]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bfq-iosched.c
block, bfq: remove all get and put of I/O contexts
[mirror_ubuntu-bionic-kernel.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
59 * BFQ is described in [1], where also a reference to the initial, more
60 * theoretical paper on BFQ can be found. The interested reader can find
61 * in the latter paper full details on the main algorithm, as well as
62 * formulas of the guarantees and formal proofs of all the properties.
63 * With respect to the version of BFQ presented in these papers, this
64 * implementation adds a few more heuristics, such as the one that
65 * guarantees a low latency to soft real-time applications, and a
66 * hierarchical extension based on H-WF2Q+.
67 *
68 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
69 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
70 * with O(log N) complexity derives from the one introduced with EEVDF
71 * in [3].
72 *
73 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
74 * Scheduler", Proceedings of the First Workshop on Mobile System
75 * Technologies (MST-2015), May 2015.
76 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
77 *
78 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
79 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
80 * Oct 1997.
81 *
82 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
83 *
84 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
85 * First: A Flexible and Accurate Mechanism for Proportional Share
86 * Resource Allocation", technical report.
87 *
88 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
89 */
90#include <linux/module.h>
91#include <linux/slab.h>
92#include <linux/blkdev.h>
e21b7a0b 93#include <linux/cgroup.h>
aee69d78
PV
94#include <linux/elevator.h>
95#include <linux/ktime.h>
96#include <linux/rbtree.h>
97#include <linux/ioprio.h>
98#include <linux/sbitmap.h>
99#include <linux/delay.h>
100
101#include "blk.h"
102#include "blk-mq.h"
103#include "blk-mq-tag.h"
104#include "blk-mq-sched.h"
105#include <linux/blktrace_api.h>
106#include <linux/hrtimer.h>
107#include <linux/blk-cgroup.h>
108
109#define BFQ_IOPRIO_CLASSES 3
110#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
111
112#define BFQ_MIN_WEIGHT 1
113#define BFQ_MAX_WEIGHT 1000
114#define BFQ_WEIGHT_CONVERSION_COEFF 10
115
116#define BFQ_DEFAULT_QUEUE_IOPRIO 4
117
e21b7a0b 118#define BFQ_WEIGHT_LEGACY_DFL 100
aee69d78
PV
119#define BFQ_DEFAULT_GRP_IOPRIO 0
120#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
121
77b7dcea
PV
122/*
123 * Soft real-time applications are extremely more latency sensitive
124 * than interactive ones. Over-raise the weight of the former to
125 * privilege them against the latter.
126 */
127#define BFQ_SOFTRT_WEIGHT_FACTOR 100
128
aee69d78
PV
129struct bfq_entity;
130
131/**
132 * struct bfq_service_tree - per ioprio_class service tree.
133 *
134 * Each service tree represents a B-WF2Q+ scheduler on its own. Each
135 * ioprio_class has its own independent scheduler, and so its own
136 * bfq_service_tree. All the fields are protected by the queue lock
137 * of the containing bfqd.
138 */
139struct bfq_service_tree {
140 /* tree for active entities (i.e., those backlogged) */
141 struct rb_root active;
142 /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
143 struct rb_root idle;
144
145 /* idle entity with minimum F_i */
146 struct bfq_entity *first_idle;
147 /* idle entity with maximum F_i */
148 struct bfq_entity *last_idle;
149
150 /* scheduler virtual time */
151 u64 vtime;
152 /* scheduler weight sum; active and idle entities contribute to it */
153 unsigned long wsum;
154};
155
156/**
157 * struct bfq_sched_data - multi-class scheduler.
158 *
159 * bfq_sched_data is the basic scheduler queue. It supports three
e21b7a0b
AA
160 * ioprio_classes, and can be used either as a toplevel queue or as an
161 * intermediate queue on a hierarchical setup. @next_in_service
162 * points to the active entity of the sched_data service trees that
163 * will be scheduled next. It is used to reduce the number of steps
164 * needed for each hierarchical-schedule update.
aee69d78
PV
165 *
166 * The supported ioprio_classes are the same as in CFQ, in descending
167 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
168 * Requests from higher priority queues are served before all the
169 * requests from lower priority queues; among requests of the same
170 * queue requests are served according to B-WF2Q+.
171 * All the fields are protected by the queue lock of the containing bfqd.
172 */
173struct bfq_sched_data {
174 /* entity in service */
175 struct bfq_entity *in_service_entity;
e21b7a0b 176 /* head-of-line entity (see comments above) */
aee69d78
PV
177 struct bfq_entity *next_in_service;
178 /* array of service trees, one per ioprio_class */
179 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
e21b7a0b
AA
180 /* last time CLASS_IDLE was served */
181 unsigned long bfq_class_idle_last_service;
182
aee69d78
PV
183};
184
1de0c4cd
AA
185/**
186 * struct bfq_weight_counter - counter of the number of all active entities
187 * with a given weight.
188 */
189struct bfq_weight_counter {
190 unsigned int weight; /* weight of the entities this counter refers to */
191 unsigned int num_active; /* nr of active entities with this weight */
192 /*
193 * Weights tree member (see bfq_data's @queue_weights_tree and
194 * @group_weights_tree)
195 */
196 struct rb_node weights_node;
197};
198
aee69d78
PV
199/**
200 * struct bfq_entity - schedulable entity.
201 *
e21b7a0b
AA
202 * A bfq_entity is used to represent either a bfq_queue (leaf node in the
203 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
204 * entity belongs to the sched_data of the parent group in the cgroup
205 * hierarchy. Non-leaf entities have also their own sched_data, stored
206 * in @my_sched_data.
aee69d78
PV
207 *
208 * Each entity stores independently its priority values; this would
209 * allow different weights on different devices, but this
210 * functionality is not exported to userspace by now. Priorities and
211 * weights are updated lazily, first storing the new values into the
212 * new_* fields, then setting the @prio_changed flag. As soon as
213 * there is a transition in the entity state that allows the priority
214 * update to take place the effective and the requested priority
215 * values are synchronized.
216 *
e21b7a0b
AA
217 * Unless cgroups are used, the weight value is calculated from the
218 * ioprio to export the same interface as CFQ. When dealing with
219 * ``well-behaved'' queues (i.e., queues that do not spend too much
220 * time to consume their budget and have true sequential behavior, and
221 * when there are no external factors breaking anticipation) the
222 * relative weights at each level of the cgroups hierarchy should be
223 * guaranteed. All the fields are protected by the queue lock of the
224 * containing bfqd.
aee69d78
PV
225 */
226struct bfq_entity {
227 /* service_tree member */
228 struct rb_node rb_node;
1de0c4cd
AA
229 /* pointer to the weight counter associated with this entity */
230 struct bfq_weight_counter *weight_counter;
aee69d78
PV
231
232 /*
e21b7a0b
AA
233 * Flag, true if the entity is on a tree (either the active or
234 * the idle one of its service_tree) or is in service.
aee69d78 235 */
e21b7a0b 236 bool on_st;
aee69d78
PV
237
238 /* B-WF2Q+ start and finish timestamps [sectors/weight] */
239 u64 start, finish;
240
241 /* tree the entity is enqueued into; %NULL if not on a tree */
242 struct rb_root *tree;
243
244 /*
245 * minimum start time of the (active) subtree rooted at this
246 * entity; used for O(log N) lookups into active trees
247 */
248 u64 min_start;
249
250 /* amount of service received during the last service slot */
251 int service;
252
253 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
254 int budget;
255
256 /* weight of the queue */
257 int weight;
258 /* next weight if a change is in progress */
259 int new_weight;
260
261 /* original weight, used to implement weight boosting */
262 int orig_weight;
263
264 /* parent entity, for hierarchical scheduling */
265 struct bfq_entity *parent;
266
267 /*
268 * For non-leaf nodes in the hierarchy, the associated
269 * scheduler queue, %NULL on leaf nodes.
270 */
271 struct bfq_sched_data *my_sched_data;
272 /* the scheduler queue this entity belongs to */
273 struct bfq_sched_data *sched_data;
274
275 /* flag, set to request a weight, ioprio or ioprio_class change */
276 int prio_changed;
277};
278
e21b7a0b
AA
279struct bfq_group;
280
aee69d78
PV
281/**
282 * struct bfq_ttime - per process thinktime stats.
283 */
284struct bfq_ttime {
285 /* completion time of the last request */
286 u64 last_end_request;
287
288 /* total process thinktime */
289 u64 ttime_total;
290 /* number of thinktime samples */
291 unsigned long ttime_samples;
292 /* average process thinktime */
293 u64 ttime_mean;
294};
295
296/**
297 * struct bfq_queue - leaf schedulable entity.
298 *
299 * A bfq_queue is a leaf request queue; it can be associated with an
36eca894
AA
300 * io_context or more, if it is async or shared between cooperating
301 * processes. @cgroup holds a reference to the cgroup, to be sure that it
302 * does not disappear while a bfqq still references it (mostly to avoid
303 * races between request issuing and task migration followed by cgroup
304 * destruction).
305 * All the fields are protected by the queue lock of the containing bfqd.
aee69d78
PV
306 */
307struct bfq_queue {
308 /* reference counter */
309 int ref;
310 /* parent bfq_data */
311 struct bfq_data *bfqd;
312
313 /* current ioprio and ioprio class */
314 unsigned short ioprio, ioprio_class;
315 /* next ioprio and ioprio class if a change is in progress */
316 unsigned short new_ioprio, new_ioprio_class;
317
36eca894
AA
318 /*
319 * Shared bfq_queue if queue is cooperating with one or more
320 * other queues.
321 */
322 struct bfq_queue *new_bfqq;
323 /* request-position tree member (see bfq_group's @rq_pos_tree) */
324 struct rb_node pos_node;
325 /* request-position tree root (see bfq_group's @rq_pos_tree) */
326 struct rb_root *pos_root;
327
aee69d78
PV
328 /* sorted list of pending requests */
329 struct rb_root sort_list;
330 /* if fifo isn't expired, next request to serve */
331 struct request *next_rq;
332 /* number of sync and async requests queued */
333 int queued[2];
334 /* number of requests currently allocated */
335 int allocated;
336 /* number of pending metadata requests */
337 int meta_pending;
338 /* fifo list of requests in sort_list */
339 struct list_head fifo;
340
341 /* entity representing this queue in the scheduler */
342 struct bfq_entity entity;
343
344 /* maximum budget allowed from the feedback mechanism */
345 int max_budget;
346 /* budget expiration (in jiffies) */
347 unsigned long budget_timeout;
348
349 /* number of requests on the dispatch list or inside driver */
350 int dispatched;
351
352 /* status flags */
353 unsigned long flags;
354
355 /* node for active/idle bfqq list inside parent bfqd */
356 struct list_head bfqq_list;
357
358 /* associated @bfq_ttime struct */
359 struct bfq_ttime ttime;
360
361 /* bit vector: a 1 for each seeky requests in history */
362 u32 seek_history;
e1b2324d
AA
363
364 /* node for the device's burst list */
365 struct hlist_node burst_list_node;
366
aee69d78
PV
367 /* position of the last request enqueued */
368 sector_t last_request_pos;
369
370 /* Number of consecutive pairs of request completion and
371 * arrival, such that the queue becomes idle after the
372 * completion, but the next request arrives within an idle
373 * time slice; used only if the queue's IO_bound flag has been
374 * cleared.
375 */
376 unsigned int requests_within_timer;
377
378 /* pid of the process owning the queue, used for logging purposes */
379 pid_t pid;
44e44a1b 380
36eca894
AA
381 /*
382 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
383 * if the queue is shared.
384 */
385 struct bfq_io_cq *bic;
386
44e44a1b
PV
387 /* current maximum weight-raising time for this queue */
388 unsigned long wr_cur_max_time;
77b7dcea
PV
389 /*
390 * Minimum time instant such that, only if a new request is
391 * enqueued after this time instant in an idle @bfq_queue with
392 * no outstanding requests, then the task associated with the
393 * queue it is deemed as soft real-time (see the comments on
394 * the function bfq_bfqq_softrt_next_start())
395 */
396 unsigned long soft_rt_next_start;
44e44a1b
PV
397 /*
398 * Start time of the current weight-raising period if
399 * the @bfq-queue is being weight-raised, otherwise
400 * finish time of the last weight-raising period.
401 */
402 unsigned long last_wr_start_finish;
403 /* factor by which the weight of this queue is multiplied */
404 unsigned int wr_coeff;
77b7dcea
PV
405 /*
406 * Time of the last transition of the @bfq_queue from idle to
407 * backlogged.
408 */
409 unsigned long last_idle_bklogged;
410 /*
411 * Cumulative service received from the @bfq_queue since the
412 * last transition from idle to backlogged.
413 */
414 unsigned long service_from_backlogged;
36eca894 415
77b7dcea
PV
416 /*
417 * Value of wr start time when switching to soft rt
418 */
419 unsigned long wr_start_at_switch_to_srt;
36eca894
AA
420
421 unsigned long split_time; /* time of last split */
aee69d78
PV
422};
423
424/**
425 * struct bfq_io_cq - per (request_queue, io_context) structure.
426 */
427struct bfq_io_cq {
428 /* associated io_cq structure */
429 struct io_cq icq; /* must be the first member */
430 /* array of two process queues, the sync and the async */
431 struct bfq_queue *bfqq[2];
432 /* per (request_queue, blkcg) ioprio */
433 int ioprio;
e21b7a0b
AA
434#ifdef CONFIG_BFQ_GROUP_IOSCHED
435 uint64_t blkcg_serial_nr; /* the current blkcg serial */
436#endif
36eca894
AA
437 /*
438 * Snapshot of the idle window before merging; taken to
439 * remember this value while the queue is merged, so as to be
440 * able to restore it in case of split.
441 */
442 bool saved_idle_window;
443 /*
444 * Same purpose as the previous two fields for the I/O bound
445 * classification of a queue.
446 */
447 bool saved_IO_bound;
448
e1b2324d
AA
449 /*
450 * Same purpose as the previous fields for the value of the
451 * field keeping the queue's belonging to a large burst
452 */
453 bool saved_in_large_burst;
454 /*
455 * True if the queue belonged to a burst list before its merge
456 * with another cooperating queue.
457 */
458 bool was_in_burst_list;
459
36eca894
AA
460 /*
461 * Similar to previous fields: save wr information.
462 */
463 unsigned long saved_wr_coeff;
464 unsigned long saved_last_wr_start_finish;
465 unsigned long saved_wr_start_at_switch_to_srt;
466 unsigned int saved_wr_cur_max_time;
467 struct bfq_ttime saved_ttime;
aee69d78
PV
468};
469
44e44a1b
PV
470enum bfq_device_speed {
471 BFQ_BFQD_FAST,
472 BFQ_BFQD_SLOW,
473};
474
aee69d78
PV
475/**
476 * struct bfq_data - per-device data structure.
477 *
478 * All the fields are protected by @lock.
479 */
480struct bfq_data {
481 /* device request queue */
482 struct request_queue *queue;
483 /* dispatch queue */
484 struct list_head dispatch;
485
e21b7a0b
AA
486 /* root bfq_group for the device */
487 struct bfq_group *root_group;
aee69d78 488
1de0c4cd
AA
489 /*
490 * rbtree of weight counters of @bfq_queues, sorted by
491 * weight. Used to keep track of whether all @bfq_queues have
492 * the same weight. The tree contains one counter for each
493 * distinct weight associated to some active and not
494 * weight-raised @bfq_queue (see the comments to the functions
495 * bfq_weights_tree_[add|remove] for further details).
496 */
497 struct rb_root queue_weights_tree;
498 /*
499 * rbtree of non-queue @bfq_entity weight counters, sorted by
500 * weight. Used to keep track of whether all @bfq_groups have
501 * the same weight. The tree contains one counter for each
502 * distinct weight associated to some active @bfq_group (see
503 * the comments to the functions bfq_weights_tree_[add|remove]
504 * for further details).
505 */
506 struct rb_root group_weights_tree;
507
aee69d78
PV
508 /*
509 * Number of bfq_queues containing requests (including the
510 * queue in service, even if it is idling).
511 */
512 int busy_queues;
cfd69712
PV
513 /* number of weight-raised busy @bfq_queues */
514 int wr_busy_queues;
aee69d78
PV
515 /* number of queued requests */
516 int queued;
517 /* number of requests dispatched and waiting for completion */
518 int rq_in_driver;
519
520 /*
521 * Maximum number of requests in driver in the last
522 * @hw_tag_samples completed requests.
523 */
524 int max_rq_in_driver;
525 /* number of samples used to calculate hw_tag */
526 int hw_tag_samples;
527 /* flag set to one if the driver is showing a queueing behavior */
528 int hw_tag;
529
530 /* number of budgets assigned */
531 int budgets_assigned;
532
533 /*
534 * Timer set when idling (waiting) for the next request from
535 * the queue in service.
536 */
537 struct hrtimer idle_slice_timer;
538
539 /* bfq_queue in service */
540 struct bfq_queue *in_service_queue;
aee69d78
PV
541
542 /* on-disk position of the last served request */
543 sector_t last_position;
544
ab0e43e9
PV
545 /* time of last request completion (ns) */
546 u64 last_completion;
547
548 /* time of first rq dispatch in current observation interval (ns) */
549 u64 first_dispatch;
550 /* time of last rq dispatch in current observation interval (ns) */
551 u64 last_dispatch;
552
aee69d78
PV
553 /* beginning of the last budget */
554 ktime_t last_budget_start;
555 /* beginning of the last idle slice */
556 ktime_t last_idling_start;
ab0e43e9
PV
557
558 /* number of samples in current observation interval */
aee69d78 559 int peak_rate_samples;
ab0e43e9
PV
560 /* num of samples of seq dispatches in current observation interval */
561 u32 sequential_samples;
562 /* total num of sectors transferred in current observation interval */
563 u64 tot_sectors_dispatched;
564 /* max rq size seen during current observation interval (sectors) */
565 u32 last_rq_max_size;
566 /* time elapsed from first dispatch in current observ. interval (us) */
567 u64 delta_from_first;
aee69d78 568 /*
ab0e43e9
PV
569 * Current estimate of the device peak rate, measured in
570 * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by
571 * BFQ_RATE_SHIFT is performed to increase precision in
aee69d78
PV
572 * fixed-point calculations.
573 */
ab0e43e9
PV
574 u32 peak_rate;
575
aee69d78
PV
576 /* maximum budget allotted to a bfq_queue before rescheduling */
577 int bfq_max_budget;
578
579 /* list of all the bfq_queues active on the device */
580 struct list_head active_list;
581 /* list of all the bfq_queues idle on the device */
582 struct list_head idle_list;
583
584 /*
585 * Timeout for async/sync requests; when it fires, requests
586 * are served in fifo order.
587 */
588 u64 bfq_fifo_expire[2];
589 /* weight of backward seeks wrt forward ones */
590 unsigned int bfq_back_penalty;
591 /* maximum allowed backward seek */
592 unsigned int bfq_back_max;
593 /* maximum idling time */
594 u32 bfq_slice_idle;
aee69d78
PV
595
596 /* user-configured max budget value (0 for auto-tuning) */
597 int bfq_user_max_budget;
598 /*
599 * Timeout for bfq_queues to consume their budget; used to
600 * prevent seeky queues from imposing long latencies to
601 * sequential or quasi-sequential ones (this also implies that
602 * seeky queues cannot receive guarantees in the service
603 * domain; after a timeout they are charged for the time they
604 * have been in service, to preserve fairness among them, but
605 * without service-domain guarantees).
606 */
607 unsigned int bfq_timeout;
608
609 /*
610 * Number of consecutive requests that must be issued within
611 * the idle time slice to set again idling to a queue which
612 * was marked as non-I/O-bound (see the definition of the
613 * IO_bound flag for further details).
614 */
615 unsigned int bfq_requests_within_timer;
616
617 /*
618 * Force device idling whenever needed to provide accurate
619 * service guarantees, without caring about throughput
620 * issues. CAVEAT: this may even increase latencies, in case
621 * of useless idling for processes that did stop doing I/O.
622 */
623 bool strict_guarantees;
624
e1b2324d
AA
625 /*
626 * Last time at which a queue entered the current burst of
627 * queues being activated shortly after each other; for more
628 * details about this and the following parameters related to
629 * a burst of activations, see the comments on the function
630 * bfq_handle_burst.
631 */
632 unsigned long last_ins_in_burst;
633 /*
634 * Reference time interval used to decide whether a queue has
635 * been activated shortly after @last_ins_in_burst.
636 */
637 unsigned long bfq_burst_interval;
638 /* number of queues in the current burst of queue activations */
639 int burst_size;
640
641 /* common parent entity for the queues in the burst */
642 struct bfq_entity *burst_parent_entity;
643 /* Maximum burst size above which the current queue-activation
644 * burst is deemed as 'large'.
645 */
646 unsigned long bfq_large_burst_thresh;
647 /* true if a large queue-activation burst is in progress */
648 bool large_burst;
649 /*
650 * Head of the burst list (as for the above fields, more
651 * details in the comments on the function bfq_handle_burst).
652 */
653 struct hlist_head burst_list;
654
44e44a1b
PV
655 /* if set to true, low-latency heuristics are enabled */
656 bool low_latency;
657 /*
658 * Maximum factor by which the weight of a weight-raised queue
659 * is multiplied.
660 */
661 unsigned int bfq_wr_coeff;
662 /* maximum duration of a weight-raising period (jiffies) */
663 unsigned int bfq_wr_max_time;
77b7dcea
PV
664
665 /* Maximum weight-raising duration for soft real-time processes */
666 unsigned int bfq_wr_rt_max_time;
44e44a1b
PV
667 /*
668 * Minimum idle period after which weight-raising may be
669 * reactivated for a queue (in jiffies).
670 */
671 unsigned int bfq_wr_min_idle_time;
672 /*
673 * Minimum period between request arrivals after which
674 * weight-raising may be reactivated for an already busy async
675 * queue (in jiffies).
676 */
677 unsigned long bfq_wr_min_inter_arr_async;
77b7dcea
PV
678
679 /* Max service-rate for a soft real-time queue, in sectors/sec */
680 unsigned int bfq_wr_max_softrt_rate;
44e44a1b
PV
681 /*
682 * Cached value of the product R*T, used for computing the
683 * maximum duration of weight raising automatically.
684 */
685 u64 RT_prod;
686 /* device-speed class for the low-latency heuristic */
687 enum bfq_device_speed device_speed;
688
aee69d78
PV
689 /* fallback dummy bfqq for extreme OOM conditions */
690 struct bfq_queue oom_bfqq;
691
692 spinlock_t lock;
693
694 /*
695 * bic associated with the task issuing current bio for
696 * merging. This and the next field are used as a support to
697 * be able to perform the bic lookup, needed by bio-merge
698 * functions, before the scheduler lock is taken, and thus
699 * avoid taking the request-queue lock while the scheduler
700 * lock is being held.
701 */
702 struct bfq_io_cq *bio_bic;
703 /* bfqq associated with the task issuing current bio for merging */
704 struct bfq_queue *bio_bfqq;
705};
706
707enum bfqq_state_flags {
e1b2324d
AA
708 BFQQF_just_created = 0, /* queue just allocated */
709 BFQQF_busy, /* has requests or is in service */
aee69d78
PV
710 BFQQF_wait_request, /* waiting for a request */
711 BFQQF_non_blocking_wait_rq, /*
712 * waiting for a request
713 * without idling the device
714 */
715 BFQQF_fifo_expire, /* FIFO checked in this slice */
716 BFQQF_idle_window, /* slice idling enabled */
717 BFQQF_sync, /* synchronous queue */
aee69d78
PV
718 BFQQF_IO_bound, /*
719 * bfqq has timed-out at least once
720 * having consumed at most 2/10 of
721 * its budget
722 */
e1b2324d
AA
723 BFQQF_in_large_burst, /*
724 * bfqq activated in a large burst,
725 * see comments to bfq_handle_burst.
726 */
77b7dcea
PV
727 BFQQF_softrt_update, /*
728 * may need softrt-next-start
729 * update
730 */
36eca894
AA
731 BFQQF_coop, /* bfqq is shared */
732 BFQQF_split_coop /* shared bfqq will be split */
aee69d78
PV
733};
734
735#define BFQ_BFQQ_FNS(name) \
736static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
737{ \
738 __set_bit(BFQQF_##name, &(bfqq)->flags); \
739} \
740static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
741{ \
742 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
743} \
744static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
745{ \
746 return test_bit(BFQQF_##name, &(bfqq)->flags); \
747}
748
e1b2324d 749BFQ_BFQQ_FNS(just_created);
aee69d78
PV
750BFQ_BFQQ_FNS(busy);
751BFQ_BFQQ_FNS(wait_request);
752BFQ_BFQQ_FNS(non_blocking_wait_rq);
753BFQ_BFQQ_FNS(fifo_expire);
754BFQ_BFQQ_FNS(idle_window);
755BFQ_BFQQ_FNS(sync);
aee69d78 756BFQ_BFQQ_FNS(IO_bound);
e1b2324d 757BFQ_BFQQ_FNS(in_large_burst);
36eca894
AA
758BFQ_BFQQ_FNS(coop);
759BFQ_BFQQ_FNS(split_coop);
77b7dcea 760BFQ_BFQQ_FNS(softrt_update);
aee69d78
PV
761#undef BFQ_BFQQ_FNS
762
763/* Logging facilities. */
e21b7a0b
AA
764#ifdef CONFIG_BFQ_GROUP_IOSCHED
765static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
766static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
767
768#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
769 char __pbuf[128]; \
770 \
771 blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
772 blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid, \
773 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
774 __pbuf, ##args); \
775} while (0)
776
777#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
778 char __pbuf[128]; \
779 \
780 blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
781 blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \
782} while (0)
783
784#else /* CONFIG_BFQ_GROUP_IOSCHED */
785
786#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
787 blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \
788 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
789 ##args)
790#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
791
792#endif /* CONFIG_BFQ_GROUP_IOSCHED */
aee69d78
PV
793
794#define bfq_log(bfqd, fmt, args...) \
795 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
796
797/* Expiration reasons. */
798enum bfqq_expiration {
799 BFQQE_TOO_IDLE = 0, /*
800 * queue has been idling for
801 * too long
802 */
803 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */
804 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */
805 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */
806 BFQQE_PREEMPTED /* preemption in progress */
807};
808
e21b7a0b
AA
809struct bfqg_stats {
810#ifdef CONFIG_BFQ_GROUP_IOSCHED
811 /* number of ios merged */
812 struct blkg_rwstat merged;
813 /* total time spent on device in ns, may not be accurate w/ queueing */
814 struct blkg_rwstat service_time;
815 /* total time spent waiting in scheduler queue in ns */
816 struct blkg_rwstat wait_time;
817 /* number of IOs queued up */
818 struct blkg_rwstat queued;
819 /* total disk time and nr sectors dispatched by this group */
820 struct blkg_stat time;
821 /* sum of number of ios queued across all samples */
822 struct blkg_stat avg_queue_size_sum;
823 /* count of samples taken for average */
824 struct blkg_stat avg_queue_size_samples;
825 /* how many times this group has been removed from service tree */
826 struct blkg_stat dequeue;
827 /* total time spent waiting for it to be assigned a timeslice. */
828 struct blkg_stat group_wait_time;
829 /* time spent idling for this blkcg_gq */
830 struct blkg_stat idle_time;
831 /* total time with empty current active q with other requests queued */
832 struct blkg_stat empty_time;
833 /* fields after this shouldn't be cleared on stat reset */
834 uint64_t start_group_wait_time;
835 uint64_t start_idle_time;
836 uint64_t start_empty_time;
837 uint16_t flags;
838#endif /* CONFIG_BFQ_GROUP_IOSCHED */
839};
840
841#ifdef CONFIG_BFQ_GROUP_IOSCHED
842
843/*
844 * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
845 *
846 * @ps: @blkcg_policy_storage that this structure inherits
847 * @weight: weight of the bfq_group
848 */
849struct bfq_group_data {
850 /* must be the first member */
851 struct blkcg_policy_data pd;
852
44e44a1b 853 unsigned int weight;
e21b7a0b
AA
854};
855
856/**
857 * struct bfq_group - per (device, cgroup) data structure.
858 * @entity: schedulable entity to insert into the parent group sched_data.
859 * @sched_data: own sched_data, to contain child entities (they may be
860 * both bfq_queues and bfq_groups).
861 * @bfqd: the bfq_data for the device this group acts upon.
862 * @async_bfqq: array of async queues for all the tasks belonging to
863 * the group, one queue per ioprio value per ioprio_class,
864 * except for the idle class that has only one queue.
865 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
866 * @my_entity: pointer to @entity, %NULL for the toplevel group; used
867 * to avoid too many special cases during group creation/
868 * migration.
869 * @stats: stats for this bfqg.
1de0c4cd
AA
870 * @active_entities: number of active entities belonging to the group;
871 * unused for the root group. Used to know whether there
872 * are groups with more than one active @bfq_entity
873 * (see the comments to the function
874 * bfq_bfqq_may_idle()).
36eca894
AA
875 * @rq_pos_tree: rbtree sorted by next_request position, used when
876 * determining if two or more queues have interleaving
877 * requests (see bfq_find_close_cooperator()).
e21b7a0b
AA
878 *
879 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
880 * there is a set of bfq_groups, each one collecting the lower-level
881 * entities belonging to the group that are acting on the same device.
882 *
883 * Locking works as follows:
884 * o @bfqd is protected by the queue lock, RCU is used to access it
885 * from the readers.
886 * o All the other fields are protected by the @bfqd queue lock.
887 */
888struct bfq_group {
889 /* must be the first member */
890 struct blkg_policy_data pd;
891
892 struct bfq_entity entity;
893 struct bfq_sched_data sched_data;
894
895 void *bfqd;
896
897 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
898 struct bfq_queue *async_idle_bfqq;
899
900 struct bfq_entity *my_entity;
901
1de0c4cd
AA
902 int active_entities;
903
36eca894
AA
904 struct rb_root rq_pos_tree;
905
e21b7a0b
AA
906 struct bfqg_stats stats;
907};
908
909#else
910struct bfq_group {
911 struct bfq_sched_data sched_data;
912
913 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
914 struct bfq_queue *async_idle_bfqq;
915
916 struct rb_root rq_pos_tree;
917};
918#endif
919
aee69d78
PV
920static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
921
e21b7a0b
AA
922static unsigned int bfq_class_idx(struct bfq_entity *entity)
923{
924 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
925
926 return bfqq ? bfqq->ioprio_class - 1 :
927 BFQ_DEFAULT_GRP_CLASS - 1;
928}
929
aee69d78
PV
930static struct bfq_service_tree *
931bfq_entity_service_tree(struct bfq_entity *entity)
932{
933 struct bfq_sched_data *sched_data = entity->sched_data;
e21b7a0b 934 unsigned int idx = bfq_class_idx(entity);
aee69d78
PV
935
936 return sched_data->service_tree + idx;
937}
938
939static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
940{
941 return bic->bfqq[is_sync];
942}
943
944static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
945 bool is_sync)
946{
947 bic->bfqq[is_sync] = bfqq;
948}
949
950static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
951{
952 return bic->icq.q->elevator->elevator_data;
953}
954
36eca894
AA
955#ifdef CONFIG_BFQ_GROUP_IOSCHED
956
957static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
958{
959 struct bfq_entity *group_entity = bfqq->entity.parent;
960
961 if (!group_entity)
962 group_entity = &bfqq->bfqd->root_group->entity;
963
964 return container_of(group_entity, struct bfq_group, entity);
965}
966
967#else
968
969static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
970{
971 return bfqq->bfqd->root_group;
972}
973
974#endif
975
aee69d78
PV
976static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
977static void bfq_put_queue(struct bfq_queue *bfqq);
978static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
979 struct bio *bio, bool is_sync,
980 struct bfq_io_cq *bic);
44e44a1b
PV
981static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
982 struct bfq_group *bfqg);
e21b7a0b 983static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
aee69d78
PV
984static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
985
aee69d78
PV
986/* Expiration time of sync (0) and async (1) requests, in ns. */
987static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
988
989/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
990static const int bfq_back_max = 16 * 1024;
991
992/* Penalty of a backwards seek, in number of sectors. */
993static const int bfq_back_penalty = 2;
994
995/* Idling period duration, in ns. */
996static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
997
998/* Minimum number of assigned budgets for which stats are safe to compute. */
999static const int bfq_stats_min_budgets = 194;
1000
1001/* Default maximum budget values, in sectors and number of requests. */
1002static const int bfq_default_max_budget = 16 * 1024;
1003
c074170e
PV
1004/*
1005 * Async to sync throughput distribution is controlled as follows:
1006 * when an async request is served, the entity is charged the number
1007 * of sectors of the request, multiplied by the factor below
1008 */
1009static const int bfq_async_charge_factor = 10;
1010
aee69d78
PV
1011/* Default timeout values, in jiffies, approximating CFQ defaults. */
1012static const int bfq_timeout = HZ / 8;
1013
1014static struct kmem_cache *bfq_pool;
1015
ab0e43e9 1016/* Below this threshold (in ns), we consider thinktime immediate. */
aee69d78
PV
1017#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
1018
1019/* hw_tag detection: parallel requests threshold and min samples needed. */
1020#define BFQ_HW_QUEUE_THRESHOLD 4
1021#define BFQ_HW_QUEUE_SAMPLES 32
1022
1023#define BFQQ_SEEK_THR (sector_t)(8 * 100)
1024#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
1025#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
1026#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
1027
ab0e43e9
PV
1028/* Min number of samples required to perform peak-rate update */
1029#define BFQ_RATE_MIN_SAMPLES 32
1030/* Min observation time interval required to perform a peak-rate update (ns) */
1031#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
1032/* Target observation time interval for a peak-rate update (ns) */
1033#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78
PV
1034
1035/* Shift used for peak rate fixed precision calculations. */
1036#define BFQ_RATE_SHIFT 16
1037
44e44a1b
PV
1038/*
1039 * By default, BFQ computes the duration of the weight raising for
1040 * interactive applications automatically, using the following formula:
1041 * duration = (R / r) * T, where r is the peak rate of the device, and
1042 * R and T are two reference parameters.
1043 * In particular, R is the peak rate of the reference device (see below),
1044 * and T is a reference time: given the systems that are likely to be
1045 * installed on the reference device according to its speed class, T is
1046 * about the maximum time needed, under BFQ and while reading two files in
1047 * parallel, to load typical large applications on these systems.
1048 * In practice, the slower/faster the device at hand is, the more/less it
1049 * takes to load applications with respect to the reference device.
