 * This loop is rarely executed more than once. Even when it
6346 * happens, it is much more convenient to re-execute this loop
6347 * than to return NULL and trigger a new dispatch to get a
6348 * request served.
6349 */
6350 next_rq = bfqq->next_rq;
6351 /*
6352 * If bfqq has requests queued and it has enough budget left to
6353 * serve them, keep the queue, otherwise expire it.
6354 */
6355 if (next_rq) {
6356 if (bfq_serv_to_charge(next_rq, bfqq) >
6357 bfq_bfqq_budget_left(bfqq)) {
6358 /*
6359 * Expire the queue for budget exhaustion,
6360 * which makes sure that the next budget is
6361 * enough to serve the next request, even if
6362 * it comes from the fifo expired path.
6363 */
6364 reason = BFQQE_BUDGET_EXHAUSTED;
6365 goto expire;
6366 } else {
6367 /*
6368 * The idle timer may be pending because we may
6369 * not disable disk idling even when a new request
6370 * arrives.
6371 */
6372 if (bfq_bfqq_wait_request(bfqq)) {
6373 /*
6374 * If we get here: 1) at least a new request
6375 * has arrived but we have not disabled the
6376 * timer because the request was too small,
6377 * 2) then the block layer has unplugged
6378 * the device, causing the dispatch to be
6379 * invoked.
6380 *
6381 * Since the device is unplugged, now the
6382 * requests are probably large enough to
6383 * provide a reasonable throughput.
6384 * So we disable idling.
6385 */
6386 bfq_clear_bfqq_wait_request(bfqq);
6387 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 6388 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
6389 }
6390 goto keep_queue;
6391 }
6392 }
6393
6394 /*
6395 * No requests pending. However, if the in-service queue is idling
6396 * for a new request, or has requests waiting for a completion and
6397 * may idle after their completion, then keep it anyway.
6398 */
6399 if (bfq_bfqq_wait_request(bfqq) ||
6400 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
6401 bfqq = NULL;
6402 goto keep_queue;
6403 }
6404
6405 reason = BFQQE_NO_MORE_REQUESTS;
6406expire:
6407 bfq_bfqq_expire(bfqd, bfqq, false, reason);
6408new_queue:
6409 bfqq = bfq_set_in_service_queue(bfqd);
6410 if (bfqq) {
6411 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
6412 goto check_queue;
6413 }
6414keep_queue:
6415 if (bfqq)
6416 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
6417 else
6418 bfq_log(bfqd, "select_queue: no queue returned");
6419
6420 return bfqq;
6421}
6422
44e44a1b
PV
6423static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6424{
6425 struct bfq_entity *entity = &bfqq->entity;
6426
6427 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
6428 bfq_log_bfqq(bfqd, bfqq,
6429 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
6430 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
6431 jiffies_to_msecs(bfqq->wr_cur_max_time),
6432 bfqq->wr_coeff,
6433 bfqq->entity.weight, bfqq->entity.orig_weight);
6434
6435 if (entity->prio_changed)
6436 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
6437
6438 /*
6439 * If too much time has elapsed from the beginning of
36eca894 6440 * this weight-raising period, then end weight raising.
44e44a1b
PV
6441 */
6442 if (time_is_before_jiffies(bfqq->last_wr_start_finish +
6443 bfqq->wr_cur_max_time)) {
77b7dcea
PV
6444 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
6445 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
6446 bfq_wr_duration(bfqd)))
6447 bfq_bfqq_end_wr(bfqq);
6448 else {
6449 /* switch back to interactive wr */
6450 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
6451 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
6452 bfqq->last_wr_start_finish =
6453 bfqq->wr_start_at_switch_to_srt;
6454 bfqq->entity.prio_changed = 1;
6455 }
44e44a1b
PV
6456 }
6457 }
6458 /* Update weight both if it must be raised and if it must be lowered */
6459 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
6460 __bfq_entity_update_weight_prio(
6461 bfq_entity_service_tree(entity),
6462 entity);
6463}
6464
aee69d78
PV
6465/*
6466 * Dispatch next request from bfqq.
6467 */
6468static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
6469 struct bfq_queue *bfqq)
6470{
6471 struct request *rq = bfqq->next_rq;
6472 unsigned long service_to_charge;
6473
6474 service_to_charge = bfq_serv_to_charge(rq, bfqq);
6475
6476 bfq_bfqq_served(bfqq, service_to_charge);
6477
6478 bfq_dispatch_remove(bfqd->queue, rq);
6479
44e44a1b
PV
6480 /*
6481 * If weight raising has to terminate for bfqq, then next
6482 * function causes an immediate update of bfqq's weight,
6483 * without waiting for next activation. As a consequence, on
6484 * expiration, bfqq will be timestamped as if has never been
6485 * weight-raised during this service slot, even if it has
6486 * received part or even most of the service as a
6487 * weight-raised queue. This inflates bfqq's timestamps, which
6488 * is beneficial, as bfqq is then more willing to leave the
6489 * device immediately to possible other weight-raised queues.
6490 */
6491 bfq_update_wr_data(bfqd, bfqq);
6492
aee69d78
PV
6493 if (!bfqd->in_service_bic) {
6494 atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
6495 bfqd->in_service_bic = RQ_BIC(rq);
6496 }
6497
6498 /*
6499 * Expire bfqq, pretending that its budget expired, if bfqq
6500 * belongs to CLASS_IDLE and other queues are waiting for
6501 * service.
6502 */
6503 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
6504 goto expire;
6505
6506 return rq;
6507
6508expire:
6509 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
6510 return rq;
6511}
6512
6513static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
6514{
6515 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6516
6517 /*
6518 * Avoiding lock: a race on bfqd->busy_queues should cause at
6519 * most a call to dispatch for nothing
6520 */
6521 return !list_empty_careful(&bfqd->dispatch) ||
6522 bfqd->busy_queues > 0;
6523}
6524
6525static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
6526{
6527 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6528 struct request *rq = NULL;
6529 struct bfq_queue *bfqq = NULL;
6530
6531 if (!list_empty(&bfqd->dispatch)) {
6532 rq = list_first_entry(&bfqd->dispatch, struct request,
6533 queuelist);
6534 list_del_init(&rq->queuelist);
6535
6536 bfqq = RQ_BFQQ(rq);
6537
6538 if (bfqq) {
6539 /*
6540 * Increment counters here, because this
6541 * dispatch does not follow the standard
6542 * dispatch flow (where counters are
6543 * incremented)
6544 */
6545 bfqq->dispatched++;
6546
6547 goto inc_in_driver_start_rq;
6548 }
6549
6550 /*
6551 * We exploit the put_rq_private hook to decrement
6552 * rq_in_driver, but put_rq_private will not be
6553 * invoked on this request. So, to avoid unbalance,
6554 * just start this request, without incrementing
6555 * rq_in_driver. As a negative consequence,
6556 * rq_in_driver is deceptively lower than it should be
6557 * while this request is in service. This may cause
6558 * bfq_schedule_dispatch to be invoked uselessly.
