]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bfq-iosched.c
block, bfq: fix wrong init of saved start time for weight raising
[mirror_ubuntu-bionic-kernel.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
43c1b3d6
PV
59 * NOTE: if the main or only goal, with a given device, is to achieve
60 * the maximum-possible throughput at all times, then do switch off
61 * all low-latency heuristics for that device, by setting low_latency
62 * to 0.
63 *
aee69d78
PV
64 * BFQ is described in [1], where also a reference to the initial, more
65 * theoretical paper on BFQ can be found. The interested reader can find
66 * in the latter paper full details on the main algorithm, as well as
67 * formulas of the guarantees and formal proofs of all the properties.
68 * With respect to the version of BFQ presented in these papers, this
69 * implementation adds a few more heuristics, such as the one that
70 * guarantees a low latency to soft real-time applications, and a
71 * hierarchical extension based on H-WF2Q+.
72 *
73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75 * with O(log N) complexity derives from the one introduced with EEVDF
76 * in [3].
77 *
78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79 * Scheduler", Proceedings of the First Workshop on Mobile System
80 * Technologies (MST-2015), May 2015.
81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82 *
83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85 * Oct 1997.
86 *
87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88 *
89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90 * First: A Flexible and Accurate Mechanism for Proportional Share
91 * Resource Allocation", technical report.
92 *
93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94 */
95#include <linux/module.h>
96#include <linux/slab.h>
97#include <linux/blkdev.h>
e21b7a0b 98#include <linux/cgroup.h>
aee69d78
PV
99#include <linux/elevator.h>
100#include <linux/ktime.h>
101#include <linux/rbtree.h>
102#include <linux/ioprio.h>
103#include <linux/sbitmap.h>
104#include <linux/delay.h>
105
106#include "blk.h"
107#include "blk-mq.h"
108#include "blk-mq-tag.h"
109#include "blk-mq-sched.h"
ea25da48 110#include "bfq-iosched.h"
aee69d78 111
ea25da48
PV
112#define BFQ_BFQQ_FNS(name) \
113void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
114{ \
115 __set_bit(BFQQF_##name, &(bfqq)->flags); \
116} \
117void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
118{ \
119 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
120} \
121int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
122{ \
123 return test_bit(BFQQF_##name, &(bfqq)->flags); \
44e44a1b
PV
124}
125
ea25da48
PV
126BFQ_BFQQ_FNS(just_created);
127BFQ_BFQQ_FNS(busy);
128BFQ_BFQQ_FNS(wait_request);
129BFQ_BFQQ_FNS(non_blocking_wait_rq);
130BFQ_BFQQ_FNS(fifo_expire);
d5be3fef 131BFQ_BFQQ_FNS(has_short_ttime);
ea25da48
PV
132BFQ_BFQQ_FNS(sync);
133BFQ_BFQQ_FNS(IO_bound);
134BFQ_BFQQ_FNS(in_large_burst);
135BFQ_BFQQ_FNS(coop);
136BFQ_BFQQ_FNS(split_coop);
137BFQ_BFQQ_FNS(softrt_update);
138#undef BFQ_BFQQ_FNS \
aee69d78 139
ea25da48
PV
140/* Expiration time of sync (0) and async (1) requests, in ns. */
141static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
aee69d78 142
ea25da48
PV
143/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
144static const int bfq_back_max = 16 * 1024;
aee69d78 145
ea25da48
PV
146/* Penalty of a backwards seek, in number of sectors. */
147static const int bfq_back_penalty = 2;
e21b7a0b 148
ea25da48
PV
149/* Idling period duration, in ns. */
150static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
aee69d78 151
ea25da48
PV
152/* Minimum number of assigned budgets for which stats are safe to compute. */
153static const int bfq_stats_min_budgets = 194;
aee69d78 154
ea25da48
PV
155/* Default maximum budget values, in sectors and number of requests. */
156static const int bfq_default_max_budget = 16 * 1024;
e21b7a0b 157
ea25da48
PV
158/*
159 * Async to sync throughput distribution is controlled as follows:
160 * when an async request is served, the entity is charged the number
161 * of sectors of the request, multiplied by the factor below
162 */
163static const int bfq_async_charge_factor = 10;
aee69d78 164
ea25da48
PV
165/* Default timeout values, in jiffies, approximating CFQ defaults. */
166const int bfq_timeout = HZ / 8;
aee69d78 167
ea25da48 168static struct kmem_cache *bfq_pool;
e21b7a0b 169
ea25da48
PV
170/* Below this threshold (in ns), we consider thinktime immediate. */
171#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
e21b7a0b 172
ea25da48
PV
173/* hw_tag detection: parallel requests threshold and min samples needed. */
174#define BFQ_HW_QUEUE_THRESHOLD 4
175#define BFQ_HW_QUEUE_SAMPLES 32
aee69d78 176
ea25da48
PV
177#define BFQQ_SEEK_THR (sector_t)(8 * 100)
178#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
179#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
180#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
aee69d78 181
ea25da48
PV
182/* Min number of samples required to perform peak-rate update */
183#define BFQ_RATE_MIN_SAMPLES 32
184/* Min observation time interval required to perform a peak-rate update (ns) */
185#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
186/* Target observation time interval for a peak-rate update (ns) */
187#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78 188
ea25da48
PV
189/* Shift used for peak rate fixed precision calculations. */
190#define BFQ_RATE_SHIFT 16
aee69d78 191
ea25da48
PV
192/*
193 * By default, BFQ computes the duration of the weight raising for
194 * interactive applications automatically, using the following formula:
195 * duration = (R / r) * T, where r is the peak rate of the device, and
196 * R and T are two reference parameters.
197 * In particular, R is the peak rate of the reference device (see below),
198 * and T is a reference time: given the systems that are likely to be
199 * installed on the reference device according to its speed class, T is
200 * about the maximum time needed, under BFQ and while reading two files in
201 * parallel, to load typical large applications on these systems.
202 * In practice, the slower/faster the device at hand is, the more/less it
203 * takes to load applications with respect to the reference device.
204 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
205 * applications.
206 *
207 * BFQ uses four different reference pairs (R, T), depending on:
208 * . whether the device is rotational or non-rotational;
209 * . whether the device is slow, such as old or portable HDDs, as well as
210 * SD cards, or fast, such as newer HDDs and SSDs.
211 *
212 * The device's speed class is dynamically (re)detected in
213 * bfq_update_peak_rate() every time the estimated peak rate is updated.
214 *
215 * In the following definitions, R_slow[0]/R_fast[0] and
216 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
217 * rotational device, whereas R_slow[1]/R_fast[1] and
218 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
219 * non-rotational device. Finally, device_speed_thresh are the
220 * thresholds used to switch between speed classes. The reference
221 * rates are not the actual peak rates of the devices used as a
222 * reference, but slightly lower values. The reason for using these
223 * slightly lower values is that the peak-rate estimator tends to
224 * yield slightly lower values than the actual peak rate (it can yield
225 * the actual peak rate only if there is only one process doing I/O,
226 * and the process does sequential I/O).
227 *
228 * Both the reference peak rates and the thresholds are measured in
229 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
230 */
231static int R_slow[2] = {1000, 10700};
232static int R_fast[2] = {14000, 33000};
233/*
234 * To improve readability, a conversion function is used to initialize the
235 * following arrays, which entails that they can be initialized only in a
236 * function.
237 */
238static int T_slow[2];
239static int T_fast[2];
240static int device_speed_thresh[2];
aee69d78 241
12cd3a2f 242#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
ea25da48 243#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
aee69d78 244
ea25da48 245struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
e21b7a0b 246{
ea25da48 247 return bic->bfqq[is_sync];
aee69d78
PV
248}
249
ea25da48 250void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
aee69d78 251{
ea25da48 252 bic->bfqq[is_sync] = bfqq;
aee69d78
PV
253}
254
ea25da48 255struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
aee69d78 256{
ea25da48 257 return bic->icq.q->elevator->elevator_data;
e21b7a0b 258}
aee69d78 259
ea25da48
PV
260/**
261 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
262 * @icq: the iocontext queue.
263 */
264static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
e21b7a0b 265{
ea25da48
PV
266 /* bic->icq is the first member, %NULL will convert to %NULL */
267 return container_of(icq, struct bfq_io_cq, icq);
e21b7a0b 268}
aee69d78 269
ea25da48
PV
270/**
271 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
272 * @bfqd: the lookup key.
273 * @ioc: the io_context of the process doing I/O.
274 * @q: the request queue.
275 */
276static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
277 struct io_context *ioc,
278 struct request_queue *q)
e21b7a0b 279{
ea25da48
PV
280 if (ioc) {
281 unsigned long flags;
282 struct bfq_io_cq *icq;
aee69d78 283
ea25da48
PV
284 spin_lock_irqsave(q->queue_lock, flags);
285 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
286 spin_unlock_irqrestore(q->queue_lock, flags);
aee69d78 287
ea25da48 288 return icq;
e21b7a0b 289 }
e21b7a0b 290
ea25da48 291 return NULL;
aee69d78
PV
292}
293
ea25da48
PV
294/*
295 * Scheduler run of queue, if there are requests pending and no one in the
296 * driver that will restart queueing.
297 */
298void bfq_schedule_dispatch(struct bfq_data *bfqd)
aee69d78 299{
ea25da48
PV
300 if (bfqd->queued != 0) {
301 bfq_log(bfqd, "schedule dispatch");
302 blk_mq_run_hw_queues(bfqd->queue, true);
e21b7a0b 303 }
aee69d78
PV
304}
305
306#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
307#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
308
309#define bfq_sample_valid(samples) ((samples) > 80)
310
aee69d78
PV
311/*
312 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
313 * We choose the request that is closesr to the head right now. Distance
314 * behind the head is penalized and only allowed to a certain extent.
315 */
316static struct request *bfq_choose_req(struct bfq_data *bfqd,
317 struct request *rq1,
318 struct request *rq2,
319 sector_t last)
320{
321 sector_t s1, s2, d1 = 0, d2 = 0;
322 unsigned long back_max;
323#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
324#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
325 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
326
327 if (!rq1 || rq1 == rq2)
328 return rq2;
329 if (!rq2)
330 return rq1;
331
332 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
333 return rq1;
334 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
335 return rq2;
336 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
337 return rq1;
338 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
339 return rq2;
340
341 s1 = blk_rq_pos(rq1);
342 s2 = blk_rq_pos(rq2);
343
344 /*
345 * By definition, 1KiB is 2 sectors.
346 */
347 back_max = bfqd->bfq_back_max * 2;
348
349 /*
350 * Strict one way elevator _except_ in the case where we allow
351 * short backward seeks which are biased as twice the cost of a
352 * similar forward seek.
353 */
354 if (s1 >= last)
355 d1 = s1 - last;
356 else if (s1 + back_max >= last)
357 d1 = (last - s1) * bfqd->bfq_back_penalty;
358 else
359 wrap |= BFQ_RQ1_WRAP;
360
361 if (s2 >= last)
362 d2 = s2 - last;
363 else if (s2 + back_max >= last)
364 d2 = (last - s2) * bfqd->bfq_back_penalty;
365 else
366 wrap |= BFQ_RQ2_WRAP;
367
368 /* Found required data */
369
370 /*
371 * By doing switch() on the bit mask "wrap" we avoid having to
372 * check two variables for all permutations: --> faster!
373 */
374 switch (wrap) {
375 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
376 if (d1 < d2)
377 return rq1;
378 else if (d2 < d1)
379 return rq2;
380
381 if (s1 >= s2)
382 return rq1;
383 else
384 return rq2;
385
386 case BFQ_RQ2_WRAP:
387 return rq1;
388 case BFQ_RQ1_WRAP:
389 return rq2;
390 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
391 default:
392 /*
393 * Since both rqs are wrapped,
394 * start with the one that's further behind head
395 * (--> only *one* back seek required),
396 * since back seek takes more time than forward.
397 */
398 if (s1 <= s2)
399 return rq1;
400 else
401 return rq2;
402 }
403}
404
36eca894
AA
405static struct bfq_queue *
406bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
407 sector_t sector, struct rb_node **ret_parent,
408 struct rb_node ***rb_link)
409{
410 struct rb_node **p, *parent;
411 struct bfq_queue *bfqq = NULL;
412
413 parent = NULL;
414 p = &root->rb_node;
415 while (*p) {
416 struct rb_node **n;
417
418 parent = *p;
419 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
420
421 /*
422 * Sort strictly based on sector. Smallest to the left,
423 * largest to the right.
424 */
425 if (sector > blk_rq_pos(bfqq->next_rq))
426 n = &(*p)->rb_right;
427 else if (sector < blk_rq_pos(bfqq->next_rq))
428 n = &(*p)->rb_left;
429 else
430 break;
431 p = n;
432 bfqq = NULL;
433 }
434
435 *ret_parent = parent;
436 if (rb_link)
437 *rb_link = p;
438
439 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
440 (unsigned long long)sector,
441 bfqq ? bfqq->pid : 0);
442
443 return bfqq;
444}
445
ea25da48 446void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
36eca894
AA
447{
448 struct rb_node **p, *parent;
449 struct bfq_queue *__bfqq;
450
451 if (bfqq->pos_root) {
452 rb_erase(&bfqq->pos_node, bfqq->pos_root);
453 bfqq->pos_root = NULL;
454 }
455
456 if (bfq_class_idle(bfqq))
457 return;
458 if (!bfqq->next_rq)
459 return;
460
461 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
462 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
463 blk_rq_pos(bfqq->next_rq), &parent, &p);
464 if (!__bfqq) {
465 rb_link_node(&bfqq->pos_node, parent, p);
466 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
467 } else
468 bfqq->pos_root = NULL;
469}
470
1de0c4cd
AA
471/*
472 * Tell whether there are active queues or groups with differentiated weights.
473 */
474static bool bfq_differentiated_weights(struct bfq_data *bfqd)
475{
476 /*
477 * For weights to differ, at least one of the trees must contain
478 * at least two nodes.
479 */
480 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
481 (bfqd->queue_weights_tree.rb_node->rb_left ||
482 bfqd->queue_weights_tree.rb_node->rb_right)
483#ifdef CONFIG_BFQ_GROUP_IOSCHED
484 ) ||
485 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
486 (bfqd->group_weights_tree.rb_node->rb_left ||
487 bfqd->group_weights_tree.rb_node->rb_right)
488#endif
489 );
490}
491
492/*
493 * The following function returns true if every queue must receive the
494 * same share of the throughput (this condition is used when deciding
495 * whether idling may be disabled, see the comments in the function
496 * bfq_bfqq_may_idle()).
497 *
498 * Such a scenario occurs when:
499 * 1) all active queues have the same weight,
500 * 2) all active groups at the same level in the groups tree have the same
501 * weight,
502 * 3) all active groups at the same level in the groups tree have the same
503 * number of children.
504 *
505 * Unfortunately, keeping the necessary state for evaluating exactly the
506 * above symmetry conditions would be quite complex and time-consuming.
507 * Therefore this function evaluates, instead, the following stronger
508 * sub-conditions, for which it is much easier to maintain the needed
509 * state:
510 * 1) all active queues have the same weight,
511 * 2) all active groups have the same weight,
512 * 3) all active groups have at most one active child each.
513 * In particular, the last two conditions are always true if hierarchical
514 * support and the cgroups interface are not enabled, thus no state needs
515 * to be maintained in this case.
516 */
517static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
518{
519 return !bfq_differentiated_weights(bfqd);
520}
521
522/*
523 * If the weight-counter tree passed as input contains no counter for
524 * the weight of the input entity, then add that counter; otherwise just
525 * increment the existing counter.
526 *
527 * Note that weight-counter trees contain few nodes in mostly symmetric
528 * scenarios. For example, if all queues have the same weight, then the
529 * weight-counter tree for the queues may contain at most one node.
530 * This holds even if low_latency is on, because weight-raised queues
531 * are not inserted in the tree.
532 * In most scenarios, the rate at which nodes are created/destroyed
533 * should be low too.
534 */
ea25da48
PV
535void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
536 struct rb_root *root)
1de0c4cd
AA
537{
538 struct rb_node **new = &(root->rb_node), *parent = NULL;
539
540 /*
541 * Do not insert if the entity is already associated with a
542 * counter, which happens if:
543 * 1) the entity is associated with a queue,
544 * 2) a request arrival has caused the queue to become both
545 * non-weight-raised, and hence change its weight, and
546 * backlogged; in this respect, each of the two events
547 * causes an invocation of this function,
548 * 3) this is the invocation of this function caused by the
549 * second event. This second invocation is actually useless,
550 * and we handle this fact by exiting immediately. More
551 * efficient or clearer solutions might possibly be adopted.
552 */
553 if (entity->weight_counter)
554 return;
555
556 while (*new) {
557 struct bfq_weight_counter *__counter = container_of(*new,
558 struct bfq_weight_counter,
559 weights_node);
560 parent = *new;
561
562 if (entity->weight == __counter->weight) {
563 entity->weight_counter = __counter;
564 goto inc_counter;
565 }
566 if (entity->weight < __counter->weight)
567 new = &((*new)->rb_left);
568 else
569 new = &((*new)->rb_right);
570 }
571
572 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
573 GFP_ATOMIC);
574
575 /*
576 * In the unlucky event of an allocation failure, we just
577 * exit. This will cause the weight of entity to not be
578 * considered in bfq_differentiated_weights, which, in its
579 * turn, causes the scenario to be deemed wrongly symmetric in
580 * case entity's weight would have been the only weight making
581 * the scenario asymmetric. On the bright side, no unbalance
582 * will however occur when entity becomes inactive again (the
583 * invocation of this function is triggered by an activation
584 * of entity). In fact, bfq_weights_tree_remove does nothing
585 * if !entity->weight_counter.
586 */
587 if (unlikely(!entity->weight_counter))
588 return;
589
590 entity->weight_counter->weight = entity->weight;
591 rb_link_node(&entity->weight_counter->weights_node, parent, new);
592 rb_insert_color(&entity->weight_counter->weights_node, root);
593
594inc_counter:
595 entity->weight_counter->num_active++;
596}
597
598/*
599 * Decrement the weight counter associated with the entity, and, if the
600 * counter reaches 0, remove the counter from the tree.
601 * See the comments to the function bfq_weights_tree_add() for considerations
602 * about overhead.
603 */
ea25da48
PV
604void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
605 struct rb_root *root)
1de0c4cd
AA
606{
607 if (!entity->weight_counter)
608 return;
609
610 entity->weight_counter->num_active--;
611 if (entity->weight_counter->num_active > 0)
612 goto reset_entity_pointer;
613
614 rb_erase(&entity->weight_counter->weights_node, root);
615 kfree(entity->weight_counter);
616
617reset_entity_pointer:
618 entity->weight_counter = NULL;
619}
620
aee69d78
PV
621/*
622 * Return expired entry, or NULL to just start from scratch in rbtree.
623 */
624static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
625 struct request *last)
626{
627 struct request *rq;
628
629 if (bfq_bfqq_fifo_expire(bfqq))
630 return NULL;
631
632 bfq_mark_bfqq_fifo_expire(bfqq);
633
634 rq = rq_entry_fifo(bfqq->fifo.next);
635
636 if (rq == last || ktime_get_ns() < rq->fifo_time)
637 return NULL;
638
639 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
640 return rq;
641}
642
643static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
644 struct bfq_queue *bfqq,
645 struct request *last)
646{
647 struct rb_node *rbnext = rb_next(&last->rb_node);
648 struct rb_node *rbprev = rb_prev(&last->rb_node);
649 struct request *next, *prev = NULL;
650
651 /* Follow expired path, else get first next available. */
652 next = bfq_check_fifo(bfqq, last);
653 if (next)
654 return next;
655
656 if (rbprev)
657 prev = rb_entry_rq(rbprev);
658
659 if (rbnext)
660 next = rb_entry_rq(rbnext);
661 else {
662 rbnext = rb_first(&bfqq->sort_list);
663 if (rbnext && rbnext != &last->rb_node)
664 next = rb_entry_rq(rbnext);
665 }
666
667 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
668}
669
c074170e 670/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
671static unsigned long bfq_serv_to_charge(struct request *rq,
672 struct bfq_queue *bfqq)
673{
44e44a1b 674 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
675 return blk_rq_sectors(rq);
676
cfd69712
PV
677 /*
678 * If there are no weight-raised queues, then amplify service
679 * by just the async charge factor; otherwise amplify service
680 * by twice the async charge factor, to further reduce latency
681 * for weight-raised queues.
682 */
683 if (bfqq->bfqd->wr_busy_queues == 0)
684 return blk_rq_sectors(rq) * bfq_async_charge_factor;
685
686 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
687}
688
689/**
690 * bfq_updated_next_req - update the queue after a new next_rq selection.
691 * @bfqd: the device data the queue belongs to.
692 * @bfqq: the queue to update.
693 *
694 * If the first request of a queue changes we make sure that the queue
695 * has enough budget to serve at least its first request (if the
696 * request has grown). We do this because if the queue has not enough
697 * budget for its first request, it has to go through two dispatch
698 * rounds to actually get it dispatched.
699 */
700static void bfq_updated_next_req(struct bfq_data *bfqd,
701 struct bfq_queue *bfqq)
702{
703 struct bfq_entity *entity = &bfqq->entity;
704 struct request *next_rq = bfqq->next_rq;
705 unsigned long new_budget;
706
707 if (!next_rq)
708 return;
709
710 if (bfqq == bfqd->in_service_queue)
711 /*
712 * In order not to break guarantees, budgets cannot be
713 * changed after an entity has been selected.