1050 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
1051 * applications.
1052 *
1053 * BFQ uses four different reference pairs (R, T), depending on:
1054 * . whether the device is rotational or non-rotational;
1055 * . whether the device is slow, such as old or portable HDDs, as well as
1056 * SD cards, or fast, such as newer HDDs and SSDs.
1057 *
1058 * The device's speed class is dynamically (re)detected in
1059 * bfq_update_peak_rate() every time the estimated peak rate is updated.
1060 *
1061 * In the following definitions, R_slow[0]/R_fast[0] and
1062 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
1063 * rotational device, whereas R_slow[1]/R_fast[1] and
1064 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
1065 * non-rotational device. Finally, device_speed_thresh are the
1066 * thresholds used to switch between speed classes. The reference
1067 * rates are not the actual peak rates of the devices used as a
1068 * reference, but slightly lower values. The reason for using these
1069 * slightly lower values is that the peak-rate estimator tends to
1070 * yield slightly lower values than the actual peak rate (it can yield
1071 * the actual peak rate only if there is only one process doing I/O,
1072 * and the process does sequential I/O).
1073 *
1074 * Both the reference peak rates and the thresholds are measured in
1075 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
1076 */
1077static int R_slow[2] = {1000, 10700};
1078static int R_fast[2] = {14000, 33000};
1079/*
1080 * To improve readability, a conversion function is used to initialize the
1081 * following arrays, which entails that they can be initialized only in a
1082 * function.
1083 */
1084static int T_slow[2];
1085static int T_fast[2];
1086static int device_speed_thresh[2];
1087
aee69d78
PV
1088#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
1089 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
1090
1091#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
1092#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
1093
1094/**
1095 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
1096 * @icq: the iocontext queue.
1097 */
1098static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
1099{
1100 /* bic->icq is the first member, %NULL will convert to %NULL */
1101 return container_of(icq, struct bfq_io_cq, icq);
1102}
1103
1104/**
1105 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
1106 * @bfqd: the lookup key.
1107 * @ioc: the io_context of the process doing I/O.
1108 * @q: the request queue.
1109 */
1110static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
1111 struct io_context *ioc,
1112 struct request_queue *q)
1113{
1114 if (ioc) {
1115 unsigned long flags;
1116 struct bfq_io_cq *icq;
1117
1118 spin_lock_irqsave(q->queue_lock, flags);
1119 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
1120 spin_unlock_irqrestore(q->queue_lock, flags);
1121
1122 return icq;
1123 }
1124
1125 return NULL;
1126}
1127
1128/*
e21b7a0b
AA
1129 * Scheduler run of queue, if there are requests pending and no one in the
1130 * driver that will restart queueing.
1131 */
1132static void bfq_schedule_dispatch(struct bfq_data *bfqd)
1133{
1134 if (bfqd->queued != 0) {
1135 bfq_log(bfqd, "schedule dispatch");
1136 blk_mq_run_hw_queues(bfqd->queue, true);
1137 }
1138}
1139
1140/**
1141 * bfq_gt - compare two timestamps.
1142 * @a: first ts.
1143 * @b: second ts.
1144 *
1145 * Return @a > @b, dealing with wrapping correctly.
1146 */
1147static int bfq_gt(u64 a, u64 b)
1148{
1149 return (s64)(a - b) > 0;
1150}
1151
1152static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
1153{
1154 struct rb_node *node = tree->rb_node;
1155
1156 return rb_entry(node, struct bfq_entity, rb_node);
1157}
1158
1159static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
1160
1161static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
1162
1163/**
1164 * bfq_update_next_in_service - update sd->next_in_service
1165 * @sd: sched_data for which to perform the update.
1166 * @new_entity: if not NULL, pointer to the entity whose activation,
1167 * requeueing or repositionig triggered the invocation of
1168 * this function.
1169 *
1170 * This function is called to update sd->next_in_service, which, in
1171 * its turn, may change as a consequence of the insertion or
1172 * extraction of an entity into/from one of the active trees of
1173 * sd. These insertions/extractions occur as a consequence of
1174 * activations/deactivations of entities, with some activations being
1175 * 'true' activations, and other activations being requeueings (i.e.,
1176 * implementing the second, requeueing phase of the mechanism used to
1177 * reposition an entity in its active tree; see comments on
1178 * __bfq_activate_entity and __bfq_requeue_entity for details). In
1179 * both the last two activation sub-cases, new_entity points to the
1180 * just activated or requeued entity.
1181 *
1182 * Returns true if sd->next_in_service changes in such a way that
1183 * entity->parent may become the next_in_service for its parent
1184 * entity.
aee69d78 1185 */
e21b7a0b
AA
1186static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
1187 struct bfq_entity *new_entity)
1188{
1189 struct bfq_entity *next_in_service = sd->next_in_service;
1190 bool parent_sched_may_change = false;
1191
1192 /*
1193 * If this update is triggered by the activation, requeueing
1194 * or repositiong of an entity that does not coincide with
1195 * sd->next_in_service, then a full lookup in the active tree
1196 * can be avoided. In fact, it is enough to check whether the
1197 * just-modified entity has a higher priority than
1198 * sd->next_in_service, or, even if it has the same priority
1199 * as sd->next_in_service, is eligible and has a lower virtual
1200 * finish time than sd->next_in_service. If this compound
1201 * condition holds, then the new entity becomes the new
1202 * next_in_service. Otherwise no change is needed.
1203 */
1204 if (new_entity && new_entity != sd->next_in_service) {
1205 /*
1206 * Flag used to decide whether to replace
1207 * sd->next_in_service with new_entity. Tentatively
1208 * set to true, and left as true if
1209 * sd->next_in_service is NULL.
1210 */
1211 bool replace_next = true;
1212
1213 /*
1214 * If there is already a next_in_service candidate
1215 * entity, then compare class priorities or timestamps
1216 * to decide whether to replace sd->service_tree with
1217 * new_entity.
1218 */
1219 if (next_in_service) {
1220 unsigned int new_entity_class_idx =
1221 bfq_class_idx(new_entity);
1222 struct bfq_service_tree *st =
1223 sd->service_tree + new_entity_class_idx;
1224
1225 /*
1226 * For efficiency, evaluate the most likely
1227 * sub-condition first.
1228 */
1229 replace_next =
1230 (new_entity_class_idx ==
1231 bfq_class_idx(next_in_service)
1232 &&
1233 !bfq_gt(new_entity->start, st->vtime)
1234 &&
1235 bfq_gt(next_in_service->finish,
1236 new_entity->finish))
1237 ||
1238 new_entity_class_idx <
1239 bfq_class_idx(next_in_service);
1240 }
1241
1242 if (replace_next)
1243 next_in_service = new_entity;
1244 } else /* invoked because of a deactivation: lookup needed */
1245 next_in_service = bfq_lookup_next_entity(sd);
1246
1247 if (next_in_service) {
1248 parent_sched_may_change = !sd->next_in_service ||
1249 bfq_update_parent_budget(next_in_service);
1250 }
1251
1252 sd->next_in_service = next_in_service;
1253
1254 if (!next_in_service)
1255 return parent_sched_may_change;
1256
1257 return parent_sched_may_change;
1258}
1259
1260#ifdef CONFIG_BFQ_GROUP_IOSCHED
1261/* both next loops stop at one of the child entities of the root group */
aee69d78 1262#define for_each_entity(entity) \
e21b7a0b 1263 for (; entity ; entity = entity->parent)
aee69d78 1264
e21b7a0b
AA
1265/*
1266 * For each iteration, compute parent in advance, so as to be safe if
1267 * entity is deallocated during the iteration. Such a deallocation may
1268 * happen as a consequence of a bfq_put_queue that frees the bfq_queue
1269 * containing entity.
1270 */
aee69d78 1271#define for_each_entity_safe(entity, parent) \
e21b7a0b 1272 for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
aee69d78 1273
e21b7a0b
AA
1274/*
1275 * Returns true if this budget changes may let next_in_service->parent
1276 * become the next_in_service entity for its parent entity.
1277 */
1278static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
aee69d78 1279{
e21b7a0b
AA
1280 struct bfq_entity *bfqg_entity;
1281 struct bfq_group *bfqg;
1282 struct bfq_sched_data *group_sd;
1283 bool ret = false;
1284
1285 group_sd = next_in_service->sched_data;
1286
1287 bfqg = container_of(group_sd, struct bfq_group, sched_data);
1288 /*
1289 * bfq_group's my_entity field is not NULL only if the group
1290 * is not the root group. We must not touch the root entity
1291 * as it must never become an in-service entity.
1292 */
1293 bfqg_entity = bfqg->my_entity;
1294 if (bfqg_entity) {
1295 if (bfqg_entity->budget > next_in_service->budget)
1296 ret = true;
1297 bfqg_entity->budget = next_in_service->budget;
1298 }
1299
1300 return ret;
1301}
1302
1303/*
1304 * This function tells whether entity stops being a candidate for next
1305 * service, according to the following logic.
1306 *
1307 * This function is invoked for an entity that is about to be set in
1308 * service. If such an entity is a queue, then the entity is no longer
1309 * a candidate for next service (i.e, a candidate entity to serve
1310 * after the in-service entity is expired). The function then returns
1311 * true.
1de0c4cd
AA
1312 *
1313 * In contrast, the entity could stil be a candidate for next service
1314 * if it is not a queue, and has more than one child. In fact, even if
1315 * one of its children is about to be set in service, other children
1316 * may still be the next to serve. As a consequence, a non-queue
1317 * entity is not a candidate for next-service only if it has only one
1318 * child. And only if this condition holds, then the function returns
1319 * true for a non-queue entity.
e21b7a0b
AA
1320 */
1321static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
1322{
1de0c4cd
AA
1323 struct bfq_group *bfqg;
1324
e21b7a0b
AA
1325 if (bfq_entity_to_bfqq(entity))
1326 return true;
1327
1de0c4cd
AA
1328 bfqg = container_of(entity, struct bfq_group, entity);
1329
1330 if (bfqg->active_entities == 1)
1331 return true;
1332
e21b7a0b 1333 return false;
aee69d78
PV
1334}
1335
e21b7a0b
AA
1336#else /* CONFIG_BFQ_GROUP_IOSCHED */
1337/*
1338 * Next two macros are fake loops when cgroups support is not
1339 * enabled. I fact, in such a case, there is only one level to go up
1340 * (to reach the root group).
1341 */
1342#define for_each_entity(entity) \
1343 for (; entity ; entity = NULL)
1344
1345#define for_each_entity_safe(entity, parent) \
1346 for (parent = NULL; entity ; entity = parent)
1347
1348static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
aee69d78 1349{
e21b7a0b 1350 return false;
aee69d78
PV
1351}
1352
e21b7a0b 1353static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
aee69d78 1354{
e21b7a0b 1355 return true;
aee69d78
PV
1356}
1357
e21b7a0b
AA
1358#endif /* CONFIG_BFQ_GROUP_IOSCHED */
1359
aee69d78
PV
1360/*
1361 * Shift for timestamp calculations. This actually limits the maximum
1362 * service allowed in one timestamp delta (small shift values increase it),
1363 * the maximum total weight that can be used for the queues in the system
1364 * (big shift values increase it), and the period of virtual time
1365 * wraparounds.
1366 */
1367#define WFQ_SERVICE_SHIFT 22
1368
aee69d78
PV
1369static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
1370{
1371 struct bfq_queue *bfqq = NULL;
1372
1373 if (!entity->my_sched_data)
1374 bfqq = container_of(entity, struct bfq_queue, entity);
1375
1376 return bfqq;
1377}
1378
1379
1380/**
1381 * bfq_delta - map service into the virtual time domain.
1382 * @service: amount of service.
1383 * @weight: scale factor (weight of an entity or weight sum).
1384 */
1385static u64 bfq_delta(unsigned long service, unsigned long weight)
1386{
1387 u64 d = (u64)service << WFQ_SERVICE_SHIFT;
1388
1389 do_div(d, weight);
1390 return d;
1391}
1392
1393/**
1394 * bfq_calc_finish - assign the finish time to an entity.
1395 * @entity: the entity to act upon.
1396 * @service: the service to be charged to the entity.
1397 */
1398static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
1399{
1400 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1401
1402 entity->finish = entity->start +
1403 bfq_delta(service, entity->weight);
1404
1405 if (bfqq) {
1406 bfq_log_bfqq(bfqq->bfqd, bfqq,
1407 "calc_finish: serv %lu, w %d",
1408 service, entity->weight);
1409 bfq_log_bfqq(bfqq->bfqd, bfqq,
1410 "calc_finish: start %llu, finish %llu, delta %llu",
1411 entity->start, entity->finish,
1412 bfq_delta(service, entity->weight));
1413 }
1414}
1415
1416/**
1417 * bfq_entity_of - get an entity from a node.
1418 * @node: the node field of the entity.
1419 *
1420 * Convert a node pointer to the relative entity. This is used only
1421 * to simplify the logic of some functions and not as the generic
1422 * conversion mechanism because, e.g., in the tree walking functions,
1423 * the check for a %NULL value would be redundant.
1424 */
1425static struct bfq_entity *bfq_entity_of(struct rb_node *node)
1426{
1427 struct bfq_entity *entity = NULL;
1428
1429 if (node)
1430 entity = rb_entry(node, struct bfq_entity, rb_node);
1431
1432 return entity;
1433}
1434
1435/**
1436 * bfq_extract - remove an entity from a tree.
1437 * @root: the tree root.
1438 * @entity: the entity to remove.
1439 */
1440static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
1441{
1442 entity->tree = NULL;
1443 rb_erase(&entity->rb_node, root);
1444}
1445
1446/**
1447 * bfq_idle_extract - extract an entity from the idle tree.
1448 * @st: the service tree of the owning @entity.
1449 * @entity: the entity being removed.
1450 */
1451static void bfq_idle_extract(struct bfq_service_tree *st,
1452 struct bfq_entity *entity)
1453{
1454 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1455 struct rb_node *next;
1456
1457 if (entity == st->first_idle) {
1458 next = rb_next(&entity->rb_node);
1459 st->first_idle = bfq_entity_of(next);
1460 }
1461
1462 if (entity == st->last_idle) {
1463 next = rb_prev(&entity->rb_node);
1464 st->last_idle = bfq_entity_of(next);
1465 }
1466
1467 bfq_extract(&st->idle, entity);
1468
1469 if (bfqq)
1470 list_del(&bfqq->bfqq_list);
1471}
1472
1473/**
1474 * bfq_insert - generic tree insertion.
1475 * @root: tree root.
1476 * @entity: entity to insert.
1477 *
1478 * This is used for the idle and the active tree, since they are both
1479 * ordered by finish time.
1480 */
1481static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
1482{
1483 struct bfq_entity *entry;
1484 struct rb_node **node = &root->rb_node;
1485 struct rb_node *parent = NULL;
1486
1487 while (*node) {
1488 parent = *node;
1489 entry = rb_entry(parent, struct bfq_entity, rb_node);
1490
1491 if (bfq_gt(entry->finish, entity->finish))
1492 node = &parent->rb_left;
1493 else
1494 node = &parent->rb_right;
1495 }
1496
1497 rb_link_node(&entity->rb_node, parent, node);
1498 rb_insert_color(&entity->rb_node, root);
1499
1500 entity->tree = root;
1501}
1502
1503/**
1504 * bfq_update_min - update the min_start field of a entity.
1505 * @entity: the entity to update.
1506 * @node: one of its children.
1507 *
1508 * This function is called when @entity may store an invalid value for
1509 * min_start due to updates to the active tree. The function assumes
1510 * that the subtree rooted at @node (which may be its left or its right
1511 * child) has a valid min_start value.
1512 */
1513static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
1514{
1515 struct bfq_entity *child;
1516
1517 if (node) {
1518 child = rb_entry(node, struct bfq_entity, rb_node);
1519 if (bfq_gt(entity->min_start, child->min_start))
1520 entity->min_start = child->min_start;
1521 }
1522}
1523
1524/**
1525 * bfq_update_active_node - recalculate min_start.
1526 * @node: the node to update.
1527 *
1528 * @node may have changed position or one of its children may have moved,
1529 * this function updates its min_start value. The left and right subtrees
1530 * are assumed to hold a correct min_start value.
1531 */
1532static void bfq_update_active_node(struct rb_node *node)
1533{
1534 struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
1535
1536 entity->min_start = entity->start;
1537 bfq_update_min(entity, node->rb_right);
1538 bfq_update_min(entity, node->rb_left);
1539}
1540
1541/**
1542 * bfq_update_active_tree - update min_start for the whole active tree.
1543 * @node: the starting node.
1544 *
1545 * @node must be the deepest modified node after an update. This function
1546 * updates its min_start using the values held by its children, assuming
1547 * that they did not change, and then updates all the nodes that may have
1548 * changed in the path to the root. The only nodes that may have changed
1549 * are the ones in the path or their siblings.
1550 */
1551static void bfq_update_active_tree(struct rb_node *node)
1552{
1553 struct rb_node *parent;
1554
1555up:
1556 bfq_update_active_node(node);
1557
1558 parent = rb_parent(node);
1559 if (!parent)
1560 return;
1561
1562 if (node == parent->rb_left && parent->rb_right)
1563 bfq_update_active_node(parent->rb_right);
1564 else if (parent->rb_left)
1565 bfq_update_active_node(parent->rb_left);
1566
1567 node = parent;
1568 goto up;
1569}
1570
1de0c4cd
AA
1571static void bfq_weights_tree_add(struct bfq_data *bfqd,
1572 struct bfq_entity *entity,
1573 struct rb_root *root);
1574
1575static void bfq_weights_tree_remove(struct bfq_data *bfqd,
1576 struct bfq_entity *entity,
1577 struct rb_root *root);
1578
1579
aee69d78
PV
1580/**
1581 * bfq_active_insert - insert an entity in the active tree of its
1582 * group/device.
1583 * @st: the service tree of the entity.
1584 * @entity: the entity being inserted.
1585 *
1586 * The active tree is ordered by finish time, but an extra key is kept
1587 * per each node, containing the minimum value for the start times of
1588 * its children (and the node itself), so it's possible to search for
1589 * the eligible node with the lowest finish time in logarithmic time.
1590 */
1591static void bfq_active_insert(struct bfq_service_tree *st,
1592 struct bfq_entity *entity)
1593{
1594 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1595 struct rb_node *node = &entity->rb_node;
e21b7a0b
AA
1596#ifdef CONFIG_BFQ_GROUP_IOSCHED
1597 struct bfq_sched_data *sd = NULL;
1598 struct bfq_group *bfqg = NULL;
1599 struct bfq_data *bfqd = NULL;
1600#endif
aee69d78
PV
1601
1602 bfq_insert(&st->active, entity);
1603
1604 if (node->rb_left)
1605 node = node->rb_left;
1606 else if (node->rb_right)
1607 node = node->rb_right;
1608
1609 bfq_update_active_tree(node);
1610
e21b7a0b
AA
1611#ifdef CONFIG_BFQ_GROUP_IOSCHED
1612 sd = entity->sched_data;
1613 bfqg = container_of(sd, struct bfq_group, sched_data);
1614 bfqd = (struct bfq_data *)bfqg->bfqd;
1615#endif
aee69d78
PV
1616 if (bfqq)
1617 list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
1de0c4cd
AA
1618#ifdef CONFIG_BFQ_GROUP_IOSCHED
1619 else /* bfq_group */
1620 bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
1621
1622 if (bfqg != bfqd->root_group)
1623 bfqg->active_entities++;
1624#endif
aee69d78
PV
1625}
1626
1627/**
1628 * bfq_ioprio_to_weight - calc a weight from an ioprio.
1629 * @ioprio: the ioprio value to convert.
1630 */
1631static unsigned short bfq_ioprio_to_weight(int ioprio)
1632{
1633 return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
1634}
1635
1636/**
1637 * bfq_weight_to_ioprio - calc an ioprio from a weight.
1638 * @weight: the weight value to convert.
1639 *
1640 * To preserve as much as possible the old only-ioprio user interface,
1641 * 0 is used as an escape ioprio value for weights (numerically) equal or
1642 * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
1643 */
1644static unsigned short bfq_weight_to_ioprio(int weight)
1645{
1646 return max_t(int, 0,
1647 IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
1648}
1649
1650static void bfq_get_entity(struct bfq_entity *entity)
1651{
1652 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1653
1654 if (bfqq) {
1655 bfqq->ref++;
1656 bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
1657 bfqq, bfqq->ref);
1658 }
1659}
1660
1661/**
1662 * bfq_find_deepest - find the deepest node that an extraction can modify.
1663 * @node: the node being removed.
1664 *
1665 * Do the first step of an extraction in an rb tree, looking for the
1666 * node that will replace @node, and returning the deepest node that
1667 * the following modifications to the tree can touch. If @node is the
1668 * last node in the tree return %NULL.
1669 */
1670static struct rb_node *bfq_find_deepest(struct rb_node *node)
1671{
1672 struct rb_node *deepest;
1673
1674 if (!node->rb_right && !node->rb_left)
1675 deepest = rb_parent(node);
1676 else if (!node->rb_right)
1677 deepest = node->rb_left;
1678 else if (!node->rb_left)
1679 deepest = node->rb_right;
1680 else {
1681 deepest = rb_next(node);
1682 if (deepest->rb_right)
1683 deepest = deepest->rb_right;
1684 else if (rb_parent(deepest) != node)
1685 deepest = rb_parent(deepest);
1686 }
1687
1688 return deepest;
1689}
1690
1691/**
1692 * bfq_active_extract - remove an entity from the active tree.
1693 * @st: the service_tree containing the tree.
1694 * @entity: the entity being removed.
1695 */
1696static void bfq_active_extract(struct bfq_service_tree *st,
1697 struct bfq_entity *entity)
1698{
1699 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1700 struct rb_node *node;
e21b7a0b
AA
1701#ifdef CONFIG_BFQ_GROUP_IOSCHED
1702 struct bfq_sched_data *sd = NULL;
1703 struct bfq_group *bfqg = NULL;
1704 struct bfq_data *bfqd = NULL;
1705#endif
aee69d78
PV
1706
1707 node = bfq_find_deepest(&entity->rb_node);
1708 bfq_extract(&st->active, entity);
1709
1710 if (node)
1711 bfq_update_active_tree(node);
1712
e21b7a0b
AA
1713#ifdef CONFIG_BFQ_GROUP_IOSCHED
1714 sd = entity->sched_data;
1715 bfqg = container_of(sd, struct bfq_group, sched_data);
1716 bfqd = (struct bfq_data *)bfqg->bfqd;
1717#endif
aee69d78
PV
1718 if (bfqq)
1719 list_del(&bfqq->bfqq_list);
1de0c4cd
AA
1720#ifdef CONFIG_BFQ_GROUP_IOSCHED
1721 else /* bfq_group */
1722 bfq_weights_tree_remove(bfqd, entity,
1723 &bfqd->group_weights_tree);
1724
1725 if (bfqg != bfqd->root_group)
1726 bfqg->active_entities--;
1727#endif
aee69d78
PV
1728}
1729
1730/**
1731 * bfq_idle_insert - insert an entity into the idle tree.
1732 * @st: the service tree containing the tree.
1733 * @entity: the entity to insert.
1734 */
1735static void bfq_idle_insert(struct bfq_service_tree *st,
1736 struct bfq_entity *entity)
1737{
1738 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1739 struct bfq_entity *first_idle = st->first_idle;
1740 struct bfq_entity *last_idle = st->last_idle;
1741
1742 if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
1743 st->first_idle = entity;
1744 if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
1745 st->last_idle = entity;
1746
1747 bfq_insert(&st->idle, entity);
1748
1749 if (bfqq)
1750 list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
1751}
1752
1753/**
1754 * bfq_forget_entity - do not consider entity any longer for scheduling
1755 * @st: the service tree.
1756 * @entity: the entity being removed.
1757 * @is_in_service: true if entity is currently the in-service entity.
1758 *
1759 * Forget everything about @entity. In addition, if entity represents
1760 * a queue, and the latter is not in service, then release the service
1761 * reference to the queue (the one taken through bfq_get_entity). In
1762 * fact, in this case, there is really no more service reference to
1763 * the queue, as the latter is also outside any service tree. If,
1764 * instead, the queue is in service, then __bfq_bfqd_reset_in_service
1765 * will take care of putting the reference when the queue finally
1766 * stops being served.
1767 */
1768static void bfq_forget_entity(struct bfq_service_tree *st,
1769 struct bfq_entity *entity,
1770 bool is_in_service)
1771{
1772 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1773
e21b7a0b 1774 entity->on_st = false;
aee69d78
PV
1775 st->wsum -= entity->weight;
1776 if (bfqq && !is_in_service)
1777 bfq_put_queue(bfqq);
1778}
1779
1780/**
1781 * bfq_put_idle_entity - release the idle tree ref of an entity.
1782 * @st: service tree for the entity.
1783 * @entity: the entity being released.
1784 */
1785static void bfq_put_idle_entity(struct bfq_service_tree *st,
1786 struct bfq_entity *entity)
1787{
1788 bfq_idle_extract(st, entity);
1789 bfq_forget_entity(st, entity,
1790 entity == entity->sched_data->in_service_entity);
1791}
1792
1793/**
1794 * bfq_forget_idle - update the idle tree if necessary.
1795 * @st: the service tree to act upon.
1796 *
1797 * To preserve the global O(log N) complexity we only remove one entry here;
1798 * as the idle tree will not grow indefinitely this can be done safely.
1799 */
1800static void bfq_forget_idle(struct bfq_service_tree *st)
1801{
1802 struct bfq_entity *first_idle = st->first_idle;
1803 struct bfq_entity *last_idle = st->last_idle;
1804
1805 if (RB_EMPTY_ROOT(&st->active) && last_idle &&
1806 !bfq_gt(last_idle->finish, st->vtime)) {
1807 /*
1808 * Forget the whole idle tree, increasing the vtime past
1809 * the last finish time of idle entities.
1810 */
1811 st->vtime = last_idle->finish;
1812 }
1813
1814 if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
1815 bfq_put_idle_entity(st, first_idle);
1816}
1817
1818static struct bfq_service_tree *
1819__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
e21b7a0b 1820 struct bfq_entity *entity)
aee69d78
PV
1821{
1822 struct bfq_service_tree *new_st = old_st;
1823
1824 if (entity->prio_changed) {
1825 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
44e44a1b 1826 unsigned int prev_weight, new_weight;
aee69d78 1827 struct bfq_data *bfqd = NULL;
1de0c4cd 1828 struct rb_root *root;
e21b7a0b
AA
1829#ifdef CONFIG_BFQ_GROUP_IOSCHED
1830 struct bfq_sched_data *sd;
1831 struct bfq_group *bfqg;
1832#endif
aee69d78
PV
1833
1834 if (bfqq)
1835 bfqd = bfqq->bfqd;
e21b7a0b
AA
1836#ifdef CONFIG_BFQ_GROUP_IOSCHED
1837 else {
1838 sd = entity->my_sched_data;
1839 bfqg = container_of(sd, struct bfq_group, sched_data);
1840 bfqd = (struct bfq_data *)bfqg->bfqd;
1841 }
1842#endif
aee69d78
PV
1843
1844 old_st->wsum -= entity->weight;
1845
1846 if (entity->new_weight != entity->orig_weight) {
1847 if (entity->new_weight < BFQ_MIN_WEIGHT ||
1848 entity->new_weight > BFQ_MAX_WEIGHT) {
1849 pr_crit("update_weight_prio: new_weight %d\n",
1850 entity->new_weight);
1851 if (entity->new_weight < BFQ_MIN_WEIGHT)
1852 entity->new_weight = BFQ_MIN_WEIGHT;
1853 else
1854 entity->new_weight = BFQ_MAX_WEIGHT;
1855 }
1856 entity->orig_weight = entity->new_weight;
1857 if (bfqq)
1858 bfqq->ioprio =
1859 bfq_weight_to_ioprio(entity->orig_weight);
1860 }
1861
1862 if (bfqq)
1863 bfqq->ioprio_class = bfqq->new_ioprio_class;
1864 entity->prio_changed = 0;
1865
1866 /*
1867 * NOTE: here we may be changing the weight too early,
1868 * this will cause unfairness. The correct approach
1869 * would have required additional complexity to defer
1870 * weight changes to the proper time instants (i.e.,
1871 * when entity->finish <= old_st->vtime).
1872 */
1873 new_st = bfq_entity_service_tree(entity);
1874
1875 prev_weight = entity->weight;
44e44a1b
PV
1876 new_weight = entity->orig_weight *
1877 (bfqq ? bfqq->wr_coeff : 1);
1de0c4cd
AA
1878 /*
1879 * If the weight of the entity changes, remove the entity
1880 * from its old weight counter (if there is a counter
1881 * associated with the entity), and add it to the counter
1882 * associated with its new weight.
1883 */
1884 if (prev_weight != new_weight) {
1885 root = bfqq ? &bfqd->queue_weights_tree :
1886 &bfqd->group_weights_tree;
1887 bfq_weights_tree_remove(bfqd, entity, root);
1888 }
aee69d78 1889 entity->weight = new_weight;
1de0c4cd
AA
1890 /*
1891 * Add the entity to its weights tree only if it is
1892 * not associated with a weight-raised queue.
1893 */
1894 if (prev_weight != new_weight &&
1895 (bfqq ? bfqq->wr_coeff == 1 : 1))
1896 /* If we get here, root has been initialized. */
1897 bfq_weights_tree_add(bfqd, entity, root);
aee69d78
PV
1898
1899 new_st->wsum += entity->weight;
1900
1901 if (new_st != old_st)
1902 entity->start = new_st->vtime;
1903 }
1904
1905 return new_st;
1906}
1907
e21b7a0b
AA
1908static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
1909static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1910
aee69d78
PV
1911/**
1912 * bfq_bfqq_served - update the scheduler status after selection for
1913 * service.
1914 * @bfqq: the queue being served.
1915 * @served: bytes to transfer.
1916 *
1917 * NOTE: this can be optimized, as the timestamps of upper level entities
1918 * are synchronized every time a new bfqq is selected for service. By now,
1919 * we keep it to better check consistency.
1920 */
1921static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
1922{
1923 struct bfq_entity *entity = &bfqq->entity;
1924 struct bfq_service_tree *st;
1925
1926 for_each_entity(entity) {
1927 st = bfq_entity_service_tree(entity);
1928
1929 entity->service += served;
1930
1931 st->vtime += bfq_delta(served, st->wsum);
1932 bfq_forget_idle(st);
1933 }
e21b7a0b 1934 bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
aee69d78
PV
1935 bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
1936}
1937
1938/**
c074170e
PV
1939 * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
1940 * of the time interval during which bfqq has been in
1941 * service.
1942 * @bfqd: the device
aee69d78 1943 * @bfqq: the queue that needs a service update.
c074170e 1944 * @time_ms: the amount of time during which the queue has received service
aee69d78 1945 *
c074170e
PV
1946 * If a queue does not consume its budget fast enough, then providing
1947 * the queue with service fairness may impair throughput, more or less
1948 * severely. For this reason, queues that consume their budget slowly
1949 * are provided with time fairness instead of service fairness. This
1950 * goal is achieved through the BFQ scheduling engine, even if such an
1951 * engine works in the service, and not in the time domain. The trick
1952 * is charging these queues with an inflated amount of service, equal
1953 * to the amount of service that they would have received during their
1954 * service slot if they had been fast, i.e., if their requests had
1955 * been dispatched at a rate equal to the estimated peak rate.
1956 *
1957 * It is worth noting that time fairness can cause important
1958 * distortions in terms of bandwidth distribution, on devices with
1959 * internal queueing. The reason is that I/O requests dispatched
1960 * during the service slot of a queue may be served after that service
1961 * slot is finished, and may have a total processing time loosely
1962 * correlated with the duration of the service slot. This is
1963 * especially true for short service slots.
aee69d78 1964 */
c074170e
PV
1965static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1966 unsigned long time_ms)
aee69d78
PV
1967{
1968 struct bfq_entity *entity = &bfqq->entity;
c074170e
PV
1969 int tot_serv_to_charge = entity->service;
1970 unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
1971
1972 if (time_ms > 0 && time_ms < timeout_ms)
1973 tot_serv_to_charge =
1974 (bfqd->bfq_max_budget * time_ms) / timeout_ms;
aee69d78 1975
c074170e
PV
1976 if (tot_serv_to_charge < entity->service)
1977 tot_serv_to_charge = entity->service;
aee69d78 1978
c074170e
PV
1979 /* Increase budget to avoid inconsistencies */
1980 if (tot_serv_to_charge > entity->budget)
1981 entity->budget = tot_serv_to_charge;
1982
1983 bfq_bfqq_served(bfqq,
1984 max_t(int, 0, tot_serv_to_charge - entity->service));
aee69d78
PV
1985}
1986
e21b7a0b
AA
1987static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
1988 struct bfq_service_tree *st,
1989 bool backshifted)
aee69d78 1990{
44e44a1b
PV
1991 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1992
aee69d78
PV
1993 st = __bfq_entity_update_weight_prio(st, entity);
1994 bfq_calc_finish(entity, entity->budget);
1995
1996 /*
1997 * If some queues enjoy backshifting for a while, then their
1998 * (virtual) finish timestamps may happen to become lower and
1999 * lower than the system virtual time. In particular, if
2000 * these queues often happen to be idle for short time
2001 * periods, and during such time periods other queues with
2002 * higher timestamps happen to be busy, then the backshifted
2003 * timestamps of the former queues can become much lower than
2004 * the system virtual time. In fact, to serve the queues with
2005 * higher timestamps while the ones with lower timestamps are
2006 * idle, the system virtual time may be pushed-up to much
2007 * higher values than the finish timestamps of the idle
2008 * queues. As a consequence, the finish timestamps of all new
2009 * or newly activated queues may end up being much larger than
2010 * those of lucky queues with backshifted timestamps. The
2011 * latter queues may then monopolize the device for a lot of
2012 * time. This would simply break service guarantees.
2013 *
2014 * To reduce this problem, push up a little bit the
2015 * backshifted timestamps of the queue associated with this
2016 * entity (only a queue can happen to have the backshifted
2017 * flag set): just enough to let the finish timestamp of the
2018 * queue be equal to the current value of the system virtual
2019 * time. This may introduce a little unfairness among queues
2020 * with backshifted timestamps, but it does not break
2021 * worst-case fairness guarantees.