6559 *
6560 * As for implementing an exact solution, the
6561 * put_request hook, if defined, is probably invoked
6562 * also on this request. So, by exploiting this hook,
6563 * we could 1) increment rq_in_driver here, and 2)
6564 * decrement it in put_request. Such a solution would
6565 * let the value of the counter be always accurate,
6566 * but it would entail using an extra interface
6567 * function. This cost seems higher than the benefit,
6568 * being the frequency of non-elevator-private
6569 * requests very low.
6570 */
6571 goto start_rq;
6572 }
6573
6574 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
6575
6576 if (bfqd->busy_queues == 0)
6577 goto exit;
6578
6579 /*
6580 * Force device to serve one request at a time if
6581 * strict_guarantees is true. Forcing this service scheme is
6582 * currently the ONLY way to guarantee that the request
6583 * service order enforced by the scheduler is respected by a
6584 * queueing device. Otherwise the device is free even to make
6585 * some unlucky request wait for as long as the device
6586 * wishes.
6587 *
6588 * Of course, serving one request at at time may cause loss of
6589 * throughput.
6590 */
6591 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
6592 goto exit;
6593
6594 bfqq = bfq_select_queue(bfqd);
6595 if (!bfqq)
6596 goto exit;
6597
6598 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
6599
6600 if (rq) {
6601inc_in_driver_start_rq:
6602 bfqd->rq_in_driver++;
6603start_rq:
6604 rq->rq_flags |= RQF_STARTED;
6605 }
6606exit:
6607 return rq;
6608}
6609
6610static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
6611{
6612 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6613 struct request *rq;
6614
6615 spin_lock_irq(&bfqd->lock);
36eca894 6616
aee69d78 6617 rq = __bfq_dispatch_request(hctx);
36eca894 6618 bfq_unlock_put_ioc(bfqd);
aee69d78
PV
6619
6620 return rq;
6621}
6622
6623/*
6624 * Task holds one reference to the queue, dropped when task exits. Each rq
6625 * in-flight on this queue also holds a reference, dropped when rq is freed.
6626 *
6627 * Scheduler lock must be held here. Recall not to use bfqq after calling
6628 * this function on it.
6629 */
6630static void bfq_put_queue(struct bfq_queue *bfqq)
6631{
e21b7a0b
AA
6632#ifdef CONFIG_BFQ_GROUP_IOSCHED
6633 struct bfq_group *bfqg = bfqq_group(bfqq);
6634#endif
6635
aee69d78
PV
6636 if (bfqq->bfqd)
6637 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
6638 bfqq, bfqq->ref);
6639
6640 bfqq->ref--;
6641 if (bfqq->ref)
6642 return;
6643
e21b7a0b
AA
6644 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq);
6645
aee69d78 6646 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b
AA
6647#ifdef CONFIG_BFQ_GROUP_IOSCHED
6648 bfqg_put(bfqg);
6649#endif
aee69d78
PV
6650}
6651
36eca894
AA
6652static void bfq_put_cooperator(struct bfq_queue *bfqq)
6653{
6654 struct bfq_queue *__bfqq, *next;
6655
6656 /*
6657 * If this queue was scheduled to merge with another queue, be
6658 * sure to drop the reference taken on that queue (and others in
6659 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
6660 */
6661 __bfqq = bfqq->new_bfqq;
6662 while (__bfqq) {
6663 if (__bfqq == bfqq)
6664 break;
6665 next = __bfqq->new_bfqq;
6666 bfq_put_queue(__bfqq);
6667 __bfqq = next;
6668 }
6669}
6670
aee69d78
PV
6671static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6672{
6673 if (bfqq == bfqd->in_service_queue) {
6674 __bfq_bfqq_expire(bfqd, bfqq);
6675 bfq_schedule_dispatch(bfqd);
6676 }
6677
6678 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
6679
36eca894
AA
6680 bfq_put_cooperator(bfqq);
6681
aee69d78
PV
6682 bfq_put_queue(bfqq); /* release process reference */
6683}
6684
6685static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
6686{
6687 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6688 struct bfq_data *bfqd;
6689
6690 if (bfqq)
6691 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
6692
6693 if (bfqq && bfqd) {
6694 unsigned long flags;
6695
6696 spin_lock_irqsave(&bfqd->lock, flags);
36eca894
AA
6697 /*
6698 * If the bic is using a shared queue, put the
6699 * reference taken on the io_context when the bic
6700 * started using a shared bfq_queue. This put cannot
6701 * make ioc->ref_count reach 0, then no ioc->lock
6702 * risks to be taken (leading to possible deadlock
6703 * scenarios).
6704 */
6705 if (is_sync && bfq_bfqq_coop(bfqq))
6706 put_io_context(bic->icq.ioc);
6707
aee69d78
PV
6708 bfq_exit_bfqq(bfqd, bfqq);
6709 bic_set_bfqq(bic, NULL, is_sync);
36eca894 6710 bfq_unlock_put_ioc_restore(bfqd, flags);
aee69d78
PV
6711 }
6712}
6713
6714static void bfq_exit_icq(struct io_cq *icq)
6715{
6716 struct bfq_io_cq *bic = icq_to_bic(icq);
6717
6718 bfq_exit_icq_bfqq(bic, true);
6719 bfq_exit_icq_bfqq(bic, false);
6720}
6721
6722/*
6723 * Update the entity prio values; note that the new values will not
6724 * be used until the next (re)activation.
6725 */
6726static void
6727bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
6728{
6729 struct task_struct *tsk = current;
6730 int ioprio_class;
6731 struct bfq_data *bfqd = bfqq->bfqd;
6732
6733 if (!bfqd)
6734 return;
6735
6736 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
6737 switch (ioprio_class) {
6738 default:
6739 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
6740 "bfq: bad prio class %d\n", ioprio_class);
6741 case IOPRIO_CLASS_NONE:
6742 /*
6743 * No prio set, inherit CPU scheduling settings.
6744 */
6745 bfqq->new_ioprio = task_nice_ioprio(tsk);
6746 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
6747 break;
6748 case IOPRIO_CLASS_RT:
6749 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
6750 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
6751 break;
6752 case IOPRIO_CLASS_BE:
6753 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
6754 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
6755 break;
6756 case IOPRIO_CLASS_IDLE:
6757 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
6758 bfqq->new_ioprio = 7;
6759 bfq_clear_bfqq_idle_window(bfqq);
6760 break;
6761 }
6762
6763 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
6764 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
6765 bfqq->new_ioprio);
6766 bfqq->new_ioprio = IOPRIO_BE_NR;
6767 }
6768
6769 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
6770 bfqq->entity.prio_changed = 1;
6771}
6772
6773static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
6774{
6775 struct bfq_data *bfqd = bic_to_bfqd(bic);
6776 struct bfq_queue *bfqq;
6777 int ioprio = bic->icq.ioc->ioprio;
6778
6779 /*
6780 * This condition may trigger on a newly created bic, be sure to
6781 * drop the lock before returning.