714 */
715 return;
716
717 new_budget = max_t(unsigned long, bfqq->max_budget,
718 bfq_serv_to_charge(next_rq, bfqq));
719 if (entity->budget != new_budget) {
720 entity->budget = new_budget;
721 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
722 new_budget);
80294c3b 723 bfq_requeue_bfqq(bfqd, bfqq, false);
aee69d78
PV
724 }
725}
726
36eca894 727static void
13c931bd
PV
728bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
729 struct bfq_io_cq *bic, bool bfq_already_existing)
36eca894 730{
13c931bd
PV
731 unsigned int old_wr_coeff = bfqq->wr_coeff;
732 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
733
d5be3fef
PV
734 if (bic->saved_has_short_ttime)
735 bfq_mark_bfqq_has_short_ttime(bfqq);
36eca894 736 else
d5be3fef 737 bfq_clear_bfqq_has_short_ttime(bfqq);
36eca894
AA
738
739 if (bic->saved_IO_bound)
740 bfq_mark_bfqq_IO_bound(bfqq);
741 else
742 bfq_clear_bfqq_IO_bound(bfqq);
743
744 bfqq->ttime = bic->saved_ttime;
745 bfqq->wr_coeff = bic->saved_wr_coeff;
746 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
747 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
748 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
749
e1b2324d 750 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 751 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 752 bfqq->wr_cur_max_time))) {
36eca894
AA
753 bfq_log_bfqq(bfqq->bfqd, bfqq,
754 "resume state: switching off wr");
755
756 bfqq->wr_coeff = 1;
757 }
758
759 /* make sure weight will be updated, however we got here */
760 bfqq->entity.prio_changed = 1;
13c931bd
PV
761
762 if (likely(!busy))
763 return;
764
765 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
766 bfqd->wr_busy_queues++;
767 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
768 bfqd->wr_busy_queues--;
36eca894
AA
769}
770
771static int bfqq_process_refs(struct bfq_queue *bfqq)
772{
773 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
774}
775
e1b2324d
AA
776/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
777static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
778{
779 struct bfq_queue *item;
780 struct hlist_node *n;
781
782 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
783 hlist_del_init(&item->burst_list_node);
784 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
785 bfqd->burst_size = 1;
786 bfqd->burst_parent_entity = bfqq->entity.parent;
787}
788
789/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
790static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
791{
792 /* Increment burst size to take into account also bfqq */
793 bfqd->burst_size++;
794
795 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
796 struct bfq_queue *pos, *bfqq_item;
797 struct hlist_node *n;
798
799 /*
800 * Enough queues have been activated shortly after each
801 * other to consider this burst as large.
802 */
803 bfqd->large_burst = true;
804
805 /*
806 * We can now mark all queues in the burst list as
807 * belonging to a large burst.
808 */
809 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
810 burst_list_node)
811 bfq_mark_bfqq_in_large_burst(bfqq_item);
812 bfq_mark_bfqq_in_large_burst(bfqq);
813
814 /*
815 * From now on, and until the current burst finishes, any
816 * new queue being activated shortly after the last queue
817 * was inserted in the burst can be immediately marked as
818 * belonging to a large burst. So the burst list is not
819 * needed any more. Remove it.
820 */
821 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
822 burst_list_node)
823 hlist_del_init(&pos->burst_list_node);
824 } else /*
825 * Burst not yet large: add bfqq to the burst list. Do
826 * not increment the ref counter for bfqq, because bfqq
827 * is removed from the burst list before freeing bfqq
828 * in put_queue.
829 */
830 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
831}
832
833/*
834 * If many queues belonging to the same group happen to be created
835 * shortly after each other, then the processes associated with these
836 * queues have typically a common goal. In particular, bursts of queue
837 * creations are usually caused by services or applications that spawn
838 * many parallel threads/processes. Examples are systemd during boot,
839 * or git grep. To help these processes get their job done as soon as
840 * possible, it is usually better to not grant either weight-raising
841 * or device idling to their queues.
842 *
843 * In this comment we describe, firstly, the reasons why this fact
844 * holds, and, secondly, the next function, which implements the main
845 * steps needed to properly mark these queues so that they can then be
846 * treated in a different way.
847 *
848 * The above services or applications benefit mostly from a high
849 * throughput: the quicker the requests of the activated queues are
850 * cumulatively served, the sooner the target job of these queues gets
851 * completed. As a consequence, weight-raising any of these queues,
852 * which also implies idling the device for it, is almost always
853 * counterproductive. In most cases it just lowers throughput.
854 *
855 * On the other hand, a burst of queue creations may be caused also by
856 * the start of an application that does not consist of a lot of
857 * parallel I/O-bound threads. In fact, with a complex application,
858 * several short processes may need to be executed to start-up the
859 * application. In this respect, to start an application as quickly as
860 * possible, the best thing to do is in any case to privilege the I/O
861 * related to the application with respect to all other
862 * I/O. Therefore, the best strategy to start as quickly as possible
863 * an application that causes a burst of queue creations is to
864 * weight-raise all the queues created during the burst. This is the
865 * exact opposite of the best strategy for the other type of bursts.
866 *
867 * In the end, to take the best action for each of the two cases, the
868 * two types of bursts need to be distinguished. Fortunately, this
869 * seems relatively easy, by looking at the sizes of the bursts. In
870 * particular, we found a threshold such that only bursts with a
871 * larger size than that threshold are apparently caused by
872 * services or commands such as systemd or git grep. For brevity,
873 * hereafter we call just 'large' these bursts. BFQ *does not*
874 * weight-raise queues whose creation occurs in a large burst. In
875 * addition, for each of these queues BFQ performs or does not perform
876 * idling depending on which choice boosts the throughput more. The
877 * exact choice depends on the device and request pattern at
878 * hand.
879 *
880 * Unfortunately, false positives may occur while an interactive task
881 * is starting (e.g., an application is being started). The
882 * consequence is that the queues associated with the task do not
883 * enjoy weight raising as expected. Fortunately these false positives
884 * are very rare. They typically occur if some service happens to
885 * start doing I/O exactly when the interactive task starts.
886 *
887 * Turning back to the next function, it implements all the steps
888 * needed to detect the occurrence of a large burst and to properly
889 * mark all the queues belonging to it (so that they can then be
890 * treated in a different way). This goal is achieved by maintaining a
891 * "burst list" that holds, temporarily, the queues that belong to the
892 * burst in progress. The list is then used to mark these queues as
893 * belonging to a large burst if the burst does become large. The main
894 * steps are the following.
895 *
896 * . when the very first queue is created, the queue is inserted into the
897 * list (as it could be the first queue in a possible burst)
898 *
899 * . if the current burst has not yet become large, and a queue Q that does
900 * not yet belong to the burst is activated shortly after the last time
901 * at which a new queue entered the burst list, then the function appends
902 * Q to the burst list
903 *
904 * . if, as a consequence of the previous step, the burst size reaches
905 * the large-burst threshold, then
906 *
907 * . all the queues in the burst list are marked as belonging to a
908 * large burst
909 *
910 * . the burst list is deleted; in fact, the burst list already served
911 * its purpose (keeping temporarily track of the queues in a burst,
912 * so as to be able to mark them as belonging to a large burst in the
913 * previous sub-step), and now is not needed any more
914 *
915 * . the device enters a large-burst mode
916 *
917 * . if a queue Q that does not belong to the burst is created while
918 * the device is in large-burst mode and shortly after the last time
919 * at which a queue either entered the burst list or was marked as
920 * belonging to the current large burst, then Q is immediately marked
921 * as belonging to a large burst.
922 *
923 * . if a queue Q that does not belong to the burst is created a while
924 * later, i.e., not shortly after, than the last time at which a queue
925 * either entered the burst list or was marked as belonging to the
926 * current large burst, then the current burst is deemed as finished and:
927 *
928 * . the large-burst mode is reset if set
929 *
930 * . the burst list is emptied
931 *
932 * . Q is inserted in the burst list, as Q may be the first queue
933 * in a possible new burst (then the burst list contains just Q
934 * after this step).
935 */
936static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
937{
938 /*
939 * If bfqq is already in the burst list or is part of a large
940 * burst, or finally has just been split, then there is
941 * nothing else to do.
942 */
943 if (!hlist_unhashed(&bfqq->burst_list_node) ||
944 bfq_bfqq_in_large_burst(bfqq) ||
945 time_is_after_eq_jiffies(bfqq->split_time +
946 msecs_to_jiffies(10)))
947 return;
948
949 /*
950 * If bfqq's creation happens late enough, or bfqq belongs to
951 * a different group than the burst group, then the current
952 * burst is finished, and related data structures must be
953 * reset.
954 *
955 * In this respect, consider the special case where bfqq is
956 * the very first queue created after BFQ is selected for this
957 * device. In this case, last_ins_in_burst and
958 * burst_parent_entity are not yet significant when we get
959 * here. But it is easy to verify that, whether or not the
960 * following condition is true, bfqq will end up being
961 * inserted into the burst list. In particular the list will
962 * happen to contain only bfqq. And this is exactly what has
963 * to happen, as bfqq may be the first queue of the first
964 * burst.
965 */
966 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
967 bfqd->bfq_burst_interval) ||
968 bfqq->entity.parent != bfqd->burst_parent_entity) {
969 bfqd->large_burst = false;
970 bfq_reset_burst_list(bfqd, bfqq);
971 goto end;
972 }
973
974 /*
975 * If we get here, then bfqq is being activated shortly after the
976 * last queue. So, if the current burst is also large, we can mark
977 * bfqq as belonging to this large burst immediately.
978 */
979 if (bfqd->large_burst) {
980 bfq_mark_bfqq_in_large_burst(bfqq);
981 goto end;
982 }
983
984 /*
985 * If we get here, then a large-burst state has not yet been
986 * reached, but bfqq is being activated shortly after the last
987 * queue. Then we add bfqq to the burst.
988 */
989 bfq_add_to_burst(bfqd, bfqq);
990end:
991 /*
992 * At this point, bfqq either has been added to the current
993 * burst or has caused the current burst to terminate and a
994 * possible new burst to start. In particular, in the second
995 * case, bfqq has become the first queue in the possible new
996 * burst. In both cases last_ins_in_burst needs to be moved
997 * forward.
998 */
999 bfqd->last_ins_in_burst = jiffies;
1000}
1001
aee69d78
PV
1002static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1003{
1004 struct bfq_entity *entity = &bfqq->entity;
1005
1006 return entity->budget - entity->service;
1007}
1008
1009/*
1010 * If enough samples have been computed, return the current max budget
1011 * stored in bfqd, which is dynamically updated according to the
1012 * estimated disk peak rate; otherwise return the default max budget
1013 */
1014static int bfq_max_budget(struct bfq_data *bfqd)
1015{
1016 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1017 return bfq_default_max_budget;
1018 else
1019 return bfqd->bfq_max_budget;
1020}
1021
1022/*
1023 * Return min budget, which is a fraction of the current or default
1024 * max budget (trying with 1/32)
1025 */
1026static int bfq_min_budget(struct bfq_data *bfqd)
1027{
1028 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1029 return bfq_default_max_budget / 32;
1030 else
1031 return bfqd->bfq_max_budget / 32;
1032}
1033
aee69d78
PV
1034/*
1035 * The next function, invoked after the input queue bfqq switches from
1036 * idle to busy, updates the budget of bfqq. The function also tells
1037 * whether the in-service queue should be expired, by returning
1038 * true. The purpose of expiring the in-service queue is to give bfqq
1039 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
1040 * for preempting the in-service queue is to achieve one of the two
1041 * goals below.
aee69d78 1042 *
44e44a1b
PV
1043 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1044 * expired because it has remained idle. In particular, bfqq may have
1045 * expired for one of the following two reasons:
aee69d78
PV
1046 *
1047 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1048 * and did not make it to issue a new request before its last
1049 * request was served;
1050 *
1051 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1052 * a new request before the expiration of the idling-time.
1053 *
1054 * Even if bfqq has expired for one of the above reasons, the process
1055 * associated with the queue may be however issuing requests greedily,
1056 * and thus be sensitive to the bandwidth it receives (bfqq may have
1057 * remained idle for other reasons: CPU high load, bfqq not enjoying
1058 * idling, I/O throttling somewhere in the path from the process to
1059 * the I/O scheduler, ...). But if, after every expiration for one of
1060 * the above two reasons, bfqq has to wait for the service of at least
1061 * one full budget of another queue before being served again, then
1062 * bfqq is likely to get a much lower bandwidth or resource time than
1063 * its reserved ones. To address this issue, two countermeasures need
1064 * to be taken.
1065 *
1066 * First, the budget and the timestamps of bfqq need to be updated in
1067 * a special way on bfqq reactivation: they need to be updated as if
1068 * bfqq did not remain idle and did not expire. In fact, if they are
1069 * computed as if bfqq expired and remained idle until reactivation,
1070 * then the process associated with bfqq is treated as if, instead of
1071 * being greedy, it stopped issuing requests when bfqq remained idle,
1072 * and restarts issuing requests only on this reactivation. In other
1073 * words, the scheduler does not help the process recover the "service
1074 * hole" between bfqq expiration and reactivation. As a consequence,
1075 * the process receives a lower bandwidth than its reserved one. In
1076 * contrast, to recover this hole, the budget must be updated as if
1077 * bfqq was not expired at all before this reactivation, i.e., it must
1078 * be set to the value of the remaining budget when bfqq was
1079 * expired. Along the same line, timestamps need to be assigned the
1080 * value they had the last time bfqq was selected for service, i.e.,
1081 * before last expiration. Thus timestamps need to be back-shifted
1082 * with respect to their normal computation (see [1] for more details
1083 * on this tricky aspect).
1084 *
1085 * Secondly, to allow the process to recover the hole, the in-service
1086 * queue must be expired too, to give bfqq the chance to preempt it
1087 * immediately. In fact, if bfqq has to wait for a full budget of the
1088 * in-service queue to be completed, then it may become impossible to
1089 * let the process recover the hole, even if the back-shifted
1090 * timestamps of bfqq are lower than those of the in-service queue. If
1091 * this happens for most or all of the holes, then the process may not
1092 * receive its reserved bandwidth. In this respect, it is worth noting
1093 * that, being the service of outstanding requests unpreemptible, a
1094 * little fraction of the holes may however be unrecoverable, thereby
1095 * causing a little loss of bandwidth.
1096 *
1097 * The last important point is detecting whether bfqq does need this
1098 * bandwidth recovery. In this respect, the next function deems the
1099 * process associated with bfqq greedy, and thus allows it to recover
1100 * the hole, if: 1) the process is waiting for the arrival of a new
1101 * request (which implies that bfqq expired for one of the above two
1102 * reasons), and 2) such a request has arrived soon. The first
1103 * condition is controlled through the flag non_blocking_wait_rq,
1104 * while the second through the flag arrived_in_time. If both
1105 * conditions hold, then the function computes the budget in the
1106 * above-described special way, and signals that the in-service queue
1107 * should be expired. Timestamp back-shifting is done later in
1108 * __bfq_activate_entity.
44e44a1b
PV
1109 *
1110 * 2. Reduce latency. Even if timestamps are not backshifted to let
1111 * the process associated with bfqq recover a service hole, bfqq may
1112 * however happen to have, after being (re)activated, a lower finish
1113 * timestamp than the in-service queue. That is, the next budget of
1114 * bfqq may have to be completed before the one of the in-service
1115 * queue. If this is the case, then preempting the in-service queue
1116 * allows this goal to be achieved, apart from the unpreemptible,
1117 * outstanding requests mentioned above.
1118 *
1119 * Unfortunately, regardless of which of the above two goals one wants
1120 * to achieve, service trees need first to be updated to know whether
1121 * the in-service queue must be preempted. To have service trees
1122 * correctly updated, the in-service queue must be expired and
1123 * rescheduled, and bfqq must be scheduled too. This is one of the
1124 * most costly operations (in future versions, the scheduling
1125 * mechanism may be re-designed in such a way to make it possible to
1126 * know whether preemption is needed without needing to update service
1127 * trees). In addition, queue preemptions almost always cause random
1128 * I/O, and thus loss of throughput. Because of these facts, the next
1129 * function adopts the following simple scheme to avoid both costly
1130 * operations and too frequent preemptions: it requests the expiration
1131 * of the in-service queue (unconditionally) only for queues that need
1132 * to recover a hole, or that either are weight-raised or deserve to
1133 * be weight-raised.
aee69d78
PV
1134 */
1135static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1136 struct bfq_queue *bfqq,
44e44a1b
PV
1137 bool arrived_in_time,
1138 bool wr_or_deserves_wr)
aee69d78
PV
1139{
1140 struct bfq_entity *entity = &bfqq->entity;
1141
1142 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1143 /*
1144 * We do not clear the flag non_blocking_wait_rq here, as
1145 * the latter is used in bfq_activate_bfqq to signal
1146 * that timestamps need to be back-shifted (and is
1147 * cleared right after).
1148 */
1149
1150 /*
1151 * In next assignment we rely on that either
1152 * entity->service or entity->budget are not updated
1153 * on expiration if bfqq is empty (see
1154 * __bfq_bfqq_recalc_budget). Thus both quantities
1155 * remain unchanged after such an expiration, and the
1156 * following statement therefore assigns to
1157 * entity->budget the remaining budget on such an
1158 * expiration. For clarity, entity->service is not
1159 * updated on expiration in any case, and, in normal
1160 * operation, is reset only when bfqq is selected for
1161 * service (see bfq_get_next_queue).
1162 */
1163 entity->budget = min_t(unsigned long,
1164 bfq_bfqq_budget_left(bfqq),
1165 bfqq->max_budget);
1166
1167 return true;
1168 }
1169
1170 entity->budget = max_t(unsigned long, bfqq->max_budget,
1171 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1172 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
1173 return wr_or_deserves_wr;
1174}
1175
1176static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1177{
1178 u64 dur;
1179
1180 if (bfqd->bfq_wr_max_time > 0)
1181 return bfqd->bfq_wr_max_time;
1182
1183 dur = bfqd->RT_prod;
1184 do_div(dur, bfqd->peak_rate);
1185
1186 /*
1187 * Limit duration between 3 and 13 seconds. Tests show that
1188 * higher values than 13 seconds often yield the opposite of
1189 * the desired result, i.e., worsen responsiveness by letting
1190 * non-interactive and non-soft-real-time applications
1191 * preserve weight raising for a too long time interval.
1192 *
1193 * On the other end, lower values than 3 seconds make it
1194 * difficult for most interactive tasks to complete their jobs
1195 * before weight-raising finishes.
1196 */
1197 if (dur > msecs_to_jiffies(13000))
1198 dur = msecs_to_jiffies(13000);
1199 else if (dur < msecs_to_jiffies(3000))
1200 dur = msecs_to_jiffies(3000);
1201
1202 return dur;
1203}
1204
4baa8bb1
PV
1205/*
1206 * Return the farthest future time instant according to jiffies
1207 * macros.
1208 */
1209static unsigned long bfq_greatest_from_now(void)
1210{
1211 return jiffies + MAX_JIFFY_OFFSET;
1212}
1213
1214/*
1215 * Return the farthest past time instant according to jiffies
1216 * macros.
1217 */
1218static unsigned long bfq_smallest_from_now(void)
1219{
1220 return jiffies - MAX_JIFFY_OFFSET;
1221}
1222
44e44a1b
PV
1223static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1224 struct bfq_queue *bfqq,
1225 unsigned int old_wr_coeff,
1226 bool wr_or_deserves_wr,
77b7dcea 1227 bool interactive,
e1b2324d 1228 bool in_burst,
77b7dcea 1229 bool soft_rt)
44e44a1b
PV
1230{
1231 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1232 /* start a weight-raising period */
77b7dcea
PV
1233 if (interactive) {
1234 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1235 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1236 } else {
4baa8bb1
PV
1237 /*
1238 * No interactive weight raising in progress
1239 * here: assign minus infinity to
1240 * wr_start_at_switch_to_srt, to make sure
1241 * that, at the end of the soft-real-time
1242 * weight raising periods that is starting
1243 * now, no interactive weight-raising period
1244 * may be wrongly considered as still in
1245 * progress (and thus actually started by
1246 * mistake).
1247 */
1248 bfqq->wr_start_at_switch_to_srt =
1249 bfq_smallest_from_now();
77b7dcea
PV
1250 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1251 BFQ_SOFTRT_WEIGHT_FACTOR;
1252 bfqq->wr_cur_max_time =
1253 bfqd->bfq_wr_rt_max_time;
1254 }
44e44a1b
PV
1255
1256 /*
1257 * If needed, further reduce budget to make sure it is
1258 * close to bfqq's backlog, so as to reduce the
1259 * scheduling-error component due to a too large
1260 * budget. Do not care about throughput consequences,
1261 * but only about latency. Finally, do not assign a
1262 * too small budget either, to avoid increasing
1263 * latency by causing too frequent expirations.
1264 */
1265 bfqq->entity.budget = min_t(unsigned long,
1266 bfqq->entity.budget,
1267 2 * bfq_min_budget(bfqd));
1268 } else if (old_wr_coeff > 1) {
77b7dcea
PV
1269 if (interactive) { /* update wr coeff and duration */
1270 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1271 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
1272 } else if (in_burst)
1273 bfqq->wr_coeff = 1;
1274 else if (soft_rt) {
77b7dcea
PV
1275 /*
1276 * The application is now or still meeting the
1277 * requirements for being deemed soft rt. We
1278 * can then correctly and safely (re)charge
1279 * the weight-raising duration for the
1280 * application with the weight-raising
1281 * duration for soft rt applications.