44e44a1b
PV
2022 *
2023 * As a special case, if bfqq is weight-raised, push up
2024 * timestamps much less, to keep very low the probability that
2025 * this push up causes the backshifted finish timestamps of
2026 * weight-raised queues to become higher than the backshifted
2027 * finish timestamps of non weight-raised queues.
aee69d78
PV
2028 */
2029 if (backshifted && bfq_gt(st->vtime, entity->finish)) {
2030 unsigned long delta = st->vtime - entity->finish;
2031
44e44a1b
PV
2032 if (bfqq)
2033 delta /= bfqq->wr_coeff;
2034
aee69d78
PV
2035 entity->start += delta;
2036 entity->finish += delta;
2037 }
2038
2039 bfq_active_insert(st, entity);
2040}
2041
2042/**
e21b7a0b
AA
2043 * __bfq_activate_entity - handle activation of entity.
2044 * @entity: the entity being activated.
2045 * @non_blocking_wait_rq: true if entity was waiting for a request
2046 *
2047 * Called for a 'true' activation, i.e., if entity is not active and
2048 * one of its children receives a new request.
2049 *
2050 * Basically, this function updates the timestamps of entity and
2051 * inserts entity into its active tree, ater possible extracting it
2052 * from its idle tree.
2053 */
2054static void __bfq_activate_entity(struct bfq_entity *entity,
2055 bool non_blocking_wait_rq)
2056{
2057 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2058 bool backshifted = false;
2059 unsigned long long min_vstart;
2060
2061 /* See comments on bfq_fqq_update_budg_for_activation */
2062 if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
2063 backshifted = true;
2064 min_vstart = entity->finish;
2065 } else
2066 min_vstart = st->vtime;
2067
2068 if (entity->tree == &st->idle) {
2069 /*
2070 * Must be on the idle tree, bfq_idle_extract() will
2071 * check for that.
2072 */
2073 bfq_idle_extract(st, entity);
2074 entity->start = bfq_gt(min_vstart, entity->finish) ?
2075 min_vstart : entity->finish;
2076 } else {
2077 /*
2078 * The finish time of the entity may be invalid, and
2079 * it is in the past for sure, otherwise the queue
2080 * would have been on the idle tree.
2081 */
2082 entity->start = min_vstart;
2083 st->wsum += entity->weight;
2084 /*
2085 * entity is about to be inserted into a service tree,
2086 * and then set in service: get a reference to make
2087 * sure entity does not disappear until it is no
2088 * longer in service or scheduled for service.
2089 */
2090 bfq_get_entity(entity);
2091
2092 entity->on_st = true;
2093 }
2094
2095 bfq_update_fin_time_enqueue(entity, st, backshifted);
2096}
2097
2098/**
2099 * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
2100 * @entity: the entity being requeued or repositioned.
2101 *
2102 * Requeueing is needed if this entity stops being served, which
2103 * happens if a leaf descendant entity has expired. On the other hand,
2104 * repositioning is needed if the next_inservice_entity for the child
2105 * entity has changed. See the comments inside the function for
2106 * details.
2107 *
2108 * Basically, this function: 1) removes entity from its active tree if
2109 * present there, 2) updates the timestamps of entity and 3) inserts
2110 * entity back into its active tree (in the new, right position for
2111 * the new values of the timestamps).
2112 */
2113static void __bfq_requeue_entity(struct bfq_entity *entity)
2114{
2115 struct bfq_sched_data *sd = entity->sched_data;
2116 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2117
2118 if (entity == sd->in_service_entity) {
2119 /*
2120 * We are requeueing the current in-service entity,
2121 * which may have to be done for one of the following
2122 * reasons:
2123 * - entity represents the in-service queue, and the
2124 * in-service queue is being requeued after an
2125 * expiration;
2126 * - entity represents a group, and its budget has
2127 * changed because one of its child entities has
2128 * just been either activated or requeued for some
2129 * reason; the timestamps of the entity need then to
2130 * be updated, and the entity needs to be enqueued
2131 * or repositioned accordingly.
2132 *
2133 * In particular, before requeueing, the start time of
2134 * the entity must be moved forward to account for the
2135 * service that the entity has received while in
2136 * service. This is done by the next instructions. The
2137 * finish time will then be updated according to this
2138 * new value of the start time, and to the budget of
2139 * the entity.
2140 */
2141 bfq_calc_finish(entity, entity->service);
2142 entity->start = entity->finish;
2143 /*
2144 * In addition, if the entity had more than one child
2145 * when set in service, then was not extracted from
2146 * the active tree. This implies that the position of
2147 * the entity in the active tree may need to be
2148 * changed now, because we have just updated the start
2149 * time of the entity, and we will update its finish
2150 * time in a moment (the requeueing is then, more
2151 * precisely, a repositioning in this case). To
2152 * implement this repositioning, we: 1) dequeue the
2153 * entity here, 2) update the finish time and
2154 * requeue the entity according to the new
2155 * timestamps below.
2156 */
2157 if (entity->tree)
2158 bfq_active_extract(st, entity);
2159 } else { /* The entity is already active, and not in service */
2160 /*
2161 * In this case, this function gets called only if the
2162 * next_in_service entity below this entity has
2163 * changed, and this change has caused the budget of
2164 * this entity to change, which, finally implies that
2165 * the finish time of this entity must be
2166 * updated. Such an update may cause the scheduling,
2167 * i.e., the position in the active tree, of this
2168 * entity to change. We handle this change by: 1)
2169 * dequeueing the entity here, 2) updating the finish
2170 * time and requeueing the entity according to the new
2171 * timestamps below. This is the same approach as the
2172 * non-extracted-entity sub-case above.
2173 */
2174 bfq_active_extract(st, entity);
2175 }
2176
2177 bfq_update_fin_time_enqueue(entity, st, false);
2178}
2179
2180static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
2181 struct bfq_sched_data *sd,
2182 bool non_blocking_wait_rq)
2183{
2184 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2185
2186 if (sd->in_service_entity == entity || entity->tree == &st->active)
2187 /*
2188 * in service or already queued on the active tree,
2189 * requeue or reposition
2190 */
2191 __bfq_requeue_entity(entity);
2192 else
2193 /*
2194 * Not in service and not queued on its active tree:
2195 * the activity is idle and this is a true activation.
2196 */
2197 __bfq_activate_entity(entity, non_blocking_wait_rq);
2198}
2199
2200
2201/**
2202 * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
2203 * and activate, requeue or reposition all ancestors
2204 * for which such an update becomes necessary.
aee69d78
PV
2205 * @entity: the entity to activate.
2206 * @non_blocking_wait_rq: true if this entity was waiting for a request
e21b7a0b
AA
2207 * @requeue: true if this is a requeue, which implies that bfqq is
2208 * being expired; thus ALL its ancestors stop being served and must
2209 * therefore be requeued
aee69d78 2210 */
e21b7a0b
AA
2211static void bfq_activate_requeue_entity(struct bfq_entity *entity,
2212 bool non_blocking_wait_rq,
2213 bool requeue)
aee69d78
PV
2214{
2215 struct bfq_sched_data *sd;
2216
2217 for_each_entity(entity) {
aee69d78 2218 sd = entity->sched_data;
e21b7a0b
AA
2219 __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
2220
2221 if (!bfq_update_next_in_service(sd, entity) && !requeue)
aee69d78
PV
2222 break;
2223 }
2224}
2225
2226/**
2227 * __bfq_deactivate_entity - deactivate an entity from its service tree.
2228 * @entity: the entity to deactivate.
e21b7a0b
AA
2229 * @ins_into_idle_tree: if false, the entity will not be put into the
2230 * idle tree.
aee69d78 2231 *
e21b7a0b
AA
2232 * Deactivates an entity, independently from its previous state. Must
2233 * be invoked only if entity is on a service tree. Extracts the entity
2234 * from that tree, and if necessary and allowed, puts it on the idle
2235 * tree.
aee69d78 2236 */
e21b7a0b
AA
2237static bool __bfq_deactivate_entity(struct bfq_entity *entity,
2238 bool ins_into_idle_tree)
aee69d78
PV
2239{
2240 struct bfq_sched_data *sd = entity->sched_data;
2241 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2242 int is_in_service = entity == sd->in_service_entity;
aee69d78 2243
e21b7a0b
AA
2244 if (!entity->on_st) /* entity never activated, or already inactive */
2245 return false;
aee69d78 2246
e21b7a0b 2247 if (is_in_service)
aee69d78 2248 bfq_calc_finish(entity, entity->service);
e21b7a0b
AA
2249
2250 if (entity->tree == &st->active)
aee69d78 2251 bfq_active_extract(st, entity);
e21b7a0b 2252 else if (!is_in_service && entity->tree == &st->idle)
aee69d78
PV
2253 bfq_idle_extract(st, entity);
2254
e21b7a0b 2255 if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
aee69d78
PV
2256 bfq_forget_entity(st, entity, is_in_service);
2257 else
2258 bfq_idle_insert(st, entity);
2259
e21b7a0b 2260 return true;
aee69d78
PV
2261}
2262
2263/**
e21b7a0b 2264 * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
aee69d78 2265 * @entity: the entity to deactivate.
e21b7a0b 2266 * @ins_into_idle_tree: true if the entity can be put on the idle tree
aee69d78 2267 */
e21b7a0b
AA
2268static void bfq_deactivate_entity(struct bfq_entity *entity,
2269 bool ins_into_idle_tree,
2270 bool expiration)
aee69d78
PV
2271{
2272 struct bfq_sched_data *sd;
2273 struct bfq_entity *parent = NULL;
2274
2275 for_each_entity_safe(entity, parent) {
2276 sd = entity->sched_data;
2277
e21b7a0b 2278 if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
aee69d78 2279 /*
e21b7a0b
AA
2280 * entity is not in any tree any more, so
2281 * this deactivation is a no-op, and there is
2282 * nothing to change for upper-level entities
2283 * (in case of expiration, this can never
2284 * happen).
aee69d78 2285 */
e21b7a0b
AA
2286 return;
2287 }
2288
2289 if (sd->next_in_service == entity)
2290 /*
2291 * entity was the next_in_service entity,
2292 * then, since entity has just been
2293 * deactivated, a new one must be found.
2294 */
2295 bfq_update_next_in_service(sd, NULL);
aee69d78
PV
2296
2297 if (sd->next_in_service)
2298 /*
e21b7a0b
AA
2299 * The parent entity is still backlogged,
2300 * because next_in_service is not NULL. So, no
2301 * further upwards deactivation must be
2302 * performed. Yet, next_in_service has
2303 * changed. Then the schedule does need to be
2304 * updated upwards.
aee69d78 2305 */
e21b7a0b 2306 break;
aee69d78
PV
2307
2308 /*
e21b7a0b
AA
2309 * If we get here, then the parent is no more
2310 * backlogged and we need to propagate the
2311 * deactivation upwards. Thus let the loop go on.
aee69d78 2312 */
aee69d78 2313
e21b7a0b
AA
2314 /*
2315 * Also let parent be queued into the idle tree on
2316 * deactivation, to preserve service guarantees, and
2317 * assuming that who invoked this function does not
2318 * need parent entities too to be removed completely.
2319 */
2320 ins_into_idle_tree = true;
2321 }
aee69d78 2322
e21b7a0b
AA
2323 /*
2324 * If the deactivation loop is fully executed, then there are
2325 * no more entities to touch and next loop is not executed at
2326 * all. Otherwise, requeue remaining entities if they are
2327 * about to stop receiving service, or reposition them if this
2328 * is not the case.
2329 */
aee69d78
PV
2330 entity = parent;
2331 for_each_entity(entity) {
e21b7a0b
AA
2332 /*
2333 * Invoke __bfq_requeue_entity on entity, even if
2334 * already active, to requeue/reposition it in the
2335 * active tree (because sd->next_in_service has
2336 * changed)
2337 */
2338 __bfq_requeue_entity(entity);
aee69d78
PV
2339
2340 sd = entity->sched_data;
e21b7a0b
AA
2341 if (!bfq_update_next_in_service(sd, entity) &&
2342 !expiration)
2343 /*
2344 * next_in_service unchanged or not causing
2345 * any change in entity->parent->sd, and no
2346 * requeueing needed for expiration: stop
2347 * here.
2348 */
aee69d78
PV
2349 break;
2350 }
2351}
2352
2353/**
e21b7a0b
AA
2354 * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
2355 * if needed, to have at least one entity eligible.
aee69d78
PV
2356 * @st: the service tree to act upon.
2357 *
e21b7a0b 2358 * Assumes that st is not empty.
aee69d78 2359 */
e21b7a0b 2360static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
aee69d78 2361{
e21b7a0b
AA
2362 struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
2363
2364 if (bfq_gt(root_entity->min_start, st->vtime))
2365 return root_entity->min_start;
2366
2367 return st->vtime;
2368}
aee69d78 2369
e21b7a0b
AA
2370static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
2371{
2372 if (new_value > st->vtime) {
2373 st->vtime = new_value;
aee69d78
PV
2374 bfq_forget_idle(st);
2375 }
2376}
2377
2378/**
2379 * bfq_first_active_entity - find the eligible entity with
2380 * the smallest finish time
2381 * @st: the service tree to select from.
e21b7a0b 2382 * @vtime: the system virtual to use as a reference for eligibility
aee69d78
PV
2383 *
2384 * This function searches the first schedulable entity, starting from the
2385 * root of the tree and going on the left every time on this side there is
2386 * a subtree with at least one eligible (start >= vtime) entity. The path on
2387 * the right is followed only if a) the left subtree contains no eligible
2388 * entities and b) no eligible entity has been found yet.
2389 */
e21b7a0b
AA
2390static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
2391 u64 vtime)
aee69d78
PV
2392{
2393 struct bfq_entity *entry, *first = NULL;
2394 struct rb_node *node = st->active.rb_node;
2395
2396 while (node) {
2397 entry = rb_entry(node, struct bfq_entity, rb_node);
2398left:
e21b7a0b 2399 if (!bfq_gt(entry->start, vtime))
aee69d78
PV
2400 first = entry;
2401
2402 if (node->rb_left) {
2403 entry = rb_entry(node->rb_left,
2404 struct bfq_entity, rb_node);
e21b7a0b 2405 if (!bfq_gt(entry->min_start, vtime)) {
aee69d78
PV
2406 node = node->rb_left;
2407 goto left;
2408 }
2409 }
2410 if (first)
2411 break;
2412 node = node->rb_right;
2413 }
2414
e21b7a0b
AA
2415 return first;
2416}
2417
2418/**
2419 * __bfq_lookup_next_entity - return the first eligible entity in @st.
2420 * @st: the service tree.
2421 *
2422 * If there is no in-service entity for the sched_data st belongs to,
2423 * then return the entity that will be set in service if:
2424 * 1) the parent entity this st belongs to is set in service;
2425 * 2) no entity belonging to such parent entity undergoes a state change
2426 * that would influence the timestamps of the entity (e.g., becomes idle,
2427 * becomes backlogged, changes its budget, ...).
2428 *
2429 * In this first case, update the virtual time in @st too (see the
2430 * comments on this update inside the function).
2431 *
2432 * In constrast, if there is an in-service entity, then return the
2433 * entity that would be set in service if not only the above
2434 * conditions, but also the next one held true: the currently
2435 * in-service entity, on expiration,
2436 * 1) gets a finish time equal to the current one, or
2437 * 2) is not eligible any more, or
2438 * 3) is idle.
2439 */
2440static struct bfq_entity *
2441__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
2442{
2443 struct bfq_entity *entity;
2444 u64 new_vtime;
2445
2446 if (RB_EMPTY_ROOT(&st->active))
2447 return NULL;
2448
2449 /*
2450 * Get the value of the system virtual time for which at
2451 * least one entity is eligible.
2452 */
2453 new_vtime = bfq_calc_vtime_jump(st);
2454
2455 /*
2456 * If there is no in-service entity for the sched_data this
2457 * active tree belongs to, then push the system virtual time
2458 * up to the value that guarantees that at least one entity is
2459 * eligible. If, instead, there is an in-service entity, then
2460 * do not make any such update, because there is already an
2461 * eligible entity, namely the in-service one (even if the
2462 * entity is not on st, because it was extracted when set in
2463 * service).
2464 */
2465 if (!in_service)
2466 bfq_update_vtime(st, new_vtime);
2467
2468 entity = bfq_first_active_entity(st, new_vtime);
2469
2470 return entity;
2471}
2472
2473/**
2474 * bfq_lookup_next_entity - return the first eligible entity in @sd.
2475 * @sd: the sched_data.
2476 *
2477 * This function is invoked when there has been a change in the trees
2478 * for sd, and we need know what is the new next entity after this
2479 * change.
2480 */
2481static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
2482{
2483 struct bfq_service_tree *st = sd->service_tree;
2484 struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
2485 struct bfq_entity *entity = NULL;
2486 int class_idx = 0;
2487
2488 /*
2489 * Choose from idle class, if needed to guarantee a minimum
2490 * bandwidth to this class (and if there is some active entity
2491 * in idle class). This should also mitigate
2492 * priority-inversion problems in case a low priority task is
2493 * holding file system resources.
2494 */
2495 if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
2496 BFQ_CL_IDLE_TIMEOUT)) {
2497 if (!RB_EMPTY_ROOT(&idle_class_st->active))
2498 class_idx = BFQ_IOPRIO_CLASSES - 1;
2499 /* About to be served if backlogged, or not yet backlogged */
2500 sd->bfq_class_idle_last_service = jiffies;
2501 }
2502
2503 /*
2504 * Find the next entity to serve for the highest-priority
2505 * class, unless the idle class needs to be served.
2506 */
2507 for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
2508 entity = __bfq_lookup_next_entity(st + class_idx,
2509 sd->in_service_entity);
2510
2511 if (entity)
2512 break;
2513 }
2514
2515 if (!entity)
2516 return NULL;
2517
2518 return entity;
2519}
2520
2521static bool next_queue_may_preempt(struct bfq_data *bfqd)
2522{
2523 struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
2524
2525 return sd->next_in_service != sd->in_service_entity;
2526}
2527
2528/*
2529 * Get next queue for service.
2530 */
2531static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
2532{
2533 struct bfq_entity *entity = NULL;
2534 struct bfq_sched_data *sd;
2535 struct bfq_queue *bfqq;
2536
2537 if (bfqd->busy_queues == 0)
2538 return NULL;
2539
2540 /*
2541 * Traverse the path from the root to the leaf entity to
2542 * serve. Set in service all the entities visited along the
2543 * way.
2544 */
2545 sd = &bfqd->root_group->sched_data;
2546 for (; sd ; sd = entity->my_sched_data) {
2547 /*
2548 * WARNING. We are about to set the in-service entity
2549 * to sd->next_in_service, i.e., to the (cached) value
2550 * returned by bfq_lookup_next_entity(sd) the last
2551 * time it was invoked, i.e., the last time when the
2552 * service order in sd changed as a consequence of the
2553 * activation or deactivation of an entity. In this
2554 * respect, if we execute bfq_lookup_next_entity(sd)
2555 * in this very moment, it may, although with low
2556 * probability, yield a different entity than that
2557 * pointed to by sd->next_in_service. This rare event
2558 * happens in case there was no CLASS_IDLE entity to
2559 * serve for sd when bfq_lookup_next_entity(sd) was
2560 * invoked for the last time, while there is now one
2561 * such entity.
2562 *
2563 * If the above event happens, then the scheduling of
2564 * such entity in CLASS_IDLE is postponed until the
2565 * service of the sd->next_in_service entity
2566 * finishes. In fact, when the latter is expired,
2567 * bfq_lookup_next_entity(sd) gets called again,
2568 * exactly to update sd->next_in_service.
2569 */
2570
2571 /* Make next_in_service entity become in_service_entity */
2572 entity = sd->next_in_service;
2573 sd->in_service_entity = entity;
2574
2575 /*
2576 * Reset the accumulator of the amount of service that
2577 * the entity is about to receive.
2578 */
2579 entity->service = 0;
2580
2581 /*
2582 * If entity is no longer a candidate for next
2583 * service, then we extract it from its active tree,
2584 * for the following reason. To further boost the
2585 * throughput in some special case, BFQ needs to know
2586 * which is the next candidate entity to serve, while
2587 * there is already an entity in service. In this
2588 * respect, to make it easy to compute/update the next
2589 * candidate entity to serve after the current
2590 * candidate has been set in service, there is a case
2591 * where it is necessary to extract the current
2592 * candidate from its service tree. Such a case is
2593 * when the entity just set in service cannot be also
2594 * a candidate for next service. Details about when
2595 * this conditions holds are reported in the comments
2596 * on the function bfq_no_longer_next_in_service()
2597 * invoked below.
2598 */
2599 if (bfq_no_longer_next_in_service(entity))
2600 bfq_active_extract(bfq_entity_service_tree(entity),
2601 entity);
2602
2603 /*
2604 * For the same reason why we may have just extracted
2605 * entity from its active tree, we may need to update
2606 * next_in_service for the sched_data of entity too,
2607 * regardless of whether entity has been extracted.
2608 * In fact, even if entity has not been extracted, a
2609 * descendant entity may get extracted. Such an event
2610 * would cause a change in next_in_service for the
2611 * level of the descendant entity, and thus possibly
2612 * back to upper levels.
2613 *
2614 * We cannot perform the resulting needed update
2615 * before the end of this loop, because, to know which
2616 * is the correct next-to-serve candidate entity for
2617 * each level, we need first to find the leaf entity
2618 * to set in service. In fact, only after we know
2619 * which is the next-to-serve leaf entity, we can
2620 * discover whether the parent entity of the leaf
2621 * entity becomes the next-to-serve, and so on.
2622 */
2623
2624 }
2625
2626 bfqq = bfq_entity_to_bfqq(entity);
2627
2628 /*
2629 * We can finally update all next-to-serve entities along the
2630 * path from the leaf entity just set in service to the root.
2631 */
2632 for_each_entity(entity) {
2633 struct bfq_sched_data *sd = entity->sched_data;
2634
2635 if (!bfq_update_next_in_service(sd, NULL))
2636 break;
2637 }
2638
2639 return bfqq;
2640}
2641
2642static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
2643{
2644 struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
2645 struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
2646 struct bfq_entity *entity = in_serv_entity;
2647
e21b7a0b
AA
2648 bfq_clear_bfqq_wait_request(in_serv_bfqq);
2649 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
2650 bfqd->in_service_queue = NULL;
2651
2652 /*
2653 * When this function is called, all in-service entities have
2654 * been properly deactivated or requeued, so we can safely
2655 * execute the final step: reset in_service_entity along the
2656 * path from entity to the root.
2657 */
2658 for_each_entity(entity)
2659 entity->sched_data->in_service_entity = NULL;
2660
2661 /*
2662 * in_serv_entity is no longer in service, so, if it is in no
2663 * service tree either, then release the service reference to
2664 * the queue it represents (taken with bfq_get_entity).
2665 */
2666 if (!in_serv_entity->on_st)
2667 bfq_put_queue(in_serv_bfqq);
2668}
2669
2670static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2671 bool ins_into_idle_tree, bool expiration)
2672{
2673 struct bfq_entity *entity = &bfqq->entity;
2674
2675 bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
2676}
2677
2678static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2679{
2680 struct bfq_entity *entity = &bfqq->entity;
2681
2682 bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
2683 false);
2684 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
2685}
2686
2687static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2688{
2689 struct bfq_entity *entity = &bfqq->entity;
2690
2691 bfq_activate_requeue_entity(entity, false,
2692 bfqq == bfqd->in_service_queue);
2693}
2694
2695static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
2696
2697/*
2698 * Called when the bfqq no longer has requests pending, remove it from
2699 * the service tree. As a special case, it can be invoked during an
2700 * expiration.
2701 */
2702static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2703 bool expiration)
2704{
2705 bfq_log_bfqq(bfqd, bfqq, "del from busy");
2706
2707 bfq_clear_bfqq_busy(bfqq);
2708
2709 bfqd->busy_queues--;
2710
1de0c4cd
AA
2711 if (!bfqq->dispatched)
2712 bfq_weights_tree_remove(bfqd, &bfqq->entity,
2713 &bfqd->queue_weights_tree);
2714
cfd69712
PV
2715 if (bfqq->wr_coeff > 1)
2716 bfqd->wr_busy_queues--;
2717
e21b7a0b
AA
2718 bfqg_stats_update_dequeue(bfqq_group(bfqq));
2719
2720 bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
2721}
2722
2723/*
2724 * Called when an inactive queue receives a new request.
2725 */
2726static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2727{
2728 bfq_log_bfqq(bfqd, bfqq, "add to busy");
2729
2730 bfq_activate_bfqq(bfqd, bfqq);
2731
2732 bfq_mark_bfqq_busy(bfqq);
2733 bfqd->busy_queues++;
cfd69712 2734
1de0c4cd
AA
2735 if (!bfqq->dispatched)
2736 if (bfqq->wr_coeff == 1)
2737 bfq_weights_tree_add(bfqd, &bfqq->entity,
2738 &bfqd->queue_weights_tree);
2739
cfd69712
PV
2740 if (bfqq->wr_coeff > 1)
2741 bfqd->wr_busy_queues++;
e21b7a0b
AA
2742}
2743
2744#ifdef CONFIG_BFQ_GROUP_IOSCHED
2745
2746/* bfqg stats flags */
2747enum bfqg_stats_flags {
2748 BFQG_stats_waiting = 0,
2749 BFQG_stats_idling,
2750 BFQG_stats_empty,
2751};
2752
2753#define BFQG_FLAG_FNS(name) \
2754static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \
2755{ \
2756 stats->flags |= (1 << BFQG_stats_##name); \
2757} \
2758static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \
2759{ \
2760 stats->flags &= ~(1 << BFQG_stats_##name); \
2761} \
2762static int bfqg_stats_##name(struct bfqg_stats *stats) \
2763{ \
2764 return (stats->flags & (1 << BFQG_stats_##name)) != 0; \
2765} \
2766
2767BFQG_FLAG_FNS(waiting)
2768BFQG_FLAG_FNS(idling)
2769BFQG_FLAG_FNS(empty)
2770#undef BFQG_FLAG_FNS
2771
2772/* This should be called with the queue_lock held. */
2773static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
2774{
2775 unsigned long long now;
2776
2777 if (!bfqg_stats_waiting(stats))
2778 return;
2779
2780 now = sched_clock();
2781 if (time_after64(now, stats->start_group_wait_time))
2782 blkg_stat_add(&stats->group_wait_time,
2783 now - stats->start_group_wait_time);
2784 bfqg_stats_clear_waiting(stats);
2785}
2786
2787/* This should be called with the queue_lock held. */
2788static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
2789 struct bfq_group *curr_bfqg)
2790{
2791 struct bfqg_stats *stats = &bfqg->stats;
2792
2793 if (bfqg_stats_waiting(stats))
2794 return;
2795 if (bfqg == curr_bfqg)
2796 return;
2797 stats->start_group_wait_time = sched_clock();
2798 bfqg_stats_mark_waiting(stats);
2799}
2800
2801/* This should be called with the queue_lock held. */
2802static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
2803{
2804 unsigned long long now;
2805
2806 if (!bfqg_stats_empty(stats))
2807 return;
2808
2809 now = sched_clock();
2810 if (time_after64(now, stats->start_empty_time))
2811 blkg_stat_add(&stats->empty_time,
2812 now - stats->start_empty_time);
2813 bfqg_stats_clear_empty(stats);
2814}
2815
2816static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
2817{
2818 blkg_stat_add(&bfqg->stats.dequeue, 1);
2819}
2820
2821static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
2822{
2823 struct bfqg_stats *stats = &bfqg->stats;
2824
2825 if (blkg_rwstat_total(&stats->queued))
2826 return;
2827
2828 /*
2829 * group is already marked empty. This can happen if bfqq got new
2830 * request in parent group and moved to this group while being added
2831 * to service tree. Just ignore the event and move on.
2832 */
2833 if (bfqg_stats_empty(stats))
2834 return;
2835
2836 stats->start_empty_time = sched_clock();
2837 bfqg_stats_mark_empty(stats);
2838}
2839
2840static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
2841{
2842 struct bfqg_stats *stats = &bfqg->stats;
2843
2844 if (bfqg_stats_idling(stats)) {
2845 unsigned long long now = sched_clock();
2846
2847 if (time_after64(now, stats->start_idle_time))
2848 blkg_stat_add(&stats->idle_time,
2849 now - stats->start_idle_time);
2850 bfqg_stats_clear_idling(stats);
2851 }
2852}
2853
2854static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
2855{
2856 struct bfqg_stats *stats = &bfqg->stats;
2857
2858 stats->start_idle_time = sched_clock();
2859 bfqg_stats_mark_idling(stats);
2860}
2861
2862static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
2863{
2864 struct bfqg_stats *stats = &bfqg->stats;
2865
2866 blkg_stat_add(&stats->avg_queue_size_sum,
2867 blkg_rwstat_total(&stats->queued));
2868 blkg_stat_add(&stats->avg_queue_size_samples, 1);
2869 bfqg_stats_update_group_wait_time(stats);
2870}
2871
2872/*
2873 * blk-cgroup policy-related handlers
2874 * The following functions help in converting between blk-cgroup
2875 * internal structures and BFQ-specific structures.
2876 */
2877
2878static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
2879{
2880 return pd ? container_of(pd, struct bfq_group, pd) : NULL;
2881}
2882
2883static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
2884{
2885 return pd_to_blkg(&bfqg->pd);
2886}
2887
2888static struct blkcg_policy blkcg_policy_bfq;
2889
2890static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
2891{
2892 return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq));
2893}
2894
2895/*
2896 * bfq_group handlers
2897 * The following functions help in navigating the bfq_group hierarchy
2898 * by allowing to find the parent of a bfq_group or the bfq_group
2899 * associated to a bfq_queue.
2900 */
2901
2902static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
2903{
2904 struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
2905
2906 return pblkg ? blkg_to_bfqg(pblkg) : NULL;
2907}
2908
2909static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
2910{
2911 struct bfq_entity *group_entity = bfqq->entity.parent;
2912
2913 return group_entity ? container_of(group_entity, struct bfq_group,
2914 entity) :
2915 bfqq->bfqd->root_group;
2916}
2917
2918/*
2919 * The following two functions handle get and put of a bfq_group by
2920 * wrapping the related blk-cgroup hooks.
2921 */
2922
2923static void bfqg_get(struct bfq_group *bfqg)
2924{
2925 return blkg_get(bfqg_to_blkg(bfqg));
2926}
2927
2928static void bfqg_put(struct bfq_group *bfqg)
2929{
2930 return blkg_put(bfqg_to_blkg(bfqg));
2931}
2932
2933static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
2934 struct bfq_queue *bfqq,
2935 unsigned int op)
2936{
2937 blkg_rwstat_add(&bfqg->stats.queued, op, 1);
2938 bfqg_stats_end_empty_time(&bfqg->stats);
2939 if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
2940 bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
2941}
2942
2943static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
2944{
2945 blkg_rwstat_add(&bfqg->stats.queued, op, -1);
2946}
2947
2948static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
2949{
2950 blkg_rwstat_add(&bfqg->stats.merged, op, 1);
2951}
2952
2953static void bfqg_stats_update_completion(struct bfq_group *bfqg,
2954 uint64_t start_time, uint64_t io_start_time,
2955 unsigned int op)
2956{
2957 struct bfqg_stats *stats = &bfqg->stats;
2958 unsigned long long now = sched_clock();
2959
2960 if (time_after64(now, io_start_time))
2961 blkg_rwstat_add(&stats->service_time, op,
2962 now - io_start_time);
2963 if (time_after64(io_start_time, start_time))
2964 blkg_rwstat_add(&stats->wait_time, op,
2965 io_start_time - start_time);
2966}
2967
2968/* @stats = 0 */
2969static void bfqg_stats_reset(struct bfqg_stats *stats)
2970{
2971 /* queued stats shouldn't be cleared */
2972 blkg_rwstat_reset(&stats->merged);
2973 blkg_rwstat_reset(&stats->service_time);
2974 blkg_rwstat_reset(&stats->wait_time);
2975 blkg_stat_reset(&stats->time);
2976 blkg_stat_reset(&stats->avg_queue_size_sum);
2977 blkg_stat_reset(&stats->avg_queue_size_samples);
2978 blkg_stat_reset(&stats->dequeue);
2979 blkg_stat_reset(&stats->group_wait_time);
2980 blkg_stat_reset(&stats->idle_time);
2981 blkg_stat_reset(&stats->empty_time);
2982}
2983
2984/* @to += @from */
2985static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
2986{
2987 if (!to || !from)
2988 return;
2989
2990 /* queued stats shouldn't be cleared */
2991 blkg_rwstat_add_aux(&to->merged, &from->merged);
2992 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
2993 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
2994 blkg_stat_add_aux(&from->time, &from->time);
2995 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
2996 blkg_stat_add_aux(&to->avg_queue_size_samples,
2997 &from->avg_queue_size_samples);
2998 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
2999 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
3000 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
3001 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
3002}
3003
3004/*
3005 * Transfer @bfqg's stats to its parent's aux counts so that the ancestors'
3006 * recursive stats can still account for the amount used by this bfqg after
3007 * it's gone.