6782 */
6783 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
6784 return;
6785
6786 bic->ioprio = ioprio;
6787
6788 bfqq = bic_to_bfqq(bic, false);
6789 if (bfqq) {
6790 /* release process reference on this queue */
6791 bfq_put_queue(bfqq);
6792 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
6793 bic_set_bfqq(bic, bfqq, false);
6794 }
6795
6796 bfqq = bic_to_bfqq(bic, true);
6797 if (bfqq)
6798 bfq_set_next_ioprio_data(bfqq, bic);
6799}
6800
6801static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
6802 struct bfq_io_cq *bic, pid_t pid, int is_sync)
6803{
6804 RB_CLEAR_NODE(&bfqq->entity.rb_node);
6805 INIT_LIST_HEAD(&bfqq->fifo);
6806
6807 bfqq->ref = 0;
6808 bfqq->bfqd = bfqd;
6809
6810 if (bic)
6811 bfq_set_next_ioprio_data(bfqq, bic);
6812
6813 if (is_sync) {
6814 if (!bfq_class_idle(bfqq))
6815 bfq_mark_bfqq_idle_window(bfqq);
6816 bfq_mark_bfqq_sync(bfqq);
6817 } else
6818 bfq_clear_bfqq_sync(bfqq);
6819
6820 /* set end request to minus infinity from now */
6821 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
6822
6823 bfq_mark_bfqq_IO_bound(bfqq);
6824
6825 bfqq->pid = pid;
6826
6827 /* Tentative initial value to trade off between thr and lat */
54b60456 6828 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 6829 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 6830
44e44a1b 6831 bfqq->wr_coeff = 1;
36eca894 6832 bfqq->last_wr_start_finish = jiffies;
77b7dcea 6833 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 6834 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
6835
6836 /*
6837 * Set to the value for which bfqq will not be deemed as
6838 * soft rt when it becomes backlogged.
6839 */
6840 bfqq->soft_rt_next_start = bfq_greatest_from_now();
44e44a1b 6841
aee69d78
PV
6842 /* first request is almost certainly seeky */
6843 bfqq->seek_history = 1;
6844}
6845
6846static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 6847 struct bfq_group *bfqg,
aee69d78
PV
6848 int ioprio_class, int ioprio)
6849{
6850 switch (ioprio_class) {
6851 case IOPRIO_CLASS_RT:
e21b7a0b 6852 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
6853 case IOPRIO_CLASS_NONE:
6854 ioprio = IOPRIO_NORM;
6855 /* fall through */
6856 case IOPRIO_CLASS_BE:
e21b7a0b 6857 return &bfqg->async_bfqq[1][ioprio];
aee69d78 6858 case IOPRIO_CLASS_IDLE:
e21b7a0b 6859 return &bfqg->async_idle_bfqq;
aee69d78
PV
6860 default:
6861 return NULL;
6862 }
6863}
6864
6865static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
6866 struct bio *bio, bool is_sync,
6867 struct bfq_io_cq *bic)
6868{
6869 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
6870 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
6871 struct bfq_queue **async_bfqq = NULL;
6872 struct bfq_queue *bfqq;
e21b7a0b 6873 struct bfq_group *bfqg;
aee69d78
PV
6874
6875 rcu_read_lock();
6876
e21b7a0b
AA
6877 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
6878 if (!bfqg) {
6879 bfqq = &bfqd->oom_bfqq;
6880 goto out;
6881 }
6882
aee69d78 6883 if (!is_sync) {
e21b7a0b 6884 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
6885 ioprio);
6886 bfqq = *async_bfqq;
6887 if (bfqq)
6888 goto out;
6889 }
6890
6891 bfqq = kmem_cache_alloc_node(bfq_pool,
6892 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
6893 bfqd->queue->node);
6894
6895 if (bfqq) {
6896 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
6897 is_sync);
e21b7a0b 6898 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
6899 bfq_log_bfqq(bfqd, bfqq, "allocated");
6900 } else {
6901 bfqq = &bfqd->oom_bfqq;
6902 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
6903 goto out;
6904 }
6905
6906 /*
6907 * Pin the queue now that it's allocated, scheduler exit will
6908 * prune it.
6909 */
6910 if (async_bfqq) {
e21b7a0b
AA
6911 bfqq->ref++; /*
6912 * Extra group reference, w.r.t. sync
6913 * queue. This extra reference is removed
6914 * only if bfqq->bfqg disappears, to
6915 * guarantee that this queue is not freed
6916 * until its group goes away.
6917 */
6918 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
6919 bfqq, bfqq->ref);
6920 *async_bfqq = bfqq;
6921 }
6922
6923out:
6924 bfqq->ref++; /* get a process reference to this queue */
6925 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
6926 rcu_read_unlock();
6927 return bfqq;
6928}
6929
6930static void bfq_update_io_thinktime(struct bfq_data *bfqd,
6931 struct bfq_queue *bfqq)
6932{
6933 struct bfq_ttime *ttime = &bfqq->ttime;
6934 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
6935
6936 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
6937
6938 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
6939 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
6940 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
6941 ttime->ttime_samples);
6942}
6943
6944static void
6945bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
6946 struct request *rq)
6947{
aee69d78 6948 bfqq->seek_history <<= 1;
ab0e43e9
PV
6949 bfqq->seek_history |=
6950 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
6951 (!blk_queue_nonrot(bfqd->queue) ||
6952 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
6953}
6954
6955/*
6956 * Disable idle window if the process thinks too long or seeks so much that
6957 * it doesn't matter.
6958 */
6959static void bfq_update_idle_window(struct bfq_data *bfqd,
6960 struct bfq_queue *bfqq,
6961 struct bfq_io_cq *bic)
6962{
6963 int enable_idle;
6964
6965 /* Don't idle for async or idle io prio class. */
6966 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
6967 return;
6968
36eca894
AA
6969 /* Idle window just restored, statistics are meaningless. */
6970 if (time_is_after_eq_jiffies(bfqq->split_time +
6971 bfqd->bfq_wr_min_idle_time))
6972 return;
6973
aee69d78
PV
6974 enable_idle = bfq_bfqq_idle_window(bfqq);
6975
6976 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
6977 bfqd->bfq_slice_idle == 0 ||
bcd56426
PV
6978 (bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
6979 bfqq->wr_coeff == 1))
aee69d78
PV
6980 enable_idle = 0;
6981 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) {
44e44a1b
PV
6982 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle &&
6983 bfqq->wr_coeff == 1)
aee69d78
PV
6984 enable_idle = 0;
6985 else
6986 enable_idle = 1;
6987 }
6988 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
6989 enable_idle);
6990
6991 if (enable_idle)
6992 bfq_mark_bfqq_idle_window(bfqq);
6993 else
6994 bfq_clear_bfqq_idle_window(bfqq);
6995}
6996
6997/*
6998 * Called when a new fs request (rq) is added to bfqq. Check if there's
6999 * something we should do about it.