1282 *
1283 * In particular, doing this recharge now, i.e.,
1284 * before the weight-raising period for the
1285 * application finishes, reduces the probability
1286 * of the following negative scenario:
1287 * 1) the weight of a soft rt application is
1288 * raised at startup (as for any newly
1289 * created application),
1290 * 2) since the application is not interactive,
1291 * at a certain time weight-raising is
1292 * stopped for the application,
1293 * 3) at that time the application happens to
1294 * still have pending requests, and hence
1295 * is destined to not have a chance to be
1296 * deemed soft rt before these requests are
1297 * completed (see the comments to the
1298 * function bfq_bfqq_softrt_next_start()
1299 * for details on soft rt detection),
1300 * 4) these pending requests experience a high
1301 * latency because the application is not
1302 * weight-raised while they are pending.
1303 */
1304 if (bfqq->wr_cur_max_time !=
1305 bfqd->bfq_wr_rt_max_time) {
1306 bfqq->wr_start_at_switch_to_srt =
1307 bfqq->last_wr_start_finish;
1308
1309 bfqq->wr_cur_max_time =
1310 bfqd->bfq_wr_rt_max_time;
1311 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1312 BFQ_SOFTRT_WEIGHT_FACTOR;
1313 }
1314 bfqq->last_wr_start_finish = jiffies;
1315 }
44e44a1b
PV
1316 }
1317}
1318
1319static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1320 struct bfq_queue *bfqq)
1321{
1322 return bfqq->dispatched == 0 &&
1323 time_is_before_jiffies(
1324 bfqq->budget_timeout +
1325 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
1326}
1327
1328static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1329 struct bfq_queue *bfqq,
44e44a1b
PV
1330 int old_wr_coeff,
1331 struct request *rq,
1332 bool *interactive)
aee69d78 1333{
e1b2324d
AA
1334 bool soft_rt, in_burst, wr_or_deserves_wr,
1335 bfqq_wants_to_preempt,
44e44a1b 1336 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
1337 /*
1338 * See the comments on
1339 * bfq_bfqq_update_budg_for_activation for
1340 * details on the usage of the next variable.
1341 */
1342 arrived_in_time = ktime_get_ns() <=
1343 bfqq->ttime.last_end_request +
1344 bfqd->bfq_slice_idle * 3;
1345
e21b7a0b
AA
1346 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
1347
aee69d78 1348 /*
44e44a1b
PV
1349 * bfqq deserves to be weight-raised if:
1350 * - it is sync,
e1b2324d 1351 * - it does not belong to a large burst,
36eca894
AA
1352 * - it has been idle for enough time or is soft real-time,
1353 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 1354 */
e1b2324d 1355 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 1356 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 1357 !in_burst &&
77b7dcea 1358 time_is_before_jiffies(bfqq->soft_rt_next_start);
e1b2324d 1359 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
1360 wr_or_deserves_wr = bfqd->low_latency &&
1361 (bfqq->wr_coeff > 1 ||
36eca894
AA
1362 (bfq_bfqq_sync(bfqq) &&
1363 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
1364
1365 /*
1366 * Using the last flag, update budget and check whether bfqq
1367 * may want to preempt the in-service queue.
aee69d78
PV
1368 */
1369 bfqq_wants_to_preempt =
1370 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
1371 arrived_in_time,
1372 wr_or_deserves_wr);
aee69d78 1373
e1b2324d
AA
1374 /*
1375 * If bfqq happened to be activated in a burst, but has been
1376 * idle for much more than an interactive queue, then we
1377 * assume that, in the overall I/O initiated in the burst, the
1378 * I/O associated with bfqq is finished. So bfqq does not need
1379 * to be treated as a queue belonging to a burst
1380 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1381 * if set, and remove bfqq from the burst list if it's
1382 * there. We do not decrement burst_size, because the fact
1383 * that bfqq does not need to belong to the burst list any
1384 * more does not invalidate the fact that bfqq was created in
1385 * a burst.
1386 */
1387 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1388 idle_for_long_time &&
1389 time_is_before_jiffies(
1390 bfqq->budget_timeout +
1391 msecs_to_jiffies(10000))) {
1392 hlist_del_init(&bfqq->burst_list_node);
1393 bfq_clear_bfqq_in_large_burst(bfqq);
1394 }
1395
1396 bfq_clear_bfqq_just_created(bfqq);
1397
1398
aee69d78
PV
1399 if (!bfq_bfqq_IO_bound(bfqq)) {
1400 if (arrived_in_time) {
1401 bfqq->requests_within_timer++;
1402 if (bfqq->requests_within_timer >=
1403 bfqd->bfq_requests_within_timer)
1404 bfq_mark_bfqq_IO_bound(bfqq);
1405 } else
1406 bfqq->requests_within_timer = 0;
1407 }
1408
44e44a1b 1409 if (bfqd->low_latency) {
36eca894
AA
1410 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1411 /* wraparound */
1412 bfqq->split_time =
1413 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1414
1415 if (time_is_before_jiffies(bfqq->split_time +
1416 bfqd->bfq_wr_min_idle_time)) {
1417 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1418 old_wr_coeff,
1419 wr_or_deserves_wr,
1420 *interactive,
e1b2324d 1421 in_burst,
36eca894
AA
1422 soft_rt);
1423
1424 if (old_wr_coeff != bfqq->wr_coeff)
1425 bfqq->entity.prio_changed = 1;
1426 }
44e44a1b
PV
1427 }
1428
77b7dcea
PV
1429 bfqq->last_idle_bklogged = jiffies;
1430 bfqq->service_from_backlogged = 0;
1431 bfq_clear_bfqq_softrt_update(bfqq);
1432
aee69d78
PV
1433 bfq_add_bfqq_busy(bfqd, bfqq);
1434
1435 /*
1436 * Expire in-service queue only if preemption may be needed
1437 * for guarantees. In this respect, the function
1438 * next_queue_may_preempt just checks a simple, necessary
1439 * condition, and not a sufficient condition based on
1440 * timestamps. In fact, for the latter condition to be
1441 * evaluated, timestamps would need first to be updated, and
1442 * this operation is quite costly (see the comments on the
1443 * function bfq_bfqq_update_budg_for_activation).
1444 */
1445 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 1446 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
1447 next_queue_may_preempt(bfqd))
1448 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1449 false, BFQQE_PREEMPTED);
1450}
1451
1452static void bfq_add_request(struct request *rq)
1453{
1454 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1455 struct bfq_data *bfqd = bfqq->bfqd;
1456 struct request *next_rq, *prev;
44e44a1b
PV
1457 unsigned int old_wr_coeff = bfqq->wr_coeff;
1458 bool interactive = false;
aee69d78
PV
1459
1460 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1461 bfqq->queued[rq_is_sync(rq)]++;
1462 bfqd->queued++;
1463
1464 elv_rb_add(&bfqq->sort_list, rq);
1465
1466 /*
1467 * Check if this request is a better next-serve candidate.
1468 */
1469 prev = bfqq->next_rq;
1470 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1471 bfqq->next_rq = next_rq;
1472
36eca894
AA
1473 /*
1474 * Adjust priority tree position, if next_rq changes.
1475 */
1476 if (prev != bfqq->next_rq)
1477 bfq_pos_tree_add_move(bfqd, bfqq);
1478
aee69d78 1479 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
1480 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1481 rq, &interactive);
1482 else {
1483 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1484 time_is_before_jiffies(
1485 bfqq->last_wr_start_finish +
1486 bfqd->bfq_wr_min_inter_arr_async)) {
1487 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1488 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1489
cfd69712 1490 bfqd->wr_busy_queues++;
44e44a1b
PV
1491 bfqq->entity.prio_changed = 1;
1492 }
1493 if (prev != bfqq->next_rq)
1494 bfq_updated_next_req(bfqd, bfqq);
1495 }
1496
1497 /*
1498 * Assign jiffies to last_wr_start_finish in the following
1499 * cases:
1500 *
1501 * . if bfqq is not going to be weight-raised, because, for
1502 * non weight-raised queues, last_wr_start_finish stores the
1503 * arrival time of the last request; as of now, this piece
1504 * of information is used only for deciding whether to
1505 * weight-raise async queues
1506 *
1507 * . if bfqq is not weight-raised, because, if bfqq is now
1508 * switching to weight-raised, then last_wr_start_finish
1509 * stores the time when weight-raising starts
1510 *
1511 * . if bfqq is interactive, because, regardless of whether
1512 * bfqq is currently weight-raised, the weight-raising
1513 * period must start or restart (this case is considered
1514 * separately because it is not detected by the above
1515 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
1516 *
1517 * last_wr_start_finish has to be updated also if bfqq is soft
1518 * real-time, because the weight-raising period is constantly
1519 * restarted on idle-to-busy transitions for these queues, but
1520 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1521 * needed.
44e44a1b
PV
1522 */
1523 if (bfqd->low_latency &&
1524 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1525 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
1526}
1527
1528static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1529 struct bio *bio,
1530 struct request_queue *q)
1531{
1532 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1533
1534
1535 if (bfqq)
1536 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1537
1538 return NULL;
1539}
1540
ab0e43e9
PV
1541static sector_t get_sdist(sector_t last_pos, struct request *rq)
1542{
1543 if (last_pos)
1544 return abs(blk_rq_pos(rq) - last_pos);
1545
1546 return 0;
1547}
1548
aee69d78
PV
1549#if 0 /* Still not clear if we can do without next two functions */
1550static void bfq_activate_request(struct request_queue *q, struct request *rq)
1551{
1552 struct bfq_data *bfqd = q->elevator->elevator_data;
1553
1554 bfqd->rq_in_driver++;
aee69d78
PV
1555}
1556
1557static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1558{
1559 struct bfq_data *bfqd = q->elevator->elevator_data;
1560
1561 bfqd->rq_in_driver--;
1562}
1563#endif
1564
1565static void bfq_remove_request(struct request_queue *q,
1566 struct request *rq)
1567{
1568 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1569 struct bfq_data *bfqd = bfqq->bfqd;
1570 const int sync = rq_is_sync(rq);
1571
1572 if (bfqq->next_rq == rq) {
1573 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1574 bfq_updated_next_req(bfqd, bfqq);
1575 }
1576
1577 if (rq->queuelist.prev != &rq->queuelist)
1578 list_del_init(&rq->queuelist);
1579 bfqq->queued[sync]--;
1580 bfqd->queued--;
1581 elv_rb_del(&bfqq->sort_list, rq);
1582
1583 elv_rqhash_del(q, rq);
1584 if (q->last_merge == rq)
1585 q->last_merge = NULL;
1586
1587 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1588 bfqq->next_rq = NULL;
1589
1590 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 1591 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
1592 /*
1593 * bfqq emptied. In normal operation, when
1594 * bfqq is empty, bfqq->entity.service and
1595 * bfqq->entity.budget must contain,
1596 * respectively, the service received and the
1597 * budget used last time bfqq emptied. These
1598 * facts do not hold in this case, as at least
1599 * this last removal occurred while bfqq is
1600 * not in service. To avoid inconsistencies,
1601 * reset both bfqq->entity.service and
1602 * bfqq->entity.budget, if bfqq has still a
1603 * process that may issue I/O requests to it.
1604 */
1605 bfqq->entity.budget = bfqq->entity.service = 0;
1606 }
36eca894
AA
1607
1608 /*
1609 * Remove queue from request-position tree as it is empty.
1610 */
1611 if (bfqq->pos_root) {
1612 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1613 bfqq->pos_root = NULL;
1614 }
aee69d78
PV
1615 }
1616
1617 if (rq->cmd_flags & REQ_META)
1618 bfqq->meta_pending--;
e21b7a0b
AA
1619
1620 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
aee69d78
PV
1621}
1622
1623static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1624{
1625 struct request_queue *q = hctx->queue;
1626 struct bfq_data *bfqd = q->elevator->elevator_data;
1627 struct request *free = NULL;
1628 /*
1629 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1630 * store its return value for later use, to avoid nesting
1631 * queue_lock inside the bfqd->lock. We assume that the bic
1632 * returned by bfq_bic_lookup does not go away before
1633 * bfqd->lock is taken.
1634 */
1635 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1636 bool ret;
1637
1638 spin_lock_irq(&bfqd->lock);
1639
1640 if (bic)
1641 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1642 else
1643 bfqd->bio_bfqq = NULL;
1644 bfqd->bio_bic = bic;
1645
1646 ret = blk_mq_sched_try_merge(q, bio, &free);
1647
1648 if (free)
1649 blk_mq_free_request(free);
1650 spin_unlock_irq(&bfqd->lock);
1651
1652 return ret;
1653}
1654
1655static int bfq_request_merge(struct request_queue *q, struct request **req,
1656 struct bio *bio)
1657{
1658 struct bfq_data *bfqd = q->elevator->elevator_data;
1659 struct request *__rq;
1660
1661 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1662 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1663 *req = __rq;
1664 return ELEVATOR_FRONT_MERGE;
1665 }
1666
1667 return ELEVATOR_NO_MERGE;
1668}
1669
1670static void bfq_request_merged(struct request_queue *q, struct request *req,
1671 enum elv_merge type)
1672{
1673 if (type == ELEVATOR_FRONT_MERGE &&
1674 rb_prev(&req->rb_node) &&
1675 blk_rq_pos(req) <
1676 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1677 struct request, rb_node))) {
1678 struct bfq_queue *bfqq = RQ_BFQQ(req);
1679 struct bfq_data *bfqd = bfqq->bfqd;
1680 struct request *prev, *next_rq;
1681
1682 /* Reposition request in its sort_list */
1683 elv_rb_del(&bfqq->sort_list, req);
1684 elv_rb_add(&bfqq->sort_list, req);
1685
1686 /* Choose next request to be served for bfqq */
1687 prev = bfqq->next_rq;
1688 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1689 bfqd->last_position);
1690 bfqq->next_rq = next_rq;
1691 /*
36eca894
AA
1692 * If next_rq changes, update both the queue's budget to
1693 * fit the new request and the queue's position in its
1694 * rq_pos_tree.
aee69d78 1695 */
36eca894 1696 if (prev != bfqq->next_rq) {
aee69d78 1697 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
1698 bfq_pos_tree_add_move(bfqd, bfqq);
1699 }
aee69d78
PV
1700 }
1701}
1702
1703static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1704 struct request *next)
1705{
1706 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1707
1708 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 1709 goto end;
aee69d78
PV
1710 spin_lock_irq(&bfqq->bfqd->lock);
1711
1712 /*
1713 * If next and rq belong to the same bfq_queue and next is older
1714 * than rq, then reposition rq in the fifo (by substituting next
1715 * with rq). Otherwise, if next and rq belong to different
1716 * bfq_queues, never reposition rq: in fact, we would have to
1717 * reposition it with respect to next's position in its own fifo,
1718 * which would most certainly be too expensive with respect to
1719 * the benefits.
1720 */
1721 if (bfqq == next_bfqq &&
1722 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1723 next->fifo_time < rq->fifo_time) {
1724 list_del_init(&rq->queuelist);
1725 list_replace_init(&next->queuelist, &rq->queuelist);
1726 rq->fifo_time = next->fifo_time;
1727 }
1728
1729 if (bfqq->next_rq == next)
1730 bfqq->next_rq = rq;
1731
1732 bfq_remove_request(q, next);
1733
1734 spin_unlock_irq(&bfqq->bfqd->lock);
e21b7a0b
AA
1735end:
1736 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1737}
1738
44e44a1b
PV
1739/* Must be called with bfqq != NULL */
1740static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1741{
cfd69712
PV
1742 if (bfq_bfqq_busy(bfqq))
1743 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
1744 bfqq->wr_coeff = 1;
1745 bfqq->wr_cur_max_time = 0;
77b7dcea 1746 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
1747 /*
1748 * Trigger a weight change on the next invocation of
1749 * __bfq_entity_update_weight_prio.
1750 */
1751 bfqq->entity.prio_changed = 1;
1752}
1753
ea25da48
PV
1754void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1755 struct bfq_group *bfqg)
44e44a1b
PV
1756{
1757 int i, j;
1758
1759 for (i = 0; i < 2; i++)
1760 for (j = 0; j < IOPRIO_BE_NR; j++)
1761 if (bfqg->async_bfqq[i][j])
1762 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1763 if (bfqg->async_idle_bfqq)
1764 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1765}
1766
1767static void bfq_end_wr(struct bfq_data *bfqd)
1768{
1769 struct bfq_queue *bfqq;
1770
1771 spin_lock_irq(&bfqd->lock);
1772
1773 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1774 bfq_bfqq_end_wr(bfqq);
1775 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1776 bfq_bfqq_end_wr(bfqq);
1777 bfq_end_wr_async(bfqd);
1778
1779 spin_unlock_irq(&bfqd->lock);
1780}
1781
36eca894
AA
1782static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1783{
1784 if (request)
1785 return blk_rq_pos(io_struct);
1786 else
1787 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1788}
1789
1790static int bfq_rq_close_to_sector(void *io_struct, bool request,
1791 sector_t sector)
1792{
1793 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1794 BFQQ_CLOSE_THR;
1795}
1796
1797static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1798 struct bfq_queue *bfqq,
1799 sector_t sector)
1800{
1801 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1802 struct rb_node *parent, *node;
1803 struct bfq_queue *__bfqq;
1804
1805 if (RB_EMPTY_ROOT(root))
1806 return NULL;
1807
1808 /*
1809 * First, if we find a request starting at the end of the last
1810 * request, choose it.
1811 */
1812 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1813 if (__bfqq)
1814 return __bfqq;
1815
1816 /*
1817 * If the exact sector wasn't found, the parent of the NULL leaf
1818 * will contain the closest sector (rq_pos_tree sorted by
1819 * next_request position).
1820 */
1821 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1822 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1823 return __bfqq;
1824
1825 if (blk_rq_pos(__bfqq->next_rq) < sector)
1826 node = rb_next(&__bfqq->pos_node);
1827 else
1828 node = rb_prev(&__bfqq->pos_node);
1829 if (!node)
1830 return NULL;
1831
1832 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
1833 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1834 return __bfqq;
1835
1836 return NULL;
1837}
1838
1839static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1840 struct bfq_queue *cur_bfqq,
1841 sector_t sector)
1842{
1843 struct bfq_queue *bfqq;
1844
1845 /*
1846 * We shall notice if some of the queues are cooperating,
1847 * e.g., working closely on the same area of the device. In
1848 * that case, we can group them together and: 1) don't waste
1849 * time idling, and 2) serve the union of their requests in
1850 * the best possible order for throughput.
1851 */
1852 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1853 if (!bfqq || bfqq == cur_bfqq)
1854 return NULL;
1855
1856 return bfqq;
1857}
1858
1859static struct bfq_queue *
1860bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1861{
1862 int process_refs, new_process_refs;
1863 struct bfq_queue *__bfqq;
1864
1865 /*
1866 * If there are no process references on the new_bfqq, then it is
1867 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1868 * may have dropped their last reference (not just their last process
1869 * reference).
1870 */
1871 if (!bfqq_process_refs(new_bfqq))
1872 return NULL;
1873
1874 /* Avoid a circular list and skip interim queue merges. */
1875 while ((__bfqq = new_bfqq->new_bfqq)) {
1876 if (__bfqq == bfqq)
1877 return NULL;
1878 new_bfqq = __bfqq;
1879 }
1880
1881 process_refs = bfqq_process_refs(bfqq);
1882 new_process_refs = bfqq_process_refs(new_bfqq);
1883 /*
1884 * If the process for the bfqq has gone away, there is no
1885 * sense in merging the queues.
1886 */
1887 if (process_refs == 0 || new_process_refs == 0)
1888 return NULL;
1889
1890 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1891 new_bfqq->pid);
1892
1893 /*
1894 * Merging is just a redirection: the requests of the process
1895 * owning one of the two queues are redirected to the other queue.
1896 * The latter queue, in its turn, is set as shared if this is the
1897 * first time that the requests of some process are redirected to
1898 * it.
1899 *
6fa3e8d3
PV
1900 * We redirect bfqq to new_bfqq and not the opposite, because
1901 * we are in the context of the process owning bfqq, thus we
1902 * have the io_cq of this process. So we can immediately
1903 * configure this io_cq to redirect the requests of the
1904 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1905 * not available any more (new_bfqq->bic == NULL).
36eca894 1906 *
6fa3e8d3
PV
1907 * Anyway, even in case new_bfqq coincides with the in-service
1908 * queue, redirecting requests the in-service queue is the
1909 * best option, as we feed the in-service queue with new
1910 * requests close to the last request served and, by doing so,
1911 * are likely to increase the throughput.
36eca894
AA
1912 */
1913 bfqq->new_bfqq = new_bfqq;
1914 new_bfqq->ref += process_refs;
1915 return new_bfqq;
1916}
1917
1918static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1919 struct bfq_queue *new_bfqq)
1920{
1921 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1922 (bfqq->ioprio_class != new_bfqq->ioprio_class))
1923 return false;
1924
1925 /*
1926 * If either of the queues has already been detected as seeky,
1927 * then merging it with the other queue is unlikely to lead to
1928 * sequential I/O.
1929 */
1930 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1931 return false;
1932
1933 /*
1934 * Interleaved I/O is known to be done by (some) applications
1935 * only for reads, so it does not make sense to merge async
1936 * queues.
1937 */
1938 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1939 return false;
1940
1941 return true;
1942}
1943
1944/*
1945 * If this function returns true, then bfqq cannot be merged. The idea
1946 * is that true cooperation happens very early after processes start
1947 * to do I/O. Usually, late cooperations are just accidental false
1948 * positives. In case bfqq is weight-raised, such false positives
1949 * would evidently degrade latency guarantees for bfqq.
1950 */
1951static bool wr_from_too_long(struct bfq_queue *bfqq)
1952{
1953 return bfqq->wr_coeff > 1 &&
1954 time_is_before_jiffies(bfqq->last_wr_start_finish +
1955 msecs_to_jiffies(100));
1956}
1957
1958/*
1959 * Attempt to schedule a merge of bfqq with the currently in-service
1960 * queue or with a close queue among the scheduled queues. Return
1961 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1962 * structure otherwise.