3008 */
3009static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
3010{
3011 struct bfq_group *parent;
3012
3013 if (!bfqg) /* root_group */
3014 return;
3015
3016 parent = bfqg_parent(bfqg);
3017
3018 lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
3019
3020 if (unlikely(!parent))
3021 return;
3022
3023 bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
3024 bfqg_stats_reset(&bfqg->stats);
3025}
3026
3027static void bfq_init_entity(struct bfq_entity *entity,
3028 struct bfq_group *bfqg)
3029{
3030 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3031
3032 entity->weight = entity->new_weight;
3033 entity->orig_weight = entity->new_weight;
3034 if (bfqq) {
3035 bfqq->ioprio = bfqq->new_ioprio;
3036 bfqq->ioprio_class = bfqq->new_ioprio_class;
3037 bfqg_get(bfqg);
3038 }
3039 entity->parent = bfqg->my_entity; /* NULL for root group */
3040 entity->sched_data = &bfqg->sched_data;
3041}
3042
3043static void bfqg_stats_exit(struct bfqg_stats *stats)
3044{
3045 blkg_rwstat_exit(&stats->merged);
3046 blkg_rwstat_exit(&stats->service_time);
3047 blkg_rwstat_exit(&stats->wait_time);
3048 blkg_rwstat_exit(&stats->queued);
3049 blkg_stat_exit(&stats->time);
3050 blkg_stat_exit(&stats->avg_queue_size_sum);
3051 blkg_stat_exit(&stats->avg_queue_size_samples);
3052 blkg_stat_exit(&stats->dequeue);
3053 blkg_stat_exit(&stats->group_wait_time);
3054 blkg_stat_exit(&stats->idle_time);
3055 blkg_stat_exit(&stats->empty_time);
3056}
3057
3058static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
3059{
3060 if (blkg_rwstat_init(&stats->merged, gfp) ||
3061 blkg_rwstat_init(&stats->service_time, gfp) ||
3062 blkg_rwstat_init(&stats->wait_time, gfp) ||
3063 blkg_rwstat_init(&stats->queued, gfp) ||
3064 blkg_stat_init(&stats->time, gfp) ||
3065 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
3066 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
3067 blkg_stat_init(&stats->dequeue, gfp) ||
3068 blkg_stat_init(&stats->group_wait_time, gfp) ||
3069 blkg_stat_init(&stats->idle_time, gfp) ||
3070 blkg_stat_init(&stats->empty_time, gfp)) {
3071 bfqg_stats_exit(stats);
3072 return -ENOMEM;
3073 }
3074
3075 return 0;
3076}
3077
3078static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
3079{
3080 return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
3081}
3082
3083static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
3084{
3085 return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
3086}
3087
3088static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
3089{
3090 struct bfq_group_data *bgd;
3091
3092 bgd = kzalloc(sizeof(*bgd), gfp);
3093 if (!bgd)
3094 return NULL;
3095 return &bgd->pd;
3096}
3097
3098static void bfq_cpd_init(struct blkcg_policy_data *cpd)
3099{
3100 struct bfq_group_data *d = cpd_to_bfqgd(cpd);
3101
3102 d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
3103 CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
3104}
3105
3106static void bfq_cpd_free(struct blkcg_policy_data *cpd)
3107{
3108 kfree(cpd_to_bfqgd(cpd));
3109}
3110
3111static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
3112{
3113 struct bfq_group *bfqg;
3114
3115 bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
3116 if (!bfqg)
3117 return NULL;
3118
3119 if (bfqg_stats_init(&bfqg->stats, gfp)) {
3120 kfree(bfqg);
3121 return NULL;
3122 }
3123
3124 return &bfqg->pd;
3125}
3126
3127static void bfq_pd_init(struct blkg_policy_data *pd)
3128{
3129 struct blkcg_gq *blkg = pd_to_blkg(pd);
3130 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3131 struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
3132 struct bfq_entity *entity = &bfqg->entity;
3133 struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
3134
3135 entity->orig_weight = entity->weight = entity->new_weight = d->weight;
3136 entity->my_sched_data = &bfqg->sched_data;
3137 bfqg->my_entity = entity; /*
3138 * the root_group's will be set to NULL
3139 * in bfq_init_queue()
3140 */
3141 bfqg->bfqd = bfqd;
1de0c4cd 3142 bfqg->active_entities = 0;
36eca894 3143 bfqg->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
3144}
3145
3146static void bfq_pd_free(struct blkg_policy_data *pd)
3147{
3148 struct bfq_group *bfqg = pd_to_bfqg(pd);
3149
3150 bfqg_stats_exit(&bfqg->stats);
3151 return kfree(bfqg);
3152}
3153
3154static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
3155{
3156 struct bfq_group *bfqg = pd_to_bfqg(pd);
3157
3158 bfqg_stats_reset(&bfqg->stats);
3159}
3160
3161static void bfq_group_set_parent(struct bfq_group *bfqg,
3162 struct bfq_group *parent)
3163{
3164 struct bfq_entity *entity;
3165
3166 entity = &bfqg->entity;
3167 entity->parent = parent->my_entity;
3168 entity->sched_data = &parent->sched_data;
3169}
3170
3171static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
3172 struct blkcg *blkcg)
3173{
3174 struct blkcg_gq *blkg;
3175
3176 blkg = blkg_lookup(blkcg, bfqd->queue);
3177 if (likely(blkg))
3178 return blkg_to_bfqg(blkg);
3179 return NULL;
3180}
3181
3182static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
3183 struct blkcg *blkcg)
3184{
3185 struct bfq_group *bfqg, *parent;
3186 struct bfq_entity *entity;
3187
3188 bfqg = bfq_lookup_bfqg(bfqd, blkcg);
3189
3190 if (unlikely(!bfqg))
3191 return NULL;
3192
3193 /*
3194 * Update chain of bfq_groups as we might be handling a leaf group
3195 * which, along with some of its relatives, has not been hooked yet
3196 * to the private hierarchy of BFQ.
3197 */
3198 entity = &bfqg->entity;
3199 for_each_entity(entity) {
3200 bfqg = container_of(entity, struct bfq_group, entity);
3201 if (bfqg != bfqd->root_group) {
3202 parent = bfqg_parent(bfqg);
3203 if (!parent)
3204 parent = bfqd->root_group;
3205 bfq_group_set_parent(bfqg, parent);
3206 }
3207 }
3208
3209 return bfqg;
3210}
3211
36eca894
AA
3212static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
3213 struct bfq_queue *bfqq);
e21b7a0b
AA
3214static void bfq_bfqq_expire(struct bfq_data *bfqd,
3215 struct bfq_queue *bfqq,
3216 bool compensate,
3217 enum bfqq_expiration reason);
3218
3219/**
3220 * bfq_bfqq_move - migrate @bfqq to @bfqg.
3221 * @bfqd: queue descriptor.
3222 * @bfqq: the queue to move.
3223 * @bfqg: the group to move to.
3224 *
3225 * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
3226 * it on the new one. Avoid putting the entity on the old group idle tree.
3227 *
3228 * Must be called under the queue lock; the cgroup owning @bfqg must
3229 * not disappear (by now this just means that we are called under
3230 * rcu_read_lock()).
3231 */
3232static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3233 struct bfq_group *bfqg)
3234{
3235 struct bfq_entity *entity = &bfqq->entity;
3236
3237 /* If bfqq is empty, then bfq_bfqq_expire also invokes
3238 * bfq_del_bfqq_busy, thereby removing bfqq and its entity
3239 * from data structures related to current group. Otherwise we
3240 * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
3241 * we do below.
3242 */
3243 if (bfqq == bfqd->in_service_queue)
3244 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
3245 false, BFQQE_PREEMPTED);
3246
3247 if (bfq_bfqq_busy(bfqq))
3248 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
3249 else if (entity->on_st)
3250 bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
3251 bfqg_put(bfqq_group(bfqq));
3252
3253 /*
3254 * Here we use a reference to bfqg. We don't need a refcounter
3255 * as the cgroup reference will not be dropped, so that its
3256 * destroy() callback will not be invoked.
3257 */
3258 entity->parent = bfqg->my_entity;
3259 entity->sched_data = &bfqg->sched_data;
3260 bfqg_get(bfqg);
3261
36eca894
AA
3262 if (bfq_bfqq_busy(bfqq)) {
3263 bfq_pos_tree_add_move(bfqd, bfqq);
e21b7a0b 3264 bfq_activate_bfqq(bfqd, bfqq);
36eca894 3265 }
e21b7a0b
AA
3266
3267 if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
3268 bfq_schedule_dispatch(bfqd);
3269}
3270
3271/**
3272 * __bfq_bic_change_cgroup - move @bic to @cgroup.
3273 * @bfqd: the queue descriptor.
3274 * @bic: the bic to move.
3275 * @blkcg: the blk-cgroup to move to.
3276 *
3277 * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
3278 * has to make sure that the reference to cgroup is valid across the call.
3279 *
3280 * NOTE: an alternative approach might have been to store the current
3281 * cgroup in bfqq and getting a reference to it, reducing the lookup
3282 * time here, at the price of slightly more complex code.
3283 */
3284static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
3285 struct bfq_io_cq *bic,
3286 struct blkcg *blkcg)
3287{
3288 struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
3289 struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
3290 struct bfq_group *bfqg;
3291 struct bfq_entity *entity;
3292
3293 bfqg = bfq_find_set_group(bfqd, blkcg);
3294
3295 if (unlikely(!bfqg))
3296 bfqg = bfqd->root_group;
3297
3298 if (async_bfqq) {
3299 entity = &async_bfqq->entity;
3300
3301 if (entity->sched_data != &bfqg->sched_data) {
3302 bic_set_bfqq(bic, NULL, 0);
3303 bfq_log_bfqq(bfqd, async_bfqq,
3304 "bic_change_group: %p %d",
36eca894 3305 async_bfqq, async_bfqq->ref);
e21b7a0b
AA
3306 bfq_put_queue(async_bfqq);
3307 }
3308 }
3309
3310 if (sync_bfqq) {
3311 entity = &sync_bfqq->entity;
3312 if (entity->sched_data != &bfqg->sched_data)
3313 bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
3314 }
3315
3316 return bfqg;
3317}
3318
3319static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
3320{
3321 struct bfq_data *bfqd = bic_to_bfqd(bic);
3322 struct bfq_group *bfqg = NULL;
3323 uint64_t serial_nr;
3324
3325 rcu_read_lock();
3326 serial_nr = bio_blkcg(bio)->css.serial_nr;
3327
3328 /*
3329 * Check whether blkcg has changed. The condition may trigger
3330 * spuriously on a newly created cic but there's no harm.
3331 */
3332 if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
3333 goto out;
3334
3335 bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
3336 bic->blkcg_serial_nr = serial_nr;
3337out:
3338 rcu_read_unlock();
3339}
3340
3341/**
3342 * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
3343 * @st: the service tree being flushed.
3344 */
3345static void bfq_flush_idle_tree(struct bfq_service_tree *st)
3346{
3347 struct bfq_entity *entity = st->first_idle;
3348
3349 for (; entity ; entity = st->first_idle)
3350 __bfq_deactivate_entity(entity, false);
3351}
3352
3353/**
3354 * bfq_reparent_leaf_entity - move leaf entity to the root_group.
3355 * @bfqd: the device data structure with the root group.
3356 * @entity: the entity to move.
3357 */
3358static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
3359 struct bfq_entity *entity)
3360{
3361 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3362
3363 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
aee69d78
PV
3364}
3365
3366/**
e21b7a0b
AA
3367 * bfq_reparent_active_entities - move to the root group all active
3368 * entities.
3369 * @bfqd: the device data structure with the root group.
3370 * @bfqg: the group to move from.
3371 * @st: the service tree with the entities.
aee69d78 3372 *
e21b7a0b 3373 * Needs queue_lock to be taken and reference to be valid over the call.
aee69d78 3374 */
e21b7a0b
AA
3375static void bfq_reparent_active_entities(struct bfq_data *bfqd,
3376 struct bfq_group *bfqg,
3377 struct bfq_service_tree *st)
aee69d78 3378{
e21b7a0b
AA
3379 struct rb_root *active = &st->active;
3380 struct bfq_entity *entity = NULL;
aee69d78 3381
e21b7a0b
AA
3382 if (!RB_EMPTY_ROOT(&st->active))
3383 entity = bfq_entity_of(rb_first(active));
aee69d78 3384
e21b7a0b
AA
3385 for (; entity ; entity = bfq_entity_of(rb_first(active)))
3386 bfq_reparent_leaf_entity(bfqd, entity);
aee69d78 3387
e21b7a0b
AA
3388 if (bfqg->sched_data.in_service_entity)
3389 bfq_reparent_leaf_entity(bfqd,
3390 bfqg->sched_data.in_service_entity);
aee69d78
PV
3391}
3392
3393/**
e21b7a0b
AA
3394 * bfq_pd_offline - deactivate the entity associated with @pd,
3395 * and reparent its children entities.
3396 * @pd: descriptor of the policy going offline.
aee69d78 3397 *
e21b7a0b
AA
3398 * blkio already grabs the queue_lock for us, so no need to use
3399 * RCU-based magic
aee69d78 3400 */
e21b7a0b 3401static void bfq_pd_offline(struct blkg_policy_data *pd)
aee69d78 3402{
e21b7a0b
AA
3403 struct bfq_service_tree *st;
3404 struct bfq_group *bfqg = pd_to_bfqg(pd);
3405 struct bfq_data *bfqd = bfqg->bfqd;
3406 struct bfq_entity *entity = bfqg->my_entity;
3407 unsigned long flags;
3408 int i;
aee69d78 3409
e21b7a0b
AA
3410 if (!entity) /* root group */
3411 return;
3412
3413 spin_lock_irqsave(&bfqd->lock, flags);
aee69d78 3414 /*
e21b7a0b
AA
3415 * Empty all service_trees belonging to this group before
3416 * deactivating the group itself.
aee69d78 3417 */
e21b7a0b
AA
3418 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
3419 st = bfqg->sched_data.service_tree + i;
3420
3421 /*
3422 * The idle tree may still contain bfq_queues belonging
3423 * to exited task because they never migrated to a different
3424 * cgroup from the one being destroyed now. No one else
3425 * can access them so it's safe to act without any lock.
3426 */
3427 bfq_flush_idle_tree(st);
3428
3429 /*
3430 * It may happen that some queues are still active
3431 * (busy) upon group destruction (if the corresponding
3432 * processes have been forced to terminate). We move
3433 * all the leaf entities corresponding to these queues
3434 * to the root_group.
3435 * Also, it may happen that the group has an entity
3436 * in service, which is disconnected from the active
3437 * tree: it must be moved, too.
3438 * There is no need to put the sync queues, as the
3439 * scheduler has taken no reference.
3440 */
3441 bfq_reparent_active_entities(bfqd, bfqg, st);
aee69d78
PV
3442 }
3443
e21b7a0b
AA
3444 __bfq_deactivate_entity(entity, false);
3445 bfq_put_async_queues(bfqd, bfqg);
3446
6fa3e8d3 3447 spin_unlock_irqrestore(&bfqd->lock, flags);
e21b7a0b
AA
3448 /*
3449 * @blkg is going offline and will be ignored by
3450 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
3451 * that they don't get lost. If IOs complete after this point, the
3452 * stats for them will be lost. Oh well...
3453 */
3454 bfqg_stats_xfer_dead(bfqg);
aee69d78
PV
3455}
3456
44e44a1b
PV
3457static void bfq_end_wr_async(struct bfq_data *bfqd)
3458{
3459 struct blkcg_gq *blkg;
3460
3461 list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
3462 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3463
3464 bfq_end_wr_async_queues(bfqd, bfqg);
3465 }
3466 bfq_end_wr_async_queues(bfqd, bfqd->root_group);
3467}
3468
e21b7a0b 3469static int bfq_io_show_weight(struct seq_file *sf, void *v)
aee69d78 3470{
e21b7a0b
AA
3471 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3472 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3473 unsigned int val = 0;
aee69d78 3474
e21b7a0b
AA
3475 if (bfqgd)
3476 val = bfqgd->weight;
aee69d78 3477
e21b7a0b 3478 seq_printf(sf, "%u\n", val);
aee69d78 3479
e21b7a0b
AA
3480 return 0;
3481}
3482
3483static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
3484 struct cftype *cftype,
3485 u64 val)
aee69d78 3486{
e21b7a0b
AA
3487 struct blkcg *blkcg = css_to_blkcg(css);
3488 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3489 struct blkcg_gq *blkg;
3490 int ret = -ERANGE;
aee69d78 3491
e21b7a0b
AA
3492 if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
3493 return ret;
aee69d78 3494
e21b7a0b
AA
3495 ret = 0;
3496 spin_lock_irq(&blkcg->lock);
3497 bfqgd->weight = (unsigned short)val;
3498 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3499 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3500
3501 if (!bfqg)
3502 continue;
3503 /*
3504 * Setting the prio_changed flag of the entity
3505 * to 1 with new_weight == weight would re-set
3506 * the value of the weight to its ioprio mapping.
3507 * Set the flag only if necessary.
3508 */
3509 if ((unsigned short)val != bfqg->entity.new_weight) {
3510 bfqg->entity.new_weight = (unsigned short)val;
3511 /*
3512 * Make sure that the above new value has been
3513 * stored in bfqg->entity.new_weight before
3514 * setting the prio_changed flag. In fact,
3515 * this flag may be read asynchronously (in
3516 * critical sections protected by a different
3517 * lock than that held here), and finding this
3518 * flag set may cause the execution of the code
3519 * for updating parameters whose value may
3520 * depend also on bfqg->entity.new_weight (in
3521 * __bfq_entity_update_weight_prio).
3522 * This barrier makes sure that the new value
3523 * of bfqg->entity.new_weight is correctly
3524 * seen in that code.
3525 */
3526 smp_wmb();
3527 bfqg->entity.prio_changed = 1;
3528 }
aee69d78 3529 }
e21b7a0b 3530 spin_unlock_irq(&blkcg->lock);
aee69d78 3531
e21b7a0b
AA
3532 return ret;
3533}
aee69d78 3534
e21b7a0b
AA
3535static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
3536 char *buf, size_t nbytes,
3537 loff_t off)
3538{
3539 u64 weight;
3540 /* First unsigned long found in the file is used */
3541 int ret = kstrtoull(strim(buf), 0, &weight);
3542
3543 if (ret)
3544 return ret;
3545
3546 return bfq_io_set_weight_legacy(of_css(of), NULL, weight);
aee69d78
PV
3547}
3548
e21b7a0b 3549static int bfqg_print_stat(struct seq_file *sf, void *v)
aee69d78 3550{
e21b7a0b
AA
3551 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
3552 &blkcg_policy_bfq, seq_cft(sf)->private, false);
3553 return 0;
3554}
aee69d78 3555
e21b7a0b
AA
3556static int bfqg_print_rwstat(struct seq_file *sf, void *v)
3557{
3558 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
3559 &blkcg_policy_bfq, seq_cft(sf)->private, true);
3560 return 0;
3561}
aee69d78 3562
e21b7a0b
AA
3563static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
3564 struct blkg_policy_data *pd, int off)
3565{
3566 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
3567 &blkcg_policy_bfq, off);
3568 return __blkg_prfill_u64(sf, pd, sum);
3569}
aee69d78 3570
e21b7a0b
AA
3571static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
3572 struct blkg_policy_data *pd, int off)
3573{
3574 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
3575 &blkcg_policy_bfq,
3576 off);
3577 return __blkg_prfill_rwstat(sf, pd, &sum);
aee69d78
PV
3578}
3579
e21b7a0b 3580static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
aee69d78 3581{
e21b7a0b
AA
3582 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3583 bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
3584 seq_cft(sf)->private, false);
3585 return 0;
3586}
aee69d78 3587
e21b7a0b
AA
3588static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
3589{
3590 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3591 bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
3592 seq_cft(sf)->private, true);
3593 return 0;
aee69d78
PV
3594}
3595
e21b7a0b
AA
3596static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
3597 int off)
aee69d78 3598{
e21b7a0b 3599 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
aee69d78 3600
e21b7a0b 3601 return __blkg_prfill_u64(sf, pd, sum >> 9);
aee69d78
PV
3602}
3603
e21b7a0b 3604static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
aee69d78 3605{
e21b7a0b
AA
3606 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3607 bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
3608 return 0;
3609}
aee69d78 3610
e21b7a0b
AA
3611static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
3612 struct blkg_policy_data *pd, int off)
3613{
3614 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
3615 offsetof(struct blkcg_gq, stat_bytes));
3616 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
3617 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
aee69d78 3618
e21b7a0b
AA
3619 return __blkg_prfill_u64(sf, pd, sum >> 9);
3620}
aee69d78 3621
e21b7a0b
AA
3622static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
3623{
3624 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3625 bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
3626 false);
3627 return 0;
aee69d78
PV
3628}
3629
e21b7a0b
AA
3630static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
3631 struct blkg_policy_data *pd, int off)
aee69d78 3632{
e21b7a0b
AA
3633 struct bfq_group *bfqg = pd_to_bfqg(pd);
3634 u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
3635 u64 v = 0;
aee69d78 3636
e21b7a0b
AA
3637 if (samples) {
3638 v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
3639 v = div64_u64(v, samples);
3640 }
3641 __blkg_prfill_u64(sf, pd, v);
3642 return 0;
3643}
aee69d78 3644
e21b7a0b
AA
3645/* print avg_queue_size */
3646static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
3647{
3648 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3649 bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
3650 0, false);
3651 return 0;
3652}
3653
3654static struct bfq_group *
3655bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
3656{
3657 int ret;
3658
3659 ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
3660 if (ret)
3661 return NULL;
3662
3663 return blkg_to_bfqg(bfqd->queue->root_blkg);
aee69d78
PV
3664}
3665
e21b7a0b
AA
3666static struct cftype bfq_blkcg_legacy_files[] = {
3667 {
3668 .name = "bfq.weight",
3669 .flags = CFTYPE_NOT_ON_ROOT,
3670 .seq_show = bfq_io_show_weight,
3671 .write_u64 = bfq_io_set_weight_legacy,
3672 },
3673
3674 /* statistics, covers only the tasks in the bfqg */
3675 {
3676 .name = "bfq.time",
3677 .private = offsetof(struct bfq_group, stats.time),
3678 .seq_show = bfqg_print_stat,
3679 },
3680 {
3681 .name = "bfq.sectors",
3682 .seq_show = bfqg_print_stat_sectors,
3683 },
3684 {
3685 .name = "bfq.io_service_bytes",
3686 .private = (unsigned long)&blkcg_policy_bfq,
3687 .seq_show = blkg_print_stat_bytes,
3688 },
3689 {
3690 .name = "bfq.io_serviced",
3691 .private = (unsigned long)&blkcg_policy_bfq,
3692 .seq_show = blkg_print_stat_ios,
3693 },
3694 {
3695 .name = "bfq.io_service_time",
3696 .private = offsetof(struct bfq_group, stats.service_time),
3697 .seq_show = bfqg_print_rwstat,
3698 },
3699 {
3700 .name = "bfq.io_wait_time",
3701 .private = offsetof(struct bfq_group, stats.wait_time),
3702 .seq_show = bfqg_print_rwstat,
3703 },
3704 {
3705 .name = "bfq.io_merged",
3706 .private = offsetof(struct bfq_group, stats.merged),
3707 .seq_show = bfqg_print_rwstat,
3708 },
3709 {
3710 .name = "bfq.io_queued",
3711 .private = offsetof(struct bfq_group, stats.queued),
3712 .seq_show = bfqg_print_rwstat,
3713 },
3714
3715 /* the same statictics which cover the bfqg and its descendants */
3716 {
3717 .name = "bfq.time_recursive",
3718 .private = offsetof(struct bfq_group, stats.time),
3719 .seq_show = bfqg_print_stat_recursive,
3720 },
3721 {
3722 .name = "bfq.sectors_recursive",
3723 .seq_show = bfqg_print_stat_sectors_recursive,
3724 },
3725 {
3726 .name = "bfq.io_service_bytes_recursive",
3727 .private = (unsigned long)&blkcg_policy_bfq,
3728 .seq_show = blkg_print_stat_bytes_recursive,
3729 },
3730 {
3731 .name = "bfq.io_serviced_recursive",
3732 .private = (unsigned long)&blkcg_policy_bfq,
3733 .seq_show = blkg_print_stat_ios_recursive,
3734 },
3735 {
3736 .name = "bfq.io_service_time_recursive",
3737 .private = offsetof(struct bfq_group, stats.service_time),
3738 .seq_show = bfqg_print_rwstat_recursive,
3739 },
3740 {
3741 .name = "bfq.io_wait_time_recursive",
3742 .private = offsetof(struct bfq_group, stats.wait_time),
3743 .seq_show = bfqg_print_rwstat_recursive,
3744 },
3745 {
3746 .name = "bfq.io_merged_recursive",
3747 .private = offsetof(struct bfq_group, stats.merged),
3748 .seq_show = bfqg_print_rwstat_recursive,
3749 },
3750 {
3751 .name = "bfq.io_queued_recursive",
3752 .private = offsetof(struct bfq_group, stats.queued),
3753 .seq_show = bfqg_print_rwstat_recursive,
3754 },
3755 {
3756 .name = "bfq.avg_queue_size",
3757 .seq_show = bfqg_print_avg_queue_size,
3758 },
3759 {
3760 .name = "bfq.group_wait_time",
3761 .private = offsetof(struct bfq_group, stats.group_wait_time),
3762 .seq_show = bfqg_print_stat,
3763 },
3764 {
3765 .name = "bfq.idle_time",
3766 .private = offsetof(struct bfq_group, stats.idle_time),
3767 .seq_show = bfqg_print_stat,
3768 },
3769 {
3770 .name = "bfq.empty_time",
3771 .private = offsetof(struct bfq_group, stats.empty_time),
3772 .seq_show = bfqg_print_stat,
3773 },
3774 {
3775 .name = "bfq.dequeue",
3776 .private = offsetof(struct bfq_group, stats.dequeue),
3777 .seq_show = bfqg_print_stat,
3778 },
3779 { } /* terminate */
3780};
3781
3782static struct cftype bfq_blkg_files[] = {
3783 {
3784 .name = "bfq.weight",
3785 .flags = CFTYPE_NOT_ON_ROOT,
3786 .seq_show = bfq_io_show_weight,
3787 .write = bfq_io_set_weight,
3788 },
3789 {} /* terminate */
3790};
3791
3792#else /* CONFIG_BFQ_GROUP_IOSCHED */
3793
3794static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
3795 struct bfq_queue *bfqq, unsigned int op) { }
3796static inline void
3797bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
3798static inline void
3799bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
3800static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
3801 uint64_t start_time, uint64_t io_start_time,
3802 unsigned int op) { }
3803static inline void
3804bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
3805 struct bfq_group *curr_bfqg) { }
3806static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
3807static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
3808static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
3809static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
3810static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
3811static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
3812
3813static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3814 struct bfq_group *bfqg) {}
3815
3816static void bfq_init_entity(struct bfq_entity *entity,
3817 struct bfq_group *bfqg)
aee69d78
PV
3818{
3819 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3820
3821 entity->weight = entity->new_weight;
3822 entity->orig_weight = entity->new_weight;
e21b7a0b
AA
3823 if (bfqq) {
3824 bfqq->ioprio = bfqq->new_ioprio;
3825 bfqq->ioprio_class = bfqq->new_ioprio_class;
3826 }
3827 entity->sched_data = &bfqg->sched_data;
3828}
3829
3830static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
3831
44e44a1b
PV
3832static void bfq_end_wr_async(struct bfq_data *bfqd)
3833{
3834 bfq_end_wr_async_queues(bfqd, bfqd->root_group);
3835}
3836
e21b7a0b
AA
3837static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
3838 struct blkcg *blkcg)
3839{
3840 return bfqd->root_group;
3841}
3842
3843static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
3844{
3845 return bfqq->bfqd->root_group;
3846}
aee69d78 3847
e21b7a0b
AA
3848static struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd,
3849 int node)
3850{
3851 struct bfq_group *bfqg;
3852 int i;
3853
3854 bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
3855 if (!bfqg)
3856 return NULL;
aee69d78 3857
e21b7a0b
AA
3858 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
3859 bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
3860
3861 return bfqg;
aee69d78 3862}
e21b7a0b 3863#endif /* CONFIG_BFQ_GROUP_IOSCHED */
aee69d78
PV
3864
3865#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
3866#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
3867
3868#define bfq_sample_valid(samples) ((samples) > 80)
3869
aee69d78
PV
3870/*
3871 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
3872 * We choose the request that is closesr to the head right now. Distance
3873 * behind the head is penalized and only allowed to a certain extent.
3874 */
3875static struct request *bfq_choose_req(struct bfq_data *bfqd,
3876 struct request *rq1,
3877 struct request *rq2,
3878 sector_t last)
3879{
3880 sector_t s1, s2, d1 = 0, d2 = 0;
3881 unsigned long back_max;
3882#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
3883#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
3884 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
3885
3886 if (!rq1 || rq1 == rq2)
3887 return rq2;
3888 if (!rq2)
3889 return rq1;
3890
3891 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
3892 return rq1;
3893 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
3894 return rq2;
3895 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
3896 return rq1;
3897 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
3898 return rq2;
3899
3900 s1 = blk_rq_pos(rq1);
3901 s2 = blk_rq_pos(rq2);
3902
3903 /*
3904 * By definition, 1KiB is 2 sectors.
3905 */
3906 back_max = bfqd->bfq_back_max * 2;
3907
3908 /*
3909 * Strict one way elevator _except_ in the case where we allow
3910 * short backward seeks which are biased as twice the cost of a
3911 * similar forward seek.
3912 */
3913 if (s1 >= last)
3914 d1 = s1 - last;
3915 else if (s1 + back_max >= last)
3916 d1 = (last - s1) * bfqd->bfq_back_penalty;
3917 else
3918 wrap |= BFQ_RQ1_WRAP;
3919
3920 if (s2 >= last)
3921 d2 = s2 - last;
3922 else if (s2 + back_max >= last)
3923 d2 = (last - s2) * bfqd->bfq_back_penalty;
3924 else
3925 wrap |= BFQ_RQ2_WRAP;
3926
3927 /* Found required data */
3928
3929 /*
3930 * By doing switch() on the bit mask "wrap" we avoid having to
3931 * check two variables for all permutations: --> faster!
3932 */
3933 switch (wrap) {
3934 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
3935 if (d1 < d2)
3936 return rq1;
3937 else if (d2 < d1)
3938 return rq2;
3939
3940 if (s1 >= s2)
3941 return rq1;
3942 else
3943 return rq2;
3944
3945 case BFQ_RQ2_WRAP:
3946 return rq1;
3947 case BFQ_RQ1_WRAP:
3948 return rq2;
3949 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
3950 default:
3951 /*
3952 * Since both rqs are wrapped,
3953 * start with the one that's further behind head
3954 * (--> only *one* back seek required),
3955 * since back seek takes more time than forward.
3956 */
3957 if (s1 <= s2)
3958 return rq1;
3959 else
3960 return rq2;
3961 }
3962}
3963
36eca894
AA
3964static struct bfq_queue *
3965bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
3966 sector_t sector, struct rb_node **ret_parent,
3967 struct rb_node ***rb_link)
3968{
3969 struct rb_node **p, *parent;
3970 struct bfq_queue *bfqq = NULL;
3971
3972 parent = NULL;
3973 p = &root->rb_node;
3974 while (*p) {
3975 struct rb_node **n;
3976
3977 parent = *p;
3978 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
3979
3980 /*
3981 * Sort strictly based on sector. Smallest to the left,
3982 * largest to the right.
3983 */
3984 if (sector > blk_rq_pos(bfqq->next_rq))
3985 n = &(*p)->rb_right;
3986 else if (sector < blk_rq_pos(bfqq->next_rq))
3987 n = &(*p)->rb_left;
3988 else
3989 break;
3990 p = n;
3991 bfqq = NULL;
3992 }
3993
3994 *ret_parent = parent;
3995 if (rb_link)
3996 *rb_link = p;
3997
3998 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
3999 (unsigned long long)sector,
4000 bfqq ? bfqq->pid : 0);
4001
4002 return bfqq;
4003}
4004
4005static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4006{
4007 struct rb_node **p, *parent;
4008 struct bfq_queue *__bfqq;
4009
4010 if (bfqq->pos_root) {
4011 rb_erase(&bfqq->pos_node, bfqq->pos_root);
4012 bfqq->pos_root = NULL;
4013 }
4014
4015 if (bfq_class_idle(bfqq))
4016 return;
4017 if (!bfqq->next_rq)
4018 return;
4019
4020 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
4021 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
4022 blk_rq_pos(bfqq->next_rq), &parent, &p);
4023 if (!__bfqq) {
4024 rb_link_node(&bfqq->pos_node, parent, p);
4025 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
4026 } else
4027 bfqq->pos_root = NULL;
4028}
4029
1de0c4cd
AA
4030/*
4031 * Tell whether there are active queues or groups with differentiated weights.
4032 */
4033static bool bfq_differentiated_weights(struct bfq_data *bfqd)
4034{
4035 /*
4036 * For weights to differ, at least one of the trees must contain
4037 * at least two nodes.
4038 */
4039 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
4040 (bfqd->queue_weights_tree.rb_node->rb_left ||
4041 bfqd->queue_weights_tree.rb_node->rb_right)
4042#ifdef CONFIG_BFQ_GROUP_IOSCHED
4043 ) ||
4044 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
4045 (bfqd->group_weights_tree.rb_node->rb_left ||
4046 bfqd->group_weights_tree.rb_node->rb_right)
4047#endif
4048 );
4049}
4050
4051/*
4052 * The following function returns true if every queue must receive the
4053 * same share of the throughput (this condition is used when deciding
4054 * whether idling may be disabled, see the comments in the function
4055 * bfq_bfqq_may_idle()).
4056 *
4057 * Such a scenario occurs when:
4058 * 1) all active queues have the same weight,
4059 * 2) all active groups at the same level in the groups tree have the same
4060 * weight,
4061 * 3) all active groups at the same level in the groups tree have the same
4062 * number of children.
4063 *
4064 * Unfortunately, keeping the necessary state for evaluating exactly the
4065 * above symmetry conditions would be quite complex and time-consuming.
4066 * Therefore this function evaluates, instead, the following stronger
4067 * sub-conditions, for which it is much easier to maintain the needed
4068 * state:
4069 * 1) all active queues have the same weight,
4070 * 2) all active groups have the same weight,
4071 * 3) all active groups have at most one active child each.
4072 * In particular, the last two conditions are always true if hierarchical
4073 * support and the cgroups interface are not enabled, thus no state needs
4074 * to be maintained in this case.
4075 */
4076static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
4077{
4078 return !bfq_differentiated_weights(bfqd);
4079}
4080
4081/*
4082 * If the weight-counter tree passed as input contains no counter for
4083 * the weight of the input entity, then add that counter; otherwise just
4084 * increment the existing counter.
4085 *
4086 * Note that weight-counter trees contain few nodes in mostly symmetric
4087 * scenarios. For example, if all queues have the same weight, then the
4088 * weight-counter tree for the queues may contain at most one node.
4089 * This holds even if low_latency is on, because weight-raised queues
4090 * are not inserted in the tree.
4091 * In most scenarios, the rate at which nodes are created/destroyed
4092 * should be low too.
4093 */
4094static void bfq_weights_tree_add(struct bfq_data *bfqd,
4095 struct bfq_entity *entity,
4096 struct rb_root *root)
4097{
4098 struct rb_node **new = &(root->rb_node), *parent = NULL;
4099
4100 /*
4101 * Do not insert if the entity is already associated with a
4102 * counter, which happens if:
4103 * 1) the entity is associated with a queue,
4104 * 2) a request arrival has caused the queue to become both
4105 * non-weight-raised, and hence change its weight, and
4106 * backlogged; in this respect, each of the two events
4107 * causes an invocation of this function,
4108 * 3) this is the invocation of this function caused by the
4109 * second event. This second invocation is actually useless,
4110 * and we handle this fact by exiting immediately. More
4111 * efficient or clearer solutions might possibly be adopted.