7000 */
7001static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
7002 struct request *rq)
7003{
7004 struct bfq_io_cq *bic = RQ_BIC(rq);
7005
7006 if (rq->cmd_flags & REQ_META)
7007 bfqq->meta_pending++;
7008
7009 bfq_update_io_thinktime(bfqd, bfqq);
7010 bfq_update_io_seektime(bfqd, bfqq, rq);
7011 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
7012 !BFQQ_SEEKY(bfqq))
7013 bfq_update_idle_window(bfqd, bfqq, bic);
7014
7015 bfq_log_bfqq(bfqd, bfqq,
7016 "rq_enqueued: idle_window=%d (seeky %d)",
7017 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
7018
7019 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
7020
7021 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
7022 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
7023 blk_rq_sectors(rq) < 32;
7024 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
7025
7026 /*
7027 * There is just this request queued: if the request
7028 * is small and the queue is not to be expired, then
7029 * just exit.
7030 *
7031 * In this way, if the device is being idled to wait
7032 * for a new request from the in-service queue, we
7033 * avoid unplugging the device and committing the
7034 * device to serve just a small request. On the
7035 * contrary, we wait for the block layer to decide
7036 * when to unplug the device: hopefully, new requests
7037 * will be merged to this one quickly, then the device
7038 * will be unplugged and larger requests will be
7039 * dispatched.
7040 */
7041 if (small_req && !budget_timeout)
7042 return;
7043
7044 /*
7045 * A large enough request arrived, or the queue is to
7046 * be expired: in both cases disk idling is to be
7047 * stopped, so clear wait_request flag and reset
7048 * timer.
7049 */
7050 bfq_clear_bfqq_wait_request(bfqq);
7051 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 7052 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
7053
7054 /*
7055 * The queue is not empty, because a new request just
7056 * arrived. Hence we can safely expire the queue, in
7057 * case of budget timeout, without risking that the
7058 * timestamps of the queue are not updated correctly.
7059 * See [1] for more details.
7060 */
7061 if (budget_timeout)
7062 bfq_bfqq_expire(bfqd, bfqq, false,
7063 BFQQE_BUDGET_TIMEOUT);
7064 }
7065}
7066
7067static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
7068{
36eca894
AA
7069 struct bfq_queue *bfqq = RQ_BFQQ(rq),
7070 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
7071
7072 if (new_bfqq) {
7073 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
7074 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
7075 /*
7076 * Release the request's reference to the old bfqq
7077 * and make sure one is taken to the shared queue.
7078 */
7079 new_bfqq->allocated++;
7080 bfqq->allocated--;
7081 new_bfqq->ref++;
7082 /*
7083 * If the bic associated with the process
7084 * issuing this request still points to bfqq
7085 * (and thus has not been already redirected
7086 * to new_bfqq or even some other bfq_queue),
7087 * then complete the merge and redirect it to
7088 * new_bfqq.
7089 */
7090 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
7091 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
7092 bfqq, new_bfqq);
7093 /*
7094 * rq is about to be enqueued into new_bfqq,
7095 * release rq reference on bfqq
7096 */
7097 bfq_put_queue(bfqq);
7098 rq->elv.priv[1] = new_bfqq;
7099 bfqq = new_bfqq;
7100 }
aee69d78
PV
7101
7102 bfq_add_request(rq);
7103
7104 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
7105 list_add_tail(&rq->queuelist, &bfqq->fifo);
7106
7107 bfq_rq_enqueued(bfqd, bfqq, rq);
7108}
7109
7110static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
7111 bool at_head)
7112{
7113 struct request_queue *q = hctx->queue;
7114 struct bfq_data *bfqd = q->elevator->elevator_data;
7115
7116 spin_lock_irq(&bfqd->lock);
7117 if (blk_mq_sched_try_insert_merge(q, rq)) {
7118 spin_unlock_irq(&bfqd->lock);
7119 return;
7120 }
7121
7122 spin_unlock_irq(&bfqd->lock);
7123
7124 blk_mq_sched_request_inserted(rq);
7125
7126 spin_lock_irq(&bfqd->lock);
7127 if (at_head || blk_rq_is_passthrough(rq)) {
7128 if (at_head)
7129 list_add(&rq->queuelist, &bfqd->dispatch);
7130 else
7131 list_add_tail(&rq->queuelist, &bfqd->dispatch);
7132 } else {
7133 __bfq_insert_request(bfqd, rq);
7134
7135 if (rq_mergeable(rq)) {
7136 elv_rqhash_add(q, rq);
7137 if (!q->last_merge)
7138 q->last_merge = rq;
7139 }
7140 }
7141
36eca894 7142 bfq_unlock_put_ioc(bfqd);
aee69d78
PV
7143}
7144
7145static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
7146 struct list_head *list, bool at_head)
7147{
7148 while (!list_empty(list)) {
7149 struct request *rq;
7150
7151 rq = list_first_entry(list, struct request, queuelist);
7152 list_del_init(&rq->queuelist);
7153 bfq_insert_request(hctx, rq, at_head);
7154 }
7155}
7156
7157static void bfq_update_hw_tag(struct bfq_data *bfqd)
7158{
7159 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
7160 bfqd->rq_in_driver);
7161
7162 if (bfqd->hw_tag == 1)
7163 return;
7164
7165 /*
7166 * This sample is valid if the number of outstanding requests
7167 * is large enough to allow a queueing behavior. Note that the
7168 * sum is not exact, as it's not taking into account deactivated
7169 * requests.
7170 */
7171 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
7172 return;
7173
7174 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
7175 return;
7176
7177 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
7178 bfqd->max_rq_in_driver = 0;
7179 bfqd->hw_tag_samples = 0;
7180}
7181
7182static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
7183{
ab0e43e9
PV
7184 u64 now_ns;
7185 u32 delta_us;
7186
aee69d78
PV
7187 bfq_update_hw_tag(bfqd);
7188
7189 bfqd->rq_in_driver--;
7190 bfqq->dispatched--;
7191
44e44a1b
PV
7192 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
7193 /*
7194 * Set budget_timeout (which we overload to store the
7195 * time at which the queue remains with no backlog and
7196 * no outstanding request; used by the weight-raising
7197 * mechanism).
7198 */
7199 bfqq->budget_timeout = jiffies;
7200 }
7201
ab0e43e9
PV
7202 now_ns = ktime_get_ns();
7203
7204 bfqq->ttime.last_end_request = now_ns;
7205
7206 /*
7207 * Using us instead of ns, to get a reasonable precision in
7208 * computing rate in next check.