1963 *
1964 * The OOM queue is not allowed to participate to cooperation: in fact, since
1965 * the requests temporarily redirected to the OOM queue could be redirected
1966 * again to dedicated queues at any time, the state needed to correctly
1967 * handle merging with the OOM queue would be quite complex and expensive
1968 * to maintain. Besides, in such a critical condition as an out of memory,
1969 * the benefits of queue merging may be little relevant, or even negligible.
1970 *
1971 * Weight-raised queues can be merged only if their weight-raising
1972 * period has just started. In fact cooperating processes are usually
1973 * started together. Thus, with this filter we avoid false positives
1974 * that would jeopardize low-latency guarantees.
1975 *
1976 * WARNING: queue merging may impair fairness among non-weight raised
1977 * queues, for at least two reasons: 1) the original weight of a
1978 * merged queue may change during the merged state, 2) even being the
1979 * weight the same, a merged queue may be bloated with many more
1980 * requests than the ones produced by its originally-associated
1981 * process.
1982 */
1983static struct bfq_queue *
1984bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1985 void *io_struct, bool request)
1986{
1987 struct bfq_queue *in_service_bfqq, *new_bfqq;
1988
1989 if (bfqq->new_bfqq)
1990 return bfqq->new_bfqq;
1991
1992 if (!io_struct ||
1993 wr_from_too_long(bfqq) ||
1994 unlikely(bfqq == &bfqd->oom_bfqq))
1995 return NULL;
1996
1997 /* If there is only one backlogged queue, don't search. */
1998 if (bfqd->busy_queues == 1)
1999 return NULL;
2000
2001 in_service_bfqq = bfqd->in_service_queue;
2002
6fa3e8d3
PV
2003 if (!in_service_bfqq || in_service_bfqq == bfqq
2004 || wr_from_too_long(in_service_bfqq) ||
36eca894
AA
2005 unlikely(in_service_bfqq == &bfqd->oom_bfqq))
2006 goto check_scheduled;
2007
2008 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2009 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2010 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2011 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2012 if (new_bfqq)
2013 return new_bfqq;
2014 }
2015 /*
2016 * Check whether there is a cooperator among currently scheduled
2017 * queues. The only thing we need is that the bio/request is not
2018 * NULL, as we need it to establish whether a cooperator exists.
2019 */
2020check_scheduled:
2021 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2022 bfq_io_struct_pos(io_struct, request));
2023
2024 if (new_bfqq && !wr_from_too_long(new_bfqq) &&
2025 likely(new_bfqq != &bfqd->oom_bfqq) &&
2026 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2027 return bfq_setup_merge(bfqq, new_bfqq);
2028
2029 return NULL;
2030}
2031
2032static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2033{
2034 struct bfq_io_cq *bic = bfqq->bic;
2035
2036 /*
2037 * If !bfqq->bic, the queue is already shared or its requests
2038 * have already been redirected to a shared queue; both idle window
2039 * and weight raising state have already been saved. Do nothing.
2040 */
2041 if (!bic)
2042 return;
2043
2044 bic->saved_ttime = bfqq->ttime;
d5be3fef 2045 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
36eca894 2046 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
2047 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2048 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
36eca894
AA
2049 bic->saved_wr_coeff = bfqq->wr_coeff;
2050 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
2051 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2052 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2053}
2054
36eca894
AA
2055static void
2056bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2057 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2058{
2059 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2060 (unsigned long)new_bfqq->pid);
2061 /* Save weight raising and idle window of the merged queues */
2062 bfq_bfqq_save_state(bfqq);
2063 bfq_bfqq_save_state(new_bfqq);
2064 if (bfq_bfqq_IO_bound(bfqq))
2065 bfq_mark_bfqq_IO_bound(new_bfqq);
2066 bfq_clear_bfqq_IO_bound(bfqq);
2067
2068 /*
2069 * If bfqq is weight-raised, then let new_bfqq inherit
2070 * weight-raising. To reduce false positives, neglect the case
2071 * where bfqq has just been created, but has not yet made it
2072 * to be weight-raised (which may happen because EQM may merge
2073 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
2074 * time for bfqq). Handling this case would however be very
2075 * easy, thanks to the flag just_created.
36eca894
AA
2076 */
2077 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2078 new_bfqq->wr_coeff = bfqq->wr_coeff;
2079 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2080 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2081 new_bfqq->wr_start_at_switch_to_srt =
2082 bfqq->wr_start_at_switch_to_srt;
2083 if (bfq_bfqq_busy(new_bfqq))
2084 bfqd->wr_busy_queues++;
2085 new_bfqq->entity.prio_changed = 1;
2086 }
2087
2088 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2089 bfqq->wr_coeff = 1;
2090 bfqq->entity.prio_changed = 1;
2091 if (bfq_bfqq_busy(bfqq))
2092 bfqd->wr_busy_queues--;
2093 }
2094
2095 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2096 bfqd->wr_busy_queues);
2097
36eca894
AA
2098 /*
2099 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2100 */
2101 bic_set_bfqq(bic, new_bfqq, 1);
2102 bfq_mark_bfqq_coop(new_bfqq);
2103 /*
2104 * new_bfqq now belongs to at least two bics (it is a shared queue):
2105 * set new_bfqq->bic to NULL. bfqq either:
2106 * - does not belong to any bic any more, and hence bfqq->bic must
2107 * be set to NULL, or
2108 * - is a queue whose owning bics have already been redirected to a
2109 * different queue, hence the queue is destined to not belong to
2110 * any bic soon and bfqq->bic is already NULL (therefore the next
2111 * assignment causes no harm).
2112 */
2113 new_bfqq->bic = NULL;
2114 bfqq->bic = NULL;
2115 /* release process reference to bfqq */
2116 bfq_put_queue(bfqq);
2117}
2118
aee69d78
PV
2119static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2120 struct bio *bio)
2121{
2122 struct bfq_data *bfqd = q->elevator->elevator_data;
2123 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 2124 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
2125
2126 /*
2127 * Disallow merge of a sync bio into an async request.
2128 */
2129 if (is_sync && !rq_is_sync(rq))
2130 return false;
2131
2132 /*
2133 * Lookup the bfqq that this bio will be queued with. Allow
2134 * merge only if rq is queued there.
2135 */
2136 if (!bfqq)
2137 return false;
2138
36eca894
AA
2139 /*
2140 * We take advantage of this function to perform an early merge
2141 * of the queues of possible cooperating processes.
2142 */
2143 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2144 if (new_bfqq) {
2145 /*
2146 * bic still points to bfqq, then it has not yet been
2147 * redirected to some other bfq_queue, and a queue
2148 * merge beween bfqq and new_bfqq can be safely
2149 * fulfillled, i.e., bic can be redirected to new_bfqq
2150 * and bfqq can be put.
2151 */
2152 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2153 new_bfqq);
2154 /*
2155 * If we get here, bio will be queued into new_queue,
2156 * so use new_bfqq to decide whether bio and rq can be
2157 * merged.
2158 */
2159 bfqq = new_bfqq;
2160
2161 /*
2162 * Change also bqfd->bio_bfqq, as
2163 * bfqd->bio_bic now points to new_bfqq, and
2164 * this function may be invoked again (and then may
2165 * use again bqfd->bio_bfqq).
2166 */
2167 bfqd->bio_bfqq = bfqq;
2168 }
2169
aee69d78
PV
2170 return bfqq == RQ_BFQQ(rq);
2171}
2172
44e44a1b
PV
2173/*
2174 * Set the maximum time for the in-service queue to consume its
2175 * budget. This prevents seeky processes from lowering the throughput.
2176 * In practice, a time-slice service scheme is used with seeky
2177 * processes.
2178 */
2179static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2180 struct bfq_queue *bfqq)
2181{
77b7dcea
PV
2182 unsigned int timeout_coeff;
2183
2184 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2185 timeout_coeff = 1;
2186 else
2187 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2188
44e44a1b
PV
2189 bfqd->last_budget_start = ktime_get();
2190
2191 bfqq->budget_timeout = jiffies +
77b7dcea 2192 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
2193}
2194
aee69d78
PV
2195static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2196 struct bfq_queue *bfqq)
2197{
2198 if (bfqq) {
e21b7a0b 2199 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
aee69d78
PV
2200 bfq_clear_bfqq_fifo_expire(bfqq);
2201
2202 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2203
77b7dcea
PV
2204 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2205 bfqq->wr_coeff > 1 &&
2206 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2207 time_is_before_jiffies(bfqq->budget_timeout)) {
2208 /*
2209 * For soft real-time queues, move the start
2210 * of the weight-raising period forward by the
2211 * time the queue has not received any
2212 * service. Otherwise, a relatively long
2213 * service delay is likely to cause the
2214 * weight-raising period of the queue to end,
2215 * because of the short duration of the
2216 * weight-raising period of a soft real-time
2217 * queue. It is worth noting that this move
2218 * is not so dangerous for the other queues,
2219 * because soft real-time queues are not
2220 * greedy.
2221 *
2222 * To not add a further variable, we use the
2223 * overloaded field budget_timeout to
2224 * determine for how long the queue has not
2225 * received service, i.e., how much time has
2226 * elapsed since the queue expired. However,
2227 * this is a little imprecise, because
2228 * budget_timeout is set to jiffies if bfqq
2229 * not only expires, but also remains with no
2230 * request.
2231 */
2232 if (time_after(bfqq->budget_timeout,
2233 bfqq->last_wr_start_finish))
2234 bfqq->last_wr_start_finish +=
2235 jiffies - bfqq->budget_timeout;
2236 else
2237 bfqq->last_wr_start_finish = jiffies;
2238 }
2239
44e44a1b 2240 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
2241 bfq_log_bfqq(bfqd, bfqq,
2242 "set_in_service_queue, cur-budget = %d",
2243 bfqq->entity.budget);
2244 }
2245
2246 bfqd->in_service_queue = bfqq;
2247}
2248
2249/*
2250 * Get and set a new queue for service.
2251 */
2252static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2253{
2254 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2255
2256 __bfq_set_in_service_queue(bfqd, bfqq);
2257 return bfqq;
2258}
2259
aee69d78
PV
2260static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2261{
2262 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
2263 u32 sl;
2264
aee69d78
PV
2265 bfq_mark_bfqq_wait_request(bfqq);
2266
2267 /*
2268 * We don't want to idle for seeks, but we do want to allow
2269 * fair distribution of slice time for a process doing back-to-back
2270 * seeks. So allow a little bit of time for him to submit a new rq.
2271 */
2272 sl = bfqd->bfq_slice_idle;
2273 /*
1de0c4cd
AA
2274 * Unless the queue is being weight-raised or the scenario is
2275 * asymmetric, grant only minimum idle time if the queue
2276 * is seeky. A long idling is preserved for a weight-raised
2277 * queue, or, more in general, in an asymmetric scenario,
2278 * because a long idling is needed for guaranteeing to a queue
2279 * its reserved share of the throughput (in particular, it is
2280 * needed if the queue has a higher weight than some other
2281 * queue).
aee69d78 2282 */
1de0c4cd
AA
2283 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2284 bfq_symmetric_scenario(bfqd))
aee69d78
PV
2285 sl = min_t(u64, sl, BFQ_MIN_TT);
2286
2287 bfqd->last_idling_start = ktime_get();
2288 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2289 HRTIMER_MODE_REL);
e21b7a0b 2290 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
2291}
2292
ab0e43e9
PV
2293/*
2294 * In autotuning mode, max_budget is dynamically recomputed as the
2295 * amount of sectors transferred in timeout at the estimated peak
2296 * rate. This enables BFQ to utilize a full timeslice with a full
2297 * budget, even if the in-service queue is served at peak rate. And
2298 * this maximises throughput with sequential workloads.
2299 */
2300static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2301{
2302 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2303 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2304}
2305
44e44a1b
PV
2306/*
2307 * Update parameters related to throughput and responsiveness, as a
2308 * function of the estimated peak rate. See comments on
2309 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2310 */
2311static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2312{
2313 int dev_type = blk_queue_nonrot(bfqd->queue);
2314
2315 if (bfqd->bfq_user_max_budget == 0)
2316 bfqd->bfq_max_budget =
2317 bfq_calc_max_budget(bfqd);
2318
2319 if (bfqd->device_speed == BFQ_BFQD_FAST &&
2320 bfqd->peak_rate < device_speed_thresh[dev_type]) {
2321 bfqd->device_speed = BFQ_BFQD_SLOW;
2322 bfqd->RT_prod = R_slow[dev_type] *
2323 T_slow[dev_type];
2324 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2325 bfqd->peak_rate > device_speed_thresh[dev_type]) {
2326 bfqd->device_speed = BFQ_BFQD_FAST;
2327 bfqd->RT_prod = R_fast[dev_type] *
2328 T_fast[dev_type];
2329 }
2330
2331 bfq_log(bfqd,
2332"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2333 dev_type == 0 ? "ROT" : "NONROT",
2334 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2335 bfqd->device_speed == BFQ_BFQD_FAST ?
2336 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2337 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2338 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2339 BFQ_RATE_SHIFT);
2340}
2341
ab0e43e9
PV
2342static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2343 struct request *rq)
2344{
2345 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2346 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2347 bfqd->peak_rate_samples = 1;
2348 bfqd->sequential_samples = 0;
2349 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2350 blk_rq_sectors(rq);
2351 } else /* no new rq dispatched, just reset the number of samples */
2352 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2353
2354 bfq_log(bfqd,
2355 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2356 bfqd->peak_rate_samples, bfqd->sequential_samples,
2357 bfqd->tot_sectors_dispatched);
2358}
2359
2360static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2361{
2362 u32 rate, weight, divisor;
2363
2364 /*
2365 * For the convergence property to hold (see comments on
2366 * bfq_update_peak_rate()) and for the assessment to be
2367 * reliable, a minimum number of samples must be present, and
2368 * a minimum amount of time must have elapsed. If not so, do
2369 * not compute new rate. Just reset parameters, to get ready
2370 * for a new evaluation attempt.
2371 */
2372 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2373 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2374 goto reset_computation;
2375
2376 /*
2377 * If a new request completion has occurred after last
2378 * dispatch, then, to approximate the rate at which requests
2379 * have been served by the device, it is more precise to
2380 * extend the observation interval to the last completion.
2381 */
2382 bfqd->delta_from_first =
2383 max_t(u64, bfqd->delta_from_first,
2384 bfqd->last_completion - bfqd->first_dispatch);
2385
2386 /*
2387 * Rate computed in sects/usec, and not sects/nsec, for
2388 * precision issues.
2389 */
2390 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2391 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2392
2393 /*
2394 * Peak rate not updated if:
2395 * - the percentage of sequential dispatches is below 3/4 of the
2396 * total, and rate is below the current estimated peak rate
2397 * - rate is unreasonably high (> 20M sectors/sec)
2398 */
2399 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2400 rate <= bfqd->peak_rate) ||
2401 rate > 20<<BFQ_RATE_SHIFT)
2402 goto reset_computation;
2403
2404 /*
2405 * We have to update the peak rate, at last! To this purpose,
2406 * we use a low-pass filter. We compute the smoothing constant
2407 * of the filter as a function of the 'weight' of the new
2408 * measured rate.
2409 *
2410 * As can be seen in next formulas, we define this weight as a
2411 * quantity proportional to how sequential the workload is,
2412 * and to how long the observation time interval is.
2413 *
2414 * The weight runs from 0 to 8. The maximum value of the
2415 * weight, 8, yields the minimum value for the smoothing
2416 * constant. At this minimum value for the smoothing constant,
2417 * the measured rate contributes for half of the next value of
2418 * the estimated peak rate.
2419 *
2420 * So, the first step is to compute the weight as a function
2421 * of how sequential the workload is. Note that the weight
2422 * cannot reach 9, because bfqd->sequential_samples cannot
2423 * become equal to bfqd->peak_rate_samples, which, in its
2424 * turn, holds true because bfqd->sequential_samples is not
2425 * incremented for the first sample.
2426 */
2427 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2428
2429 /*
2430 * Second step: further refine the weight as a function of the
2431 * duration of the observation interval.
2432 */
2433 weight = min_t(u32, 8,
2434 div_u64(weight * bfqd->delta_from_first,
2435 BFQ_RATE_REF_INTERVAL));
2436
2437 /*
2438 * Divisor ranging from 10, for minimum weight, to 2, for
2439 * maximum weight.
2440 */
2441 divisor = 10 - weight;
2442
2443 /*
2444 * Finally, update peak rate:
2445 *
2446 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2447 */
2448 bfqd->peak_rate *= divisor-1;
2449 bfqd->peak_rate /= divisor;
2450 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2451
2452 bfqd->peak_rate += rate;
44e44a1b 2453 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
2454
2455reset_computation:
2456 bfq_reset_rate_computation(bfqd, rq);
2457}
2458
2459/*
2460 * Update the read/write peak rate (the main quantity used for
2461 * auto-tuning, see update_thr_responsiveness_params()).
2462 *
2463 * It is not trivial to estimate the peak rate (correctly): because of
2464 * the presence of sw and hw queues between the scheduler and the
2465 * device components that finally serve I/O requests, it is hard to
2466 * say exactly when a given dispatched request is served inside the
2467 * device, and for how long. As a consequence, it is hard to know
2468 * precisely at what rate a given set of requests is actually served
2469 * by the device.
2470 *
2471 * On the opposite end, the dispatch time of any request is trivially
2472 * available, and, from this piece of information, the "dispatch rate"
2473 * of requests can be immediately computed. So, the idea in the next
2474 * function is to use what is known, namely request dispatch times
2475 * (plus, when useful, request completion times), to estimate what is
2476 * unknown, namely in-device request service rate.
2477 *
2478 * The main issue is that, because of the above facts, the rate at
2479 * which a certain set of requests is dispatched over a certain time
2480 * interval can vary greatly with respect to the rate at which the
2481 * same requests are then served. But, since the size of any
2482 * intermediate queue is limited, and the service scheme is lossless
2483 * (no request is silently dropped), the following obvious convergence
2484 * property holds: the number of requests dispatched MUST become
2485 * closer and closer to the number of requests completed as the
2486 * observation interval grows. This is the key property used in
2487 * the next function to estimate the peak service rate as a function
2488 * of the observed dispatch rate. The function assumes to be invoked
2489 * on every request dispatch.
2490 */
2491static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2492{
2493 u64 now_ns = ktime_get_ns();
2494
2495 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2496 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2497 bfqd->peak_rate_samples);
2498 bfq_reset_rate_computation(bfqd, rq);
2499 goto update_last_values; /* will add one sample */
2500 }
2501
2502 /*
2503 * Device idle for very long: the observation interval lasting
2504 * up to this dispatch cannot be a valid observation interval
2505 * for computing a new peak rate (similarly to the late-
2506 * completion event in bfq_completed_request()). Go to
2507 * update_rate_and_reset to have the following three steps
2508 * taken:
2509 * - close the observation interval at the last (previous)
2510 * request dispatch or completion
2511 * - compute rate, if possible, for that observation interval
2512 * - start a new observation interval with this dispatch
2513 */
2514 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2515 bfqd->rq_in_driver == 0)
2516 goto update_rate_and_reset;
2517
2518 /* Update sampling information */
2519 bfqd->peak_rate_samples++;
2520
2521 if ((bfqd->rq_in_driver > 0 ||
2522 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2523 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2524 bfqd->sequential_samples++;
2525
2526 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2527
2528 /* Reset max observed rq size every 32 dispatches */
2529 if (likely(bfqd->peak_rate_samples % 32))
2530 bfqd->last_rq_max_size =
2531 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2532 else
2533 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2534
2535 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2536
2537 /* Target observation interval not yet reached, go on sampling */
2538 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2539 goto update_last_values;
2540
2541update_rate_and_reset:
2542 bfq_update_rate_reset(bfqd, rq);
2543update_last_values:
2544 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2545 bfqd->last_dispatch = now_ns;
2546}
2547
aee69d78
PV
2548/*
2549 * Remove request from internal lists.
2550 */
2551static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2552{
2553 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2554
2555 /*
2556 * For consistency, the next instruction should have been
2557 * executed after removing the request from the queue and
2558 * dispatching it. We execute instead this instruction before
2559 * bfq_remove_request() (and hence introduce a temporary
2560 * inconsistency), for efficiency. In fact, should this
2561 * dispatch occur for a non in-service bfqq, this anticipated
2562 * increment prevents two counters related to bfqq->dispatched
2563 * from risking to be, first, uselessly decremented, and then
2564 * incremented again when the (new) value of bfqq->dispatched
2565 * happens to be taken into account.
2566 */
2567 bfqq->dispatched++;
ab0e43e9 2568 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
2569
2570 bfq_remove_request(q, rq);
2571}
2572
2573static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2574{
36eca894
AA
2575 /*
2576 * If this bfqq is shared between multiple processes, check
2577 * to make sure that those processes are still issuing I/Os
2578 * within the mean seek distance. If not, it may be time to
2579 * break the queues apart again.
2580 */
2581 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2582 bfq_mark_bfqq_split_coop(bfqq);
2583
44e44a1b
PV
2584 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2585 if (bfqq->dispatched == 0)
2586 /*
2587 * Overloading budget_timeout field to store
2588 * the time at which the queue remains with no
2589 * backlog and no outstanding request; used by
2590 * the weight-raising mechanism.
2591 */
2592 bfqq->budget_timeout = jiffies;
2593
e21b7a0b 2594 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 2595 } else {
80294c3b 2596 bfq_requeue_bfqq(bfqd, bfqq, true);
36eca894
AA
2597 /*
2598 * Resort priority tree of potential close cooperators.