4112 */
4113 if (entity->weight_counter)
4114 return;
4115
4116 while (*new) {
4117 struct bfq_weight_counter *__counter = container_of(*new,
4118 struct bfq_weight_counter,
4119 weights_node);
4120 parent = *new;
4121
4122 if (entity->weight == __counter->weight) {
4123 entity->weight_counter = __counter;
4124 goto inc_counter;
4125 }
4126 if (entity->weight < __counter->weight)
4127 new = &((*new)->rb_left);
4128 else
4129 new = &((*new)->rb_right);
4130 }
4131
4132 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
4133 GFP_ATOMIC);
4134
4135 /*
4136 * In the unlucky event of an allocation failure, we just
4137 * exit. This will cause the weight of entity to not be
4138 * considered in bfq_differentiated_weights, which, in its
4139 * turn, causes the scenario to be deemed wrongly symmetric in
4140 * case entity's weight would have been the only weight making
4141 * the scenario asymmetric. On the bright side, no unbalance
4142 * will however occur when entity becomes inactive again (the
4143 * invocation of this function is triggered by an activation
4144 * of entity). In fact, bfq_weights_tree_remove does nothing
4145 * if !entity->weight_counter.
4146 */
4147 if (unlikely(!entity->weight_counter))
4148 return;
4149
4150 entity->weight_counter->weight = entity->weight;
4151 rb_link_node(&entity->weight_counter->weights_node, parent, new);
4152 rb_insert_color(&entity->weight_counter->weights_node, root);
4153
4154inc_counter:
4155 entity->weight_counter->num_active++;
4156}
4157
4158/*
4159 * Decrement the weight counter associated with the entity, and, if the
4160 * counter reaches 0, remove the counter from the tree.
4161 * See the comments to the function bfq_weights_tree_add() for considerations
4162 * about overhead.
4163 */
4164static void bfq_weights_tree_remove(struct bfq_data *bfqd,
4165 struct bfq_entity *entity,
4166 struct rb_root *root)
4167{
4168 if (!entity->weight_counter)
4169 return;
4170
4171 entity->weight_counter->num_active--;
4172 if (entity->weight_counter->num_active > 0)
4173 goto reset_entity_pointer;
4174
4175 rb_erase(&entity->weight_counter->weights_node, root);
4176 kfree(entity->weight_counter);
4177
4178reset_entity_pointer:
4179 entity->weight_counter = NULL;
4180}
4181
aee69d78
PV
4182/*
4183 * Return expired entry, or NULL to just start from scratch in rbtree.
4184 */
4185static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
4186 struct request *last)
4187{
4188 struct request *rq;
4189
4190 if (bfq_bfqq_fifo_expire(bfqq))
4191 return NULL;
4192
4193 bfq_mark_bfqq_fifo_expire(bfqq);
4194
4195 rq = rq_entry_fifo(bfqq->fifo.next);
4196
4197 if (rq == last || ktime_get_ns() < rq->fifo_time)
4198 return NULL;
4199
4200 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
4201 return rq;
4202}
4203
4204static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
4205 struct bfq_queue *bfqq,
4206 struct request *last)
4207{
4208 struct rb_node *rbnext = rb_next(&last->rb_node);
4209 struct rb_node *rbprev = rb_prev(&last->rb_node);
4210 struct request *next, *prev = NULL;
4211
4212 /* Follow expired path, else get first next available. */
4213 next = bfq_check_fifo(bfqq, last);
4214 if (next)
4215 return next;
4216
4217 if (rbprev)
4218 prev = rb_entry_rq(rbprev);
4219
4220 if (rbnext)
4221 next = rb_entry_rq(rbnext);
4222 else {
4223 rbnext = rb_first(&bfqq->sort_list);
4224 if (rbnext && rbnext != &last->rb_node)
4225 next = rb_entry_rq(rbnext);
4226 }
4227
4228 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
4229}
4230
c074170e 4231/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
4232static unsigned long bfq_serv_to_charge(struct request *rq,
4233 struct bfq_queue *bfqq)
4234{
44e44a1b 4235 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
4236 return blk_rq_sectors(rq);
4237
cfd69712
PV
4238 /*
4239 * If there are no weight-raised queues, then amplify service
4240 * by just the async charge factor; otherwise amplify service
4241 * by twice the async charge factor, to further reduce latency
4242 * for weight-raised queues.
4243 */
4244 if (bfqq->bfqd->wr_busy_queues == 0)
4245 return blk_rq_sectors(rq) * bfq_async_charge_factor;
4246
4247 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
4248}
4249
4250/**
4251 * bfq_updated_next_req - update the queue after a new next_rq selection.
4252 * @bfqd: the device data the queue belongs to.
4253 * @bfqq: the queue to update.
4254 *
4255 * If the first request of a queue changes we make sure that the queue
4256 * has enough budget to serve at least its first request (if the
4257 * request has grown). We do this because if the queue has not enough
4258 * budget for its first request, it has to go through two dispatch
4259 * rounds to actually get it dispatched.
4260 */
4261static void bfq_updated_next_req(struct bfq_data *bfqd,
4262 struct bfq_queue *bfqq)
4263{
4264 struct bfq_entity *entity = &bfqq->entity;
4265 struct request *next_rq = bfqq->next_rq;
4266 unsigned long new_budget;
4267
4268 if (!next_rq)
4269 return;
4270
4271 if (bfqq == bfqd->in_service_queue)
4272 /*
4273 * In order not to break guarantees, budgets cannot be
4274 * changed after an entity has been selected.
4275 */
4276 return;
4277
4278 new_budget = max_t(unsigned long, bfqq->max_budget,
4279 bfq_serv_to_charge(next_rq, bfqq));
4280 if (entity->budget != new_budget) {
4281 entity->budget = new_budget;
4282 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
4283 new_budget);
e21b7a0b 4284 bfq_requeue_bfqq(bfqd, bfqq);
aee69d78
PV
4285 }
4286}
4287
36eca894
AA
4288static void
4289bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4290{
4291 if (bic->saved_idle_window)
4292 bfq_mark_bfqq_idle_window(bfqq);
4293 else
4294 bfq_clear_bfqq_idle_window(bfqq);
4295
4296 if (bic->saved_IO_bound)
4297 bfq_mark_bfqq_IO_bound(bfqq);
4298 else
4299 bfq_clear_bfqq_IO_bound(bfqq);
4300
4301 bfqq->ttime = bic->saved_ttime;
4302 bfqq->wr_coeff = bic->saved_wr_coeff;
4303 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
4304 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
4305 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
4306
e1b2324d 4307 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 4308 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 4309 bfqq->wr_cur_max_time))) {
36eca894
AA
4310 bfq_log_bfqq(bfqq->bfqd, bfqq,
4311 "resume state: switching off wr");
4312
4313 bfqq->wr_coeff = 1;
4314 }
4315
4316 /* make sure weight will be updated, however we got here */
4317 bfqq->entity.prio_changed = 1;
4318}
4319
4320static int bfqq_process_refs(struct bfq_queue *bfqq)
4321{
4322 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
4323}
4324
e1b2324d
AA
4325/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
4326static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4327{
4328 struct bfq_queue *item;
4329 struct hlist_node *n;
4330
4331 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
4332 hlist_del_init(&item->burst_list_node);
4333 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
4334 bfqd->burst_size = 1;
4335 bfqd->burst_parent_entity = bfqq->entity.parent;
4336}
4337
4338/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
4339static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4340{
4341 /* Increment burst size to take into account also bfqq */
4342 bfqd->burst_size++;
4343
4344 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
4345 struct bfq_queue *pos, *bfqq_item;
4346 struct hlist_node *n;
4347
4348 /*
4349 * Enough queues have been activated shortly after each
4350 * other to consider this burst as large.
4351 */
4352 bfqd->large_burst = true;
4353
4354 /*
4355 * We can now mark all queues in the burst list as
4356 * belonging to a large burst.
4357 */
4358 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
4359 burst_list_node)
4360 bfq_mark_bfqq_in_large_burst(bfqq_item);
4361 bfq_mark_bfqq_in_large_burst(bfqq);
4362
4363 /*
4364 * From now on, and until the current burst finishes, any
4365 * new queue being activated shortly after the last queue
4366 * was inserted in the burst can be immediately marked as
4367 * belonging to a large burst. So the burst list is not
4368 * needed any more. Remove it.
4369 */
4370 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
4371 burst_list_node)
4372 hlist_del_init(&pos->burst_list_node);
4373 } else /*
4374 * Burst not yet large: add bfqq to the burst list. Do
4375 * not increment the ref counter for bfqq, because bfqq
4376 * is removed from the burst list before freeing bfqq
4377 * in put_queue.
4378 */
4379 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
4380}
4381
4382/*
4383 * If many queues belonging to the same group happen to be created
4384 * shortly after each other, then the processes associated with these
4385 * queues have typically a common goal. In particular, bursts of queue
4386 * creations are usually caused by services or applications that spawn
4387 * many parallel threads/processes. Examples are systemd during boot,
4388 * or git grep. To help these processes get their job done as soon as
4389 * possible, it is usually better to not grant either weight-raising
4390 * or device idling to their queues.
4391 *
4392 * In this comment we describe, firstly, the reasons why this fact
4393 * holds, and, secondly, the next function, which implements the main
4394 * steps needed to properly mark these queues so that they can then be
4395 * treated in a different way.
4396 *
4397 * The above services or applications benefit mostly from a high
4398 * throughput: the quicker the requests of the activated queues are
4399 * cumulatively served, the sooner the target job of these queues gets
4400 * completed. As a consequence, weight-raising any of these queues,
4401 * which also implies idling the device for it, is almost always
4402 * counterproductive. In most cases it just lowers throughput.
4403 *
4404 * On the other hand, a burst of queue creations may be caused also by
4405 * the start of an application that does not consist of a lot of
4406 * parallel I/O-bound threads. In fact, with a complex application,
4407 * several short processes may need to be executed to start-up the
4408 * application. In this respect, to start an application as quickly as
4409 * possible, the best thing to do is in any case to privilege the I/O
4410 * related to the application with respect to all other
4411 * I/O. Therefore, the best strategy to start as quickly as possible
4412 * an application that causes a burst of queue creations is to
4413 * weight-raise all the queues created during the burst. This is the
4414 * exact opposite of the best strategy for the other type of bursts.
4415 *
4416 * In the end, to take the best action for each of the two cases, the
4417 * two types of bursts need to be distinguished. Fortunately, this
4418 * seems relatively easy, by looking at the sizes of the bursts. In
4419 * particular, we found a threshold such that only bursts with a
4420 * larger size than that threshold are apparently caused by
4421 * services or commands such as systemd or git grep. For brevity,
4422 * hereafter we call just 'large' these bursts. BFQ *does not*
4423 * weight-raise queues whose creation occurs in a large burst. In
4424 * addition, for each of these queues BFQ performs or does not perform
4425 * idling depending on which choice boosts the throughput more. The
4426 * exact choice depends on the device and request pattern at
4427 * hand.
4428 *
4429 * Unfortunately, false positives may occur while an interactive task
4430 * is starting (e.g., an application is being started). The
4431 * consequence is that the queues associated with the task do not
4432 * enjoy weight raising as expected. Fortunately these false positives
4433 * are very rare. They typically occur if some service happens to
4434 * start doing I/O exactly when the interactive task starts.
4435 *
4436 * Turning back to the next function, it implements all the steps
4437 * needed to detect the occurrence of a large burst and to properly
4438 * mark all the queues belonging to it (so that they can then be
4439 * treated in a different way). This goal is achieved by maintaining a
4440 * "burst list" that holds, temporarily, the queues that belong to the
4441 * burst in progress. The list is then used to mark these queues as
4442 * belonging to a large burst if the burst does become large. The main
4443 * steps are the following.
4444 *
4445 * . when the very first queue is created, the queue is inserted into the
4446 * list (as it could be the first queue in a possible burst)
4447 *
4448 * . if the current burst has not yet become large, and a queue Q that does
4449 * not yet belong to the burst is activated shortly after the last time
4450 * at which a new queue entered the burst list, then the function appends
4451 * Q to the burst list
4452 *
4453 * . if, as a consequence of the previous step, the burst size reaches
4454 * the large-burst threshold, then
4455 *
4456 * . all the queues in the burst list are marked as belonging to a
4457 * large burst
4458 *
4459 * . the burst list is deleted; in fact, the burst list already served
4460 * its purpose (keeping temporarily track of the queues in a burst,
4461 * so as to be able to mark them as belonging to a large burst in the
4462 * previous sub-step), and now is not needed any more
4463 *
4464 * . the device enters a large-burst mode
4465 *
4466 * . if a queue Q that does not belong to the burst is created while
4467 * the device is in large-burst mode and shortly after the last time
4468 * at which a queue either entered the burst list or was marked as
4469 * belonging to the current large burst, then Q is immediately marked
4470 * as belonging to a large burst.
4471 *
4472 * . if a queue Q that does not belong to the burst is created a while
4473 * later, i.e., not shortly after, than the last time at which a queue
4474 * either entered the burst list or was marked as belonging to the
4475 * current large burst, then the current burst is deemed as finished and:
4476 *
4477 * . the large-burst mode is reset if set
4478 *
4479 * . the burst list is emptied
4480 *
4481 * . Q is inserted in the burst list, as Q may be the first queue
4482 * in a possible new burst (then the burst list contains just Q
4483 * after this step).
4484 */
4485static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4486{
4487 /*
4488 * If bfqq is already in the burst list or is part of a large
4489 * burst, or finally has just been split, then there is
4490 * nothing else to do.
4491 */
4492 if (!hlist_unhashed(&bfqq->burst_list_node) ||
4493 bfq_bfqq_in_large_burst(bfqq) ||
4494 time_is_after_eq_jiffies(bfqq->split_time +
4495 msecs_to_jiffies(10)))
4496 return;
4497
4498 /*
4499 * If bfqq's creation happens late enough, or bfqq belongs to
4500 * a different group than the burst group, then the current
4501 * burst is finished, and related data structures must be
4502 * reset.
4503 *
4504 * In this respect, consider the special case where bfqq is
4505 * the very first queue created after BFQ is selected for this
4506 * device. In this case, last_ins_in_burst and
4507 * burst_parent_entity are not yet significant when we get
4508 * here. But it is easy to verify that, whether or not the
4509 * following condition is true, bfqq will end up being
4510 * inserted into the burst list. In particular the list will
4511 * happen to contain only bfqq. And this is exactly what has
4512 * to happen, as bfqq may be the first queue of the first
4513 * burst.
4514 */
4515 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
4516 bfqd->bfq_burst_interval) ||
4517 bfqq->entity.parent != bfqd->burst_parent_entity) {
4518 bfqd->large_burst = false;
4519 bfq_reset_burst_list(bfqd, bfqq);
4520 goto end;
4521 }
4522
4523 /*
4524 * If we get here, then bfqq is being activated shortly after the
4525 * last queue. So, if the current burst is also large, we can mark
4526 * bfqq as belonging to this large burst immediately.
4527 */
4528 if (bfqd->large_burst) {
4529 bfq_mark_bfqq_in_large_burst(bfqq);
4530 goto end;
4531 }
4532
4533 /*
4534 * If we get here, then a large-burst state has not yet been
4535 * reached, but bfqq is being activated shortly after the last
4536 * queue. Then we add bfqq to the burst.
4537 */
4538 bfq_add_to_burst(bfqd, bfqq);
4539end:
4540 /*
4541 * At this point, bfqq either has been added to the current
4542 * burst or has caused the current burst to terminate and a
4543 * possible new burst to start. In particular, in the second
4544 * case, bfqq has become the first queue in the possible new
4545 * burst. In both cases last_ins_in_burst needs to be moved
4546 * forward.
4547 */
4548 bfqd->last_ins_in_burst = jiffies;
4549}
4550
aee69d78
PV
4551static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
4552{
4553 struct bfq_entity *entity = &bfqq->entity;
4554
4555 return entity->budget - entity->service;
4556}
4557
4558/*
4559 * If enough samples have been computed, return the current max budget
4560 * stored in bfqd, which is dynamically updated according to the
4561 * estimated disk peak rate; otherwise return the default max budget
4562 */
4563static int bfq_max_budget(struct bfq_data *bfqd)
4564{
4565 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
4566 return bfq_default_max_budget;
4567 else
4568 return bfqd->bfq_max_budget;
4569}
4570
4571/*
4572 * Return min budget, which is a fraction of the current or default
4573 * max budget (trying with 1/32)
4574 */
4575static int bfq_min_budget(struct bfq_data *bfqd)
4576{
4577 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
4578 return bfq_default_max_budget / 32;
4579 else
4580 return bfqd->bfq_max_budget / 32;
4581}
4582
4583static void bfq_bfqq_expire(struct bfq_data *bfqd,
4584 struct bfq_queue *bfqq,
4585 bool compensate,
4586 enum bfqq_expiration reason);
4587
4588/*
4589 * The next function, invoked after the input queue bfqq switches from
4590 * idle to busy, updates the budget of bfqq. The function also tells
4591 * whether the in-service queue should be expired, by returning
4592 * true. The purpose of expiring the in-service queue is to give bfqq
4593 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
4594 * for preempting the in-service queue is to achieve one of the two
4595 * goals below.
aee69d78 4596 *
44e44a1b
PV
4597 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
4598 * expired because it has remained idle. In particular, bfqq may have
4599 * expired for one of the following two reasons:
aee69d78
PV
4600 *
4601 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
4602 * and did not make it to issue a new request before its last
4603 * request was served;
4604 *
4605 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
4606 * a new request before the expiration of the idling-time.
4607 *
4608 * Even if bfqq has expired for one of the above reasons, the process
4609 * associated with the queue may be however issuing requests greedily,
4610 * and thus be sensitive to the bandwidth it receives (bfqq may have
4611 * remained idle for other reasons: CPU high load, bfqq not enjoying
4612 * idling, I/O throttling somewhere in the path from the process to
4613 * the I/O scheduler, ...). But if, after every expiration for one of
4614 * the above two reasons, bfqq has to wait for the service of at least
4615 * one full budget of another queue before being served again, then
4616 * bfqq is likely to get a much lower bandwidth or resource time than
4617 * its reserved ones. To address this issue, two countermeasures need
4618 * to be taken.
4619 *
4620 * First, the budget and the timestamps of bfqq need to be updated in
4621 * a special way on bfqq reactivation: they need to be updated as if
4622 * bfqq did not remain idle and did not expire. In fact, if they are
4623 * computed as if bfqq expired and remained idle until reactivation,
4624 * then the process associated with bfqq is treated as if, instead of
4625 * being greedy, it stopped issuing requests when bfqq remained idle,
4626 * and restarts issuing requests only on this reactivation. In other
4627 * words, the scheduler does not help the process recover the "service
4628 * hole" between bfqq expiration and reactivation. As a consequence,
4629 * the process receives a lower bandwidth than its reserved one. In
4630 * contrast, to recover this hole, the budget must be updated as if
4631 * bfqq was not expired at all before this reactivation, i.e., it must
4632 * be set to the value of the remaining budget when bfqq was
4633 * expired. Along the same line, timestamps need to be assigned the
4634 * value they had the last time bfqq was selected for service, i.e.,
4635 * before last expiration. Thus timestamps need to be back-shifted
4636 * with respect to their normal computation (see [1] for more details
4637 * on this tricky aspect).
4638 *
4639 * Secondly, to allow the process to recover the hole, the in-service
4640 * queue must be expired too, to give bfqq the chance to preempt it
4641 * immediately. In fact, if bfqq has to wait for a full budget of the
4642 * in-service queue to be completed, then it may become impossible to
4643 * let the process recover the hole, even if the back-shifted
4644 * timestamps of bfqq are lower than those of the in-service queue. If
4645 * this happens for most or all of the holes, then the process may not
4646 * receive its reserved bandwidth. In this respect, it is worth noting
4647 * that, being the service of outstanding requests unpreemptible, a
4648 * little fraction of the holes may however be unrecoverable, thereby
4649 * causing a little loss of bandwidth.
4650 *
4651 * The last important point is detecting whether bfqq does need this
4652 * bandwidth recovery. In this respect, the next function deems the
4653 * process associated with bfqq greedy, and thus allows it to recover
4654 * the hole, if: 1) the process is waiting for the arrival of a new
4655 * request (which implies that bfqq expired for one of the above two
4656 * reasons), and 2) such a request has arrived soon. The first
4657 * condition is controlled through the flag non_blocking_wait_rq,
4658 * while the second through the flag arrived_in_time. If both
4659 * conditions hold, then the function computes the budget in the
4660 * above-described special way, and signals that the in-service queue
4661 * should be expired. Timestamp back-shifting is done later in
4662 * __bfq_activate_entity.
44e44a1b
PV
4663 *
4664 * 2. Reduce latency. Even if timestamps are not backshifted to let
4665 * the process associated with bfqq recover a service hole, bfqq may
4666 * however happen to have, after being (re)activated, a lower finish
4667 * timestamp than the in-service queue. That is, the next budget of
4668 * bfqq may have to be completed before the one of the in-service
4669 * queue. If this is the case, then preempting the in-service queue
4670 * allows this goal to be achieved, apart from the unpreemptible,
4671 * outstanding requests mentioned above.
4672 *
4673 * Unfortunately, regardless of which of the above two goals one wants
4674 * to achieve, service trees need first to be updated to know whether
4675 * the in-service queue must be preempted. To have service trees
4676 * correctly updated, the in-service queue must be expired and
4677 * rescheduled, and bfqq must be scheduled too. This is one of the
4678 * most costly operations (in future versions, the scheduling
4679 * mechanism may be re-designed in such a way to make it possible to
4680 * know whether preemption is needed without needing to update service
4681 * trees). In addition, queue preemptions almost always cause random
4682 * I/O, and thus loss of throughput. Because of these facts, the next
4683 * function adopts the following simple scheme to avoid both costly
4684 * operations and too frequent preemptions: it requests the expiration
4685 * of the in-service queue (unconditionally) only for queues that need
4686 * to recover a hole, or that either are weight-raised or deserve to
4687 * be weight-raised.
aee69d78
PV
4688 */
4689static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
4690 struct bfq_queue *bfqq,
44e44a1b
PV
4691 bool arrived_in_time,
4692 bool wr_or_deserves_wr)
aee69d78
PV
4693{
4694 struct bfq_entity *entity = &bfqq->entity;
4695
4696 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
4697 /*
4698 * We do not clear the flag non_blocking_wait_rq here, as
4699 * the latter is used in bfq_activate_bfqq to signal
4700 * that timestamps need to be back-shifted (and is
4701 * cleared right after).
4702 */
4703
4704 /*
4705 * In next assignment we rely on that either
4706 * entity->service or entity->budget are not updated
4707 * on expiration if bfqq is empty (see
4708 * __bfq_bfqq_recalc_budget). Thus both quantities
4709 * remain unchanged after such an expiration, and the
4710 * following statement therefore assigns to
4711 * entity->budget the remaining budget on such an
4712 * expiration. For clarity, entity->service is not
4713 * updated on expiration in any case, and, in normal
4714 * operation, is reset only when bfqq is selected for
4715 * service (see bfq_get_next_queue).
4716 */
4717 entity->budget = min_t(unsigned long,
4718 bfq_bfqq_budget_left(bfqq),
4719 bfqq->max_budget);
4720
4721 return true;
4722 }
4723
4724 entity->budget = max_t(unsigned long, bfqq->max_budget,
4725 bfq_serv_to_charge(bfqq->next_rq, bfqq));
4726 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
4727 return wr_or_deserves_wr;
4728}
4729
4730static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
4731{
4732 u64 dur;
4733
4734 if (bfqd->bfq_wr_max_time > 0)
4735 return bfqd->bfq_wr_max_time;
4736
4737 dur = bfqd->RT_prod;
4738 do_div(dur, bfqd->peak_rate);
4739
4740 /*
4741 * Limit duration between 3 and 13 seconds. Tests show that
4742 * higher values than 13 seconds often yield the opposite of
4743 * the desired result, i.e., worsen responsiveness by letting
4744 * non-interactive and non-soft-real-time applications
4745 * preserve weight raising for a too long time interval.
4746 *
4747 * On the other end, lower values than 3 seconds make it
4748 * difficult for most interactive tasks to complete their jobs
4749 * before weight-raising finishes.
4750 */
4751 if (dur > msecs_to_jiffies(13000))
4752 dur = msecs_to_jiffies(13000);
4753 else if (dur < msecs_to_jiffies(3000))
4754 dur = msecs_to_jiffies(3000);
4755
4756 return dur;
4757}
4758
4759static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
4760 struct bfq_queue *bfqq,
4761 unsigned int old_wr_coeff,
4762 bool wr_or_deserves_wr,
77b7dcea 4763 bool interactive,
e1b2324d 4764 bool in_burst,
77b7dcea 4765 bool soft_rt)
44e44a1b
PV
4766{
4767 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
4768 /* start a weight-raising period */
77b7dcea
PV
4769 if (interactive) {
4770 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
4771 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
4772 } else {
4773 bfqq->wr_start_at_switch_to_srt = jiffies;
4774 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
4775 BFQ_SOFTRT_WEIGHT_FACTOR;
4776 bfqq->wr_cur_max_time =
4777 bfqd->bfq_wr_rt_max_time;
4778 }
44e44a1b
PV
4779
4780 /*
4781 * If needed, further reduce budget to make sure it is
4782 * close to bfqq's backlog, so as to reduce the
4783 * scheduling-error component due to a too large
4784 * budget. Do not care about throughput consequences,
4785 * but only about latency. Finally, do not assign a
4786 * too small budget either, to avoid increasing
4787 * latency by causing too frequent expirations.
4788 */
4789 bfqq->entity.budget = min_t(unsigned long,
4790 bfqq->entity.budget,
4791 2 * bfq_min_budget(bfqd));
4792 } else if (old_wr_coeff > 1) {
77b7dcea
PV
4793 if (interactive) { /* update wr coeff and duration */
4794 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
4795 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
4796 } else if (in_burst)
4797 bfqq->wr_coeff = 1;
4798 else if (soft_rt) {
77b7dcea
PV
4799 /*
4800 * The application is now or still meeting the
4801 * requirements for being deemed soft rt. We
4802 * can then correctly and safely (re)charge
4803 * the weight-raising duration for the
4804 * application with the weight-raising
4805 * duration for soft rt applications.
4806 *
4807 * In particular, doing this recharge now, i.e.,
4808 * before the weight-raising period for the
4809 * application finishes, reduces the probability
4810 * of the following negative scenario:
4811 * 1) the weight of a soft rt application is
4812 * raised at startup (as for any newly
4813 * created application),
4814 * 2) since the application is not interactive,
4815 * at a certain time weight-raising is
4816 * stopped for the application,
4817 * 3) at that time the application happens to
4818 * still have pending requests, and hence
4819 * is destined to not have a chance to be
4820 * deemed soft rt before these requests are
4821 * completed (see the comments to the
4822 * function bfq_bfqq_softrt_next_start()
4823 * for details on soft rt detection),
4824 * 4) these pending requests experience a high
4825 * latency because the application is not
4826 * weight-raised while they are pending.
4827 */
4828 if (bfqq->wr_cur_max_time !=
4829 bfqd->bfq_wr_rt_max_time) {
4830 bfqq->wr_start_at_switch_to_srt =
4831 bfqq->last_wr_start_finish;
4832
4833 bfqq->wr_cur_max_time =
4834 bfqd->bfq_wr_rt_max_time;
4835 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
4836 BFQ_SOFTRT_WEIGHT_FACTOR;
4837 }
4838 bfqq->last_wr_start_finish = jiffies;
4839 }
44e44a1b
PV
4840 }
4841}
4842
4843static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
4844 struct bfq_queue *bfqq)
4845{
4846 return bfqq->dispatched == 0 &&
4847 time_is_before_jiffies(
4848 bfqq->budget_timeout +
4849 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
4850}
4851
4852static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
4853 struct bfq_queue *bfqq,
44e44a1b
PV
4854 int old_wr_coeff,
4855 struct request *rq,
4856 bool *interactive)
aee69d78 4857{
e1b2324d
AA
4858 bool soft_rt, in_burst, wr_or_deserves_wr,
4859 bfqq_wants_to_preempt,
44e44a1b 4860 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
4861 /*
4862 * See the comments on
4863 * bfq_bfqq_update_budg_for_activation for
4864 * details on the usage of the next variable.
4865 */
4866 arrived_in_time = ktime_get_ns() <=
4867 bfqq->ttime.last_end_request +
4868 bfqd->bfq_slice_idle * 3;
4869
e21b7a0b
AA
4870 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
4871
aee69d78 4872 /*
44e44a1b
PV
4873 * bfqq deserves to be weight-raised if:
4874 * - it is sync,
e1b2324d 4875 * - it does not belong to a large burst,
36eca894
AA
4876 * - it has been idle for enough time or is soft real-time,
4877 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 4878 */
e1b2324d 4879 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 4880 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 4881 !in_burst &&
77b7dcea 4882 time_is_before_jiffies(bfqq->soft_rt_next_start);
e1b2324d 4883 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
4884 wr_or_deserves_wr = bfqd->low_latency &&
4885 (bfqq->wr_coeff > 1 ||
36eca894
AA
4886 (bfq_bfqq_sync(bfqq) &&
4887 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
4888
4889 /*
4890 * Using the last flag, update budget and check whether bfqq
4891 * may want to preempt the in-service queue.
aee69d78
PV
4892 */
4893 bfqq_wants_to_preempt =
4894 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
4895 arrived_in_time,
4896 wr_or_deserves_wr);
aee69d78 4897
e1b2324d
AA
4898 /*
4899 * If bfqq happened to be activated in a burst, but has been
4900 * idle for much more than an interactive queue, then we
4901 * assume that, in the overall I/O initiated in the burst, the
4902 * I/O associated with bfqq is finished. So bfqq does not need
4903 * to be treated as a queue belonging to a burst
4904 * anymore. Accordingly, we reset bfqq's in_large_burst flag
4905 * if set, and remove bfqq from the burst list if it's
4906 * there. We do not decrement burst_size, because the fact
4907 * that bfqq does not need to belong to the burst list any
4908 * more does not invalidate the fact that bfqq was created in
4909 * a burst.
4910 */
4911 if (likely(!bfq_bfqq_just_created(bfqq)) &&
4912 idle_for_long_time &&
4913 time_is_before_jiffies(
4914 bfqq->budget_timeout +
4915 msecs_to_jiffies(10000))) {
4916 hlist_del_init(&bfqq->burst_list_node);
4917 bfq_clear_bfqq_in_large_burst(bfqq);
4918 }
4919
4920 bfq_clear_bfqq_just_created(bfqq);
4921
4922
aee69d78
PV
4923 if (!bfq_bfqq_IO_bound(bfqq)) {
4924 if (arrived_in_time) {
4925 bfqq->requests_within_timer++;
4926 if (bfqq->requests_within_timer >=
4927 bfqd->bfq_requests_within_timer)
4928 bfq_mark_bfqq_IO_bound(bfqq);
4929 } else
4930 bfqq->requests_within_timer = 0;
4931 }
4932
44e44a1b 4933 if (bfqd->low_latency) {
36eca894
AA
4934 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
4935 /* wraparound */
4936 bfqq->split_time =
4937 jiffies - bfqd->bfq_wr_min_idle_time - 1;
4938
4939 if (time_is_before_jiffies(bfqq->split_time +
4940 bfqd->bfq_wr_min_idle_time)) {
4941 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
4942 old_wr_coeff,
4943 wr_or_deserves_wr,
4944 *interactive,
e1b2324d 4945 in_burst,
36eca894
AA
4946 soft_rt);
4947
4948 if (old_wr_coeff != bfqq->wr_coeff)
4949 bfqq->entity.prio_changed = 1;
4950 }
44e44a1b
PV
4951 }
4952
77b7dcea
PV
4953 bfqq->last_idle_bklogged = jiffies;
4954 bfqq->service_from_backlogged = 0;
4955 bfq_clear_bfqq_softrt_update(bfqq);
4956
aee69d78
PV
4957 bfq_add_bfqq_busy(bfqd, bfqq);
4958
4959 /*
4960 * Expire in-service queue only if preemption may be needed
4961 * for guarantees. In this respect, the function
4962 * next_queue_may_preempt just checks a simple, necessary
4963 * condition, and not a sufficient condition based on
4964 * timestamps. In fact, for the latter condition to be
4965 * evaluated, timestamps would need first to be updated, and
4966 * this operation is quite costly (see the comments on the
4967 * function bfq_bfqq_update_budg_for_activation).
4968 */
4969 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 4970 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
4971 next_queue_may_preempt(bfqd))
4972 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
4973 false, BFQQE_PREEMPTED);
4974}
4975
4976static void bfq_add_request(struct request *rq)
4977{
4978 struct bfq_queue *bfqq = RQ_BFQQ(rq);
4979 struct bfq_data *bfqd = bfqq->bfqd;
4980 struct request *next_rq, *prev;
44e44a1b
PV
4981 unsigned int old_wr_coeff = bfqq->wr_coeff;
4982 bool interactive = false;
aee69d78
PV
4983
4984 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
4985 bfqq->queued[rq_is_sync(rq)]++;
4986 bfqd->queued++;
4987
4988 elv_rb_add(&bfqq->sort_list, rq);
4989
4990 /*
4991 * Check if this request is a better next-serve candidate.
4992 */
4993 prev = bfqq->next_rq;
4994 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
4995 bfqq->next_rq = next_rq;
4996
36eca894
AA
4997 /*
4998 * Adjust priority tree position, if next_rq changes.
4999 */
5000 if (prev != bfqq->next_rq)
5001 bfq_pos_tree_add_move(bfqd, bfqq);
5002
aee69d78 5003 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
5004 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
5005 rq, &interactive);
5006 else {
5007 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
5008 time_is_before_jiffies(
5009 bfqq->last_wr_start_finish +
5010 bfqd->bfq_wr_min_inter_arr_async)) {
5011 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
5012 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
5013
cfd69712 5014 bfqd->wr_busy_queues++;
44e44a1b
PV
5015 bfqq->entity.prio_changed = 1;
5016 }
5017 if (prev != bfqq->next_rq)
5018 bfq_updated_next_req(bfqd, bfqq);
5019 }
5020
5021 /*
5022 * Assign jiffies to last_wr_start_finish in the following
5023 * cases:
5024 *
5025 * . if bfqq is not going to be weight-raised, because, for
5026 * non weight-raised queues, last_wr_start_finish stores the
5027 * arrival time of the last request; as of now, this piece
5028 * of information is used only for deciding whether to
5029 * weight-raise async queues
5030 *
5031 * . if bfqq is not weight-raised, because, if bfqq is now
5032 * switching to weight-raised, then last_wr_start_finish
5033 * stores the time when weight-raising starts
5034 *
5035 * . if bfqq is interactive, because, regardless of whether
5036 * bfqq is currently weight-raised, the weight-raising
5037 * period must start or restart (this case is considered
5038 * separately because it is not detected by the above
5039 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
5040 *
5041 * last_wr_start_finish has to be updated also if bfqq is soft
5042 * real-time, because the weight-raising period is constantly
5043 * restarted on idle-to-busy transitions for these queues, but
5044 * this is already done in bfq_bfqq_handle_idle_busy_switch if
5045 * needed.