7209 */
7210 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
7211
7212 /*
7213 * If the request took rather long to complete, and, according
7214 * to the maximum request size recorded, this completion latency
7215 * implies that the request was certainly served at a very low
7216 * rate (less than 1M sectors/sec), then the whole observation
7217 * interval that lasts up to this time instant cannot be a
7218 * valid time interval for computing a new peak rate. Invoke
7219 * bfq_update_rate_reset to have the following three steps
7220 * taken:
7221 * - close the observation interval at the last (previous)
7222 * request dispatch or completion
7223 * - compute rate, if possible, for that observation interval
7224 * - reset to zero samples, which will trigger a proper
7225 * re-initialization of the observation interval on next
7226 * dispatch
7227 */
7228 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
7229 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
7230 1UL<<(BFQ_RATE_SHIFT - 10))
7231 bfq_update_rate_reset(bfqd, NULL);
7232 bfqd->last_completion = now_ns;
aee69d78 7233
77b7dcea
PV
7234 /*
7235 * If we are waiting to discover whether the request pattern
7236 * of the task associated with the queue is actually
7237 * isochronous, and both requisites for this condition to hold
7238 * are now satisfied, then compute soft_rt_next_start (see the
7239 * comments on the function bfq_bfqq_softrt_next_start()). We
7240 * schedule this delayed check when bfqq expires, if it still
7241 * has in-flight requests.
7242 */
7243 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
7244 RB_EMPTY_ROOT(&bfqq->sort_list))
7245 bfqq->soft_rt_next_start =
7246 bfq_bfqq_softrt_next_start(bfqd, bfqq);
7247
aee69d78
PV
7248 /*
7249 * If this is the in-service queue, check if it needs to be expired,
7250 * or if we want to idle in case it has no pending requests.
7251 */
7252 if (bfqd->in_service_queue == bfqq) {
44e44a1b 7253 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
7254 bfq_arm_slice_timer(bfqd);
7255 return;
7256 } else if (bfq_may_expire_for_budg_timeout(bfqq))
7257 bfq_bfqq_expire(bfqd, bfqq, false,
7258 BFQQE_BUDGET_TIMEOUT);
7259 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
7260 (bfqq->dispatched == 0 ||
7261 !bfq_bfqq_may_idle(bfqq)))
7262 bfq_bfqq_expire(bfqd, bfqq, false,
7263 BFQQE_NO_MORE_REQUESTS);
7264 }
7265}
7266
7267static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
7268{
7269 bfqq->allocated--;
7270
7271 bfq_put_queue(bfqq);
7272}
7273
7274static void bfq_put_rq_private(struct request_queue *q, struct request *rq)
7275{
7276 struct bfq_queue *bfqq = RQ_BFQQ(rq);
7277 struct bfq_data *bfqd = bfqq->bfqd;
7278
e21b7a0b
AA
7279 if (rq->rq_flags & RQF_STARTED)
7280 bfqg_stats_update_completion(bfqq_group(bfqq),
7281 rq_start_time_ns(rq),
7282 rq_io_start_time_ns(rq),
7283 rq->cmd_flags);
aee69d78
PV
7284
7285 if (likely(rq->rq_flags & RQF_STARTED)) {
7286 unsigned long flags;
7287
7288 spin_lock_irqsave(&bfqd->lock, flags);
7289
7290 bfq_completed_request(bfqq, bfqd);
7291 bfq_put_rq_priv_body(bfqq);
7292
36eca894 7293 bfq_unlock_put_ioc_restore(bfqd, flags);
aee69d78
PV
7294 } else {
7295 /*
7296 * Request rq may be still/already in the scheduler,
7297 * in which case we need to remove it. And we cannot
7298 * defer such a check and removal, to avoid
7299 * inconsistencies in the time interval from the end
7300 * of this function to the start of the deferred work.
7301 * This situation seems to occur only in process
7302 * context, as a consequence of a merge. In the
7303 * current version of the code, this implies that the
7304 * lock is held.
7305 */
7306
7307 if (!RB_EMPTY_NODE(&rq->rb_node))
7308 bfq_remove_request(q, rq);
7309 bfq_put_rq_priv_body(bfqq);
7310 }
7311
7312 rq->elv.priv[0] = NULL;
7313 rq->elv.priv[1] = NULL;
7314}
7315
36eca894
AA
7316/*
7317 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
7318 * was the last process referring to that bfqq.
7319 */
7320static struct bfq_queue *
7321bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
7322{
7323 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
7324
7325 if (bfqq_process_refs(bfqq) == 1) {
7326 bfqq->pid = current->pid;
7327 bfq_clear_bfqq_coop(bfqq);
7328 bfq_clear_bfqq_split_coop(bfqq);
7329 return bfqq;
7330 }
7331
7332 bic_set_bfqq(bic, NULL, 1);
7333
7334 bfq_put_cooperator(bfqq);
7335
7336 bfq_put_queue(bfqq);
7337 return NULL;
7338}
7339
7340static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
7341 struct bfq_io_cq *bic,
7342 struct bio *bio,
7343 bool split, bool is_sync,
7344 bool *new_queue)
7345{
7346 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
7347
7348 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
7349 return bfqq;
7350
7351 if (new_queue)
7352 *new_queue = true;
7353
7354 if (bfqq)
7355 bfq_put_queue(bfqq);
7356 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
7357
7358 bic_set_bfqq(bic, bfqq, is_sync);
7359 if (split && is_sync)
7360 bfqq->split_time = jiffies;
7361
7362 return bfqq;
7363}
7364
aee69d78
PV
7365/*
7366 * Allocate bfq data structures associated with this request.
7367 */
7368static int bfq_get_rq_private(struct request_queue *q, struct request *rq,
7369 struct bio *bio)
7370{
7371 struct bfq_data *bfqd = q->elevator->elevator_data;
7372 struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
7373 const int is_sync = rq_is_sync(rq);
7374 struct bfq_queue *bfqq;
36eca894 7375 bool new_queue = false;
aee69d78
PV
7376
7377 spin_lock_irq(&bfqd->lock);
7378
7379 bfq_check_ioprio_change(bic, bio);
7380
7381 if (!bic)
7382 goto queue_fail;
7383
e21b7a0b
AA
7384 bfq_bic_update_cgroup(bic, bio);
7385
36eca894
AA
7386 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
7387 &new_queue);
7388
7389 if (likely(!new_queue)) {
7390 /* If the queue was seeky for too long, break it apart. */
7391 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
7392 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
7393 bfqq = bfq_split_bfqq(bic, bfqq);
7394 /*
7395 * A reference to bic->icq.ioc needs to be
7396 * released after a queue split. Do not do it
7397 * immediately, to not risk to possibly take
7398 * an ioc->lock while holding the scheduler
7399 * lock.