2599 */
2600 bfq_pos_tree_add_move(bfqd, bfqq);
2601 }
e21b7a0b
AA
2602
2603 /*
2604 * All in-service entities must have been properly deactivated
2605 * or requeued before executing the next function, which
2606 * resets all in-service entites as no more in service.
2607 */
2608 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
2609}
2610
2611/**
2612 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2613 * @bfqd: device data.
2614 * @bfqq: queue to update.
2615 * @reason: reason for expiration.
2616 *
2617 * Handle the feedback on @bfqq budget at queue expiration.
2618 * See the body for detailed comments.
2619 */
2620static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2621 struct bfq_queue *bfqq,
2622 enum bfqq_expiration reason)
2623{
2624 struct request *next_rq;
2625 int budget, min_budget;
2626
aee69d78
PV
2627 min_budget = bfq_min_budget(bfqd);
2628
44e44a1b
PV
2629 if (bfqq->wr_coeff == 1)
2630 budget = bfqq->max_budget;
2631 else /*
2632 * Use a constant, low budget for weight-raised queues,
2633 * to help achieve a low latency. Keep it slightly higher
2634 * than the minimum possible budget, to cause a little
2635 * bit fewer expirations.
2636 */
2637 budget = 2 * min_budget;
2638
aee69d78
PV
2639 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2640 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2641 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2642 budget, bfq_min_budget(bfqd));
2643 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2644 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2645
44e44a1b 2646 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
2647 switch (reason) {
2648 /*
2649 * Caveat: in all the following cases we trade latency
2650 * for throughput.
2651 */
2652 case BFQQE_TOO_IDLE:
54b60456
PV
2653 /*
2654 * This is the only case where we may reduce
2655 * the budget: if there is no request of the
2656 * process still waiting for completion, then
2657 * we assume (tentatively) that the timer has
2658 * expired because the batch of requests of
2659 * the process could have been served with a
2660 * smaller budget. Hence, betting that
2661 * process will behave in the same way when it
2662 * becomes backlogged again, we reduce its
2663 * next budget. As long as we guess right,
2664 * this budget cut reduces the latency
2665 * experienced by the process.
2666 *
2667 * However, if there are still outstanding
2668 * requests, then the process may have not yet
2669 * issued its next request just because it is
2670 * still waiting for the completion of some of
2671 * the still outstanding ones. So in this
2672 * subcase we do not reduce its budget, on the
2673 * contrary we increase it to possibly boost
2674 * the throughput, as discussed in the
2675 * comments to the BUDGET_TIMEOUT case.
2676 */
2677 if (bfqq->dispatched > 0) /* still outstanding reqs */
2678 budget = min(budget * 2, bfqd->bfq_max_budget);
2679 else {
2680 if (budget > 5 * min_budget)
2681 budget -= 4 * min_budget;
2682 else
2683 budget = min_budget;
2684 }
aee69d78
PV
2685 break;
2686 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
2687 /*
2688 * We double the budget here because it gives
2689 * the chance to boost the throughput if this
2690 * is not a seeky process (and has bumped into
2691 * this timeout because of, e.g., ZBR).
2692 */
2693 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
2694 break;
2695 case BFQQE_BUDGET_EXHAUSTED:
2696 /*
2697 * The process still has backlog, and did not
2698 * let either the budget timeout or the disk
2699 * idling timeout expire. Hence it is not
2700 * seeky, has a short thinktime and may be
2701 * happy with a higher budget too. So
2702 * definitely increase the budget of this good
2703 * candidate to boost the disk throughput.
2704 */
54b60456 2705 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
2706 break;
2707 case BFQQE_NO_MORE_REQUESTS:
2708 /*
2709 * For queues that expire for this reason, it
2710 * is particularly important to keep the
2711 * budget close to the actual service they
2712 * need. Doing so reduces the timestamp
2713 * misalignment problem described in the
2714 * comments in the body of
2715 * __bfq_activate_entity. In fact, suppose
2716 * that a queue systematically expires for
2717 * BFQQE_NO_MORE_REQUESTS and presents a
2718 * new request in time to enjoy timestamp
2719 * back-shifting. The larger the budget of the
2720 * queue is with respect to the service the
2721 * queue actually requests in each service
2722 * slot, the more times the queue can be
2723 * reactivated with the same virtual finish
2724 * time. It follows that, even if this finish
2725 * time is pushed to the system virtual time
2726 * to reduce the consequent timestamp
2727 * misalignment, the queue unjustly enjoys for
2728 * many re-activations a lower finish time
2729 * than all newly activated queues.
2730 *
2731 * The service needed by bfqq is measured
2732 * quite precisely by bfqq->entity.service.
2733 * Since bfqq does not enjoy device idling,
2734 * bfqq->entity.service is equal to the number
2735 * of sectors that the process associated with
2736 * bfqq requested to read/write before waiting
2737 * for request completions, or blocking for
2738 * other reasons.
2739 */
2740 budget = max_t(int, bfqq->entity.service, min_budget);
2741 break;
2742 default:
2743 return;
2744 }
44e44a1b 2745 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
2746 /*
2747 * Async queues get always the maximum possible
2748 * budget, as for them we do not care about latency
2749 * (in addition, their ability to dispatch is limited
2750 * by the charging factor).
2751 */
2752 budget = bfqd->bfq_max_budget;
2753 }
2754
2755 bfqq->max_budget = budget;
2756
2757 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2758 !bfqd->bfq_user_max_budget)
2759 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2760
2761 /*
2762 * If there is still backlog, then assign a new budget, making
2763 * sure that it is large enough for the next request. Since
2764 * the finish time of bfqq must be kept in sync with the
2765 * budget, be sure to call __bfq_bfqq_expire() *after* this
2766 * update.
2767 *
2768 * If there is no backlog, then no need to update the budget;
2769 * it will be updated on the arrival of a new request.
2770 */
2771 next_rq = bfqq->next_rq;
2772 if (next_rq)
2773 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2774 bfq_serv_to_charge(next_rq, bfqq));
2775
2776 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2777 next_rq ? blk_rq_sectors(next_rq) : 0,
2778 bfqq->entity.budget);
2779}
2780
aee69d78 2781/*
ab0e43e9
PV
2782 * Return true if the process associated with bfqq is "slow". The slow
2783 * flag is used, in addition to the budget timeout, to reduce the
2784 * amount of service provided to seeky processes, and thus reduce
2785 * their chances to lower the throughput. More details in the comments
2786 * on the function bfq_bfqq_expire().
2787 *
2788 * An important observation is in order: as discussed in the comments
2789 * on the function bfq_update_peak_rate(), with devices with internal
2790 * queues, it is hard if ever possible to know when and for how long
2791 * an I/O request is processed by the device (apart from the trivial
2792 * I/O pattern where a new request is dispatched only after the
2793 * previous one has been completed). This makes it hard to evaluate
2794 * the real rate at which the I/O requests of each bfq_queue are
2795 * served. In fact, for an I/O scheduler like BFQ, serving a
2796 * bfq_queue means just dispatching its requests during its service
2797 * slot (i.e., until the budget of the queue is exhausted, or the
2798 * queue remains idle, or, finally, a timeout fires). But, during the
2799 * service slot of a bfq_queue, around 100 ms at most, the device may
2800 * be even still processing requests of bfq_queues served in previous
2801 * service slots. On the opposite end, the requests of the in-service
2802 * bfq_queue may be completed after the service slot of the queue
2803 * finishes.
2804 *
2805 * Anyway, unless more sophisticated solutions are used
2806 * (where possible), the sum of the sizes of the requests dispatched
2807 * during the service slot of a bfq_queue is probably the only
2808 * approximation available for the service received by the bfq_queue
2809 * during its service slot. And this sum is the quantity used in this
2810 * function to evaluate the I/O speed of a process.
aee69d78 2811 */
ab0e43e9
PV
2812static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2813 bool compensate, enum bfqq_expiration reason,
2814 unsigned long *delta_ms)
aee69d78 2815{
ab0e43e9
PV
2816 ktime_t delta_ktime;
2817 u32 delta_usecs;
2818 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 2819
ab0e43e9 2820 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
2821 return false;
2822
2823 if (compensate)
ab0e43e9 2824 delta_ktime = bfqd->last_idling_start;
aee69d78 2825 else
ab0e43e9
PV
2826 delta_ktime = ktime_get();
2827 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2828 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
2829
2830 /* don't use too short time intervals */
ab0e43e9
PV
2831 if (delta_usecs < 1000) {
2832 if (blk_queue_nonrot(bfqd->queue))
2833 /*
2834 * give same worst-case guarantees as idling
2835 * for seeky
2836 */
2837 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2838 else /* charge at least one seek */
2839 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2840
2841 return slow;
2842 }
aee69d78 2843
ab0e43e9 2844 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
2845
2846 /*
ab0e43e9
PV
2847 * Use only long (> 20ms) intervals to filter out excessive
2848 * spikes in service rate estimation.
aee69d78 2849 */
ab0e43e9
PV
2850 if (delta_usecs > 20000) {
2851 /*
2852 * Caveat for rotational devices: processes doing I/O
2853 * in the slower disk zones tend to be slow(er) even
2854 * if not seeky. In this respect, the estimated peak
2855 * rate is likely to be an average over the disk
2856 * surface. Accordingly, to not be too harsh with
2857 * unlucky processes, a process is deemed slow only if
2858 * its rate has been lower than half of the estimated
2859 * peak rate.
2860 */
2861 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
2862 }
2863
ab0e43e9 2864 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 2865
ab0e43e9 2866 return slow;
aee69d78
PV
2867}
2868
77b7dcea
PV
2869/*
2870 * To be deemed as soft real-time, an application must meet two
2871 * requirements. First, the application must not require an average
2872 * bandwidth higher than the approximate bandwidth required to playback or
2873 * record a compressed high-definition video.
2874 * The next function is invoked on the completion of the last request of a
2875 * batch, to compute the next-start time instant, soft_rt_next_start, such
2876 * that, if the next request of the application does not arrive before
2877 * soft_rt_next_start, then the above requirement on the bandwidth is met.
2878 *
2879 * The second requirement is that the request pattern of the application is
2880 * isochronous, i.e., that, after issuing a request or a batch of requests,
2881 * the application stops issuing new requests until all its pending requests
2882 * have been completed. After that, the application may issue a new batch,
2883 * and so on.
2884 * For this reason the next function is invoked to compute
2885 * soft_rt_next_start only for applications that meet this requirement,
2886 * whereas soft_rt_next_start is set to infinity for applications that do
2887 * not.
2888 *
2889 * Unfortunately, even a greedy application may happen to behave in an
2890 * isochronous way if the CPU load is high. In fact, the application may
2891 * stop issuing requests while the CPUs are busy serving other processes,
2892 * then restart, then stop again for a while, and so on. In addition, if
2893 * the disk achieves a low enough throughput with the request pattern
2894 * issued by the application (e.g., because the request pattern is random
2895 * and/or the device is slow), then the application may meet the above
2896 * bandwidth requirement too. To prevent such a greedy application to be
2897 * deemed as soft real-time, a further rule is used in the computation of
2898 * soft_rt_next_start: soft_rt_next_start must be higher than the current
2899 * time plus the maximum time for which the arrival of a request is waited
2900 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2901 * This filters out greedy applications, as the latter issue instead their
2902 * next request as soon as possible after the last one has been completed
2903 * (in contrast, when a batch of requests is completed, a soft real-time
2904 * application spends some time processing data).
2905 *
2906 * Unfortunately, the last filter may easily generate false positives if
2907 * only bfqd->bfq_slice_idle is used as a reference time interval and one
2908 * or both the following cases occur:
2909 * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2910 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2911 * HZ=100.
2912 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2913 * for a while, then suddenly 'jump' by several units to recover the lost
2914 * increments. This seems to happen, e.g., inside virtual machines.
2915 * To address this issue, we do not use as a reference time interval just
2916 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2917 * particular we add the minimum number of jiffies for which the filter
2918 * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2919 * machines.
2920 */
2921static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2922 struct bfq_queue *bfqq)
2923{
2924 return max(bfqq->last_idle_bklogged +
2925 HZ * bfqq->service_from_backlogged /
2926 bfqd->bfq_wr_max_softrt_rate,
2927 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2928}
2929
aee69d78
PV
2930/**
2931 * bfq_bfqq_expire - expire a queue.
2932 * @bfqd: device owning the queue.
2933 * @bfqq: the queue to expire.
2934 * @compensate: if true, compensate for the time spent idling.
2935 * @reason: the reason causing the expiration.
2936 *
c074170e
PV
2937 * If the process associated with bfqq does slow I/O (e.g., because it
2938 * issues random requests), we charge bfqq with the time it has been
2939 * in service instead of the service it has received (see
2940 * bfq_bfqq_charge_time for details on how this goal is achieved). As
2941 * a consequence, bfqq will typically get higher timestamps upon
2942 * reactivation, and hence it will be rescheduled as if it had
2943 * received more service than what it has actually received. In the
2944 * end, bfqq receives less service in proportion to how slowly its
2945 * associated process consumes its budgets (and hence how seriously it
2946 * tends to lower the throughput). In addition, this time-charging
2947 * strategy guarantees time fairness among slow processes. In
2948 * contrast, if the process associated with bfqq is not slow, we
2949 * charge bfqq exactly with the service it has received.
aee69d78 2950 *
c074170e
PV
2951 * Charging time to the first type of queues and the exact service to
2952 * the other has the effect of using the WF2Q+ policy to schedule the
2953 * former on a timeslice basis, without violating service domain
2954 * guarantees among the latter.
aee69d78 2955 */
ea25da48
PV
2956void bfq_bfqq_expire(struct bfq_data *bfqd,
2957 struct bfq_queue *bfqq,
2958 bool compensate,
2959 enum bfqq_expiration reason)
aee69d78
PV
2960{
2961 bool slow;
ab0e43e9
PV
2962 unsigned long delta = 0;
2963 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
2964 int ref;
2965
2966 /*
ab0e43e9 2967 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 2968 */
ab0e43e9 2969 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78 2970
77b7dcea
PV
2971 /*
2972 * Increase service_from_backlogged before next statement,
2973 * because the possible next invocation of
2974 * bfq_bfqq_charge_time would likely inflate
2975 * entity->service. In contrast, service_from_backlogged must
2976 * contain real service, to enable the soft real-time
2977 * heuristic to correctly compute the bandwidth consumed by
2978 * bfqq.
2979 */
2980 bfqq->service_from_backlogged += entity->service;
2981
aee69d78 2982 /*
c074170e
PV
2983 * As above explained, charge slow (typically seeky) and
2984 * timed-out queues with the time and not the service
2985 * received, to favor sequential workloads.
2986 *
2987 * Processes doing I/O in the slower disk zones will tend to
2988 * be slow(er) even if not seeky. Therefore, since the
2989 * estimated peak rate is actually an average over the disk
2990 * surface, these processes may timeout just for bad luck. To
2991 * avoid punishing them, do not charge time to processes that
2992 * succeeded in consuming at least 2/3 of their budget. This
2993 * allows BFQ to preserve enough elasticity to still perform
2994 * bandwidth, and not time, distribution with little unlucky
2995 * or quasi-sequential processes.
aee69d78 2996 */
44e44a1b
PV
2997 if (bfqq->wr_coeff == 1 &&
2998 (slow ||
2999 (reason == BFQQE_BUDGET_TIMEOUT &&
3000 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 3001 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
3002
3003 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 3004 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
3005 bfq_clear_bfqq_IO_bound(bfqq);
3006
44e44a1b
PV
3007 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3008 bfqq->last_wr_start_finish = jiffies;
3009
77b7dcea
PV
3010 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3011 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3012 /*
3013 * If we get here, and there are no outstanding
3014 * requests, then the request pattern is isochronous
3015 * (see the comments on the function
3016 * bfq_bfqq_softrt_next_start()). Thus we can compute
3017 * soft_rt_next_start. If, instead, the queue still
3018 * has outstanding requests, then we have to wait for
3019 * the completion of all the outstanding requests to
3020 * discover whether the request pattern is actually
3021 * isochronous.
3022 */
3023 if (bfqq->dispatched == 0)
3024 bfqq->soft_rt_next_start =
3025 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3026 else {
3027 /*
3028 * The application is still waiting for the
3029 * completion of one or more requests:
3030 * prevent it from possibly being incorrectly
3031 * deemed as soft real-time by setting its
3032 * soft_rt_next_start to infinity. In fact,
3033 * without this assignment, the application
3034 * would be incorrectly deemed as soft
3035 * real-time if:
3036 * 1) it issued a new request before the
3037 * completion of all its in-flight
3038 * requests, and
3039 * 2) at that time, its soft_rt_next_start
3040 * happened to be in the past.
3041 */
3042 bfqq->soft_rt_next_start =
3043 bfq_greatest_from_now();
3044 /*
3045 * Schedule an update of soft_rt_next_start to when
3046 * the task may be discovered to be isochronous.
3047 */
3048 bfq_mark_bfqq_softrt_update(bfqq);
3049 }
3050 }
3051
aee69d78 3052 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
3053 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3054 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
aee69d78
PV
3055
3056 /*
3057 * Increase, decrease or leave budget unchanged according to
3058 * reason.
3059 */
3060 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3061 ref = bfqq->ref;
3062 __bfq_bfqq_expire(bfqd, bfqq);
3063
3064 /* mark bfqq as waiting a request only if a bic still points to it */
3065 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3066 reason != BFQQE_BUDGET_TIMEOUT &&
3067 reason != BFQQE_BUDGET_EXHAUSTED)
3068 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3069}
3070
3071/*
3072 * Budget timeout is not implemented through a dedicated timer, but
3073 * just checked on request arrivals and completions, as well as on
3074 * idle timer expirations.
3075 */
3076static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3077{
44e44a1b 3078 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
3079}
3080
3081/*
3082 * If we expire a queue that is actively waiting (i.e., with the
3083 * device idled) for the arrival of a new request, then we may incur
3084 * the timestamp misalignment problem described in the body of the
3085 * function __bfq_activate_entity. Hence we return true only if this
3086 * condition does not hold, or if the queue is slow enough to deserve
3087 * only to be kicked off for preserving a high throughput.
3088 */
3089static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3090{
3091 bfq_log_bfqq(bfqq->bfqd, bfqq,
3092 "may_budget_timeout: wait_request %d left %d timeout %d",
3093 bfq_bfqq_wait_request(bfqq),
3094 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3095 bfq_bfqq_budget_timeout(bfqq));
3096
3097 return (!bfq_bfqq_wait_request(bfqq) ||
3098 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3099 &&
3100 bfq_bfqq_budget_timeout(bfqq);
3101}
3102
3103/*
3104 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
3105 * this function returns true for the queue. As a consequence, since
3106 * device idling plays a critical role in both throughput boosting and
3107 * service guarantees, the return value of this function plays a
3108 * critical role in both these aspects as well.
3109 *
3110 * In a nutshell, this function returns true only if idling is
3111 * beneficial for throughput or, even if detrimental for throughput,
3112 * idling is however necessary to preserve service guarantees (low
3113 * latency, desired throughput distribution, ...). In particular, on
3114 * NCQ-capable devices, this function tries to return false, so as to
3115 * help keep the drives' internal queues full, whenever this helps the
3116 * device boost the throughput without causing any service-guarantee
3117 * issue.
3118 *
3119 * In more detail, the return value of this function is obtained by,
3120 * first, computing a number of boolean variables that take into
3121 * account throughput and service-guarantee issues, and, then,
3122 * combining these variables in a logical expression. Most of the
3123 * issues taken into account are not trivial. We discuss these issues
3124 * individually while introducing the variables.
aee69d78
PV
3125 */
3126static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3127{
3128 struct bfq_data *bfqd = bfqq->bfqd;
edaf9428
PV
3129 bool rot_without_queueing =
3130 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3131 bfqq_sequential_and_IO_bound,
3132 idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 3133 idling_needed_for_service_guarantees,
cfd69712 3134 asymmetric_scenario;
aee69d78
PV
3135
3136 if (bfqd->strict_guarantees)
3137 return true;
3138
d5be3fef
PV
3139 /*
3140 * Idling is performed only if slice_idle > 0. In addition, we
3141 * do not idle if
3142 * (a) bfqq is async
3143 * (b) bfqq is in the idle io prio class: in this case we do
3144 * not idle because we want to minimize the bandwidth that
3145 * queues in this class can steal to higher-priority queues
3146 */
3147 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3148 bfq_class_idle(bfqq))
3149 return false;
3150
edaf9428
PV
3151 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3152 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3153
aee69d78 3154 /*
44e44a1b
PV
3155 * The next variable takes into account the cases where idling
3156 * boosts the throughput.
3157 *
e01eff01
PV
3158 * The value of the variable is computed considering, first, that
3159 * idling is virtually always beneficial for the throughput if:
edaf9428
PV
3160 * (a) the device is not NCQ-capable and rotational, or
3161 * (b) regardless of the presence of NCQ, the device is rotational and
3162 * the request pattern for bfqq is I/O-bound and sequential, or
3163 * (c) regardless of whether it is rotational, the device is
3164 * not NCQ-capable and the request pattern for bfqq is
3165 * I/O-bound and sequential.
bf2b79e7
PV
3166 *
3167 * Secondly, and in contrast to the above item (b), idling an
3168 * NCQ-capable flash-based device would not boost the
e01eff01 3169 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
3170 * the throughput in proportion to how fast the device
3171 * is. Accordingly, the next variable is true if any of the
edaf9428
PV
3172 * above conditions (a), (b) or (c) is true, and, in
3173 * particular, happens to be false if bfqd is an NCQ-capable
3174 * flash-based device.
aee69d78 3175 */
edaf9428
PV
3176 idling_boosts_thr = rot_without_queueing ||
3177 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3178 bfqq_sequential_and_IO_bound);
aee69d78 3179
cfd69712
PV
3180 /*
3181 * The value of the next variable,
3182 * idling_boosts_thr_without_issues, is equal to that of
3183 * idling_boosts_thr, unless a special case holds. In this
3184 * special case, described below, idling may cause problems to
3185 * weight-raised queues.