44e44a1b
PV
5046 */
5047 if (bfqd->low_latency &&
5048 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
5049 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
5050}
5051
5052static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
5053 struct bio *bio,
5054 struct request_queue *q)
5055{
5056 struct bfq_queue *bfqq = bfqd->bio_bfqq;
5057
5058
5059 if (bfqq)
5060 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
5061
5062 return NULL;
5063}
5064
ab0e43e9
PV
5065static sector_t get_sdist(sector_t last_pos, struct request *rq)
5066{
5067 if (last_pos)
5068 return abs(blk_rq_pos(rq) - last_pos);
5069
5070 return 0;
5071}
5072
aee69d78
PV
5073#if 0 /* Still not clear if we can do without next two functions */
5074static void bfq_activate_request(struct request_queue *q, struct request *rq)
5075{
5076 struct bfq_data *bfqd = q->elevator->elevator_data;
5077
5078 bfqd->rq_in_driver++;
aee69d78
PV
5079}
5080
5081static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
5082{
5083 struct bfq_data *bfqd = q->elevator->elevator_data;
5084
5085 bfqd->rq_in_driver--;
5086}
5087#endif
5088
5089static void bfq_remove_request(struct request_queue *q,
5090 struct request *rq)
5091{
5092 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5093 struct bfq_data *bfqd = bfqq->bfqd;
5094 const int sync = rq_is_sync(rq);
5095
5096 if (bfqq->next_rq == rq) {
5097 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
5098 bfq_updated_next_req(bfqd, bfqq);
5099 }
5100
5101 if (rq->queuelist.prev != &rq->queuelist)
5102 list_del_init(&rq->queuelist);
5103 bfqq->queued[sync]--;
5104 bfqd->queued--;
5105 elv_rb_del(&bfqq->sort_list, rq);
5106
5107 elv_rqhash_del(q, rq);
5108 if (q->last_merge == rq)
5109 q->last_merge = NULL;
5110
5111 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
5112 bfqq->next_rq = NULL;
5113
5114 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 5115 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
5116 /*
5117 * bfqq emptied. In normal operation, when
5118 * bfqq is empty, bfqq->entity.service and
5119 * bfqq->entity.budget must contain,
5120 * respectively, the service received and the
5121 * budget used last time bfqq emptied. These
5122 * facts do not hold in this case, as at least
5123 * this last removal occurred while bfqq is
5124 * not in service. To avoid inconsistencies,
5125 * reset both bfqq->entity.service and
5126 * bfqq->entity.budget, if bfqq has still a
5127 * process that may issue I/O requests to it.
5128 */
5129 bfqq->entity.budget = bfqq->entity.service = 0;
5130 }
36eca894
AA
5131
5132 /*
5133 * Remove queue from request-position tree as it is empty.
5134 */
5135 if (bfqq->pos_root) {
5136 rb_erase(&bfqq->pos_node, bfqq->pos_root);
5137 bfqq->pos_root = NULL;
5138 }
aee69d78
PV
5139 }
5140
5141 if (rq->cmd_flags & REQ_META)
5142 bfqq->meta_pending--;
e21b7a0b
AA
5143
5144 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
aee69d78
PV
5145}
5146
5147static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
5148{
5149 struct request_queue *q = hctx->queue;
5150 struct bfq_data *bfqd = q->elevator->elevator_data;
5151 struct request *free = NULL;
5152 /*
5153 * bfq_bic_lookup grabs the queue_lock: invoke it now and
5154 * store its return value for later use, to avoid nesting
5155 * queue_lock inside the bfqd->lock. We assume that the bic
5156 * returned by bfq_bic_lookup does not go away before
5157 * bfqd->lock is taken.
5158 */
5159 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
5160 bool ret;
5161
5162 spin_lock_irq(&bfqd->lock);
5163
5164 if (bic)
5165 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
5166 else
5167 bfqd->bio_bfqq = NULL;
5168 bfqd->bio_bic = bic;
5169
5170 ret = blk_mq_sched_try_merge(q, bio, &free);
5171
5172 if (free)
5173 blk_mq_free_request(free);
5174 spin_unlock_irq(&bfqd->lock);
5175
5176 return ret;
5177}
5178
5179static int bfq_request_merge(struct request_queue *q, struct request **req,
5180 struct bio *bio)
5181{
5182 struct bfq_data *bfqd = q->elevator->elevator_data;
5183 struct request *__rq;
5184
5185 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
5186 if (__rq && elv_bio_merge_ok(__rq, bio)) {
5187 *req = __rq;
5188 return ELEVATOR_FRONT_MERGE;
5189 }
5190
5191 return ELEVATOR_NO_MERGE;
5192}
5193
5194static void bfq_request_merged(struct request_queue *q, struct request *req,
5195 enum elv_merge type)
5196{
5197 if (type == ELEVATOR_FRONT_MERGE &&
5198 rb_prev(&req->rb_node) &&
5199 blk_rq_pos(req) <
5200 blk_rq_pos(container_of(rb_prev(&req->rb_node),
5201 struct request, rb_node))) {
5202 struct bfq_queue *bfqq = RQ_BFQQ(req);
5203 struct bfq_data *bfqd = bfqq->bfqd;
5204 struct request *prev, *next_rq;
5205
5206 /* Reposition request in its sort_list */
5207 elv_rb_del(&bfqq->sort_list, req);
5208 elv_rb_add(&bfqq->sort_list, req);
5209
5210 /* Choose next request to be served for bfqq */
5211 prev = bfqq->next_rq;
5212 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
5213 bfqd->last_position);
5214 bfqq->next_rq = next_rq;
5215 /*
36eca894
AA
5216 * If next_rq changes, update both the queue's budget to
5217 * fit the new request and the queue's position in its
5218 * rq_pos_tree.
aee69d78 5219 */
36eca894 5220 if (prev != bfqq->next_rq) {
aee69d78 5221 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
5222 bfq_pos_tree_add_move(bfqd, bfqq);
5223 }
aee69d78
PV
5224 }
5225}
5226
5227static void bfq_requests_merged(struct request_queue *q, struct request *rq,
5228 struct request *next)
5229{
5230 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
5231
5232 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 5233 goto end;
aee69d78
PV
5234 spin_lock_irq(&bfqq->bfqd->lock);
5235
5236 /*
5237 * If next and rq belong to the same bfq_queue and next is older
5238 * than rq, then reposition rq in the fifo (by substituting next
5239 * with rq). Otherwise, if next and rq belong to different
5240 * bfq_queues, never reposition rq: in fact, we would have to
5241 * reposition it with respect to next's position in its own fifo,
5242 * which would most certainly be too expensive with respect to
5243 * the benefits.
5244 */
5245 if (bfqq == next_bfqq &&
5246 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
5247 next->fifo_time < rq->fifo_time) {
5248 list_del_init(&rq->queuelist);
5249 list_replace_init(&next->queuelist, &rq->queuelist);
5250 rq->fifo_time = next->fifo_time;
5251 }
5252
5253 if (bfqq->next_rq == next)
5254 bfqq->next_rq = rq;
5255
5256 bfq_remove_request(q, next);
5257
5258 spin_unlock_irq(&bfqq->bfqd->lock);
e21b7a0b
AA
5259end:
5260 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
5261}
5262
44e44a1b
PV
5263/* Must be called with bfqq != NULL */
5264static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
5265{
cfd69712
PV
5266 if (bfq_bfqq_busy(bfqq))
5267 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
5268 bfqq->wr_coeff = 1;
5269 bfqq->wr_cur_max_time = 0;
77b7dcea 5270 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
5271 /*
5272 * Trigger a weight change on the next invocation of
5273 * __bfq_entity_update_weight_prio.
5274 */
5275 bfqq->entity.prio_changed = 1;
5276}
5277
5278static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
5279 struct bfq_group *bfqg)
5280{
5281 int i, j;
5282
5283 for (i = 0; i < 2; i++)
5284 for (j = 0; j < IOPRIO_BE_NR; j++)
5285 if (bfqg->async_bfqq[i][j])
5286 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
5287 if (bfqg->async_idle_bfqq)
5288 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
5289}
5290
5291static void bfq_end_wr(struct bfq_data *bfqd)
5292{
5293 struct bfq_queue *bfqq;
5294
5295 spin_lock_irq(&bfqd->lock);
5296
5297 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
5298 bfq_bfqq_end_wr(bfqq);
5299 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
5300 bfq_bfqq_end_wr(bfqq);
5301 bfq_end_wr_async(bfqd);
5302
5303 spin_unlock_irq(&bfqd->lock);
5304}
5305
36eca894
AA
5306static sector_t bfq_io_struct_pos(void *io_struct, bool request)
5307{
5308 if (request)
5309 return blk_rq_pos(io_struct);
5310 else
5311 return ((struct bio *)io_struct)->bi_iter.bi_sector;
5312}
5313
5314static int bfq_rq_close_to_sector(void *io_struct, bool request,
5315 sector_t sector)
5316{
5317 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
5318 BFQQ_CLOSE_THR;
5319}
5320
5321static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
5322 struct bfq_queue *bfqq,
5323 sector_t sector)
5324{
5325 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
5326 struct rb_node *parent, *node;
5327 struct bfq_queue *__bfqq;
5328
5329 if (RB_EMPTY_ROOT(root))
5330 return NULL;
5331
5332 /*
5333 * First, if we find a request starting at the end of the last
5334 * request, choose it.
5335 */
5336 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
5337 if (__bfqq)
5338 return __bfqq;
5339
5340 /*
5341 * If the exact sector wasn't found, the parent of the NULL leaf
5342 * will contain the closest sector (rq_pos_tree sorted by
5343 * next_request position).
5344 */
5345 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
5346 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
5347 return __bfqq;
5348
5349 if (blk_rq_pos(__bfqq->next_rq) < sector)
5350 node = rb_next(&__bfqq->pos_node);
5351 else
5352 node = rb_prev(&__bfqq->pos_node);
5353 if (!node)
5354 return NULL;
5355
5356 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
5357 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
5358 return __bfqq;
5359
5360 return NULL;
5361}
5362
5363static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
5364 struct bfq_queue *cur_bfqq,
5365 sector_t sector)
5366{
5367 struct bfq_queue *bfqq;
5368
5369 /*
5370 * We shall notice if some of the queues are cooperating,
5371 * e.g., working closely on the same area of the device. In
5372 * that case, we can group them together and: 1) don't waste
5373 * time idling, and 2) serve the union of their requests in
5374 * the best possible order for throughput.
5375 */
5376 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
5377 if (!bfqq || bfqq == cur_bfqq)
5378 return NULL;
5379
5380 return bfqq;
5381}
5382
5383static struct bfq_queue *
5384bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
5385{
5386 int process_refs, new_process_refs;
5387 struct bfq_queue *__bfqq;
5388
5389 /*
5390 * If there are no process references on the new_bfqq, then it is
5391 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
5392 * may have dropped their last reference (not just their last process
5393 * reference).
5394 */
5395 if (!bfqq_process_refs(new_bfqq))
5396 return NULL;
5397
5398 /* Avoid a circular list and skip interim queue merges. */
5399 while ((__bfqq = new_bfqq->new_bfqq)) {
5400 if (__bfqq == bfqq)
5401 return NULL;
5402 new_bfqq = __bfqq;
5403 }
5404
5405 process_refs = bfqq_process_refs(bfqq);
5406 new_process_refs = bfqq_process_refs(new_bfqq);
5407 /*
5408 * If the process for the bfqq has gone away, there is no
5409 * sense in merging the queues.
5410 */
5411 if (process_refs == 0 || new_process_refs == 0)
5412 return NULL;
5413
5414 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
5415 new_bfqq->pid);
5416
5417 /*
5418 * Merging is just a redirection: the requests of the process
5419 * owning one of the two queues are redirected to the other queue.
5420 * The latter queue, in its turn, is set as shared if this is the
5421 * first time that the requests of some process are redirected to
5422 * it.
5423 *
6fa3e8d3
PV
5424 * We redirect bfqq to new_bfqq and not the opposite, because
5425 * we are in the context of the process owning bfqq, thus we
5426 * have the io_cq of this process. So we can immediately
5427 * configure this io_cq to redirect the requests of the
5428 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
5429 * not available any more (new_bfqq->bic == NULL).
36eca894 5430 *
6fa3e8d3
PV
5431 * Anyway, even in case new_bfqq coincides with the in-service
5432 * queue, redirecting requests the in-service queue is the
5433 * best option, as we feed the in-service queue with new
5434 * requests close to the last request served and, by doing so,
5435 * are likely to increase the throughput.
36eca894
AA
5436 */
5437 bfqq->new_bfqq = new_bfqq;
5438 new_bfqq->ref += process_refs;
5439 return new_bfqq;
5440}
5441
5442static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
5443 struct bfq_queue *new_bfqq)
5444{
5445 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
5446 (bfqq->ioprio_class != new_bfqq->ioprio_class))
5447 return false;
5448
5449 /*
5450 * If either of the queues has already been detected as seeky,
5451 * then merging it with the other queue is unlikely to lead to
5452 * sequential I/O.
5453 */
5454 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
5455 return false;
5456
5457 /*
5458 * Interleaved I/O is known to be done by (some) applications
5459 * only for reads, so it does not make sense to merge async
5460 * queues.
5461 */
5462 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
5463 return false;
5464
5465 return true;
5466}
5467
5468/*
5469 * If this function returns true, then bfqq cannot be merged. The idea
5470 * is that true cooperation happens very early after processes start
5471 * to do I/O. Usually, late cooperations are just accidental false
5472 * positives. In case bfqq is weight-raised, such false positives
5473 * would evidently degrade latency guarantees for bfqq.
5474 */
5475static bool wr_from_too_long(struct bfq_queue *bfqq)
5476{
5477 return bfqq->wr_coeff > 1 &&
5478 time_is_before_jiffies(bfqq->last_wr_start_finish +
5479 msecs_to_jiffies(100));
5480}
5481
5482/*
5483 * Attempt to schedule a merge of bfqq with the currently in-service
5484 * queue or with a close queue among the scheduled queues. Return
5485 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
5486 * structure otherwise.
5487 *
5488 * The OOM queue is not allowed to participate to cooperation: in fact, since
5489 * the requests temporarily redirected to the OOM queue could be redirected
5490 * again to dedicated queues at any time, the state needed to correctly
5491 * handle merging with the OOM queue would be quite complex and expensive
5492 * to maintain. Besides, in such a critical condition as an out of memory,
5493 * the benefits of queue merging may be little relevant, or even negligible.
5494 *
5495 * Weight-raised queues can be merged only if their weight-raising
5496 * period has just started. In fact cooperating processes are usually
5497 * started together. Thus, with this filter we avoid false positives
5498 * that would jeopardize low-latency guarantees.
5499 *
5500 * WARNING: queue merging may impair fairness among non-weight raised
5501 * queues, for at least two reasons: 1) the original weight of a
5502 * merged queue may change during the merged state, 2) even being the
5503 * weight the same, a merged queue may be bloated with many more
5504 * requests than the ones produced by its originally-associated
5505 * process.
5506 */
5507static struct bfq_queue *
5508bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5509 void *io_struct, bool request)
5510{
5511 struct bfq_queue *in_service_bfqq, *new_bfqq;
5512
5513 if (bfqq->new_bfqq)
5514 return bfqq->new_bfqq;
5515
5516 if (!io_struct ||
5517 wr_from_too_long(bfqq) ||
5518 unlikely(bfqq == &bfqd->oom_bfqq))
5519 return NULL;
5520
5521 /* If there is only one backlogged queue, don't search. */
5522 if (bfqd->busy_queues == 1)
5523 return NULL;
5524
5525 in_service_bfqq = bfqd->in_service_queue;
5526
6fa3e8d3
PV
5527 if (!in_service_bfqq || in_service_bfqq == bfqq
5528 || wr_from_too_long(in_service_bfqq) ||
36eca894
AA
5529 unlikely(in_service_bfqq == &bfqd->oom_bfqq))
5530 goto check_scheduled;
5531
5532 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
5533 bfqq->entity.parent == in_service_bfqq->entity.parent &&
5534 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
5535 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
5536 if (new_bfqq)
5537 return new_bfqq;
5538 }
5539 /*
5540 * Check whether there is a cooperator among currently scheduled
5541 * queues. The only thing we need is that the bio/request is not
5542 * NULL, as we need it to establish whether a cooperator exists.
5543 */
5544check_scheduled:
5545 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
5546 bfq_io_struct_pos(io_struct, request));
5547
5548 if (new_bfqq && !wr_from_too_long(new_bfqq) &&
5549 likely(new_bfqq != &bfqd->oom_bfqq) &&
5550 bfq_may_be_close_cooperator(bfqq, new_bfqq))
5551 return bfq_setup_merge(bfqq, new_bfqq);
5552
5553 return NULL;
5554}
5555
5556static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
5557{
5558 struct bfq_io_cq *bic = bfqq->bic;
5559
5560 /*
5561 * If !bfqq->bic, the queue is already shared or its requests
5562 * have already been redirected to a shared queue; both idle window
5563 * and weight raising state have already been saved. Do nothing.
5564 */
5565 if (!bic)
5566 return;
5567
5568 bic->saved_ttime = bfqq->ttime;
5569 bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
5570 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
5571 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
5572 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
36eca894
AA
5573 bic->saved_wr_coeff = bfqq->wr_coeff;
5574 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
5575 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
5576 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
5577}
5578
36eca894
AA
5579static void
5580bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
5581 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
5582{
5583 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
5584 (unsigned long)new_bfqq->pid);
5585 /* Save weight raising and idle window of the merged queues */
5586 bfq_bfqq_save_state(bfqq);
5587 bfq_bfqq_save_state(new_bfqq);
5588 if (bfq_bfqq_IO_bound(bfqq))
5589 bfq_mark_bfqq_IO_bound(new_bfqq);
5590 bfq_clear_bfqq_IO_bound(bfqq);
5591
5592 /*
5593 * If bfqq is weight-raised, then let new_bfqq inherit
5594 * weight-raising. To reduce false positives, neglect the case
5595 * where bfqq has just been created, but has not yet made it
5596 * to be weight-raised (which may happen because EQM may merge
5597 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
5598 * time for bfqq). Handling this case would however be very
5599 * easy, thanks to the flag just_created.
36eca894
AA
5600 */
5601 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
5602 new_bfqq->wr_coeff = bfqq->wr_coeff;
5603 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
5604 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
5605 new_bfqq->wr_start_at_switch_to_srt =
5606 bfqq->wr_start_at_switch_to_srt;
5607 if (bfq_bfqq_busy(new_bfqq))
5608 bfqd->wr_busy_queues++;
5609 new_bfqq->entity.prio_changed = 1;
5610 }
5611
5612 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
5613 bfqq->wr_coeff = 1;
5614 bfqq->entity.prio_changed = 1;
5615 if (bfq_bfqq_busy(bfqq))
5616 bfqd->wr_busy_queues--;
5617 }
5618
5619 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
5620 bfqd->wr_busy_queues);
5621
36eca894
AA
5622 /*
5623 * Merge queues (that is, let bic redirect its requests to new_bfqq)
5624 */
5625 bic_set_bfqq(bic, new_bfqq, 1);
5626 bfq_mark_bfqq_coop(new_bfqq);
5627 /*
5628 * new_bfqq now belongs to at least two bics (it is a shared queue):
5629 * set new_bfqq->bic to NULL. bfqq either:
5630 * - does not belong to any bic any more, and hence bfqq->bic must
5631 * be set to NULL, or
5632 * - is a queue whose owning bics have already been redirected to a
5633 * different queue, hence the queue is destined to not belong to
5634 * any bic soon and bfqq->bic is already NULL (therefore the next
5635 * assignment causes no harm).
5636 */
5637 new_bfqq->bic = NULL;
5638 bfqq->bic = NULL;
5639 /* release process reference to bfqq */
5640 bfq_put_queue(bfqq);
5641}
5642
aee69d78
PV
5643static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
5644 struct bio *bio)
5645{
5646 struct bfq_data *bfqd = q->elevator->elevator_data;
5647 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 5648 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
5649
5650 /*
5651 * Disallow merge of a sync bio into an async request.
5652 */
5653 if (is_sync && !rq_is_sync(rq))
5654 return false;
5655
5656 /*
5657 * Lookup the bfqq that this bio will be queued with. Allow
5658 * merge only if rq is queued there.
5659 */
5660 if (!bfqq)
5661 return false;
5662
36eca894
AA
5663 /*
5664 * We take advantage of this function to perform an early merge
5665 * of the queues of possible cooperating processes.
5666 */
5667 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
5668 if (new_bfqq) {
5669 /*
5670 * bic still points to bfqq, then it has not yet been
5671 * redirected to some other bfq_queue, and a queue
5672 * merge beween bfqq and new_bfqq can be safely
5673 * fulfillled, i.e., bic can be redirected to new_bfqq
5674 * and bfqq can be put.
5675 */
5676 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
5677 new_bfqq);
5678 /*
5679 * If we get here, bio will be queued into new_queue,
5680 * so use new_bfqq to decide whether bio and rq can be
5681 * merged.
5682 */
5683 bfqq = new_bfqq;
5684
5685 /*
5686 * Change also bqfd->bio_bfqq, as
5687 * bfqd->bio_bic now points to new_bfqq, and
5688 * this function may be invoked again (and then may
5689 * use again bqfd->bio_bfqq).
5690 */
5691 bfqd->bio_bfqq = bfqq;
5692 }
5693
aee69d78
PV
5694 return bfqq == RQ_BFQQ(rq);
5695}
5696
44e44a1b
PV
5697/*
5698 * Set the maximum time for the in-service queue to consume its
5699 * budget. This prevents seeky processes from lowering the throughput.
5700 * In practice, a time-slice service scheme is used with seeky
5701 * processes.
5702 */
5703static void bfq_set_budget_timeout(struct bfq_data *bfqd,
5704 struct bfq_queue *bfqq)
5705{
77b7dcea
PV
5706 unsigned int timeout_coeff;
5707
5708 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
5709 timeout_coeff = 1;
5710 else
5711 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
5712
44e44a1b
PV
5713 bfqd->last_budget_start = ktime_get();
5714
5715 bfqq->budget_timeout = jiffies +
77b7dcea 5716 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
5717}
5718
aee69d78
PV
5719static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
5720 struct bfq_queue *bfqq)
5721{
5722 if (bfqq) {
e21b7a0b 5723 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
aee69d78
PV
5724 bfq_clear_bfqq_fifo_expire(bfqq);
5725
5726 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
5727
77b7dcea
PV
5728 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
5729 bfqq->wr_coeff > 1 &&
5730 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5731 time_is_before_jiffies(bfqq->budget_timeout)) {
5732 /*
5733 * For soft real-time queues, move the start
5734 * of the weight-raising period forward by the
5735 * time the queue has not received any
5736 * service. Otherwise, a relatively long
5737 * service delay is likely to cause the
5738 * weight-raising period of the queue to end,
5739 * because of the short duration of the
5740 * weight-raising period of a soft real-time
5741 * queue. It is worth noting that this move
5742 * is not so dangerous for the other queues,
5743 * because soft real-time queues are not
5744 * greedy.
5745 *
5746 * To not add a further variable, we use the
5747 * overloaded field budget_timeout to
5748 * determine for how long the queue has not
5749 * received service, i.e., how much time has
5750 * elapsed since the queue expired. However,
5751 * this is a little imprecise, because
5752 * budget_timeout is set to jiffies if bfqq
5753 * not only expires, but also remains with no
5754 * request.
5755 */
5756 if (time_after(bfqq->budget_timeout,
5757 bfqq->last_wr_start_finish))
5758 bfqq->last_wr_start_finish +=
5759 jiffies - bfqq->budget_timeout;
5760 else
5761 bfqq->last_wr_start_finish = jiffies;
5762 }
5763
44e44a1b 5764 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
5765 bfq_log_bfqq(bfqd, bfqq,
5766 "set_in_service_queue, cur-budget = %d",
5767 bfqq->entity.budget);
5768 }
5769
5770 bfqd->in_service_queue = bfqq;
5771}
5772
5773/*
5774 * Get and set a new queue for service.
5775 */
5776static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
5777{
5778 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
5779
5780 __bfq_set_in_service_queue(bfqd, bfqq);
5781 return bfqq;
5782}
5783
aee69d78
PV
5784static void bfq_arm_slice_timer(struct bfq_data *bfqd)
5785{
5786 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
5787 u32 sl;
5788
aee69d78
PV
5789 bfq_mark_bfqq_wait_request(bfqq);
5790
5791 /*
5792 * We don't want to idle for seeks, but we do want to allow
5793 * fair distribution of slice time for a process doing back-to-back
5794 * seeks. So allow a little bit of time for him to submit a new rq.
5795 */
5796 sl = bfqd->bfq_slice_idle;
5797 /*
1de0c4cd
AA
5798 * Unless the queue is being weight-raised or the scenario is
5799 * asymmetric, grant only minimum idle time if the queue
5800 * is seeky. A long idling is preserved for a weight-raised
5801 * queue, or, more in general, in an asymmetric scenario,
5802 * because a long idling is needed for guaranteeing to a queue
5803 * its reserved share of the throughput (in particular, it is
5804 * needed if the queue has a higher weight than some other
5805 * queue).
aee69d78 5806 */
1de0c4cd
AA
5807 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
5808 bfq_symmetric_scenario(bfqd))
aee69d78
PV
5809 sl = min_t(u64, sl, BFQ_MIN_TT);
5810
5811 bfqd->last_idling_start = ktime_get();
5812 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
5813 HRTIMER_MODE_REL);
e21b7a0b 5814 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
5815}
5816
ab0e43e9
PV
5817/*
5818 * In autotuning mode, max_budget is dynamically recomputed as the
5819 * amount of sectors transferred in timeout at the estimated peak
5820 * rate. This enables BFQ to utilize a full timeslice with a full
5821 * budget, even if the in-service queue is served at peak rate. And
5822 * this maximises throughput with sequential workloads.
5823 */
5824static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
5825{
5826 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
5827 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
5828}
5829
44e44a1b
PV
5830/*
5831 * Update parameters related to throughput and responsiveness, as a
5832 * function of the estimated peak rate. See comments on
5833 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
5834 */
5835static void update_thr_responsiveness_params(struct bfq_data *bfqd)
5836{
5837 int dev_type = blk_queue_nonrot(bfqd->queue);
5838
5839 if (bfqd->bfq_user_max_budget == 0)
5840 bfqd->bfq_max_budget =
5841 bfq_calc_max_budget(bfqd);
5842
5843 if (bfqd->device_speed == BFQ_BFQD_FAST &&
5844 bfqd->peak_rate < device_speed_thresh[dev_type]) {
5845 bfqd->device_speed = BFQ_BFQD_SLOW;
5846 bfqd->RT_prod = R_slow[dev_type] *
5847 T_slow[dev_type];
5848 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
5849 bfqd->peak_rate > device_speed_thresh[dev_type]) {
5850 bfqd->device_speed = BFQ_BFQD_FAST;
5851 bfqd->RT_prod = R_fast[dev_type] *
5852 T_fast[dev_type];
5853 }
5854
5855 bfq_log(bfqd,
5856"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
5857 dev_type == 0 ? "ROT" : "NONROT",
5858 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
5859 bfqd->device_speed == BFQ_BFQD_FAST ?
5860 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
5861 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
5862 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
5863 BFQ_RATE_SHIFT);
5864}
5865
ab0e43e9
PV
5866static void bfq_reset_rate_computation(struct bfq_data *bfqd,
5867 struct request *rq)
5868{
5869 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
5870 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
5871 bfqd->peak_rate_samples = 1;
5872 bfqd->sequential_samples = 0;
5873 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
5874 blk_rq_sectors(rq);
5875 } else /* no new rq dispatched, just reset the number of samples */
5876 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
5877
5878 bfq_log(bfqd,
5879 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
5880 bfqd->peak_rate_samples, bfqd->sequential_samples,
5881 bfqd->tot_sectors_dispatched);
5882}
5883
5884static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
5885{
5886 u32 rate, weight, divisor;
5887
5888 /*
5889 * For the convergence property to hold (see comments on
5890 * bfq_update_peak_rate()) and for the assessment to be
5891 * reliable, a minimum number of samples must be present, and
5892 * a minimum amount of time must have elapsed. If not so, do
5893 * not compute new rate. Just reset parameters, to get ready
5894 * for a new evaluation attempt.
5895 */
5896 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
5897 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
5898 goto reset_computation;
5899
5900 /*
5901 * If a new request completion has occurred after last
5902 * dispatch, then, to approximate the rate at which requests
5903 * have been served by the device, it is more precise to
5904 * extend the observation interval to the last completion.
5905 */
5906 bfqd->delta_from_first =
5907 max_t(u64, bfqd->delta_from_first,
5908 bfqd->last_completion - bfqd->first_dispatch);
5909
5910 /*
5911 * Rate computed in sects/usec, and not sects/nsec, for
5912 * precision issues.
5913 */
5914 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
5915 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
5916
5917 /*
5918 * Peak rate not updated if:
5919 * - the percentage of sequential dispatches is below 3/4 of the
5920 * total, and rate is below the current estimated peak rate
5921 * - rate is unreasonably high (> 20M sectors/sec)
5922 */
5923 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
5924 rate <= bfqd->peak_rate) ||
5925 rate > 20<<BFQ_RATE_SHIFT)
5926 goto reset_computation;
5927
5928 /*
5929 * We have to update the peak rate, at last! To this purpose,
5930 * we use a low-pass filter. We compute the smoothing constant
5931 * of the filter as a function of the 'weight' of the new
5932 * measured rate.
5933 *
5934 * As can be seen in next formulas, we define this weight as a
5935 * quantity proportional to how sequential the workload is,
5936 * and to how long the observation time interval is.
5937 *
5938 * The weight runs from 0 to 8. The maximum value of the
5939 * weight, 8, yields the minimum value for the smoothing
5940 * constant. At this minimum value for the smoothing constant,
5941 * the measured rate contributes for half of the next value of
5942 * the estimated peak rate.
5943 *
5944 * So, the first step is to compute the weight as a function
5945 * of how sequential the workload is. Note that the weight
5946 * cannot reach 9, because bfqd->sequential_samples cannot
5947 * become equal to bfqd->peak_rate_samples, which, in its
5948 * turn, holds true because bfqd->sequential_samples is not
5949 * incremented for the first sample.
5950 */
5951 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
5952
5953 /*
5954 * Second step: further refine the weight as a function of the
5955 * duration of the observation interval.
5956 */
5957 weight = min_t(u32, 8,
5958 div_u64(weight * bfqd->delta_from_first,
5959 BFQ_RATE_REF_INTERVAL));
5960
5961 /*
5962 * Divisor ranging from 10, for minimum weight, to 2, for
5963 * maximum weight.
5964 */
5965 divisor = 10 - weight;
5966
5967 /*
5968 * Finally, update peak rate:
5969 *
5970 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
5971 */
5972 bfqd->peak_rate *= divisor-1;
5973 bfqd->peak_rate /= divisor;
5974 rate /= divisor; /* smoothing constant alpha = 1/divisor */
5975
5976 bfqd->peak_rate += rate;
44e44a1b 5977 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
5978
5979reset_computation:
5980 bfq_reset_rate_computation(bfqd, rq);
5981}
5982
5983/*
5984 * Update the read/write peak rate (the main quantity used for
5985 * auto-tuning, see update_thr_responsiveness_params()).
5986 *
5987 * It is not trivial to estimate the peak rate (correctly): because of
5988 * the presence of sw and hw queues between the scheduler and the
5989 * device components that finally serve I/O requests, it is hard to
5990 * say exactly when a given dispatched request is served inside the
5991 * device, and for how long. As a consequence, it is hard to know
5992 * precisely at what rate a given set of requests is actually served
5993 * by the device.
5994 *
5995 * On the opposite end, the dispatch time of any request is trivially
5996 * available, and, from this piece of information, the "dispatch rate"
5997 * of requests can be immediately computed. So, the idea in the next
5998 * function is to use what is known, namely request dispatch times
5999 * (plus, when useful, request completion times), to estimate what is
6000 * unknown, namely in-device request service rate.
6001 *
6002 * The main issue is that, because of the above facts, the rate at
6003 * which a certain set of requests is dispatched over a certain time
6004 * interval can vary greatly with respect to the rate at which the
6005 * same requests are then served. But, since the size of any
6006 * intermediate queue is limited, and the service scheme is lossless
6007 * (no request is silently dropped), the following obvious convergence
6008 * property holds: the number of requests dispatched MUST become
6009 * closer and closer to the number of requests completed as the
6010 * observation interval grows. This is the key property used in
6011 * the next function to estimate the peak service rate as a function
6012 * of the observed dispatch rate. The function assumes to be invoked
6013 * on every request dispatch.
6014 */
6015static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
6016{
6017 u64 now_ns = ktime_get_ns();
6018
6019 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
6020 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
6021 bfqd->peak_rate_samples);
6022 bfq_reset_rate_computation(bfqd, rq);
6023 goto update_last_values; /* will add one sample */
6024 }
6025
6026 /*
6027 * Device idle for very long: the observation interval lasting
6028 * up to this dispatch cannot be a valid observation interval
6029 * for computing a new peak rate (similarly to the late-
6030 * completion event in bfq_completed_request()). Go to
6031 * update_rate_and_reset to have the following three steps
6032 * taken:
6033 * - close the observation interval at the last (previous)
6034 * request dispatch or completion
6035 * - compute rate, if possible, for that observation interval
6036 * - start a new observation interval with this dispatch
6037 */
6038 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
6039 bfqd->rq_in_driver == 0)
6040 goto update_rate_and_reset;
6041
6042 /* Update sampling information */
6043 bfqd->peak_rate_samples++;
6044
6045 if ((bfqd->rq_in_driver > 0 ||
6046 now_ns - bfqd->last_completion < BFQ_MIN_TT)
6047 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
6048 bfqd->sequential_samples++;
6049
6050 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
6051
6052 /* Reset max observed rq size every 32 dispatches */
6053 if (likely(bfqd->peak_rate_samples % 32))
6054 bfqd->last_rq_max_size =
6055 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
6056 else
6057 bfqd->last_rq_max_size = blk_rq_sectors(rq);
6058
6059 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
6060
6061 /* Target observation interval not yet reached, go on sampling */
6062 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
6063 goto update_last_values;
6064
6065update_rate_and_reset:
6066 bfq_update_rate_reset(bfqd, rq);
6067update_last_values:
6068 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
6069 bfqd->last_dispatch = now_ns;
6070}
6071
aee69d78
PV
6072/*
6073 * Remove request from internal lists.