7400 */
7401 bfqd->ioc_to_put = bic->icq.ioc;
7402
7403 if (!bfqq)
7404 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
7405 true, is_sync,
7406 NULL);
7407 }
aee69d78
PV
7408 }
7409
7410 bfqq->allocated++;
7411 bfqq->ref++;
7412 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
7413 rq, bfqq, bfqq->ref);
7414
7415 rq->elv.priv[0] = bic;
7416 rq->elv.priv[1] = bfqq;
7417
36eca894
AA
7418 /*
7419 * If a bfq_queue has only one process reference, it is owned
7420 * by only this bic: we can then set bfqq->bic = bic. in
7421 * addition, if the queue has also just been split, we have to
7422 * resume its state.
7423 */
7424 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
7425 bfqq->bic = bic;
7426 if (bfqd->ioc_to_put) { /* if true, there has been a split */
7427 /*
7428 * The queue has just been split from a shared
7429 * queue: restore the idle window and the
7430 * possible weight raising period.
7431 */
7432 bfq_bfqq_resume_state(bfqq, bic);
7433 }
7434 }
7435
7436 bfq_unlock_put_ioc(bfqd);
aee69d78
PV
7437
7438 return 0;
7439
7440queue_fail:
7441 spin_unlock_irq(&bfqd->lock);
7442
7443 return 1;
7444}
7445
7446static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
7447{
7448 struct bfq_data *bfqd = bfqq->bfqd;
7449 enum bfqq_expiration reason;
7450 unsigned long flags;
7451
7452 spin_lock_irqsave(&bfqd->lock, flags);
7453 bfq_clear_bfqq_wait_request(bfqq);
7454
7455 if (bfqq != bfqd->in_service_queue) {
7456 spin_unlock_irqrestore(&bfqd->lock, flags);
7457 return;
7458 }
7459
7460 if (bfq_bfqq_budget_timeout(bfqq))
7461 /*
7462 * Also here the queue can be safely expired
7463 * for budget timeout without wasting
7464 * guarantees
7465 */
7466 reason = BFQQE_BUDGET_TIMEOUT;
7467 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
7468 /*
7469 * The queue may not be empty upon timer expiration,
7470 * because we may not disable the timer when the
7471 * first request of the in-service queue arrives
7472 * during disk idling.
7473 */
7474 reason = BFQQE_TOO_IDLE;
7475 else
7476 goto schedule_dispatch;
7477
7478 bfq_bfqq_expire(bfqd, bfqq, true, reason);
7479
7480schedule_dispatch:
36eca894 7481 bfq_unlock_put_ioc_restore(bfqd, flags);
aee69d78
PV
7482 bfq_schedule_dispatch(bfqd);
7483}
7484
7485/*
7486 * Handler of the expiration of the timer running if the in-service queue
7487 * is idling inside its time slice.
7488 */
7489static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
7490{
7491 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
7492 idle_slice_timer);
7493 struct bfq_queue *bfqq = bfqd->in_service_queue;
7494
7495 /*
7496 * Theoretical race here: the in-service queue can be NULL or
7497 * different from the queue that was idling if a new request
7498 * arrives for the current queue and there is a full dispatch
7499 * cycle that changes the in-service queue. This can hardly
7500 * happen, but in the worst case we just expire a queue too
7501 * early.
7502 */
7503 if (bfqq)
7504 bfq_idle_slice_timer_body(bfqq);
7505
7506 return HRTIMER_NORESTART;
7507}
7508
7509static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
7510 struct bfq_queue **bfqq_ptr)
7511{
7512 struct bfq_queue *bfqq = *bfqq_ptr;
7513
7514 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
7515 if (bfqq) {
e21b7a0b
AA
7516 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
7517
aee69d78
PV
7518 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
7519 bfqq, bfqq->ref);
7520 bfq_put_queue(bfqq);
7521 *bfqq_ptr = NULL;
7522 }
7523}
7524
7525/*
e21b7a0b
AA
7526 * Release all the bfqg references to its async queues. If we are
7527 * deallocating the group these queues may still contain requests, so
7528 * we reparent them to the root cgroup (i.e., the only one that will
7529 * exist for sure until all the requests on a device are gone).
aee69d78 7530 */
e21b7a0b 7531static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
7532{
7533 int i, j;
7534
7535 for (i = 0; i < 2; i++)
7536 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 7537 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 7538
e21b7a0b 7539 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
7540}
7541
7542static void bfq_exit_queue(struct elevator_queue *e)
7543{
7544 struct bfq_data *bfqd = e->elevator_data;
7545 struct bfq_queue *bfqq, *n;
7546
7547 hrtimer_cancel(&bfqd->idle_slice_timer);
7548
7549 spin_lock_irq(&bfqd->lock);
7550 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 7551 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
7552 spin_unlock_irq(&bfqd->lock);
7553
7554 hrtimer_cancel(&bfqd->idle_slice_timer);
7555
e21b7a0b
AA
7556#ifdef CONFIG_BFQ_GROUP_IOSCHED
7557 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
7558#else
7559 spin_lock_irq(&bfqd->lock);
7560 bfq_put_async_queues(bfqd, bfqd->root_group);
7561 kfree(bfqd->root_group);
7562 spin_unlock_irq(&bfqd->lock);
7563#endif
7564
aee69d78
PV
7565 kfree(bfqd);
7566}
7567
e21b7a0b
AA
7568static void bfq_init_root_group(struct bfq_group *root_group,
7569 struct bfq_data *bfqd)
7570{
7571 int i;
7572
7573#ifdef CONFIG_BFQ_GROUP_IOSCHED
7574 root_group->entity.parent = NULL;
7575 root_group->my_entity = NULL;
7576 root_group->bfqd = bfqd;
7577#endif
36eca894 7578 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
7579 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7580 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7581 root_group->sched_data.bfq_class_idle_last_service = jiffies;
7582}
7583
aee69d78
PV
7584static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7585{
7586 struct bfq_data *bfqd;
7587 struct elevator_queue *eq;
aee69d78
PV
7588
7589 eq = elevator_alloc(q, e);
7590 if (!eq)
7591 return -ENOMEM;
7592
7593 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7594 if (!bfqd) {
7595 kobject_put(&eq->kobj);
7596 return -ENOMEM;
7597 }
7598 eq->elevator_data = bfqd;
7599
e21b7a0b
AA
7600 spin_lock_irq(q->queue_lock);
7601 q->elevator = eq;
7602 spin_unlock_irq(q->queue_lock);
7603
aee69d78
PV
7604 /*
7605 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7606 * Grab a permanent reference to it, so that the normal code flow
7607 * will not attempt to free it.
7608 */
7609 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
7610 bfqd->oom_bfqq.ref++;
7611 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7612 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7613 bfqd->oom_bfqq.entity.new_weight =
7614 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7615 /*
7616 * Trigger weight initialization, according to ioprio, at the
7617 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7618 * class won't be changed any more.