3186 *
3187 * When the request pool is saturated (e.g., in the presence
3188 * of write hogs), if the processes associated with
3189 * non-weight-raised queues ask for requests at a lower rate,
3190 * then processes associated with weight-raised queues have a
3191 * higher probability to get a request from the pool
3192 * immediately (or at least soon) when they need one. Thus
3193 * they have a higher probability to actually get a fraction
3194 * of the device throughput proportional to their high
3195 * weight. This is especially true with NCQ-capable drives,
3196 * which enqueue several requests in advance, and further
3197 * reorder internally-queued requests.
3198 *
3199 * For this reason, we force to false the value of
3200 * idling_boosts_thr_without_issues if there are weight-raised
3201 * busy queues. In this case, and if bfqq is not weight-raised,
3202 * this guarantees that the device is not idled for bfqq (if,
3203 * instead, bfqq is weight-raised, then idling will be
3204 * guaranteed by another variable, see below). Combined with
3205 * the timestamping rules of BFQ (see [1] for details), this
3206 * behavior causes bfqq, and hence any sync non-weight-raised
3207 * queue, to get a lower number of requests served, and thus
3208 * to ask for a lower number of requests from the request
3209 * pool, before the busy weight-raised queues get served
3210 * again. This often mitigates starvation problems in the
3211 * presence of heavy write workloads and NCQ, thereby
3212 * guaranteeing a higher application and system responsiveness
3213 * in these hostile scenarios.
3214 */
3215 idling_boosts_thr_without_issues = idling_boosts_thr &&
3216 bfqd->wr_busy_queues == 0;
3217
aee69d78 3218 /*
bf2b79e7
PV
3219 * There is then a case where idling must be performed not
3220 * for throughput concerns, but to preserve service
3221 * guarantees.
3222 *
3223 * To introduce this case, we can note that allowing the drive
3224 * to enqueue more than one request at a time, and hence
44e44a1b 3225 * delegating de facto final scheduling decisions to the
bf2b79e7 3226 * drive's internal scheduler, entails loss of control on the
44e44a1b 3227 * actual request service order. In particular, the critical
bf2b79e7 3228 * situation is when requests from different processes happen
44e44a1b
PV
3229 * to be present, at the same time, in the internal queue(s)
3230 * of the drive. In such a situation, the drive, by deciding
3231 * the service order of the internally-queued requests, does
3232 * determine also the actual throughput distribution among
3233 * these processes. But the drive typically has no notion or
3234 * concern about per-process throughput distribution, and
3235 * makes its decisions only on a per-request basis. Therefore,
3236 * the service distribution enforced by the drive's internal
3237 * scheduler is likely to coincide with the desired
3238 * device-throughput distribution only in a completely
bf2b79e7
PV
3239 * symmetric scenario where:
3240 * (i) each of these processes must get the same throughput as
3241 * the others;
3242 * (ii) all these processes have the same I/O pattern
3243 (either sequential or random).
3244 * In fact, in such a scenario, the drive will tend to treat
3245 * the requests of each of these processes in about the same
3246 * way as the requests of the others, and thus to provide
3247 * each of these processes with about the same throughput
3248 * (which is exactly the desired throughput distribution). In
3249 * contrast, in any asymmetric scenario, device idling is
3250 * certainly needed to guarantee that bfqq receives its
3251 * assigned fraction of the device throughput (see [1] for
3252 * details).
3253 *
3254 * We address this issue by controlling, actually, only the
3255 * symmetry sub-condition (i), i.e., provided that
3256 * sub-condition (i) holds, idling is not performed,
3257 * regardless of whether sub-condition (ii) holds. In other
3258 * words, only if sub-condition (i) holds, then idling is
3259 * allowed, and the device tends to be prevented from queueing
3260 * many requests, possibly of several processes. The reason
3261 * for not controlling also sub-condition (ii) is that we
3262 * exploit preemption to preserve guarantees in case of
3263 * symmetric scenarios, even if (ii) does not hold, as
3264 * explained in the next two paragraphs.
3265 *
3266 * Even if a queue, say Q, is expired when it remains idle, Q
3267 * can still preempt the new in-service queue if the next
3268 * request of Q arrives soon (see the comments on
3269 * bfq_bfqq_update_budg_for_activation). If all queues and
3270 * groups have the same weight, this form of preemption,
3271 * combined with the hole-recovery heuristic described in the
3272 * comments on function bfq_bfqq_update_budg_for_activation,
3273 * are enough to preserve a correct bandwidth distribution in
3274 * the mid term, even without idling. In fact, even if not
3275 * idling allows the internal queues of the device to contain
3276 * many requests, and thus to reorder requests, we can rather
3277 * safely assume that the internal scheduler still preserves a
3278 * minimum of mid-term fairness. The motivation for using
3279 * preemption instead of idling is that, by not idling,
3280 * service guarantees are preserved without minimally
3281 * sacrificing throughput. In other words, both a high
3282 * throughput and its desired distribution are obtained.
3283 *
3284 * More precisely, this preemption-based, idleless approach
3285 * provides fairness in terms of IOPS, and not sectors per
3286 * second. This can be seen with a simple example. Suppose
3287 * that there are two queues with the same weight, but that
3288 * the first queue receives requests of 8 sectors, while the
3289 * second queue receives requests of 1024 sectors. In
3290 * addition, suppose that each of the two queues contains at
3291 * most one request at a time, which implies that each queue
3292 * always remains idle after it is served. Finally, after
3293 * remaining idle, each queue receives very quickly a new
3294 * request. It follows that the two queues are served
3295 * alternatively, preempting each other if needed. This
3296 * implies that, although both queues have the same weight,
3297 * the queue with large requests receives a service that is
3298 * 1024/8 times as high as the service received by the other
3299 * queue.
44e44a1b 3300 *
bf2b79e7
PV
3301 * On the other hand, device idling is performed, and thus
3302 * pure sector-domain guarantees are provided, for the
3303 * following queues, which are likely to need stronger
3304 * throughput guarantees: weight-raised queues, and queues
3305 * with a higher weight than other queues. When such queues
3306 * are active, sub-condition (i) is false, which triggers
3307 * device idling.
44e44a1b 3308 *
bf2b79e7
PV
3309 * According to the above considerations, the next variable is
3310 * true (only) if sub-condition (i) holds. To compute the
3311 * value of this variable, we not only use the return value of
3312 * the function bfq_symmetric_scenario(), but also check
3313 * whether bfqq is being weight-raised, because
3314 * bfq_symmetric_scenario() does not take into account also
3315 * weight-raised queues (see comments on
3316 * bfq_weights_tree_add()).
44e44a1b
PV
3317 *
3318 * As a side note, it is worth considering that the above
3319 * device-idling countermeasures may however fail in the
3320 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
3321 * disabled in a time period during which all symmetry
3322 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
3323 * enqueue many requests, but at some later point in time some
3324 * sub-condition stops to hold, then it may become impossible
3325 * to let requests be served in the desired order until all
3326 * the requests already queued in the device have been served.
3327 */
bf2b79e7
PV
3328 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3329 !bfq_symmetric_scenario(bfqd);
44e44a1b 3330
e1b2324d
AA
3331 /*
3332 * Finally, there is a case where maximizing throughput is the
3333 * best choice even if it may cause unfairness toward
3334 * bfqq. Such a case is when bfqq became active in a burst of
3335 * queue activations. Queues that became active during a large
3336 * burst benefit only from throughput, as discussed in the
3337 * comments on bfq_handle_burst. Thus, if bfqq became active
3338 * in a burst and not idling the device maximizes throughput,
3339 * then the device must no be idled, because not idling the
3340 * device provides bfqq and all other queues in the burst with
3341 * maximum benefit. Combining this and the above case, we can
3342 * now establish when idling is actually needed to preserve
3343 * service guarantees.
3344 */
3345 idling_needed_for_service_guarantees =
3346 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3347
44e44a1b 3348 /*
d5be3fef
PV
3349 * We have now all the components we need to compute the
3350 * return value of the function, which is true only if idling
3351 * either boosts the throughput (without issues), or is
3352 * necessary to preserve service guarantees.
aee69d78 3353 */
d5be3fef
PV
3354 return idling_boosts_thr_without_issues ||
3355 idling_needed_for_service_guarantees;
aee69d78
PV
3356}
3357
3358/*
3359 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3360 * returns true, then:
3361 * 1) the queue must remain in service and cannot be expired, and
3362 * 2) the device must be idled to wait for the possible arrival of a new
3363 * request for the queue.
3364 * See the comments on the function bfq_bfqq_may_idle for the reasons
3365 * why performing device idling is the best choice to boost the throughput
3366 * and preserve service guarantees when bfq_bfqq_may_idle itself
3367 * returns true.
3368 */
3369static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3370{
d5be3fef 3371 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
aee69d78
PV
3372}
3373
3374/*
3375 * Select a queue for service. If we have a current queue in service,
3376 * check whether to continue servicing it, or retrieve and set a new one.
3377 */
3378static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3379{
3380 struct bfq_queue *bfqq;
3381 struct request *next_rq;
3382 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3383
3384 bfqq = bfqd->in_service_queue;
3385 if (!bfqq)
3386 goto new_queue;
3387
3388 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3389
3390 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3391 !bfq_bfqq_wait_request(bfqq) &&
3392 !bfq_bfqq_must_idle(bfqq))
3393 goto expire;
3394
3395check_queue:
3396 /*
3397 * This loop is rarely executed more than once. Even when it
3398 * happens, it is much more convenient to re-execute this loop
3399 * than to return NULL and trigger a new dispatch to get a
3400 * request served.
3401 */
3402 next_rq = bfqq->next_rq;
3403 /*
3404 * If bfqq has requests queued and it has enough budget left to
3405 * serve them, keep the queue, otherwise expire it.
3406 */
3407 if (next_rq) {
3408 if (bfq_serv_to_charge(next_rq, bfqq) >
3409 bfq_bfqq_budget_left(bfqq)) {
3410 /*
3411 * Expire the queue for budget exhaustion,
3412 * which makes sure that the next budget is
3413 * enough to serve the next request, even if
3414 * it comes from the fifo expired path.
3415 */
3416 reason = BFQQE_BUDGET_EXHAUSTED;
3417 goto expire;
3418 } else {
3419 /*
3420 * The idle timer may be pending because we may
3421 * not disable disk idling even when a new request
3422 * arrives.
3423 */
3424 if (bfq_bfqq_wait_request(bfqq)) {
3425 /*
3426 * If we get here: 1) at least a new request
3427 * has arrived but we have not disabled the
3428 * timer because the request was too small,
3429 * 2) then the block layer has unplugged
3430 * the device, causing the dispatch to be
3431 * invoked.
3432 *
3433 * Since the device is unplugged, now the
3434 * requests are probably large enough to
3435 * provide a reasonable throughput.
3436 * So we disable idling.
3437 */
3438 bfq_clear_bfqq_wait_request(bfqq);
3439 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 3440 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
3441 }
3442 goto keep_queue;
3443 }
3444 }
3445
3446 /*
3447 * No requests pending. However, if the in-service queue is idling
3448 * for a new request, or has requests waiting for a completion and
3449 * may idle after their completion, then keep it anyway.
3450 */
3451 if (bfq_bfqq_wait_request(bfqq) ||
3452 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3453 bfqq = NULL;
3454 goto keep_queue;
3455 }
3456
3457 reason = BFQQE_NO_MORE_REQUESTS;
3458expire:
3459 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3460new_queue:
3461 bfqq = bfq_set_in_service_queue(bfqd);
3462 if (bfqq) {
3463 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3464 goto check_queue;
3465 }
3466keep_queue:
3467 if (bfqq)
3468 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3469 else
3470 bfq_log(bfqd, "select_queue: no queue returned");
3471
3472 return bfqq;
3473}
3474
44e44a1b
PV
3475static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3476{
3477 struct bfq_entity *entity = &bfqq->entity;
3478
3479 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3480 bfq_log_bfqq(bfqd, bfqq,
3481 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3482 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3483 jiffies_to_msecs(bfqq->wr_cur_max_time),
3484 bfqq->wr_coeff,
3485 bfqq->entity.weight, bfqq->entity.orig_weight);
3486
3487 if (entity->prio_changed)
3488 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3489
3490 /*
e1b2324d
AA
3491 * If the queue was activated in a burst, or too much
3492 * time has elapsed from the beginning of this
3493 * weight-raising period, then end weight raising.
44e44a1b 3494 */
e1b2324d
AA
3495 if (bfq_bfqq_in_large_burst(bfqq))
3496 bfq_bfqq_end_wr(bfqq);
3497 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3498 bfqq->wr_cur_max_time)) {
77b7dcea
PV
3499 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3500 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 3501 bfq_wr_duration(bfqd)))
77b7dcea
PV
3502 bfq_bfqq_end_wr(bfqq);
3503 else {
3504 /* switch back to interactive wr */
3505 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
3506 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
3507 bfqq->last_wr_start_finish =
3508 bfqq->wr_start_at_switch_to_srt;
3509 bfqq->entity.prio_changed = 1;
3510 }
44e44a1b
PV
3511 }
3512 }
431b17f9
PV
3513 /*
3514 * To improve latency (for this or other queues), immediately
3515 * update weight both if it must be raised and if it must be
3516 * lowered. Since, entity may be on some active tree here, and
3517 * might have a pending change of its ioprio class, invoke
3518 * next function with the last parameter unset (see the
3519 * comments on the function).
3520 */
44e44a1b 3521 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
431b17f9
PV
3522 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3523 entity, false);
44e44a1b
PV
3524}
3525
aee69d78
PV
3526/*
3527 * Dispatch next request from bfqq.
3528 */
3529static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3530 struct bfq_queue *bfqq)
3531{
3532 struct request *rq = bfqq->next_rq;
3533 unsigned long service_to_charge;
3534
3535 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3536
3537 bfq_bfqq_served(bfqq, service_to_charge);
3538
3539 bfq_dispatch_remove(bfqd->queue, rq);
3540
44e44a1b
PV
3541 /*
3542 * If weight raising has to terminate for bfqq, then next
3543 * function causes an immediate update of bfqq's weight,
3544 * without waiting for next activation. As a consequence, on
3545 * expiration, bfqq will be timestamped as if has never been
3546 * weight-raised during this service slot, even if it has
3547 * received part or even most of the service as a
3548 * weight-raised queue. This inflates bfqq's timestamps, which
3549 * is beneficial, as bfqq is then more willing to leave the
3550 * device immediately to possible other weight-raised queues.
3551 */
3552 bfq_update_wr_data(bfqd, bfqq);
3553
aee69d78
PV
3554 /*
3555 * Expire bfqq, pretending that its budget expired, if bfqq
3556 * belongs to CLASS_IDLE and other queues are waiting for
3557 * service.
3558 */
3559 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3560 goto expire;
3561
3562 return rq;
3563
3564expire:
3565 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3566 return rq;
3567}
3568
3569static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3570{
3571 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3572
3573 /*
3574 * Avoiding lock: a race on bfqd->busy_queues should cause at
3575 * most a call to dispatch for nothing
3576 */
3577 return !list_empty_careful(&bfqd->dispatch) ||
3578 bfqd->busy_queues > 0;
3579}
3580
3581static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3582{
3583 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3584 struct request *rq = NULL;
3585 struct bfq_queue *bfqq = NULL;
3586
3587 if (!list_empty(&bfqd->dispatch)) {
3588 rq = list_first_entry(&bfqd->dispatch, struct request,
3589 queuelist);
3590 list_del_init(&rq->queuelist);
3591
3592 bfqq = RQ_BFQQ(rq);
3593
3594 if (bfqq) {
3595 /*
3596 * Increment counters here, because this
3597 * dispatch does not follow the standard
3598 * dispatch flow (where counters are
3599 * incremented)
3600 */
3601 bfqq->dispatched++;
3602
3603 goto inc_in_driver_start_rq;
3604 }
3605
3606 /*
3607 * We exploit the put_rq_private hook to decrement
3608 * rq_in_driver, but put_rq_private will not be
3609 * invoked on this request. So, to avoid unbalance,
3610 * just start this request, without incrementing
3611 * rq_in_driver. As a negative consequence,
3612 * rq_in_driver is deceptively lower than it should be
3613 * while this request is in service. This may cause
3614 * bfq_schedule_dispatch to be invoked uselessly.
3615 *
3616 * As for implementing an exact solution, the
3617 * put_request hook, if defined, is probably invoked
3618 * also on this request. So, by exploiting this hook,
3619 * we could 1) increment rq_in_driver here, and 2)
3620 * decrement it in put_request. Such a solution would
3621 * let the value of the counter be always accurate,
3622 * but it would entail using an extra interface
3623 * function. This cost seems higher than the benefit,
3624 * being the frequency of non-elevator-private
3625 * requests very low.
3626 */
3627 goto start_rq;
3628 }
3629
3630 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3631
3632 if (bfqd->busy_queues == 0)
3633 goto exit;
3634
3635 /*
3636 * Force device to serve one request at a time if
3637 * strict_guarantees is true. Forcing this service scheme is
3638 * currently the ONLY way to guarantee that the request
3639 * service order enforced by the scheduler is respected by a
3640 * queueing device. Otherwise the device is free even to make
3641 * some unlucky request wait for as long as the device
3642 * wishes.
3643 *
3644 * Of course, serving one request at at time may cause loss of
3645 * throughput.
3646 */
3647 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3648 goto exit;
3649
3650 bfqq = bfq_select_queue(bfqd);
3651 if (!bfqq)
3652 goto exit;
3653
3654 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3655
3656 if (rq) {
3657inc_in_driver_start_rq:
3658 bfqd->rq_in_driver++;
3659start_rq:
3660 rq->rq_flags |= RQF_STARTED;
3661 }
3662exit:
3663 return rq;
3664}
3665
3666static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3667{
3668 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3669 struct request *rq;
3670
3671 spin_lock_irq(&bfqd->lock);
36eca894 3672
aee69d78 3673 rq = __bfq_dispatch_request(hctx);
6fa3e8d3 3674 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
3675
3676 return rq;
3677}
3678
3679/*
3680 * Task holds one reference to the queue, dropped when task exits. Each rq
3681 * in-flight on this queue also holds a reference, dropped when rq is freed.
3682 *
3683 * Scheduler lock must be held here. Recall not to use bfqq after calling
3684 * this function on it.
3685 */
ea25da48 3686void bfq_put_queue(struct bfq_queue *bfqq)
aee69d78 3687{
e21b7a0b
AA
3688#ifdef CONFIG_BFQ_GROUP_IOSCHED
3689 struct bfq_group *bfqg = bfqq_group(bfqq);
3690#endif
3691
aee69d78
PV
3692 if (bfqq->bfqd)
3693 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3694 bfqq, bfqq->ref);
3695
3696 bfqq->ref--;
3697 if (bfqq->ref)
3698 return;
3699
e1b2324d
AA
3700 if (bfq_bfqq_sync(bfqq))
3701 /*
3702 * The fact that this queue is being destroyed does not
3703 * invalidate the fact that this queue may have been
3704 * activated during the current burst. As a consequence,
3705 * although the queue does not exist anymore, and hence
3706 * needs to be removed from the burst list if there,
3707 * the burst size has not to be decremented.
3708 */
3709 hlist_del_init(&bfqq->burst_list_node);
e21b7a0b 3710
aee69d78 3711 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b 3712#ifdef CONFIG_BFQ_GROUP_IOSCHED
8f9bebc3 3713 bfqg_and_blkg_put(bfqg);
e21b7a0b 3714#endif
aee69d78
PV
3715}
3716
36eca894
AA
3717static void bfq_put_cooperator(struct bfq_queue *bfqq)
3718{
3719 struct bfq_queue *__bfqq, *next;
3720
3721 /*
3722 * If this queue was scheduled to merge with another queue, be
3723 * sure to drop the reference taken on that queue (and others in
3724 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3725 */
3726 __bfqq = bfqq->new_bfqq;
3727 while (__bfqq) {
3728 if (__bfqq == bfqq)
3729 break;
3730 next = __bfqq->new_bfqq;
3731 bfq_put_queue(__bfqq);
3732 __bfqq = next;
3733 }
3734}
3735
aee69d78
PV
3736static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3737{
3738 if (bfqq == bfqd->in_service_queue) {
3739 __bfq_bfqq_expire(bfqd, bfqq);
3740 bfq_schedule_dispatch(bfqd);
3741 }
3742
3743 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3744
36eca894
AA
3745 bfq_put_cooperator(bfqq);
3746
aee69d78
PV
3747 bfq_put_queue(bfqq); /* release process reference */
3748}
3749
3750static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3751{
3752 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3753 struct bfq_data *bfqd;
3754
3755 if (bfqq)
3756 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3757
3758 if (bfqq && bfqd) {
3759 unsigned long flags;
3760
3761 spin_lock_irqsave(&bfqd->lock, flags);
3762 bfq_exit_bfqq(bfqd, bfqq);
3763 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 3764 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
3765 }
3766}
3767
3768static void bfq_exit_icq(struct io_cq *icq)
3769{
3770 struct bfq_io_cq *bic = icq_to_bic(icq);
3771
3772 bfq_exit_icq_bfqq(bic, true);
3773 bfq_exit_icq_bfqq(bic, false);
3774}
3775
3776/*
3777 * Update the entity prio values; note that the new values will not
3778 * be used until the next (re)activation.