6074 */
6075static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
6076{
6077 struct bfq_queue *bfqq = RQ_BFQQ(rq);
6078
6079 /*
6080 * For consistency, the next instruction should have been
6081 * executed after removing the request from the queue and
6082 * dispatching it. We execute instead this instruction before
6083 * bfq_remove_request() (and hence introduce a temporary
6084 * inconsistency), for efficiency. In fact, should this
6085 * dispatch occur for a non in-service bfqq, this anticipated
6086 * increment prevents two counters related to bfqq->dispatched
6087 * from risking to be, first, uselessly decremented, and then
6088 * incremented again when the (new) value of bfqq->dispatched
6089 * happens to be taken into account.
6090 */
6091 bfqq->dispatched++;
ab0e43e9 6092 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
6093
6094 bfq_remove_request(q, rq);
6095}
6096
6097static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6098{
36eca894
AA
6099 /*
6100 * If this bfqq is shared between multiple processes, check
6101 * to make sure that those processes are still issuing I/Os
6102 * within the mean seek distance. If not, it may be time to
6103 * break the queues apart again.
6104 */
6105 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
6106 bfq_mark_bfqq_split_coop(bfqq);
6107
44e44a1b
PV
6108 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
6109 if (bfqq->dispatched == 0)
6110 /*
6111 * Overloading budget_timeout field to store
6112 * the time at which the queue remains with no
6113 * backlog and no outstanding request; used by
6114 * the weight-raising mechanism.
6115 */
6116 bfqq->budget_timeout = jiffies;
6117
e21b7a0b 6118 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 6119 } else {
e21b7a0b 6120 bfq_requeue_bfqq(bfqd, bfqq);
36eca894
AA
6121 /*
6122 * Resort priority tree of potential close cooperators.
6123 */
6124 bfq_pos_tree_add_move(bfqd, bfqq);
6125 }
e21b7a0b
AA
6126
6127 /*
6128 * All in-service entities must have been properly deactivated
6129 * or requeued before executing the next function, which
6130 * resets all in-service entites as no more in service.
6131 */
6132 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
6133}
6134
6135/**
6136 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
6137 * @bfqd: device data.
6138 * @bfqq: queue to update.
6139 * @reason: reason for expiration.
6140 *
6141 * Handle the feedback on @bfqq budget at queue expiration.
6142 * See the body for detailed comments.
6143 */
6144static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
6145 struct bfq_queue *bfqq,
6146 enum bfqq_expiration reason)
6147{
6148 struct request *next_rq;
6149 int budget, min_budget;
6150
aee69d78
PV
6151 min_budget = bfq_min_budget(bfqd);
6152
44e44a1b
PV
6153 if (bfqq->wr_coeff == 1)
6154 budget = bfqq->max_budget;
6155 else /*
6156 * Use a constant, low budget for weight-raised queues,
6157 * to help achieve a low latency. Keep it slightly higher
6158 * than the minimum possible budget, to cause a little
6159 * bit fewer expirations.
6160 */
6161 budget = 2 * min_budget;
6162
aee69d78
PV
6163 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
6164 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
6165 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
6166 budget, bfq_min_budget(bfqd));
6167 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
6168 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
6169
44e44a1b 6170 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
6171 switch (reason) {
6172 /*
6173 * Caveat: in all the following cases we trade latency
6174 * for throughput.
6175 */
6176 case BFQQE_TOO_IDLE:
54b60456
PV
6177 /*
6178 * This is the only case where we may reduce
6179 * the budget: if there is no request of the
6180 * process still waiting for completion, then
6181 * we assume (tentatively) that the timer has
6182 * expired because the batch of requests of
6183 * the process could have been served with a
6184 * smaller budget. Hence, betting that
6185 * process will behave in the same way when it
6186 * becomes backlogged again, we reduce its
6187 * next budget. As long as we guess right,
6188 * this budget cut reduces the latency
6189 * experienced by the process.
6190 *
6191 * However, if there are still outstanding
6192 * requests, then the process may have not yet
6193 * issued its next request just because it is
6194 * still waiting for the completion of some of
6195 * the still outstanding ones. So in this
6196 * subcase we do not reduce its budget, on the
6197 * contrary we increase it to possibly boost
6198 * the throughput, as discussed in the
6199 * comments to the BUDGET_TIMEOUT case.
6200 */
6201 if (bfqq->dispatched > 0) /* still outstanding reqs */
6202 budget = min(budget * 2, bfqd->bfq_max_budget);
6203 else {
6204 if (budget > 5 * min_budget)
6205 budget -= 4 * min_budget;
6206 else
6207 budget = min_budget;
6208 }
aee69d78
PV
6209 break;
6210 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
6211 /*
6212 * We double the budget here because it gives
6213 * the chance to boost the throughput if this
6214 * is not a seeky process (and has bumped into
6215 * this timeout because of, e.g., ZBR).
6216 */
6217 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
6218 break;
6219 case BFQQE_BUDGET_EXHAUSTED:
6220 /*
6221 * The process still has backlog, and did not
6222 * let either the budget timeout or the disk
6223 * idling timeout expire. Hence it is not
6224 * seeky, has a short thinktime and may be
6225 * happy with a higher budget too. So
6226 * definitely increase the budget of this good
6227 * candidate to boost the disk throughput.
6228 */
54b60456 6229 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
6230 break;
6231 case BFQQE_NO_MORE_REQUESTS:
6232 /*
6233 * For queues that expire for this reason, it
6234 * is particularly important to keep the
6235 * budget close to the actual service they
6236 * need. Doing so reduces the timestamp
6237 * misalignment problem described in the
6238 * comments in the body of
6239 * __bfq_activate_entity. In fact, suppose
6240 * that a queue systematically expires for
6241 * BFQQE_NO_MORE_REQUESTS and presents a
6242 * new request in time to enjoy timestamp
6243 * back-shifting. The larger the budget of the
6244 * queue is with respect to the service the
6245 * queue actually requests in each service
6246 * slot, the more times the queue can be
6247 * reactivated with the same virtual finish
6248 * time. It follows that, even if this finish
6249 * time is pushed to the system virtual time
6250 * to reduce the consequent timestamp
6251 * misalignment, the queue unjustly enjoys for
6252 * many re-activations a lower finish time
6253 * than all newly activated queues.
6254 *
6255 * The service needed by bfqq is measured
6256 * quite precisely by bfqq->entity.service.
6257 * Since bfqq does not enjoy device idling,
6258 * bfqq->entity.service is equal to the number
6259 * of sectors that the process associated with
6260 * bfqq requested to read/write before waiting
6261 * for request completions, or blocking for
6262 * other reasons.
6263 */
6264 budget = max_t(int, bfqq->entity.service, min_budget);
6265 break;
6266 default:
6267 return;
6268 }
44e44a1b 6269 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
6270 /*
6271 * Async queues get always the maximum possible
6272 * budget, as for them we do not care about latency
6273 * (in addition, their ability to dispatch is limited
6274 * by the charging factor).
6275 */
6276 budget = bfqd->bfq_max_budget;
6277 }
6278
6279 bfqq->max_budget = budget;
6280
6281 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
6282 !bfqd->bfq_user_max_budget)
6283 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
6284
6285 /*
6286 * If there is still backlog, then assign a new budget, making
6287 * sure that it is large enough for the next request. Since
6288 * the finish time of bfqq must be kept in sync with the
6289 * budget, be sure to call __bfq_bfqq_expire() *after* this
6290 * update.
6291 *
6292 * If there is no backlog, then no need to update the budget;
6293 * it will be updated on the arrival of a new request.
6294 */
6295 next_rq = bfqq->next_rq;
6296 if (next_rq)
6297 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
6298 bfq_serv_to_charge(next_rq, bfqq));
6299
6300 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
6301 next_rq ? blk_rq_sectors(next_rq) : 0,
6302 bfqq->entity.budget);
6303}
6304
aee69d78 6305/*
ab0e43e9
PV
6306 * Return true if the process associated with bfqq is "slow". The slow
6307 * flag is used, in addition to the budget timeout, to reduce the
6308 * amount of service provided to seeky processes, and thus reduce
6309 * their chances to lower the throughput. More details in the comments
6310 * on the function bfq_bfqq_expire().
6311 *
6312 * An important observation is in order: as discussed in the comments
6313 * on the function bfq_update_peak_rate(), with devices with internal
6314 * queues, it is hard if ever possible to know when and for how long
6315 * an I/O request is processed by the device (apart from the trivial
6316 * I/O pattern where a new request is dispatched only after the
6317 * previous one has been completed). This makes it hard to evaluate
6318 * the real rate at which the I/O requests of each bfq_queue are
6319 * served. In fact, for an I/O scheduler like BFQ, serving a
6320 * bfq_queue means just dispatching its requests during its service
6321 * slot (i.e., until the budget of the queue is exhausted, or the
6322 * queue remains idle, or, finally, a timeout fires). But, during the
6323 * service slot of a bfq_queue, around 100 ms at most, the device may
6324 * be even still processing requests of bfq_queues served in previous
6325 * service slots. On the opposite end, the requests of the in-service
6326 * bfq_queue may be completed after the service slot of the queue
6327 * finishes.
6328 *
6329 * Anyway, unless more sophisticated solutions are used
6330 * (where possible), the sum of the sizes of the requests dispatched
6331 * during the service slot of a bfq_queue is probably the only
6332 * approximation available for the service received by the bfq_queue
6333 * during its service slot. And this sum is the quantity used in this
6334 * function to evaluate the I/O speed of a process.
aee69d78 6335 */
ab0e43e9
PV
6336static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
6337 bool compensate, enum bfqq_expiration reason,
6338 unsigned long *delta_ms)
aee69d78 6339{
ab0e43e9
PV
6340 ktime_t delta_ktime;
6341 u32 delta_usecs;
6342 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 6343
ab0e43e9 6344 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
6345 return false;
6346
6347 if (compensate)
ab0e43e9 6348 delta_ktime = bfqd->last_idling_start;
aee69d78 6349 else
ab0e43e9
PV
6350 delta_ktime = ktime_get();
6351 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
6352 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
6353
6354 /* don't use too short time intervals */
ab0e43e9
PV
6355 if (delta_usecs < 1000) {
6356 if (blk_queue_nonrot(bfqd->queue))
6357 /*
6358 * give same worst-case guarantees as idling
6359 * for seeky
6360 */
6361 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
6362 else /* charge at least one seek */
6363 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
6364
6365 return slow;
6366 }
aee69d78 6367
ab0e43e9 6368 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
6369
6370 /*
ab0e43e9
PV
6371 * Use only long (> 20ms) intervals to filter out excessive
6372 * spikes in service rate estimation.
aee69d78 6373 */
ab0e43e9
PV
6374 if (delta_usecs > 20000) {
6375 /*
6376 * Caveat for rotational devices: processes doing I/O
6377 * in the slower disk zones tend to be slow(er) even
6378 * if not seeky. In this respect, the estimated peak
6379 * rate is likely to be an average over the disk
6380 * surface. Accordingly, to not be too harsh with
6381 * unlucky processes, a process is deemed slow only if
6382 * its rate has been lower than half of the estimated
6383 * peak rate.
6384 */
6385 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
6386 }
6387
ab0e43e9 6388 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 6389
ab0e43e9 6390 return slow;
aee69d78
PV
6391}
6392
77b7dcea
PV
6393/*
6394 * To be deemed as soft real-time, an application must meet two
6395 * requirements. First, the application must not require an average
6396 * bandwidth higher than the approximate bandwidth required to playback or
6397 * record a compressed high-definition video.
6398 * The next function is invoked on the completion of the last request of a
6399 * batch, to compute the next-start time instant, soft_rt_next_start, such
6400 * that, if the next request of the application does not arrive before
6401 * soft_rt_next_start, then the above requirement on the bandwidth is met.
6402 *
6403 * The second requirement is that the request pattern of the application is
6404 * isochronous, i.e., that, after issuing a request or a batch of requests,
6405 * the application stops issuing new requests until all its pending requests
6406 * have been completed. After that, the application may issue a new batch,
6407 * and so on.
6408 * For this reason the next function is invoked to compute
6409 * soft_rt_next_start only for applications that meet this requirement,
6410 * whereas soft_rt_next_start is set to infinity for applications that do
6411 * not.
6412 *
6413 * Unfortunately, even a greedy application may happen to behave in an
6414 * isochronous way if the CPU load is high. In fact, the application may
6415 * stop issuing requests while the CPUs are busy serving other processes,
6416 * then restart, then stop again for a while, and so on. In addition, if
6417 * the disk achieves a low enough throughput with the request pattern
6418 * issued by the application (e.g., because the request pattern is random
6419 * and/or the device is slow), then the application may meet the above
6420 * bandwidth requirement too. To prevent such a greedy application to be
6421 * deemed as soft real-time, a further rule is used in the computation of
6422 * soft_rt_next_start: soft_rt_next_start must be higher than the current
6423 * time plus the maximum time for which the arrival of a request is waited
6424 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
6425 * This filters out greedy applications, as the latter issue instead their
6426 * next request as soon as possible after the last one has been completed
6427 * (in contrast, when a batch of requests is completed, a soft real-time
6428 * application spends some time processing data).
6429 *
6430 * Unfortunately, the last filter may easily generate false positives if
6431 * only bfqd->bfq_slice_idle is used as a reference time interval and one
6432 * or both the following cases occur:
6433 * 1) HZ is so low that the duration of a jiffy is comparable to or higher
6434 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
6435 * HZ=100.
6436 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
6437 * for a while, then suddenly 'jump' by several units to recover the lost
6438 * increments. This seems to happen, e.g., inside virtual machines.
6439 * To address this issue, we do not use as a reference time interval just
6440 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
6441 * particular we add the minimum number of jiffies for which the filter
6442 * seems to be quite precise also in embedded systems and KVM/QEMU virtual
6443 * machines.
6444 */
6445static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
6446 struct bfq_queue *bfqq)
6447{
6448 return max(bfqq->last_idle_bklogged +
6449 HZ * bfqq->service_from_backlogged /
6450 bfqd->bfq_wr_max_softrt_rate,
6451 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
6452}
6453
6454/*
6455 * Return the farthest future time instant according to jiffies
6456 * macros.
6457 */
6458static unsigned long bfq_greatest_from_now(void)
6459{
6460 return jiffies + MAX_JIFFY_OFFSET;
6461}
6462
aee69d78
PV
6463/*
6464 * Return the farthest past time instant according to jiffies
6465 * macros.
6466 */
6467static unsigned long bfq_smallest_from_now(void)
6468{
6469 return jiffies - MAX_JIFFY_OFFSET;
6470}
6471
6472/**
6473 * bfq_bfqq_expire - expire a queue.
6474 * @bfqd: device owning the queue.
6475 * @bfqq: the queue to expire.
6476 * @compensate: if true, compensate for the time spent idling.
6477 * @reason: the reason causing the expiration.
6478 *
c074170e
PV
6479 * If the process associated with bfqq does slow I/O (e.g., because it
6480 * issues random requests), we charge bfqq with the time it has been
6481 * in service instead of the service it has received (see
6482 * bfq_bfqq_charge_time for details on how this goal is achieved). As
6483 * a consequence, bfqq will typically get higher timestamps upon
6484 * reactivation, and hence it will be rescheduled as if it had
6485 * received more service than what it has actually received. In the
6486 * end, bfqq receives less service in proportion to how slowly its
6487 * associated process consumes its budgets (and hence how seriously it
6488 * tends to lower the throughput). In addition, this time-charging
6489 * strategy guarantees time fairness among slow processes. In
6490 * contrast, if the process associated with bfqq is not slow, we
6491 * charge bfqq exactly with the service it has received.
aee69d78 6492 *
c074170e
PV
6493 * Charging time to the first type of queues and the exact service to
6494 * the other has the effect of using the WF2Q+ policy to schedule the
6495 * former on a timeslice basis, without violating service domain
6496 * guarantees among the latter.
aee69d78
PV
6497 */
6498static void bfq_bfqq_expire(struct bfq_data *bfqd,
6499 struct bfq_queue *bfqq,
6500 bool compensate,
6501 enum bfqq_expiration reason)
6502{
6503 bool slow;
ab0e43e9
PV
6504 unsigned long delta = 0;
6505 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
6506 int ref;
6507
6508 /*
ab0e43e9 6509 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 6510 */
ab0e43e9 6511 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78 6512
77b7dcea
PV
6513 /*
6514 * Increase service_from_backlogged before next statement,
6515 * because the possible next invocation of
6516 * bfq_bfqq_charge_time would likely inflate
6517 * entity->service. In contrast, service_from_backlogged must
6518 * contain real service, to enable the soft real-time
6519 * heuristic to correctly compute the bandwidth consumed by
6520 * bfqq.
6521 */
6522 bfqq->service_from_backlogged += entity->service;
6523
aee69d78 6524 /*
c074170e
PV
6525 * As above explained, charge slow (typically seeky) and
6526 * timed-out queues with the time and not the service
6527 * received, to favor sequential workloads.
6528 *
6529 * Processes doing I/O in the slower disk zones will tend to
6530 * be slow(er) even if not seeky. Therefore, since the
6531 * estimated peak rate is actually an average over the disk
6532 * surface, these processes may timeout just for bad luck. To
6533 * avoid punishing them, do not charge time to processes that
6534 * succeeded in consuming at least 2/3 of their budget. This
6535 * allows BFQ to preserve enough elasticity to still perform
6536 * bandwidth, and not time, distribution with little unlucky
6537 * or quasi-sequential processes.
aee69d78 6538 */
44e44a1b
PV
6539 if (bfqq->wr_coeff == 1 &&
6540 (slow ||
6541 (reason == BFQQE_BUDGET_TIMEOUT &&
6542 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 6543 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
6544
6545 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 6546 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
6547 bfq_clear_bfqq_IO_bound(bfqq);
6548
44e44a1b
PV
6549 if (bfqd->low_latency && bfqq->wr_coeff == 1)
6550 bfqq->last_wr_start_finish = jiffies;
6551
77b7dcea
PV
6552 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
6553 RB_EMPTY_ROOT(&bfqq->sort_list)) {
6554 /*
6555 * If we get here, and there are no outstanding
6556 * requests, then the request pattern is isochronous
6557 * (see the comments on the function
6558 * bfq_bfqq_softrt_next_start()). Thus we can compute
6559 * soft_rt_next_start. If, instead, the queue still
6560 * has outstanding requests, then we have to wait for
6561 * the completion of all the outstanding requests to
6562 * discover whether the request pattern is actually
6563 * isochronous.
6564 */
6565 if (bfqq->dispatched == 0)
6566 bfqq->soft_rt_next_start =
6567 bfq_bfqq_softrt_next_start(bfqd, bfqq);
6568 else {
6569 /*
6570 * The application is still waiting for the
6571 * completion of one or more requests:
6572 * prevent it from possibly being incorrectly
6573 * deemed as soft real-time by setting its
6574 * soft_rt_next_start to infinity. In fact,
6575 * without this assignment, the application
6576 * would be incorrectly deemed as soft
6577 * real-time if:
6578 * 1) it issued a new request before the
6579 * completion of all its in-flight
6580 * requests, and
6581 * 2) at that time, its soft_rt_next_start
6582 * happened to be in the past.
6583 */
6584 bfqq->soft_rt_next_start =
6585 bfq_greatest_from_now();
6586 /*
6587 * Schedule an update of soft_rt_next_start to when
6588 * the task may be discovered to be isochronous.
6589 */
6590 bfq_mark_bfqq_softrt_update(bfqq);
6591 }
6592 }
6593
aee69d78
PV
6594 bfq_log_bfqq(bfqd, bfqq,
6595 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
6596 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
6597
6598 /*
6599 * Increase, decrease or leave budget unchanged according to
6600 * reason.
6601 */
6602 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
6603 ref = bfqq->ref;
6604 __bfq_bfqq_expire(bfqd, bfqq);
6605
6606 /* mark bfqq as waiting a request only if a bic still points to it */
6607 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
6608 reason != BFQQE_BUDGET_TIMEOUT &&
6609 reason != BFQQE_BUDGET_EXHAUSTED)
6610 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
6611}
6612
6613/*
6614 * Budget timeout is not implemented through a dedicated timer, but
6615 * just checked on request arrivals and completions, as well as on
6616 * idle timer expirations.
6617 */
6618static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
6619{
44e44a1b 6620 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
6621}
6622
6623/*
6624 * If we expire a queue that is actively waiting (i.e., with the
6625 * device idled) for the arrival of a new request, then we may incur
6626 * the timestamp misalignment problem described in the body of the
6627 * function __bfq_activate_entity. Hence we return true only if this
6628 * condition does not hold, or if the queue is slow enough to deserve
6629 * only to be kicked off for preserving a high throughput.
6630 */
6631static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
6632{
6633 bfq_log_bfqq(bfqq->bfqd, bfqq,
6634 "may_budget_timeout: wait_request %d left %d timeout %d",
6635 bfq_bfqq_wait_request(bfqq),
6636 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
6637 bfq_bfqq_budget_timeout(bfqq));
6638
6639 return (!bfq_bfqq_wait_request(bfqq) ||
6640 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
6641 &&
6642 bfq_bfqq_budget_timeout(bfqq);
6643}
6644
6645/*
6646 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
6647 * this function returns true for the queue. As a consequence, since
6648 * device idling plays a critical role in both throughput boosting and
6649 * service guarantees, the return value of this function plays a
6650 * critical role in both these aspects as well.
6651 *
6652 * In a nutshell, this function returns true only if idling is
6653 * beneficial for throughput or, even if detrimental for throughput,
6654 * idling is however necessary to preserve service guarantees (low
6655 * latency, desired throughput distribution, ...). In particular, on
6656 * NCQ-capable devices, this function tries to return false, so as to
6657 * help keep the drives' internal queues full, whenever this helps the
6658 * device boost the throughput without causing any service-guarantee
6659 * issue.
6660 *
6661 * In more detail, the return value of this function is obtained by,
6662 * first, computing a number of boolean variables that take into
6663 * account throughput and service-guarantee issues, and, then,
6664 * combining these variables in a logical expression. Most of the
6665 * issues taken into account are not trivial. We discuss these issues
6666 * individually while introducing the variables.
aee69d78
PV
6667 */
6668static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
6669{
6670 struct bfq_data *bfqd = bfqq->bfqd;
cfd69712 6671 bool idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 6672 idling_needed_for_service_guarantees,
cfd69712 6673 asymmetric_scenario;
aee69d78
PV
6674
6675 if (bfqd->strict_guarantees)
6676 return true;
6677
6678 /*
44e44a1b
PV
6679 * The next variable takes into account the cases where idling
6680 * boosts the throughput.
6681 *
e01eff01
PV
6682 * The value of the variable is computed considering, first, that
6683 * idling is virtually always beneficial for the throughput if:
aee69d78 6684 * (a) the device is not NCQ-capable, or
bf2b79e7 6685 * (b) regardless of the presence of NCQ, the device is rotational
e01eff01 6686 * and the request pattern for bfqq is I/O-bound and sequential.
bf2b79e7
PV
6687 *
6688 * Secondly, and in contrast to the above item (b), idling an
6689 * NCQ-capable flash-based device would not boost the
e01eff01 6690 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
6691 * the throughput in proportion to how fast the device
6692 * is. Accordingly, the next variable is true if any of the
6693 * above conditions (a) and (b) is true, and, in particular,
6694 * happens to be false if bfqd is an NCQ-capable flash-based
6695 * device.
aee69d78 6696 */
bf2b79e7 6697 idling_boosts_thr = !bfqd->hw_tag ||
e01eff01
PV
6698 (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
6699 bfq_bfqq_idle_window(bfqq));
aee69d78 6700
cfd69712
PV
6701 /*
6702 * The value of the next variable,
6703 * idling_boosts_thr_without_issues, is equal to that of
6704 * idling_boosts_thr, unless a special case holds. In this
6705 * special case, described below, idling may cause problems to
6706 * weight-raised queues.
6707 *
6708 * When the request pool is saturated (e.g., in the presence
6709 * of write hogs), if the processes associated with
6710 * non-weight-raised queues ask for requests at a lower rate,
6711 * then processes associated with weight-raised queues have a
6712 * higher probability to get a request from the pool
6713 * immediately (or at least soon) when they need one. Thus
6714 * they have a higher probability to actually get a fraction
6715 * of the device throughput proportional to their high
6716 * weight. This is especially true with NCQ-capable drives,
6717 * which enqueue several requests in advance, and further
6718 * reorder internally-queued requests.
6719 *
6720 * For this reason, we force to false the value of
6721 * idling_boosts_thr_without_issues if there are weight-raised
6722 * busy queues. In this case, and if bfqq is not weight-raised,
6723 * this guarantees that the device is not idled for bfqq (if,
6724 * instead, bfqq is weight-raised, then idling will be
6725 * guaranteed by another variable, see below). Combined with
6726 * the timestamping rules of BFQ (see [1] for details), this
6727 * behavior causes bfqq, and hence any sync non-weight-raised
6728 * queue, to get a lower number of requests served, and thus
6729 * to ask for a lower number of requests from the request
6730 * pool, before the busy weight-raised queues get served
6731 * again. This often mitigates starvation problems in the
6732 * presence of heavy write workloads and NCQ, thereby
6733 * guaranteeing a higher application and system responsiveness
6734 * in these hostile scenarios.
6735 */
6736 idling_boosts_thr_without_issues = idling_boosts_thr &&
6737 bfqd->wr_busy_queues == 0;
6738
aee69d78 6739 /*
bf2b79e7
PV
6740 * There is then a case where idling must be performed not
6741 * for throughput concerns, but to preserve service
6742 * guarantees.
6743 *
6744 * To introduce this case, we can note that allowing the drive
6745 * to enqueue more than one request at a time, and hence
44e44a1b 6746 * delegating de facto final scheduling decisions to the
bf2b79e7 6747 * drive's internal scheduler, entails loss of control on the
44e44a1b 6748 * actual request service order. In particular, the critical
bf2b79e7 6749 * situation is when requests from different processes happen
44e44a1b
PV
6750 * to be present, at the same time, in the internal queue(s)
6751 * of the drive. In such a situation, the drive, by deciding
6752 * the service order of the internally-queued requests, does
6753 * determine also the actual throughput distribution among
6754 * these processes. But the drive typically has no notion or
6755 * concern about per-process throughput distribution, and
6756 * makes its decisions only on a per-request basis. Therefore,
6757 * the service distribution enforced by the drive's internal
6758 * scheduler is likely to coincide with the desired
6759 * device-throughput distribution only in a completely
bf2b79e7
PV
6760 * symmetric scenario where:
6761 * (i) each of these processes must get the same throughput as
6762 * the others;
6763 * (ii) all these processes have the same I/O pattern
6764 (either sequential or random).
6765 * In fact, in such a scenario, the drive will tend to treat
6766 * the requests of each of these processes in about the same
6767 * way as the requests of the others, and thus to provide
6768 * each of these processes with about the same throughput
6769 * (which is exactly the desired throughput distribution). In
6770 * contrast, in any asymmetric scenario, device idling is
6771 * certainly needed to guarantee that bfqq receives its
6772 * assigned fraction of the device throughput (see [1] for
6773 * details).
6774 *
6775 * We address this issue by controlling, actually, only the
6776 * symmetry sub-condition (i), i.e., provided that
6777 * sub-condition (i) holds, idling is not performed,
6778 * regardless of whether sub-condition (ii) holds. In other
6779 * words, only if sub-condition (i) holds, then idling is
6780 * allowed, and the device tends to be prevented from queueing
6781 * many requests, possibly of several processes. The reason
6782 * for not controlling also sub-condition (ii) is that we
6783 * exploit preemption to preserve guarantees in case of
6784 * symmetric scenarios, even if (ii) does not hold, as
6785 * explained in the next two paragraphs.
6786 *
6787 * Even if a queue, say Q, is expired when it remains idle, Q
6788 * can still preempt the new in-service queue if the next
6789 * request of Q arrives soon (see the comments on
6790 * bfq_bfqq_update_budg_for_activation). If all queues and
6791 * groups have the same weight, this form of preemption,
6792 * combined with the hole-recovery heuristic described in the
6793 * comments on function bfq_bfqq_update_budg_for_activation,
6794 * are enough to preserve a correct bandwidth distribution in
6795 * the mid term, even without idling. In fact, even if not
6796 * idling allows the internal queues of the device to contain
6797 * many requests, and thus to reorder requests, we can rather
6798 * safely assume that the internal scheduler still preserves a
6799 * minimum of mid-term fairness. The motivation for using
6800 * preemption instead of idling is that, by not idling,
6801 * service guarantees are preserved without minimally
6802 * sacrificing throughput. In other words, both a high
6803 * throughput and its desired distribution are obtained.
6804 *
6805 * More precisely, this preemption-based, idleless approach
6806 * provides fairness in terms of IOPS, and not sectors per
6807 * second. This can be seen with a simple example. Suppose
6808 * that there are two queues with the same weight, but that
6809 * the first queue receives requests of 8 sectors, while the
6810 * second queue receives requests of 1024 sectors. In
6811 * addition, suppose that each of the two queues contains at
6812 * most one request at a time, which implies that each queue
6813 * always remains idle after it is served. Finally, after
6814 * remaining idle, each queue receives very quickly a new
6815 * request. It follows that the two queues are served
6816 * alternatively, preempting each other if needed. This
6817 * implies that, although both queues have the same weight,
6818 * the queue with large requests receives a service that is
6819 * 1024/8 times as high as the service received by the other
6820 * queue.
44e44a1b 6821 *
bf2b79e7
PV
6822 * On the other hand, device idling is performed, and thus
6823 * pure sector-domain guarantees are provided, for the
6824 * following queues, which are likely to need stronger
6825 * throughput guarantees: weight-raised queues, and queues
6826 * with a higher weight than other queues. When such queues
6827 * are active, sub-condition (i) is false, which triggers
6828 * device idling.
44e44a1b 6829 *
bf2b79e7
PV
6830 * According to the above considerations, the next variable is
6831 * true (only) if sub-condition (i) holds. To compute the
6832 * value of this variable, we not only use the return value of
6833 * the function bfq_symmetric_scenario(), but also check
6834 * whether bfqq is being weight-raised, because
6835 * bfq_symmetric_scenario() does not take into account also
6836 * weight-raised queues (see comments on
6837 * bfq_weights_tree_add()).
44e44a1b
PV
6838 *
6839 * As a side note, it is worth considering that the above
6840 * device-idling countermeasures may however fail in the
6841 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
6842 * disabled in a time period during which all symmetry
6843 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
6844 * enqueue many requests, but at some later point in time some
6845 * sub-condition stops to hold, then it may become impossible
6846 * to let requests be served in the desired order until all
6847 * the requests already queued in the device have been served.
6848 */
bf2b79e7
PV
6849 asymmetric_scenario = bfqq->wr_coeff > 1 ||
6850 !bfq_symmetric_scenario(bfqd);
44e44a1b 6851
e1b2324d
AA
6852 /*
6853 * Finally, there is a case where maximizing throughput is the
6854 * best choice even if it may cause unfairness toward
6855 * bfqq. Such a case is when bfqq became active in a burst of
6856 * queue activations. Queues that became active during a large
6857 * burst benefit only from throughput, as discussed in the
6858 * comments on bfq_handle_burst. Thus, if bfqq became active
6859 * in a burst and not idling the device maximizes throughput,
6860 * then the device must no be idled, because not idling the
6861 * device provides bfqq and all other queues in the burst with
6862 * maximum benefit. Combining this and the above case, we can
6863 * now establish when idling is actually needed to preserve
6864 * service guarantees.
6865 */
6866 idling_needed_for_service_guarantees =
6867 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
6868
44e44a1b
PV
6869 /*
6870 * We have now all the components we need to compute the return
6871 * value of the function, which is true only if both the following
6872 * conditions hold:
aee69d78 6873 * 1) bfqq is sync, because idling make sense only for sync queues;
44e44a1b
PV
6874 * 2) idling either boosts the throughput (without issues), or
6875 * is necessary to preserve service guarantees.
aee69d78 6876 */
44e44a1b 6877 return bfq_bfqq_sync(bfqq) &&
e1b2324d
AA
6878 (idling_boosts_thr_without_issues ||
6879 idling_needed_for_service_guarantees);
aee69d78
PV
6880}
6881
6882/*
6883 * If the in-service queue is empty but the function bfq_bfqq_may_idle
6884 * returns true, then:
6885 * 1) the queue must remain in service and cannot be expired, and
6886 * 2) the device must be idled to wait for the possible arrival of a new
6887 * request for the queue.
6888 * See the comments on the function bfq_bfqq_may_idle for the reasons
6889 * why performing device idling is the best choice to boost the throughput
6890 * and preserve service guarantees when bfq_bfqq_may_idle itself
6891 * returns true.
6892 */
6893static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
6894{
6895 struct bfq_data *bfqd = bfqq->bfqd;
6896
6897 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
6898 bfq_bfqq_may_idle(bfqq);
6899}
6900
6901/*
6902 * Select a queue for service. If we have a current queue in service,
6903 * check whether to continue servicing it, or retrieve and set a new one.
6904 */
6905static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
6906{
6907 struct bfq_queue *bfqq;
6908 struct request *next_rq;
6909 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
6910
6911 bfqq = bfqd->in_service_queue;
6912 if (!bfqq)
6913 goto new_queue;
6914
6915 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
6916
6917 if (bfq_may_expire_for_budg_timeout(bfqq) &&
6918 !bfq_bfqq_wait_request(bfqq) &&
6919 !bfq_bfqq_must_idle(bfqq))
6920 goto expire;
6921
6922check_queue:
6923 /*
6924 * This loop is rarely executed more than once. Even when it
6925 * happens, it is much more convenient to re-execute this loop
6926 * than to return NULL and trigger a new dispatch to get a
6927 * request served.