7619 */
7620 bfqd->oom_bfqq.entity.prio_changed = 1;
7621
7622 bfqd->queue = q;
7623
e21b7a0b 7624 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
7625
7626 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7627 HRTIMER_MODE_REL);
7628 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7629
7630 INIT_LIST_HEAD(&bfqd->active_list);
7631 INIT_LIST_HEAD(&bfqd->idle_list);
7632
7633 bfqd->hw_tag = -1;
7634
7635 bfqd->bfq_max_budget = bfq_default_max_budget;
7636
7637 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7638 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7639 bfqd->bfq_back_max = bfq_back_max;
7640 bfqd->bfq_back_penalty = bfq_back_penalty;
7641 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
7642 bfqd->bfq_timeout = bfq_timeout;
7643
7644 bfqd->bfq_requests_within_timer = 120;
7645
44e44a1b
PV
7646 bfqd->low_latency = true;
7647
7648 /*
7649 * Trade-off between responsiveness and fairness.
7650 */
7651 bfqd->bfq_wr_coeff = 30;
77b7dcea 7652 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
7653 bfqd->bfq_wr_max_time = 0;
7654 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7655 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
7656 bfqd->bfq_wr_max_softrt_rate = 7000; /*
7657 * Approximate rate required
7658 * to playback or record a
7659 * high-definition compressed
7660 * video.
7661 */
cfd69712 7662 bfqd->wr_busy_queues = 0;
44e44a1b
PV
7663
7664 /*
7665 * Begin by assuming, optimistically, that the device is a
7666 * high-speed one, and that its peak rate is equal to 2/3 of
7667 * the highest reference rate.
7668 */
7669 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
7670 T_fast[blk_queue_nonrot(bfqd->queue)];
7671 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7672 bfqd->device_speed = BFQ_BFQD_FAST;
7673
aee69d78 7674 spin_lock_init(&bfqd->lock);
aee69d78 7675
e21b7a0b
AA
7676 /*
7677 * The invocation of the next bfq_create_group_hierarchy
7678 * function is the head of a chain of function calls
7679 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7680 * blk_mq_freeze_queue) that may lead to the invocation of the
7681 * has_work hook function. For this reason,
7682 * bfq_create_group_hierarchy is invoked only after all
7683 * scheduler data has been initialized, apart from the fields
7684 * that can be initialized only after invoking
7685 * bfq_create_group_hierarchy. This, in particular, enables
7686 * has_work to correctly return false. Of course, to avoid
7687 * other inconsistencies, the blk-mq stack must then refrain
7688 * from invoking further scheduler hooks before this init
7689 * function is finished.
7690 */
7691 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7692 if (!bfqd->root_group)
7693 goto out_free;
7694 bfq_init_root_group(bfqd->root_group, bfqd);
7695 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7696
aee69d78
PV
7697
7698 return 0;
e21b7a0b
AA
7699
7700out_free:
7701 kfree(bfqd);
7702 kobject_put(&eq->kobj);
7703 return -ENOMEM;
aee69d78
PV
7704}
7705
7706static void bfq_slab_kill(void)
7707{
7708 kmem_cache_destroy(bfq_pool);
7709}
7710
7711static int __init bfq_slab_setup(void)
7712{
7713 bfq_pool = KMEM_CACHE(bfq_queue, 0);
7714 if (!bfq_pool)
7715 return -ENOMEM;
7716 return 0;
7717}
7718
7719static ssize_t bfq_var_show(unsigned int var, char *page)
7720{
7721 return sprintf(page, "%u\n", var);
7722}
7723
7724static ssize_t bfq_var_store(unsigned long *var, const char *page,
7725 size_t count)
7726{
7727 unsigned long new_val;
7728 int ret = kstrtoul(page, 10, &new_val);
7729
7730 if (ret == 0)
7731 *var = new_val;
7732
7733 return count;
7734}
7735
7736#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
7737static ssize_t __FUNC(struct elevator_queue *e, char *page) \
7738{ \
7739 struct bfq_data *bfqd = e->elevator_data; \
7740 u64 __data = __VAR; \
7741 if (__CONV == 1) \
7742 __data = jiffies_to_msecs(__data); \
7743 else if (__CONV == 2) \
7744 __data = div_u64(__data, NSEC_PER_MSEC); \
7745 return bfq_var_show(__data, (page)); \
7746}
7747SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7748SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7749SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7750SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7751SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7752SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7753SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7754SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 7755SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
7756#undef SHOW_FUNCTION
7757
7758#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
7759static ssize_t __FUNC(struct elevator_queue *e, char *page) \
7760{ \
7761 struct bfq_data *bfqd = e->elevator_data; \
7762 u64 __data = __VAR; \
7763 __data = div_u64(__data, NSEC_PER_USEC); \
7764 return bfq_var_show(__data, (page)); \
7765}
7766USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7767#undef USEC_SHOW_FUNCTION
7768
7769#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
7770static ssize_t \
7771__FUNC(struct elevator_queue *e, const char *page, size_t count) \
7772{ \
7773 struct bfq_data *bfqd = e->elevator_data; \
7774 unsigned long uninitialized_var(__data); \
7775 int ret = bfq_var_store(&__data, (page), count); \
7776 if (__data < (MIN)) \
7777 __data = (MIN); \
7778 else if (__data > (MAX)) \
7779 __data = (MAX); \
7780 if (__CONV == 1) \
7781 *(__PTR) = msecs_to_jiffies(__data); \
7782 else if (__CONV == 2) \
7783 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
7784 else \
7785 *(__PTR) = __data; \
7786 return ret; \
7787}
7788STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7789 INT_MAX, 2);
7790STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7791 INT_MAX, 2);
7792STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7793STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7794 INT_MAX, 0);
7795STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7796#undef STORE_FUNCTION
7797
7798#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
7799static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7800{ \
7801 struct bfq_data *bfqd = e->elevator_data; \
7802 unsigned long uninitialized_var(__data); \
7803 int ret = bfq_var_store(&__data, (page), count); \
7804 if (__data < (MIN)) \
7805 __data = (MIN); \
7806 else if (__data > (MAX)) \
7807 __data = (MAX); \
7808 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
7809 return ret; \
7810}
7811USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7812 UINT_MAX);
7813#undef USEC_STORE_FUNCTION
7814
aee69d78
PV
7815static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7816 const char *page, size_t count)
7817{
7818 struct bfq_data *bfqd = e->elevator_data;
7819 unsigned long uninitialized_var(__data);
7820 int ret = bfq_var_store(&__data, (page), count);
7821
7822 if (__data == 0)
ab0e43e9 7823 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
7824 else {
7825 if (__data > INT_MAX)
7826 __data = INT_MAX;
7827 bfqd->bfq_max_budget = __data;
7828 }
7829
7830 bfqd->bfq_user_max_budget = __data;
7831
7832 return ret;
7833}
7834
7835/*
7836 * Leaving this name to preserve name compatibility with cfq
7837 * parameters, but this timeout is used for both sync and async.