3779 */
3780static void
3781bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3782{
3783 struct task_struct *tsk = current;
3784 int ioprio_class;
3785 struct bfq_data *bfqd = bfqq->bfqd;
3786
3787 if (!bfqd)
3788 return;
3789
3790 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3791 switch (ioprio_class) {
3792 default:
3793 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3794 "bfq: bad prio class %d\n", ioprio_class);
fa393d1b 3795 /* fall through */
aee69d78
PV
3796 case IOPRIO_CLASS_NONE:
3797 /*
3798 * No prio set, inherit CPU scheduling settings.
3799 */
3800 bfqq->new_ioprio = task_nice_ioprio(tsk);
3801 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3802 break;
3803 case IOPRIO_CLASS_RT:
3804 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3805 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3806 break;
3807 case IOPRIO_CLASS_BE:
3808 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3809 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3810 break;
3811 case IOPRIO_CLASS_IDLE:
3812 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3813 bfqq->new_ioprio = 7;
aee69d78
PV
3814 break;
3815 }
3816
3817 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3818 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3819 bfqq->new_ioprio);
3820 bfqq->new_ioprio = IOPRIO_BE_NR;
3821 }
3822
3823 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3824 bfqq->entity.prio_changed = 1;
3825}
3826
ea25da48
PV
3827static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3828 struct bio *bio, bool is_sync,
3829 struct bfq_io_cq *bic);
3830
aee69d78
PV
3831static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3832{
3833 struct bfq_data *bfqd = bic_to_bfqd(bic);
3834 struct bfq_queue *bfqq;
3835 int ioprio = bic->icq.ioc->ioprio;
3836
3837 /*
3838 * This condition may trigger on a newly created bic, be sure to
3839 * drop the lock before returning.
3840 */
3841 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3842 return;
3843
3844 bic->ioprio = ioprio;
3845
3846 bfqq = bic_to_bfqq(bic, false);
3847 if (bfqq) {
3848 /* release process reference on this queue */
3849 bfq_put_queue(bfqq);
3850 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3851 bic_set_bfqq(bic, bfqq, false);
3852 }
3853
3854 bfqq = bic_to_bfqq(bic, true);
3855 if (bfqq)
3856 bfq_set_next_ioprio_data(bfqq, bic);
3857}
3858
3859static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3860 struct bfq_io_cq *bic, pid_t pid, int is_sync)
3861{
3862 RB_CLEAR_NODE(&bfqq->entity.rb_node);
3863 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 3864 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
3865
3866 bfqq->ref = 0;
3867 bfqq->bfqd = bfqd;
3868
3869 if (bic)
3870 bfq_set_next_ioprio_data(bfqq, bic);
3871
3872 if (is_sync) {
d5be3fef
PV
3873 /*
3874 * No need to mark as has_short_ttime if in
3875 * idle_class, because no device idling is performed
3876 * for queues in idle class
3877 */
aee69d78 3878 if (!bfq_class_idle(bfqq))
d5be3fef
PV
3879 /* tentatively mark as has_short_ttime */
3880 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 3881 bfq_mark_bfqq_sync(bfqq);
e1b2324d 3882 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
3883 } else
3884 bfq_clear_bfqq_sync(bfqq);
3885
3886 /* set end request to minus infinity from now */
3887 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
3888
3889 bfq_mark_bfqq_IO_bound(bfqq);
3890
3891 bfqq->pid = pid;
3892
3893 /* Tentative initial value to trade off between thr and lat */
54b60456 3894 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 3895 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 3896
44e44a1b 3897 bfqq->wr_coeff = 1;
36eca894 3898 bfqq->last_wr_start_finish = jiffies;
77b7dcea 3899 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 3900 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
3901
3902 /*
3903 * Set to the value for which bfqq will not be deemed as
3904 * soft rt when it becomes backlogged.
3905 */
3906 bfqq->soft_rt_next_start = bfq_greatest_from_now();
44e44a1b 3907
aee69d78
PV
3908 /* first request is almost certainly seeky */
3909 bfqq->seek_history = 1;
3910}
3911
3912static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 3913 struct bfq_group *bfqg,
aee69d78
PV
3914 int ioprio_class, int ioprio)
3915{
3916 switch (ioprio_class) {
3917 case IOPRIO_CLASS_RT:
e21b7a0b 3918 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
3919 case IOPRIO_CLASS_NONE:
3920 ioprio = IOPRIO_NORM;
3921 /* fall through */
3922 case IOPRIO_CLASS_BE:
e21b7a0b 3923 return &bfqg->async_bfqq[1][ioprio];
aee69d78 3924 case IOPRIO_CLASS_IDLE:
e21b7a0b 3925 return &bfqg->async_idle_bfqq;
aee69d78
PV
3926 default:
3927 return NULL;
3928 }
3929}
3930
3931static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3932 struct bio *bio, bool is_sync,
3933 struct bfq_io_cq *bic)
3934{
3935 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3936 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3937 struct bfq_queue **async_bfqq = NULL;
3938 struct bfq_queue *bfqq;
e21b7a0b 3939 struct bfq_group *bfqg;
aee69d78
PV
3940
3941 rcu_read_lock();
3942
e21b7a0b
AA
3943 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
3944 if (!bfqg) {
3945 bfqq = &bfqd->oom_bfqq;
3946 goto out;
3947 }
3948
aee69d78 3949 if (!is_sync) {
e21b7a0b 3950 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
3951 ioprio);
3952 bfqq = *async_bfqq;
3953 if (bfqq)
3954 goto out;
3955 }
3956
3957 bfqq = kmem_cache_alloc_node(bfq_pool,
3958 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3959 bfqd->queue->node);
3960
3961 if (bfqq) {
3962 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
3963 is_sync);
e21b7a0b 3964 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
3965 bfq_log_bfqq(bfqd, bfqq, "allocated");
3966 } else {
3967 bfqq = &bfqd->oom_bfqq;
3968 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
3969 goto out;
3970 }
3971
3972 /*
3973 * Pin the queue now that it's allocated, scheduler exit will
3974 * prune it.
3975 */
3976 if (async_bfqq) {
e21b7a0b
AA
3977 bfqq->ref++; /*
3978 * Extra group reference, w.r.t. sync
3979 * queue. This extra reference is removed
3980 * only if bfqq->bfqg disappears, to
3981 * guarantee that this queue is not freed
3982 * until its group goes away.
3983 */
3984 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
3985 bfqq, bfqq->ref);
3986 *async_bfqq = bfqq;
3987 }
3988
3989out:
3990 bfqq->ref++; /* get a process reference to this queue */
3991 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
3992 rcu_read_unlock();
3993 return bfqq;
3994}
3995
3996static void bfq_update_io_thinktime(struct bfq_data *bfqd,
3997 struct bfq_queue *bfqq)
3998{
3999 struct bfq_ttime *ttime = &bfqq->ttime;
4000 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4001
4002 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4003
4004 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4005 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4006 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4007 ttime->ttime_samples);
4008}
4009
4010static void
4011bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4012 struct request *rq)
4013{
aee69d78 4014 bfqq->seek_history <<= 1;
ab0e43e9
PV
4015 bfqq->seek_history |=
4016 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
4017 (!blk_queue_nonrot(bfqd->queue) ||
4018 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4019}
4020
d5be3fef
PV
4021static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4022 struct bfq_queue *bfqq,
4023 struct bfq_io_cq *bic)
aee69d78 4024{
d5be3fef 4025 bool has_short_ttime = true;
aee69d78 4026
d5be3fef
PV
4027 /*
4028 * No need to update has_short_ttime if bfqq is async or in
4029 * idle io prio class, or if bfq_slice_idle is zero, because
4030 * no device idling is performed for bfqq in this case.
4031 */
4032 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4033 bfqd->bfq_slice_idle == 0)
aee69d78
PV
4034 return;
4035
36eca894
AA
4036 /* Idle window just restored, statistics are meaningless. */
4037 if (time_is_after_eq_jiffies(bfqq->split_time +
4038 bfqd->bfq_wr_min_idle_time))
4039 return;
4040
d5be3fef
PV
4041 /* Think time is infinite if no process is linked to
4042 * bfqq. Otherwise check average think time to
4043 * decide whether to mark as has_short_ttime
4044 */
aee69d78 4045 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
d5be3fef
PV
4046 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4047 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4048 has_short_ttime = false;
4049
4050 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4051 has_short_ttime);
aee69d78 4052
d5be3fef
PV
4053 if (has_short_ttime)
4054 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 4055 else
d5be3fef 4056 bfq_clear_bfqq_has_short_ttime(bfqq);
aee69d78
PV
4057}
4058
4059/*
4060 * Called when a new fs request (rq) is added to bfqq. Check if there's
4061 * something we should do about it.
4062 */
4063static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4064 struct request *rq)
4065{
4066 struct bfq_io_cq *bic = RQ_BIC(rq);
4067
4068 if (rq->cmd_flags & REQ_META)
4069 bfqq->meta_pending++;
4070
4071 bfq_update_io_thinktime(bfqd, bfqq);
d5be3fef 4072 bfq_update_has_short_ttime(bfqd, bfqq, bic);
aee69d78 4073 bfq_update_io_seektime(bfqd, bfqq, rq);
aee69d78
PV
4074
4075 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
4076 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4077 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
aee69d78
PV
4078
4079 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4080
4081 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4082 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4083 blk_rq_sectors(rq) < 32;
4084 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4085
4086 /*
4087 * There is just this request queued: if the request
4088 * is small and the queue is not to be expired, then
4089 * just exit.
4090 *
4091 * In this way, if the device is being idled to wait
4092 * for a new request from the in-service queue, we
4093 * avoid unplugging the device and committing the
4094 * device to serve just a small request. On the
4095 * contrary, we wait for the block layer to decide
4096 * when to unplug the device: hopefully, new requests
4097 * will be merged to this one quickly, then the device
4098 * will be unplugged and larger requests will be
4099 * dispatched.
4100 */
4101 if (small_req && !budget_timeout)
4102 return;
4103
4104 /*
4105 * A large enough request arrived, or the queue is to
4106 * be expired: in both cases disk idling is to be
4107 * stopped, so clear wait_request flag and reset
4108 * timer.
4109 */
4110 bfq_clear_bfqq_wait_request(bfqq);
4111 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 4112 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
4113
4114 /*
4115 * The queue is not empty, because a new request just
4116 * arrived. Hence we can safely expire the queue, in
4117 * case of budget timeout, without risking that the
4118 * timestamps of the queue are not updated correctly.
4119 * See [1] for more details.
4120 */
4121 if (budget_timeout)
4122 bfq_bfqq_expire(bfqd, bfqq, false,
4123 BFQQE_BUDGET_TIMEOUT);
4124 }
4125}
4126
4127static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4128{
36eca894
AA
4129 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4130 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4131
4132 if (new_bfqq) {
4133 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4134 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4135 /*
4136 * Release the request's reference to the old bfqq
4137 * and make sure one is taken to the shared queue.
4138 */
4139 new_bfqq->allocated++;
4140 bfqq->allocated--;
4141 new_bfqq->ref++;
e1b2324d 4142 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
4143 /*
4144 * If the bic associated with the process
4145 * issuing this request still points to bfqq
4146 * (and thus has not been already redirected
4147 * to new_bfqq or even some other bfq_queue),
4148 * then complete the merge and redirect it to
4149 * new_bfqq.
4150 */
4151 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4152 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4153 bfqq, new_bfqq);
4154 /*
4155 * rq is about to be enqueued into new_bfqq,
4156 * release rq reference on bfqq
4157 */
4158 bfq_put_queue(bfqq);
4159 rq->elv.priv[1] = new_bfqq;
4160 bfqq = new_bfqq;
4161 }
aee69d78
PV
4162
4163 bfq_add_request(rq);
4164
4165 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4166 list_add_tail(&rq->queuelist, &bfqq->fifo);
4167
4168 bfq_rq_enqueued(bfqd, bfqq, rq);
4169}
4170
4171static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4172 bool at_head)
4173{
4174 struct request_queue *q = hctx->queue;
4175 struct bfq_data *bfqd = q->elevator->elevator_data;
4176
4177 spin_lock_irq(&bfqd->lock);
4178 if (blk_mq_sched_try_insert_merge(q, rq)) {
4179 spin_unlock_irq(&bfqd->lock);
4180 return;
4181 }
4182
4183 spin_unlock_irq(&bfqd->lock);
4184
4185 blk_mq_sched_request_inserted(rq);
4186
4187 spin_lock_irq(&bfqd->lock);
4188 if (at_head || blk_rq_is_passthrough(rq)) {
4189 if (at_head)
4190 list_add(&rq->queuelist, &bfqd->dispatch);
4191 else
4192 list_add_tail(&rq->queuelist, &bfqd->dispatch);
4193 } else {
4194 __bfq_insert_request(bfqd, rq);
4195
4196 if (rq_mergeable(rq)) {
4197 elv_rqhash_add(q, rq);
4198 if (!q->last_merge)
4199 q->last_merge = rq;
4200 }
4201 }
4202
6fa3e8d3 4203 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4204}
4205
4206static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4207 struct list_head *list, bool at_head)
4208{
4209 while (!list_empty(list)) {
4210 struct request *rq;
4211
4212 rq = list_first_entry(list, struct request, queuelist);
4213 list_del_init(&rq->queuelist);
4214 bfq_insert_request(hctx, rq, at_head);
4215 }
4216}
4217
4218static void bfq_update_hw_tag(struct bfq_data *bfqd)
4219{
4220 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4221 bfqd->rq_in_driver);
4222
4223 if (bfqd->hw_tag == 1)
4224 return;
4225
4226 /*
4227 * This sample is valid if the number of outstanding requests
4228 * is large enough to allow a queueing behavior. Note that the
4229 * sum is not exact, as it's not taking into account deactivated
4230 * requests.
4231 */
4232 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4233 return;
4234
4235 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4236 return;
4237
4238 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4239 bfqd->max_rq_in_driver = 0;
4240 bfqd->hw_tag_samples = 0;
4241}
4242
4243static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4244{
ab0e43e9
PV
4245 u64 now_ns;
4246 u32 delta_us;
4247
aee69d78
PV
4248 bfq_update_hw_tag(bfqd);
4249
4250 bfqd->rq_in_driver--;
4251 bfqq->dispatched--;
4252
44e44a1b
PV
4253 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4254 /*
4255 * Set budget_timeout (which we overload to store the
4256 * time at which the queue remains with no backlog and
4257 * no outstanding request; used by the weight-raising
4258 * mechanism).
4259 */
4260 bfqq->budget_timeout = jiffies;
1de0c4cd
AA
4261
4262 bfq_weights_tree_remove(bfqd, &bfqq->entity,
4263 &bfqd->queue_weights_tree);
44e44a1b
PV
4264 }
4265
ab0e43e9
PV
4266 now_ns = ktime_get_ns();
4267
4268 bfqq->ttime.last_end_request = now_ns;
4269
4270 /*
4271 * Using us instead of ns, to get a reasonable precision in
4272 * computing rate in next check.
4273 */
4274 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4275
4276 /*
4277 * If the request took rather long to complete, and, according
4278 * to the maximum request size recorded, this completion latency
4279 * implies that the request was certainly served at a very low
4280 * rate (less than 1M sectors/sec), then the whole observation
4281 * interval that lasts up to this time instant cannot be a
4282 * valid time interval for computing a new peak rate. Invoke
4283 * bfq_update_rate_reset to have the following three steps
4284 * taken:
4285 * - close the observation interval at the last (previous)
4286 * request dispatch or completion
4287 * - compute rate, if possible, for that observation interval
4288 * - reset to zero samples, which will trigger a proper
4289 * re-initialization of the observation interval on next
4290 * dispatch
4291 */
4292 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4293 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4294 1UL<<(BFQ_RATE_SHIFT - 10))
4295 bfq_update_rate_reset(bfqd, NULL);
4296 bfqd->last_completion = now_ns;
aee69d78 4297
77b7dcea
PV
4298 /*
4299 * If we are waiting to discover whether the request pattern
4300 * of the task associated with the queue is actually
4301 * isochronous, and both requisites for this condition to hold
4302 * are now satisfied, then compute soft_rt_next_start (see the
4303 * comments on the function bfq_bfqq_softrt_next_start()). We
4304 * schedule this delayed check when bfqq expires, if it still
4305 * has in-flight requests.
4306 */
4307 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4308 RB_EMPTY_ROOT(&bfqq->sort_list))
4309 bfqq->soft_rt_next_start =
4310 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4311
aee69d78
PV
4312 /*
4313 * If this is the in-service queue, check if it needs to be expired,
4314 * or if we want to idle in case it has no pending requests.
4315 */
4316 if (bfqd->in_service_queue == bfqq) {
44e44a1b 4317 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
4318 bfq_arm_slice_timer(bfqd);
4319 return;
4320 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4321 bfq_bfqq_expire(bfqd, bfqq, false,
4322 BFQQE_BUDGET_TIMEOUT);
4323 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4324 (bfqq->dispatched == 0 ||
4325 !bfq_bfqq_may_idle(bfqq)))
4326 bfq_bfqq_expire(bfqd, bfqq, false,
4327 BFQQE_NO_MORE_REQUESTS);
4328 }
3f7cb4f4
HT
4329
4330 if (!bfqd->rq_in_driver)
4331 bfq_schedule_dispatch(bfqd);
aee69d78
PV
4332}
4333
4334static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4335{
4336 bfqq->allocated--;
4337
4338 bfq_put_queue(bfqq);
4339}
4340
7b9e9361 4341static void bfq_finish_request(struct request *rq)
aee69d78 4342{
5bbf4e5a
CH
4343 struct bfq_queue *bfqq;
4344 struct bfq_data *bfqd;
4345
4346 if (!rq->elv.icq)
4347 return;
4348
4349 bfqq = RQ_BFQQ(rq);
4350 bfqd = bfqq->bfqd;
aee69d78 4351
e21b7a0b
AA
4352 if (rq->rq_flags & RQF_STARTED)
4353 bfqg_stats_update_completion(bfqq_group(bfqq),
4354 rq_start_time_ns(rq),
4355 rq_io_start_time_ns(rq),
4356 rq->cmd_flags);
aee69d78
PV
4357
4358 if (likely(rq->rq_flags & RQF_STARTED)) {
4359 unsigned long flags;
4360
4361 spin_lock_irqsave(&bfqd->lock, flags);
4362
4363 bfq_completed_request(bfqq, bfqd);
4364 bfq_put_rq_priv_body(bfqq);
4365
6fa3e8d3 4366 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4367 } else {
4368 /*
4369 * Request rq may be still/already in the scheduler,
4370 * in which case we need to remove it. And we cannot
4371 * defer such a check and removal, to avoid
4372 * inconsistencies in the time interval from the end
4373 * of this function to the start of the deferred work.
4374 * This situation seems to occur only in process
4375 * context, as a consequence of a merge. In the
4376 * current version of the code, this implies that the
4377 * lock is held.
4378 */
4379
4380 if (!RB_EMPTY_NODE(&rq->rb_node))
7b9e9361 4381 bfq_remove_request(rq->q, rq);
aee69d78
PV
4382 bfq_put_rq_priv_body(bfqq);
4383 }
4384
4385 rq->elv.priv[0] = NULL;
4386 rq->elv.priv[1] = NULL;
4387}
4388
36eca894
AA
4389/*
4390 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4391 * was the last process referring to that bfqq.
4392 */
4393static struct bfq_queue *
4394bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4395{
4396 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4397
4398 if (bfqq_process_refs(bfqq) == 1) {
4399 bfqq->pid = current->pid;
4400 bfq_clear_bfqq_coop(bfqq);
4401 bfq_clear_bfqq_split_coop(bfqq);
4402 return bfqq;
4403 }
4404
4405 bic_set_bfqq(bic, NULL, 1);
4406
4407 bfq_put_cooperator(bfqq);
4408
4409 bfq_put_queue(bfqq);
4410 return NULL;
4411}
4412
4413static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4414 struct bfq_io_cq *bic,
4415 struct bio *bio,
4416 bool split, bool is_sync,
4417 bool *new_queue)
4418{
4419 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4420
4421 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4422 return bfqq;
4423
4424 if (new_queue)
4425 *new_queue = true;
4426
4427 if (bfqq)
4428 bfq_put_queue(bfqq);
4429 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4430
4431 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
4432 if (split && is_sync) {
4433 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4434 bic->saved_in_large_burst)
4435 bfq_mark_bfqq_in_large_burst(bfqq);
4436 else {
4437 bfq_clear_bfqq_in_large_burst(bfqq);
4438 if (bic->was_in_burst_list)
4439 hlist_add_head(&bfqq->burst_list_node,
4440 &bfqd->burst_list);
4441 }
36eca894 4442 bfqq->split_time = jiffies;
e1b2324d 4443 }
36eca894
AA
4444
4445 return bfqq;
4446}
4447
aee69d78
PV
4448/*
4449 * Allocate bfq data structures associated with this request.