7838 */
7839static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7840 const char *page, size_t count)
7841{
7842 struct bfq_data *bfqd = e->elevator_data;
7843 unsigned long uninitialized_var(__data);
7844 int ret = bfq_var_store(&__data, (page), count);
7845
7846 if (__data < 1)
7847 __data = 1;
7848 else if (__data > INT_MAX)
7849 __data = INT_MAX;
7850
7851 bfqd->bfq_timeout = msecs_to_jiffies(__data);
7852 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 7853 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
7854
7855 return ret;
7856}
7857
7858static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7859 const char *page, size_t count)
7860{
7861 struct bfq_data *bfqd = e->elevator_data;
7862 unsigned long uninitialized_var(__data);
7863 int ret = bfq_var_store(&__data, (page), count);
7864
7865 if (__data > 1)
7866 __data = 1;
7867 if (!bfqd->strict_guarantees && __data == 1
7868 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7869 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7870
7871 bfqd->strict_guarantees = __data;
7872
7873 return ret;
7874}
7875
44e44a1b
PV
7876static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7877 const char *page, size_t count)
7878{
7879 struct bfq_data *bfqd = e->elevator_data;
7880 unsigned long uninitialized_var(__data);
7881 int ret = bfq_var_store(&__data, (page), count);
7882
7883 if (__data > 1)
7884 __data = 1;
7885 if (__data == 0 && bfqd->low_latency != 0)
7886 bfq_end_wr(bfqd);
7887 bfqd->low_latency = __data;
7888
7889 return ret;
7890}
7891
aee69d78
PV
7892#define BFQ_ATTR(name) \
7893 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7894
7895static struct elv_fs_entry bfq_attrs[] = {
7896 BFQ_ATTR(fifo_expire_sync),
7897 BFQ_ATTR(fifo_expire_async),
7898 BFQ_ATTR(back_seek_max),
7899 BFQ_ATTR(back_seek_penalty),
7900 BFQ_ATTR(slice_idle),
7901 BFQ_ATTR(slice_idle_us),
7902 BFQ_ATTR(max_budget),
7903 BFQ_ATTR(timeout_sync),
7904 BFQ_ATTR(strict_guarantees),
44e44a1b 7905 BFQ_ATTR(low_latency),
aee69d78
PV
7906 __ATTR_NULL
7907};
7908
7909static struct elevator_type iosched_bfq_mq = {
7910 .ops.mq = {
7911 .get_rq_priv = bfq_get_rq_private,
7912 .put_rq_priv = bfq_put_rq_private,
7913 .exit_icq = bfq_exit_icq,
7914 .insert_requests = bfq_insert_requests,
7915 .dispatch_request = bfq_dispatch_request,
7916 .next_request = elv_rb_latter_request,
7917 .former_request = elv_rb_former_request,
7918 .allow_merge = bfq_allow_bio_merge,
7919 .bio_merge = bfq_bio_merge,
7920 .request_merge = bfq_request_merge,
7921 .requests_merged = bfq_requests_merged,
7922 .request_merged = bfq_request_merged,
7923 .has_work = bfq_has_work,
7924 .init_sched = bfq_init_queue,
7925 .exit_sched = bfq_exit_queue,
7926 },
7927
7928 .uses_mq = true,
7929 .icq_size = sizeof(struct bfq_io_cq),
7930 .icq_align = __alignof__(struct bfq_io_cq),
7931 .elevator_attrs = bfq_attrs,
7932 .elevator_name = "bfq",
7933 .elevator_owner = THIS_MODULE,
7934};
7935
e21b7a0b
AA
7936#ifdef CONFIG_BFQ_GROUP_IOSCHED
7937static struct blkcg_policy blkcg_policy_bfq = {
7938 .dfl_cftypes = bfq_blkg_files,
7939 .legacy_cftypes = bfq_blkcg_legacy_files,
7940
7941 .cpd_alloc_fn = bfq_cpd_alloc,
7942 .cpd_init_fn = bfq_cpd_init,
7943 .cpd_bind_fn = bfq_cpd_init,
7944 .cpd_free_fn = bfq_cpd_free,
7945
7946 .pd_alloc_fn = bfq_pd_alloc,
7947 .pd_init_fn = bfq_pd_init,
7948 .pd_offline_fn = bfq_pd_offline,
7949 .pd_free_fn = bfq_pd_free,
7950 .pd_reset_stats_fn = bfq_pd_reset_stats,
7951};
7952#endif
7953
aee69d78
PV
7954static int __init bfq_init(void)
7955{
7956 int ret;
7957
e21b7a0b
AA
7958#ifdef CONFIG_BFQ_GROUP_IOSCHED
7959 ret = blkcg_policy_register(&blkcg_policy_bfq);
7960 if (ret)
7961 return ret;
7962#endif
7963
aee69d78
PV
7964 ret = -ENOMEM;
7965 if (bfq_slab_setup())
7966 goto err_pol_unreg;
7967
44e44a1b
PV
7968 /*
7969 * Times to load large popular applications for the typical
7970 * systems installed on the reference devices (see the
7971 * comments before the definitions of the next two
7972 * arrays). Actually, we use slightly slower values, as the
7973 * estimated peak rate tends to be smaller than the actual
7974 * peak rate. The reason for this last fact is that estimates
7975 * are computed over much shorter time intervals than the long
7976 * intervals typically used for benchmarking. Why? First, to
7977 * adapt more quickly to variations. Second, because an I/O
7978 * scheduler cannot rely on a peak-rate-evaluation workload to
7979 * be run for a long time.
7980 */
7981 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
7982 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
7983 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7984 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7985
7986 /*
7987 * Thresholds that determine the switch between speed classes
7988 * (see the comments before the definition of the array
7989 * device_speed_thresh). These thresholds are biased towards
7990 * transitions to the fast class. This is safer than the
7991 * opposite bias. In fact, a wrong transition to the slow
7992 * class results in short weight-raising periods, because the
7993 * speed of the device then tends to be higher that the
7994 * reference peak rate. On the opposite end, a wrong
7995 * transition to the fast class tends to increase
7996 * weight-raising periods, because of the opposite reason.
7997 */
7998 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
7999 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
8000
aee69d78
PV
8001 ret = elv_register(&iosched_bfq_mq);
8002 if (ret)
8003 goto err_pol_unreg;
8004
8005 return 0;
8006
8007err_pol_unreg:
e21b7a0b
AA
8008#ifdef CONFIG_BFQ_GROUP_IOSCHED
8009 blkcg_policy_unregister(&blkcg_policy_bfq);
8010#endif
aee69d78
PV
8011 return ret;
8012}
8013
8014static void __exit bfq_exit(void)
8015{
8016 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
8017#ifdef CONFIG_BFQ_GROUP_IOSCHED
8018 blkcg_policy_unregister(&blkcg_policy_bfq);
8019#endif
aee69d78
PV
8020 bfq_slab_kill();
8021}
8022
8023module_init(bfq_init);
8024module_exit(bfq_exit);
8025
8026MODULE_AUTHOR("Paolo Valente");
8027MODULE_LICENSE("GPL");
8028MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");