4450 */
5bbf4e5a 4451static void bfq_prepare_request(struct request *rq, struct bio *bio)
aee69d78 4452{
5bbf4e5a 4453 struct request_queue *q = rq->q;
aee69d78 4454 struct bfq_data *bfqd = q->elevator->elevator_data;
9f210738 4455 struct bfq_io_cq *bic;
aee69d78
PV
4456 const int is_sync = rq_is_sync(rq);
4457 struct bfq_queue *bfqq;
36eca894 4458 bool new_queue = false;
13c931bd 4459 bool bfqq_already_existing = false, split = false;
aee69d78 4460
9f210738 4461 if (!rq->elv.icq)
5bbf4e5a 4462 return;
9f210738 4463 bic = icq_to_bic(rq->elv.icq);
aee69d78 4464
9f210738 4465 spin_lock_irq(&bfqd->lock);
aee69d78 4466
8c9ff1ad
CIK
4467 bfq_check_ioprio_change(bic, bio);
4468
e21b7a0b
AA
4469 bfq_bic_update_cgroup(bic, bio);
4470
36eca894
AA
4471 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4472 &new_queue);
4473
4474 if (likely(!new_queue)) {
4475 /* If the queue was seeky for too long, break it apart. */
4476 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4477 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
4478
4479 /* Update bic before losing reference to bfqq */
4480 if (bfq_bfqq_in_large_burst(bfqq))
4481 bic->saved_in_large_burst = true;
4482
36eca894 4483 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 4484 split = true;
36eca894
AA
4485
4486 if (!bfqq)
4487 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4488 true, is_sync,
4489 NULL);
13c931bd
PV
4490 else
4491 bfqq_already_existing = true;
36eca894 4492 }
aee69d78
PV
4493 }
4494
4495 bfqq->allocated++;
4496 bfqq->ref++;
4497 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4498 rq, bfqq, bfqq->ref);
4499
4500 rq->elv.priv[0] = bic;
4501 rq->elv.priv[1] = bfqq;
4502
36eca894
AA
4503 /*
4504 * If a bfq_queue has only one process reference, it is owned
4505 * by only this bic: we can then set bfqq->bic = bic. in
4506 * addition, if the queue has also just been split, we have to
4507 * resume its state.
4508 */
4509 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4510 bfqq->bic = bic;
6fa3e8d3 4511 if (split) {
36eca894
AA
4512 /*
4513 * The queue has just been split from a shared
4514 * queue: restore the idle window and the
4515 * possible weight raising period.
4516 */
13c931bd
PV
4517 bfq_bfqq_resume_state(bfqq, bfqd, bic,
4518 bfqq_already_existing);
36eca894
AA
4519 }
4520 }
4521
e1b2324d
AA
4522 if (unlikely(bfq_bfqq_just_created(bfqq)))
4523 bfq_handle_burst(bfqd, bfqq);
4524
6fa3e8d3 4525 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4526}
4527
4528static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4529{
4530 struct bfq_data *bfqd = bfqq->bfqd;
4531 enum bfqq_expiration reason;
4532 unsigned long flags;
4533
4534 spin_lock_irqsave(&bfqd->lock, flags);
4535 bfq_clear_bfqq_wait_request(bfqq);
4536
4537 if (bfqq != bfqd->in_service_queue) {
4538 spin_unlock_irqrestore(&bfqd->lock, flags);
4539 return;
4540 }
4541
4542 if (bfq_bfqq_budget_timeout(bfqq))
4543 /*
4544 * Also here the queue can be safely expired
4545 * for budget timeout without wasting
4546 * guarantees
4547 */
4548 reason = BFQQE_BUDGET_TIMEOUT;
4549 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4550 /*
4551 * The queue may not be empty upon timer expiration,
4552 * because we may not disable the timer when the
4553 * first request of the in-service queue arrives
4554 * during disk idling.
4555 */
4556 reason = BFQQE_TOO_IDLE;
4557 else
4558 goto schedule_dispatch;
4559
4560 bfq_bfqq_expire(bfqd, bfqq, true, reason);
4561
4562schedule_dispatch:
6fa3e8d3 4563 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4564 bfq_schedule_dispatch(bfqd);
4565}
4566
4567/*
4568 * Handler of the expiration of the timer running if the in-service queue
4569 * is idling inside its time slice.
4570 */
4571static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4572{
4573 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4574 idle_slice_timer);
4575 struct bfq_queue *bfqq = bfqd->in_service_queue;
4576
4577 /*
4578 * Theoretical race here: the in-service queue can be NULL or
4579 * different from the queue that was idling if a new request
4580 * arrives for the current queue and there is a full dispatch
4581 * cycle that changes the in-service queue. This can hardly
4582 * happen, but in the worst case we just expire a queue too
4583 * early.
4584 */
4585 if (bfqq)
4586 bfq_idle_slice_timer_body(bfqq);
4587
4588 return HRTIMER_NORESTART;
4589}
4590
4591static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4592 struct bfq_queue **bfqq_ptr)
4593{
4594 struct bfq_queue *bfqq = *bfqq_ptr;
4595
4596 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4597 if (bfqq) {
e21b7a0b
AA
4598 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4599
aee69d78
PV
4600 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4601 bfqq, bfqq->ref);
4602 bfq_put_queue(bfqq);
4603 *bfqq_ptr = NULL;
4604 }
4605}
4606
4607/*
e21b7a0b
AA
4608 * Release all the bfqg references to its async queues. If we are
4609 * deallocating the group these queues may still contain requests, so
4610 * we reparent them to the root cgroup (i.e., the only one that will
4611 * exist for sure until all the requests on a device are gone).
aee69d78 4612 */
ea25da48 4613void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
4614{
4615 int i, j;
4616
4617 for (i = 0; i < 2; i++)
4618 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 4619 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 4620
e21b7a0b 4621 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
4622}
4623
4624static void bfq_exit_queue(struct elevator_queue *e)
4625{
4626 struct bfq_data *bfqd = e->elevator_data;
4627 struct bfq_queue *bfqq, *n;
4628
4629 hrtimer_cancel(&bfqd->idle_slice_timer);
4630
4631 spin_lock_irq(&bfqd->lock);
4632 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 4633 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
4634 spin_unlock_irq(&bfqd->lock);
4635
4636 hrtimer_cancel(&bfqd->idle_slice_timer);
4637
e21b7a0b
AA
4638#ifdef CONFIG_BFQ_GROUP_IOSCHED
4639 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4640#else
4641 spin_lock_irq(&bfqd->lock);
4642 bfq_put_async_queues(bfqd, bfqd->root_group);
4643 kfree(bfqd->root_group);
4644 spin_unlock_irq(&bfqd->lock);
4645#endif
4646
aee69d78
PV
4647 kfree(bfqd);
4648}
4649
e21b7a0b
AA
4650static void bfq_init_root_group(struct bfq_group *root_group,
4651 struct bfq_data *bfqd)
4652{
4653 int i;
4654
4655#ifdef CONFIG_BFQ_GROUP_IOSCHED
4656 root_group->entity.parent = NULL;
4657 root_group->my_entity = NULL;
4658 root_group->bfqd = bfqd;
4659#endif
36eca894 4660 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
4661 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4662 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4663 root_group->sched_data.bfq_class_idle_last_service = jiffies;
4664}
4665
aee69d78
PV
4666static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4667{
4668 struct bfq_data *bfqd;
4669 struct elevator_queue *eq;
aee69d78
PV
4670
4671 eq = elevator_alloc(q, e);
4672 if (!eq)
4673 return -ENOMEM;
4674
4675 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4676 if (!bfqd) {
4677 kobject_put(&eq->kobj);
4678 return -ENOMEM;
4679 }
4680 eq->elevator_data = bfqd;
4681
e21b7a0b
AA
4682 spin_lock_irq(q->queue_lock);
4683 q->elevator = eq;
4684 spin_unlock_irq(q->queue_lock);
4685
aee69d78
PV
4686 /*
4687 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4688 * Grab a permanent reference to it, so that the normal code flow
4689 * will not attempt to free it.
4690 */
4691 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4692 bfqd->oom_bfqq.ref++;
4693 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4694 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4695 bfqd->oom_bfqq.entity.new_weight =
4696 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
4697
4698 /* oom_bfqq does not participate to bursts */
4699 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4700
aee69d78
PV
4701 /*
4702 * Trigger weight initialization, according to ioprio, at the
4703 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4704 * class won't be changed any more.
4705 */
4706 bfqd->oom_bfqq.entity.prio_changed = 1;
4707
4708 bfqd->queue = q;
4709
e21b7a0b 4710 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
4711
4712 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4713 HRTIMER_MODE_REL);
4714 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4715
1de0c4cd
AA
4716 bfqd->queue_weights_tree = RB_ROOT;
4717 bfqd->group_weights_tree = RB_ROOT;
4718
aee69d78
PV
4719 INIT_LIST_HEAD(&bfqd->active_list);
4720 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 4721 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
4722
4723 bfqd->hw_tag = -1;
4724
4725 bfqd->bfq_max_budget = bfq_default_max_budget;
4726
4727 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4728 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4729 bfqd->bfq_back_max = bfq_back_max;
4730 bfqd->bfq_back_penalty = bfq_back_penalty;
4731 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
4732 bfqd->bfq_timeout = bfq_timeout;
4733
4734 bfqd->bfq_requests_within_timer = 120;
4735
e1b2324d
AA
4736 bfqd->bfq_large_burst_thresh = 8;
4737 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4738
44e44a1b
PV
4739 bfqd->low_latency = true;
4740
4741 /*
4742 * Trade-off between responsiveness and fairness.
4743 */
4744 bfqd->bfq_wr_coeff = 30;
77b7dcea 4745 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
4746 bfqd->bfq_wr_max_time = 0;
4747 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4748 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
4749 bfqd->bfq_wr_max_softrt_rate = 7000; /*
4750 * Approximate rate required
4751 * to playback or record a
4752 * high-definition compressed
4753 * video.
4754 */
cfd69712 4755 bfqd->wr_busy_queues = 0;
44e44a1b
PV
4756
4757 /*
4758 * Begin by assuming, optimistically, that the device is a
4759 * high-speed one, and that its peak rate is equal to 2/3 of
4760 * the highest reference rate.
4761 */
4762 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4763 T_fast[blk_queue_nonrot(bfqd->queue)];
4764 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4765 bfqd->device_speed = BFQ_BFQD_FAST;
4766
aee69d78 4767 spin_lock_init(&bfqd->lock);
aee69d78 4768
e21b7a0b
AA
4769 /*
4770 * The invocation of the next bfq_create_group_hierarchy
4771 * function is the head of a chain of function calls
4772 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4773 * blk_mq_freeze_queue) that may lead to the invocation of the
4774 * has_work hook function. For this reason,
4775 * bfq_create_group_hierarchy is invoked only after all
4776 * scheduler data has been initialized, apart from the fields
4777 * that can be initialized only after invoking
4778 * bfq_create_group_hierarchy. This, in particular, enables
4779 * has_work to correctly return false. Of course, to avoid
4780 * other inconsistencies, the blk-mq stack must then refrain
4781 * from invoking further scheduler hooks before this init
4782 * function is finished.
4783 */
4784 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4785 if (!bfqd->root_group)
4786 goto out_free;
4787 bfq_init_root_group(bfqd->root_group, bfqd);
4788 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4789
aee69d78
PV
4790
4791 return 0;
e21b7a0b
AA
4792
4793out_free:
4794 kfree(bfqd);
4795 kobject_put(&eq->kobj);
4796 return -ENOMEM;
aee69d78
PV
4797}
4798
4799static void bfq_slab_kill(void)
4800{
4801 kmem_cache_destroy(bfq_pool);
4802}
4803
4804static int __init bfq_slab_setup(void)
4805{
4806 bfq_pool = KMEM_CACHE(bfq_queue, 0);
4807 if (!bfq_pool)
4808 return -ENOMEM;
4809 return 0;
4810}
4811
4812static ssize_t bfq_var_show(unsigned int var, char *page)
4813{
4814 return sprintf(page, "%u\n", var);
4815}
4816
2f79136b 4817static int bfq_var_store(unsigned long *var, const char *page)
aee69d78
PV
4818{
4819 unsigned long new_val;
4820 int ret = kstrtoul(page, 10, &new_val);
4821
2f79136b
BVA
4822 if (ret)
4823 return ret;
4824 *var = new_val;
4825 return 0;
aee69d78
PV
4826}
4827
4828#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4829static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4830{ \
4831 struct bfq_data *bfqd = e->elevator_data; \
4832 u64 __data = __VAR; \
4833 if (__CONV == 1) \
4834 __data = jiffies_to_msecs(__data); \
4835 else if (__CONV == 2) \
4836 __data = div_u64(__data, NSEC_PER_MSEC); \
4837 return bfq_var_show(__data, (page)); \
4838}
4839SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
4840SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
4841SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
4842SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
4843SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
4844SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
4845SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
4846SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 4847SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
4848#undef SHOW_FUNCTION
4849
4850#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4851static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4852{ \
4853 struct bfq_data *bfqd = e->elevator_data; \
4854 u64 __data = __VAR; \
4855 __data = div_u64(__data, NSEC_PER_USEC); \
4856 return bfq_var_show(__data, (page)); \
4857}
4858USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
4859#undef USEC_SHOW_FUNCTION
4860
4861#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4862static ssize_t \
4863__FUNC(struct elevator_queue *e, const char *page, size_t count) \
4864{ \
4865 struct bfq_data *bfqd = e->elevator_data; \
1530486c 4866 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
4867 int ret; \
4868 \
4869 ret = bfq_var_store(&__data, (page)); \
4870 if (ret) \
4871 return ret; \
1530486c
BVA
4872 if (__data < __min) \
4873 __data = __min; \
4874 else if (__data > __max) \
4875 __data = __max; \
aee69d78
PV
4876 if (__CONV == 1) \
4877 *(__PTR) = msecs_to_jiffies(__data); \
4878 else if (__CONV == 2) \
4879 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4880 else \
4881 *(__PTR) = __data; \
235f8da1 4882 return count; \
aee69d78
PV
4883}
4884STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
4885 INT_MAX, 2);
4886STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
4887 INT_MAX, 2);
4888STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
4889STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
4890 INT_MAX, 0);
4891STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
4892#undef STORE_FUNCTION
4893
4894#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4895static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
4896{ \
4897 struct bfq_data *bfqd = e->elevator_data; \
1530486c 4898 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
4899 int ret; \
4900 \
4901 ret = bfq_var_store(&__data, (page)); \
4902 if (ret) \
4903 return ret; \
1530486c
BVA
4904 if (__data < __min) \
4905 __data = __min; \
4906 else if (__data > __max) \
4907 __data = __max; \
aee69d78 4908 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
235f8da1 4909 return count; \
aee69d78
PV
4910}
4911USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
4912 UINT_MAX);
4913#undef USEC_STORE_FUNCTION
4914
aee69d78
PV
4915static ssize_t bfq_max_budget_store(struct elevator_queue *e,
4916 const char *page, size_t count)
4917{
4918 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4919 unsigned long __data;
4920 int ret;
235f8da1 4921
2f79136b
BVA
4922 ret = bfq_var_store(&__data, (page));
4923 if (ret)
4924 return ret;
aee69d78
PV
4925
4926 if (__data == 0)
ab0e43e9 4927 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
4928 else {
4929 if (__data > INT_MAX)
4930 __data = INT_MAX;
4931 bfqd->bfq_max_budget = __data;
4932 }
4933
4934 bfqd->bfq_user_max_budget = __data;
4935
235f8da1 4936 return count;
aee69d78
PV
4937}
4938
4939/*
4940 * Leaving this name to preserve name compatibility with cfq
4941 * parameters, but this timeout is used for both sync and async.
4942 */
4943static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
4944 const char *page, size_t count)
4945{
4946 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4947 unsigned long __data;
4948 int ret;
235f8da1 4949
2f79136b
BVA
4950 ret = bfq_var_store(&__data, (page));
4951 if (ret)
4952 return ret;
aee69d78
PV
4953
4954 if (__data < 1)
4955 __data = 1;
4956 else if (__data > INT_MAX)
4957 __data = INT_MAX;
4958
4959 bfqd->bfq_timeout = msecs_to_jiffies(__data);
4960 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 4961 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78 4962
235f8da1 4963 return count;
aee69d78
PV
4964}
4965
4966static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
4967 const char *page, size_t count)
4968{
4969 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4970 unsigned long __data;
4971 int ret;
235f8da1 4972
2f79136b
BVA
4973 ret = bfq_var_store(&__data, (page));
4974 if (ret)
4975 return ret;
aee69d78
PV
4976
4977 if (__data > 1)
4978 __data = 1;
4979 if (!bfqd->strict_guarantees && __data == 1
4980 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
4981 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
4982
4983 bfqd->strict_guarantees = __data;
4984
235f8da1 4985 return count;
aee69d78
PV
4986}
4987
44e44a1b
PV
4988static ssize_t bfq_low_latency_store(struct elevator_queue *e,
4989 const char *page, size_t count)
4990{
4991 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4992 unsigned long __data;
4993 int ret;
235f8da1 4994
2f79136b
BVA
4995 ret = bfq_var_store(&__data, (page));
4996 if (ret)
4997 return ret;
44e44a1b
PV
4998
4999 if (__data > 1)
5000 __data = 1;
5001 if (__data == 0 && bfqd->low_latency != 0)
5002 bfq_end_wr(bfqd);
5003 bfqd->low_latency = __data;
5004
235f8da1 5005 return count;
44e44a1b
PV
5006}
5007
aee69d78
PV
5008#define BFQ_ATTR(name) \
5009 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5010
5011static struct elv_fs_entry bfq_attrs[] = {
5012 BFQ_ATTR(fifo_expire_sync),
5013 BFQ_ATTR(fifo_expire_async),
5014 BFQ_ATTR(back_seek_max),
5015 BFQ_ATTR(back_seek_penalty),
5016 BFQ_ATTR(slice_idle),
5017 BFQ_ATTR(slice_idle_us),
5018 BFQ_ATTR(max_budget),
5019 BFQ_ATTR(timeout_sync),
5020 BFQ_ATTR(strict_guarantees),
44e44a1b 5021 BFQ_ATTR(low_latency),
aee69d78
PV
5022 __ATTR_NULL
5023};
5024
5025static struct elevator_type iosched_bfq_mq = {
5026 .ops.mq = {
5bbf4e5a 5027 .prepare_request = bfq_prepare_request,
7b9e9361 5028 .finish_request = bfq_finish_request,
aee69d78
PV
5029 .exit_icq = bfq_exit_icq,
5030 .insert_requests = bfq_insert_requests,
5031 .dispatch_request = bfq_dispatch_request,
5032 .next_request = elv_rb_latter_request,
5033 .former_request = elv_rb_former_request,
5034 .allow_merge = bfq_allow_bio_merge,
5035 .bio_merge = bfq_bio_merge,
5036 .request_merge = bfq_request_merge,
5037 .requests_merged = bfq_requests_merged,
5038 .request_merged = bfq_request_merged,
5039 .has_work = bfq_has_work,
5040 .init_sched = bfq_init_queue,
5041 .exit_sched = bfq_exit_queue,
5042 },
5043
5044 .uses_mq = true,
5045 .icq_size = sizeof(struct bfq_io_cq),
5046 .icq_align = __alignof__(struct bfq_io_cq),
5047 .elevator_attrs = bfq_attrs,
5048 .elevator_name = "bfq",
5049 .elevator_owner = THIS_MODULE,
5050};
26b4cf24 5051MODULE_ALIAS("bfq-iosched");
aee69d78
PV
5052
5053static int __init bfq_init(void)
5054{
5055 int ret;
5056
e21b7a0b
AA
5057#ifdef CONFIG_BFQ_GROUP_IOSCHED
5058 ret = blkcg_policy_register(&blkcg_policy_bfq);
5059 if (ret)
5060 return ret;
5061#endif
5062
aee69d78
PV
5063 ret = -ENOMEM;
5064 if (bfq_slab_setup())
5065 goto err_pol_unreg;
5066
44e44a1b
PV
5067 /*
5068 * Times to load large popular applications for the typical
5069 * systems installed on the reference devices (see the
5070 * comments before the definitions of the next two
5071 * arrays). Actually, we use slightly slower values, as the
5072 * estimated peak rate tends to be smaller than the actual
5073 * peak rate. The reason for this last fact is that estimates
5074 * are computed over much shorter time intervals than the long
5075 * intervals typically used for benchmarking. Why? First, to
5076 * adapt more quickly to variations. Second, because an I/O
5077 * scheduler cannot rely on a peak-rate-evaluation workload to
5078 * be run for a long time.
5079 */
5080 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5081 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5082 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5083 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5084
5085 /*
5086 * Thresholds that determine the switch between speed classes
5087 * (see the comments before the definition of the array
5088 * device_speed_thresh). These thresholds are biased towards
5089 * transitions to the fast class. This is safer than the
5090 * opposite bias. In fact, a wrong transition to the slow
5091 * class results in short weight-raising periods, because the
5092 * speed of the device then tends to be higher that the
5093 * reference peak rate. On the opposite end, a wrong
5094 * transition to the fast class tends to increase
5095 * weight-raising periods, because of the opposite reason.
5096 */
5097 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5098 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5099
aee69d78
PV
5100 ret = elv_register(&iosched_bfq_mq);
5101 if (ret)
37dcd657 5102 goto slab_kill;
aee69d78
PV
5103
5104 return 0;
5105
37dcd657 5106slab_kill:
5107 bfq_slab_kill();
aee69d78 5108err_pol_unreg:
e21b7a0b
AA
5109#ifdef CONFIG_BFQ_GROUP_IOSCHED
5110 blkcg_policy_unregister(&blkcg_policy_bfq);
5111#endif
aee69d78
PV
5112 return ret;
5113}
5114
5115static void __exit bfq_exit(void)
5116{
5117 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
5118#ifdef CONFIG_BFQ_GROUP_IOSCHED
5119 blkcg_policy_unregister(&blkcg_policy_bfq);
5120#endif
aee69d78
PV
5121 bfq_slab_kill();
5122}
5123
5124module_init(bfq_init);
5125module_exit(bfq_exit);
5126
5127MODULE_AUTHOR("Paolo Valente");
5128MODULE_LICENSE("GPL");
5129MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");