6928 */
6929 next_rq = bfqq->next_rq;
6930 /*
6931 * If bfqq has requests queued and it has enough budget left to
6932 * serve them, keep the queue, otherwise expire it.
6933 */
6934 if (next_rq) {
6935 if (bfq_serv_to_charge(next_rq, bfqq) >
6936 bfq_bfqq_budget_left(bfqq)) {
6937 /*
6938 * Expire the queue for budget exhaustion,
6939 * which makes sure that the next budget is
6940 * enough to serve the next request, even if
6941 * it comes from the fifo expired path.
6942 */
6943 reason = BFQQE_BUDGET_EXHAUSTED;
6944 goto expire;
6945 } else {
6946 /*
6947 * The idle timer may be pending because we may
6948 * not disable disk idling even when a new request
6949 * arrives.
6950 */
6951 if (bfq_bfqq_wait_request(bfqq)) {
6952 /*
6953 * If we get here: 1) at least a new request
6954 * has arrived but we have not disabled the
6955 * timer because the request was too small,
6956 * 2) then the block layer has unplugged
6957 * the device, causing the dispatch to be
6958 * invoked.
6959 *
6960 * Since the device is unplugged, now the
6961 * requests are probably large enough to
6962 * provide a reasonable throughput.
6963 * So we disable idling.
6964 */
6965 bfq_clear_bfqq_wait_request(bfqq);
6966 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 6967 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
6968 }
6969 goto keep_queue;
6970 }
6971 }
6972
6973 /*
6974 * No requests pending. However, if the in-service queue is idling
6975 * for a new request, or has requests waiting for a completion and
6976 * may idle after their completion, then keep it anyway.
6977 */
6978 if (bfq_bfqq_wait_request(bfqq) ||
6979 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
6980 bfqq = NULL;
6981 goto keep_queue;
6982 }
6983
6984 reason = BFQQE_NO_MORE_REQUESTS;
6985expire:
6986 bfq_bfqq_expire(bfqd, bfqq, false, reason);
6987new_queue:
6988 bfqq = bfq_set_in_service_queue(bfqd);
6989 if (bfqq) {
6990 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
6991 goto check_queue;
6992 }
6993keep_queue:
6994 if (bfqq)
6995 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
6996 else
6997 bfq_log(bfqd, "select_queue: no queue returned");
6998
6999 return bfqq;
7000}
7001
44e44a1b
PV
7002static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
7003{
7004 struct bfq_entity *entity = &bfqq->entity;
7005
7006 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
7007 bfq_log_bfqq(bfqd, bfqq,
7008 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
7009 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
7010 jiffies_to_msecs(bfqq->wr_cur_max_time),
7011 bfqq->wr_coeff,
7012 bfqq->entity.weight, bfqq->entity.orig_weight);
7013
7014 if (entity->prio_changed)
7015 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
7016
7017 /*
e1b2324d
AA
7018 * If the queue was activated in a burst, or too much
7019 * time has elapsed from the beginning of this
7020 * weight-raising period, then end weight raising.
44e44a1b 7021 */
e1b2324d
AA
7022 if (bfq_bfqq_in_large_burst(bfqq))
7023 bfq_bfqq_end_wr(bfqq);
7024 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
7025 bfqq->wr_cur_max_time)) {
77b7dcea
PV
7026 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
7027 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 7028 bfq_wr_duration(bfqd)))
77b7dcea
PV
7029 bfq_bfqq_end_wr(bfqq);
7030 else {
7031 /* switch back to interactive wr */
7032 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
7033 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
7034 bfqq->last_wr_start_finish =
7035 bfqq->wr_start_at_switch_to_srt;
7036 bfqq->entity.prio_changed = 1;
7037 }
44e44a1b
PV
7038 }
7039 }
7040 /* Update weight both if it must be raised and if it must be lowered */
7041 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
7042 __bfq_entity_update_weight_prio(
7043 bfq_entity_service_tree(entity),
7044 entity);
7045}
7046
aee69d78
PV
7047/*
7048 * Dispatch next request from bfqq.
7049 */
7050static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
7051 struct bfq_queue *bfqq)
7052{
7053 struct request *rq = bfqq->next_rq;
7054 unsigned long service_to_charge;
7055
7056 service_to_charge = bfq_serv_to_charge(rq, bfqq);
7057
7058 bfq_bfqq_served(bfqq, service_to_charge);
7059
7060 bfq_dispatch_remove(bfqd->queue, rq);
7061
44e44a1b
PV
7062 /*
7063 * If weight raising has to terminate for bfqq, then next
7064 * function causes an immediate update of bfqq's weight,
7065 * without waiting for next activation. As a consequence, on
7066 * expiration, bfqq will be timestamped as if has never been
7067 * weight-raised during this service slot, even if it has
7068 * received part or even most of the service as a
7069 * weight-raised queue. This inflates bfqq's timestamps, which
7070 * is beneficial, as bfqq is then more willing to leave the
7071 * device immediately to possible other weight-raised queues.
7072 */
7073 bfq_update_wr_data(bfqd, bfqq);
7074
aee69d78
PV
7075 /*
7076 * Expire bfqq, pretending that its budget expired, if bfqq
7077 * belongs to CLASS_IDLE and other queues are waiting for
7078 * service.
7079 */
7080 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
7081 goto expire;
7082
7083 return rq;
7084
7085expire:
7086 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
7087 return rq;
7088}
7089
7090static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
7091{
7092 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7093
7094 /*
7095 * Avoiding lock: a race on bfqd->busy_queues should cause at
7096 * most a call to dispatch for nothing
7097 */
7098 return !list_empty_careful(&bfqd->dispatch) ||
7099 bfqd->busy_queues > 0;
7100}
7101
7102static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
7103{
7104 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7105 struct request *rq = NULL;
7106 struct bfq_queue *bfqq = NULL;
7107
7108 if (!list_empty(&bfqd->dispatch)) {
7109 rq = list_first_entry(&bfqd->dispatch, struct request,
7110 queuelist);
7111 list_del_init(&rq->queuelist);
7112
7113 bfqq = RQ_BFQQ(rq);
7114
7115 if (bfqq) {
7116 /*
7117 * Increment counters here, because this
7118 * dispatch does not follow the standard
7119 * dispatch flow (where counters are
7120 * incremented)
7121 */
7122 bfqq->dispatched++;
7123
7124 goto inc_in_driver_start_rq;
7125 }
7126
7127 /*
7128 * We exploit the put_rq_private hook to decrement
7129 * rq_in_driver, but put_rq_private will not be
7130 * invoked on this request. So, to avoid unbalance,
7131 * just start this request, without incrementing
7132 * rq_in_driver. As a negative consequence,
7133 * rq_in_driver is deceptively lower than it should be
7134 * while this request is in service. This may cause
7135 * bfq_schedule_dispatch to be invoked uselessly.
7136 *
7137 * As for implementing an exact solution, the
7138 * put_request hook, if defined, is probably invoked
7139 * also on this request. So, by exploiting this hook,
7140 * we could 1) increment rq_in_driver here, and 2)
7141 * decrement it in put_request. Such a solution would
7142 * let the value of the counter be always accurate,
7143 * but it would entail using an extra interface
7144 * function. This cost seems higher than the benefit,
7145 * being the frequency of non-elevator-private
7146 * requests very low.
7147 */
7148 goto start_rq;
7149 }
7150
7151 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
7152
7153 if (bfqd->busy_queues == 0)
7154 goto exit;
7155
7156 /*
7157 * Force device to serve one request at a time if
7158 * strict_guarantees is true. Forcing this service scheme is
7159 * currently the ONLY way to guarantee that the request
7160 * service order enforced by the scheduler is respected by a
7161 * queueing device. Otherwise the device is free even to make
7162 * some unlucky request wait for as long as the device
7163 * wishes.
7164 *
7165 * Of course, serving one request at at time may cause loss of
7166 * throughput.
7167 */
7168 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
7169 goto exit;
7170
7171 bfqq = bfq_select_queue(bfqd);
7172 if (!bfqq)
7173 goto exit;
7174
7175 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
7176
7177 if (rq) {
7178inc_in_driver_start_rq:
7179 bfqd->rq_in_driver++;
7180start_rq:
7181 rq->rq_flags |= RQF_STARTED;
7182 }
7183exit:
7184 return rq;
7185}
7186
7187static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
7188{
7189 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7190 struct request *rq;
7191
7192 spin_lock_irq(&bfqd->lock);
36eca894 7193
aee69d78 7194 rq = __bfq_dispatch_request(hctx);
6fa3e8d3 7195 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
7196
7197 return rq;
7198}
7199
7200/*
7201 * Task holds one reference to the queue, dropped when task exits. Each rq
7202 * in-flight on this queue also holds a reference, dropped when rq is freed.
7203 *
7204 * Scheduler lock must be held here. Recall not to use bfqq after calling
7205 * this function on it.
7206 */
7207static void bfq_put_queue(struct bfq_queue *bfqq)
7208{
e21b7a0b
AA
7209#ifdef CONFIG_BFQ_GROUP_IOSCHED
7210 struct bfq_group *bfqg = bfqq_group(bfqq);
7211#endif
7212
aee69d78
PV
7213 if (bfqq->bfqd)
7214 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
7215 bfqq, bfqq->ref);
7216
7217 bfqq->ref--;
7218 if (bfqq->ref)
7219 return;
7220
e1b2324d
AA
7221 if (bfq_bfqq_sync(bfqq))
7222 /*
7223 * The fact that this queue is being destroyed does not
7224 * invalidate the fact that this queue may have been
7225 * activated during the current burst. As a consequence,
7226 * although the queue does not exist anymore, and hence
7227 * needs to be removed from the burst list if there,
7228 * the burst size has not to be decremented.
7229 */
7230 hlist_del_init(&bfqq->burst_list_node);
e21b7a0b 7231
aee69d78 7232 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b
AA
7233#ifdef CONFIG_BFQ_GROUP_IOSCHED
7234 bfqg_put(bfqg);
7235#endif
aee69d78
PV
7236}
7237
36eca894
AA
7238static void bfq_put_cooperator(struct bfq_queue *bfqq)
7239{
7240 struct bfq_queue *__bfqq, *next;
7241
7242 /*
7243 * If this queue was scheduled to merge with another queue, be
7244 * sure to drop the reference taken on that queue (and others in
7245 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
7246 */
7247 __bfqq = bfqq->new_bfqq;
7248 while (__bfqq) {
7249 if (__bfqq == bfqq)
7250 break;
7251 next = __bfqq->new_bfqq;
7252 bfq_put_queue(__bfqq);
7253 __bfqq = next;
7254 }
7255}
7256
aee69d78
PV
7257static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
7258{
7259 if (bfqq == bfqd->in_service_queue) {
7260 __bfq_bfqq_expire(bfqd, bfqq);
7261 bfq_schedule_dispatch(bfqd);
7262 }
7263
7264 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
7265
36eca894
AA
7266 bfq_put_cooperator(bfqq);
7267
aee69d78
PV
7268 bfq_put_queue(bfqq); /* release process reference */
7269}
7270
7271static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
7272{
7273 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
7274 struct bfq_data *bfqd;
7275
7276 if (bfqq)
7277 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
7278
7279 if (bfqq && bfqd) {
7280 unsigned long flags;
7281
7282 spin_lock_irqsave(&bfqd->lock, flags);
7283 bfq_exit_bfqq(bfqd, bfqq);
7284 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 7285 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
7286 }
7287}
7288
7289static void bfq_exit_icq(struct io_cq *icq)
7290{
7291 struct bfq_io_cq *bic = icq_to_bic(icq);
7292
7293 bfq_exit_icq_bfqq(bic, true);
7294 bfq_exit_icq_bfqq(bic, false);
7295}
7296
7297/*
7298 * Update the entity prio values; note that the new values will not
7299 * be used until the next (re)activation.
7300 */
7301static void
7302bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
7303{
7304 struct task_struct *tsk = current;
7305 int ioprio_class;
7306 struct bfq_data *bfqd = bfqq->bfqd;
7307
7308 if (!bfqd)
7309 return;
7310
7311 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
7312 switch (ioprio_class) {
7313 default:
7314 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
7315 "bfq: bad prio class %d\n", ioprio_class);
7316 case IOPRIO_CLASS_NONE:
7317 /*
7318 * No prio set, inherit CPU scheduling settings.
7319 */
7320 bfqq->new_ioprio = task_nice_ioprio(tsk);
7321 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
7322 break;
7323 case IOPRIO_CLASS_RT:
7324 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
7325 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
7326 break;
7327 case IOPRIO_CLASS_BE:
7328 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
7329 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
7330 break;
7331 case IOPRIO_CLASS_IDLE:
7332 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
7333 bfqq->new_ioprio = 7;
7334 bfq_clear_bfqq_idle_window(bfqq);
7335 break;
7336 }
7337
7338 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
7339 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
7340 bfqq->new_ioprio);
7341 bfqq->new_ioprio = IOPRIO_BE_NR;
7342 }
7343
7344 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
7345 bfqq->entity.prio_changed = 1;
7346}
7347
7348static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
7349{
7350 struct bfq_data *bfqd = bic_to_bfqd(bic);
7351 struct bfq_queue *bfqq;
7352 int ioprio = bic->icq.ioc->ioprio;
7353
7354 /*
7355 * This condition may trigger on a newly created bic, be sure to
7356 * drop the lock before returning.
7357 */
7358 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
7359 return;
7360
7361 bic->ioprio = ioprio;
7362
7363 bfqq = bic_to_bfqq(bic, false);
7364 if (bfqq) {
7365 /* release process reference on this queue */
7366 bfq_put_queue(bfqq);
7367 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
7368 bic_set_bfqq(bic, bfqq, false);
7369 }
7370
7371 bfqq = bic_to_bfqq(bic, true);
7372 if (bfqq)
7373 bfq_set_next_ioprio_data(bfqq, bic);
7374}
7375
7376static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
7377 struct bfq_io_cq *bic, pid_t pid, int is_sync)
7378{
7379 RB_CLEAR_NODE(&bfqq->entity.rb_node);
7380 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 7381 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
7382
7383 bfqq->ref = 0;
7384 bfqq->bfqd = bfqd;
7385
7386 if (bic)
7387 bfq_set_next_ioprio_data(bfqq, bic);
7388
7389 if (is_sync) {
7390 if (!bfq_class_idle(bfqq))
7391 bfq_mark_bfqq_idle_window(bfqq);
7392 bfq_mark_bfqq_sync(bfqq);
e1b2324d 7393 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
7394 } else
7395 bfq_clear_bfqq_sync(bfqq);
7396
7397 /* set end request to minus infinity from now */
7398 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
7399
7400 bfq_mark_bfqq_IO_bound(bfqq);
7401
7402 bfqq->pid = pid;
7403
7404 /* Tentative initial value to trade off between thr and lat */
54b60456 7405 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 7406 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 7407
44e44a1b 7408 bfqq->wr_coeff = 1;
36eca894 7409 bfqq->last_wr_start_finish = jiffies;
77b7dcea 7410 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 7411 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
7412
7413 /*
7414 * Set to the value for which bfqq will not be deemed as
7415 * soft rt when it becomes backlogged.
7416 */
7417 bfqq->soft_rt_next_start = bfq_greatest_from_now();
44e44a1b 7418
aee69d78
PV
7419 /* first request is almost certainly seeky */
7420 bfqq->seek_history = 1;
7421}
7422
7423static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 7424 struct bfq_group *bfqg,
aee69d78
PV
7425 int ioprio_class, int ioprio)
7426{
7427 switch (ioprio_class) {
7428 case IOPRIO_CLASS_RT:
e21b7a0b 7429 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
7430 case IOPRIO_CLASS_NONE:
7431 ioprio = IOPRIO_NORM;
7432 /* fall through */
7433 case IOPRIO_CLASS_BE:
e21b7a0b 7434 return &bfqg->async_bfqq[1][ioprio];
aee69d78 7435 case IOPRIO_CLASS_IDLE:
e21b7a0b 7436 return &bfqg->async_idle_bfqq;
aee69d78
PV
7437 default:
7438 return NULL;
7439 }
7440}
7441
7442static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
7443 struct bio *bio, bool is_sync,
7444 struct bfq_io_cq *bic)
7445{
7446 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
7447 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
7448 struct bfq_queue **async_bfqq = NULL;
7449 struct bfq_queue *bfqq;
e21b7a0b 7450 struct bfq_group *bfqg;
aee69d78
PV
7451
7452 rcu_read_lock();
7453
e21b7a0b
AA
7454 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
7455 if (!bfqg) {
7456 bfqq = &bfqd->oom_bfqq;
7457 goto out;
7458 }
7459
aee69d78 7460 if (!is_sync) {
e21b7a0b 7461 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
7462 ioprio);
7463 bfqq = *async_bfqq;
7464 if (bfqq)
7465 goto out;
7466 }
7467
7468 bfqq = kmem_cache_alloc_node(bfq_pool,
7469 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
7470 bfqd->queue->node);
7471
7472 if (bfqq) {
7473 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
7474 is_sync);
e21b7a0b 7475 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
7476 bfq_log_bfqq(bfqd, bfqq, "allocated");
7477 } else {
7478 bfqq = &bfqd->oom_bfqq;
7479 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
7480 goto out;
7481 }
7482
7483 /*
7484 * Pin the queue now that it's allocated, scheduler exit will
7485 * prune it.
7486 */
7487 if (async_bfqq) {
e21b7a0b
AA
7488 bfqq->ref++; /*
7489 * Extra group reference, w.r.t. sync
7490 * queue. This extra reference is removed
7491 * only if bfqq->bfqg disappears, to
7492 * guarantee that this queue is not freed
7493 * until its group goes away.
7494 */
7495 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
7496 bfqq, bfqq->ref);
7497 *async_bfqq = bfqq;
7498 }
7499
7500out:
7501 bfqq->ref++; /* get a process reference to this queue */
7502 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
7503 rcu_read_unlock();
7504 return bfqq;
7505}
7506
7507static void bfq_update_io_thinktime(struct bfq_data *bfqd,
7508 struct bfq_queue *bfqq)
7509{
7510 struct bfq_ttime *ttime = &bfqq->ttime;
7511 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
7512
7513 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
7514
7515 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
7516 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
7517 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
7518 ttime->ttime_samples);
7519}
7520
7521static void
7522bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
7523 struct request *rq)
7524{
aee69d78 7525 bfqq->seek_history <<= 1;
ab0e43e9
PV
7526 bfqq->seek_history |=
7527 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
7528 (!blk_queue_nonrot(bfqd->queue) ||
7529 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
7530}
7531
7532/*
7533 * Disable idle window if the process thinks too long or seeks so much that
7534 * it doesn't matter.
7535 */
7536static void bfq_update_idle_window(struct bfq_data *bfqd,
7537 struct bfq_queue *bfqq,
7538 struct bfq_io_cq *bic)
7539{
7540 int enable_idle;
7541
7542 /* Don't idle for async or idle io prio class. */
7543 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
7544 return;
7545
36eca894
AA
7546 /* Idle window just restored, statistics are meaningless. */
7547 if (time_is_after_eq_jiffies(bfqq->split_time +
7548 bfqd->bfq_wr_min_idle_time))
7549 return;
7550
aee69d78
PV
7551 enable_idle = bfq_bfqq_idle_window(bfqq);
7552
7553 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
7554 bfqd->bfq_slice_idle == 0 ||
bcd56426
PV
7555 (bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
7556 bfqq->wr_coeff == 1))
aee69d78
PV
7557 enable_idle = 0;
7558 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) {
44e44a1b
PV
7559 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle &&
7560 bfqq->wr_coeff == 1)
aee69d78
PV
7561 enable_idle = 0;
7562 else
7563 enable_idle = 1;
7564 }
7565 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
7566 enable_idle);
7567
7568 if (enable_idle)
7569 bfq_mark_bfqq_idle_window(bfqq);
7570 else
7571 bfq_clear_bfqq_idle_window(bfqq);
7572}
7573
7574/*
7575 * Called when a new fs request (rq) is added to bfqq. Check if there's
7576 * something we should do about it.
7577 */
7578static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
7579 struct request *rq)
7580{
7581 struct bfq_io_cq *bic = RQ_BIC(rq);
7582
7583 if (rq->cmd_flags & REQ_META)
7584 bfqq->meta_pending++;
7585
7586 bfq_update_io_thinktime(bfqd, bfqq);
7587 bfq_update_io_seektime(bfqd, bfqq, rq);
7588 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
7589 !BFQQ_SEEKY(bfqq))
7590 bfq_update_idle_window(bfqd, bfqq, bic);
7591
7592 bfq_log_bfqq(bfqd, bfqq,
7593 "rq_enqueued: idle_window=%d (seeky %d)",
7594 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
7595
7596 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
7597
7598 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
7599 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
7600 blk_rq_sectors(rq) < 32;
7601 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
7602
7603 /*
7604 * There is just this request queued: if the request
7605 * is small and the queue is not to be expired, then
7606 * just exit.
7607 *
7608 * In this way, if the device is being idled to wait
7609 * for a new request from the in-service queue, we
7610 * avoid unplugging the device and committing the
7611 * device to serve just a small request. On the
7612 * contrary, we wait for the block layer to decide
7613 * when to unplug the device: hopefully, new requests
7614 * will be merged to this one quickly, then the device
7615 * will be unplugged and larger requests will be
7616 * dispatched.
7617 */
7618 if (small_req && !budget_timeout)
7619 return;
7620
7621 /*
7622 * A large enough request arrived, or the queue is to
7623 * be expired: in both cases disk idling is to be
7624 * stopped, so clear wait_request flag and reset
7625 * timer.
7626 */
7627 bfq_clear_bfqq_wait_request(bfqq);
7628 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 7629 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
7630
7631 /*
7632 * The queue is not empty, because a new request just
7633 * arrived. Hence we can safely expire the queue, in
7634 * case of budget timeout, without risking that the
7635 * timestamps of the queue are not updated correctly.
7636 * See [1] for more details.
7637 */
7638 if (budget_timeout)
7639 bfq_bfqq_expire(bfqd, bfqq, false,
7640 BFQQE_BUDGET_TIMEOUT);
7641 }
7642}
7643
7644static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
7645{
36eca894
AA
7646 struct bfq_queue *bfqq = RQ_BFQQ(rq),
7647 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
7648
7649 if (new_bfqq) {
7650 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
7651 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
7652 /*
7653 * Release the request's reference to the old bfqq
7654 * and make sure one is taken to the shared queue.
7655 */
7656 new_bfqq->allocated++;
7657 bfqq->allocated--;
7658 new_bfqq->ref++;
e1b2324d 7659 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
7660 /*
7661 * If the bic associated with the process
7662 * issuing this request still points to bfqq
7663 * (and thus has not been already redirected
7664 * to new_bfqq or even some other bfq_queue),
7665 * then complete the merge and redirect it to
7666 * new_bfqq.
7667 */
7668 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
7669 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
7670 bfqq, new_bfqq);
7671 /*
7672 * rq is about to be enqueued into new_bfqq,
7673 * release rq reference on bfqq
7674 */
7675 bfq_put_queue(bfqq);
7676 rq->elv.priv[1] = new_bfqq;
7677 bfqq = new_bfqq;
7678 }
aee69d78
PV
7679
7680 bfq_add_request(rq);
7681
7682 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
7683 list_add_tail(&rq->queuelist, &bfqq->fifo);
7684
7685 bfq_rq_enqueued(bfqd, bfqq, rq);
7686}
7687
7688static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
7689 bool at_head)
7690{
7691 struct request_queue *q = hctx->queue;
7692 struct bfq_data *bfqd = q->elevator->elevator_data;
7693
7694 spin_lock_irq(&bfqd->lock);
7695 if (blk_mq_sched_try_insert_merge(q, rq)) {
7696 spin_unlock_irq(&bfqd->lock);
7697 return;
7698 }
7699
7700 spin_unlock_irq(&bfqd->lock);
7701
7702 blk_mq_sched_request_inserted(rq);
7703
7704 spin_lock_irq(&bfqd->lock);
7705 if (at_head || blk_rq_is_passthrough(rq)) {
7706 if (at_head)
7707 list_add(&rq->queuelist, &bfqd->dispatch);
7708 else
7709 list_add_tail(&rq->queuelist, &bfqd->dispatch);
7710 } else {
7711 __bfq_insert_request(bfqd, rq);
7712
7713 if (rq_mergeable(rq)) {
7714 elv_rqhash_add(q, rq);
7715 if (!q->last_merge)
7716 q->last_merge = rq;
7717 }
7718 }
7719
6fa3e8d3 7720 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
7721}
7722
7723static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
7724 struct list_head *list, bool at_head)
7725{
7726 while (!list_empty(list)) {
7727 struct request *rq;
7728
7729 rq = list_first_entry(list, struct request, queuelist);
7730 list_del_init(&rq->queuelist);
7731 bfq_insert_request(hctx, rq, at_head);
7732 }
7733}
7734
7735static void bfq_update_hw_tag(struct bfq_data *bfqd)
7736{
7737 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
7738 bfqd->rq_in_driver);
7739
7740 if (bfqd->hw_tag == 1)
7741 return;
7742
7743 /*
7744 * This sample is valid if the number of outstanding requests
7745 * is large enough to allow a queueing behavior. Note that the
7746 * sum is not exact, as it's not taking into account deactivated
7747 * requests.
7748 */
7749 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
7750 return;
7751
7752 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
7753 return;
7754
7755 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
7756 bfqd->max_rq_in_driver = 0;
7757 bfqd->hw_tag_samples = 0;
7758}
7759
7760static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
7761{
ab0e43e9
PV
7762 u64 now_ns;
7763 u32 delta_us;
7764
aee69d78
PV
7765 bfq_update_hw_tag(bfqd);
7766
7767 bfqd->rq_in_driver--;
7768 bfqq->dispatched--;
7769
44e44a1b
PV
7770 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
7771 /*
7772 * Set budget_timeout (which we overload to store the
7773 * time at which the queue remains with no backlog and
7774 * no outstanding request; used by the weight-raising
7775 * mechanism).
7776 */
7777 bfqq->budget_timeout = jiffies;
1de0c4cd
AA
7778
7779 bfq_weights_tree_remove(bfqd, &bfqq->entity,
7780 &bfqd->queue_weights_tree);
44e44a1b
PV
7781 }
7782
ab0e43e9
PV
7783 now_ns = ktime_get_ns();
7784
7785 bfqq->ttime.last_end_request = now_ns;
7786
7787 /*
7788 * Using us instead of ns, to get a reasonable precision in
7789 * computing rate in next check.
7790 */
7791 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
7792
7793 /*
7794 * If the request took rather long to complete, and, according
7795 * to the maximum request size recorded, this completion latency
7796 * implies that the request was certainly served at a very low
7797 * rate (less than 1M sectors/sec), then the whole observation
7798 * interval that lasts up to this time instant cannot be a
7799 * valid time interval for computing a new peak rate. Invoke
7800 * bfq_update_rate_reset to have the following three steps
7801 * taken:
7802 * - close the observation interval at the last (previous)
7803 * request dispatch or completion
7804 * - compute rate, if possible, for that observation interval
7805 * - reset to zero samples, which will trigger a proper
7806 * re-initialization of the observation interval on next
7807 * dispatch
7808 */
7809 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
7810 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
7811 1UL<<(BFQ_RATE_SHIFT - 10))
7812 bfq_update_rate_reset(bfqd, NULL);
7813 bfqd->last_completion = now_ns;
aee69d78 7814
77b7dcea
PV
7815 /*
7816 * If we are waiting to discover whether the request pattern
7817 * of the task associated with the queue is actually
7818 * isochronous, and both requisites for this condition to hold
7819 * are now satisfied, then compute soft_rt_next_start (see the
7820 * comments on the function bfq_bfqq_softrt_next_start()). We
7821 * schedule this delayed check when bfqq expires, if it still
7822 * has in-flight requests.
7823 */
7824 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
7825 RB_EMPTY_ROOT(&bfqq->sort_list))
7826 bfqq->soft_rt_next_start =
7827 bfq_bfqq_softrt_next_start(bfqd, bfqq);
7828
aee69d78
PV
7829 /*
7830 * If this is the in-service queue, check if it needs to be expired,
7831 * or if we want to idle in case it has no pending requests.
7832 */
7833 if (bfqd->in_service_queue == bfqq) {
44e44a1b 7834 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
7835 bfq_arm_slice_timer(bfqd);
7836 return;
7837 } else if (bfq_may_expire_for_budg_timeout(bfqq))
7838 bfq_bfqq_expire(bfqd, bfqq, false,
7839 BFQQE_BUDGET_TIMEOUT);
7840 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
7841 (bfqq->dispatched == 0 ||
7842 !bfq_bfqq_may_idle(bfqq)))
7843 bfq_bfqq_expire(bfqd, bfqq, false,
7844 BFQQE_NO_MORE_REQUESTS);
7845 }
7846}
7847
7848static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
7849{
7850 bfqq->allocated--;
7851
7852 bfq_put_queue(bfqq);
7853}
7854
7855static void bfq_put_rq_private(struct request_queue *q, struct request *rq)
7856{
7857 struct bfq_queue *bfqq = RQ_BFQQ(rq);
7858 struct bfq_data *bfqd = bfqq->bfqd;
7859
e21b7a0b
AA
7860 if (rq->rq_flags & RQF_STARTED)
7861 bfqg_stats_update_completion(bfqq_group(bfqq),
7862 rq_start_time_ns(rq),
7863 rq_io_start_time_ns(rq),
7864 rq->cmd_flags);
aee69d78
PV
7865
7866 if (likely(rq->rq_flags & RQF_STARTED)) {
7867 unsigned long flags;
7868
7869 spin_lock_irqsave(&bfqd->lock, flags);
7870
7871 bfq_completed_request(bfqq, bfqd);
7872 bfq_put_rq_priv_body(bfqq);
7873
6fa3e8d3 7874 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
7875 } else {
7876 /*
7877 * Request rq may be still/already in the scheduler,
7878 * in which case we need to remove it. And we cannot
7879 * defer such a check and removal, to avoid
7880 * inconsistencies in the time interval from the end
7881 * of this function to the start of the deferred work.
7882 * This situation seems to occur only in process
7883 * context, as a consequence of a merge. In the
7884 * current version of the code, this implies that the
7885 * lock is held.
7886 */
7887
7888 if (!RB_EMPTY_NODE(&rq->rb_node))
7889 bfq_remove_request(q, rq);
7890 bfq_put_rq_priv_body(bfqq);
7891 }
7892
7893 rq->elv.priv[0] = NULL;
7894 rq->elv.priv[1] = NULL;
7895}
7896
36eca894
AA
7897/*
7898 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
7899 * was the last process referring to that bfqq.
7900 */
7901static struct bfq_queue *
7902bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
7903{
7904 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
7905
7906 if (bfqq_process_refs(bfqq) == 1) {
7907 bfqq->pid = current->pid;
7908 bfq_clear_bfqq_coop(bfqq);
7909 bfq_clear_bfqq_split_coop(bfqq);
7910 return bfqq;
7911 }
7912
7913 bic_set_bfqq(bic, NULL, 1);
7914
7915 bfq_put_cooperator(bfqq);
7916
7917 bfq_put_queue(bfqq);
7918 return NULL;
7919}
7920
7921static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
7922 struct bfq_io_cq *bic,
7923 struct bio *bio,
7924 bool split, bool is_sync,
7925 bool *new_queue)
7926{
7927 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
7928
7929 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
7930 return bfqq;
7931
7932 if (new_queue)
7933 *new_queue = true;
7934
7935 if (bfqq)
7936 bfq_put_queue(bfqq);
7937 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
7938
7939 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
7940 if (split && is_sync) {
7941 if ((bic->was_in_burst_list && bfqd->large_burst) ||
7942 bic->saved_in_large_burst)
7943 bfq_mark_bfqq_in_large_burst(bfqq);
7944 else {
7945 bfq_clear_bfqq_in_large_burst(bfqq);
7946 if (bic->was_in_burst_list)
7947 hlist_add_head(&bfqq->burst_list_node,
7948 &bfqd->burst_list);
7949 }
36eca894 7950 bfqq->split_time = jiffies;
e1b2324d 7951 }
36eca894
AA
7952
7953 return bfqq;
7954}
7955
aee69d78
PV
7956/*
7957 * Allocate bfq data structures associated with this request.
7958 */
7959static int bfq_get_rq_private(struct request_queue *q, struct request *rq,
7960 struct bio *bio)
7961{
7962 struct bfq_data *bfqd = q->elevator->elevator_data;
7963 struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
7964 const int is_sync = rq_is_sync(rq);
7965 struct bfq_queue *bfqq;
36eca894 7966 bool new_queue = false;
6fa3e8d3 7967 bool split = false;
aee69d78
PV
7968
7969 spin_lock_irq(&bfqd->lock);
7970
7971 bfq_check_ioprio_change(bic, bio);
7972
7973 if (!bic)
7974 goto queue_fail;
7975
e21b7a0b
AA
7976 bfq_bic_update_cgroup(bic, bio);
7977
36eca894
AA
7978 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
7979 &new_queue);
7980
7981 if (likely(!new_queue)) {
7982 /* If the queue was seeky for too long, break it apart. */
7983 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
7984 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
7985
7986 /* Update bic before losing reference to bfqq */
7987 if (bfq_bfqq_in_large_burst(bfqq))
7988 bic->saved_in_large_burst = true;
7989
36eca894 7990 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 7991 split = true;
36eca894
AA
7992
7993 if (!bfqq)
7994 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
7995 true, is_sync,
7996 NULL);
7997 }
aee69d78
PV
7998 }
7999
8000 bfqq->allocated++;
8001 bfqq->ref++;
8002 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
8003 rq, bfqq, bfqq->ref);
8004
8005 rq->elv.priv[0] = bic;
8006 rq->elv.priv[1] = bfqq;
8007
36eca894
AA
8008 /*
8009 * If a bfq_queue has only one process reference, it is owned
8010 * by only this bic: we can then set bfqq->bic = bic. in
8011 * addition, if the queue has also just been split, we have to
8012 * resume its state.
8013 */
8014 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
8015 bfqq->bic = bic;
6fa3e8d3 8016 if (split) {
36eca894
AA
8017 /*
8018 * The queue has just been split from a shared
8019 * queue: restore the idle window and the
8020 * possible weight raising period.
8021 */
8022 bfq_bfqq_resume_state(bfqq, bic);
8023 }
8024 }
8025
e1b2324d
AA
8026 if (unlikely(bfq_bfqq_just_created(bfqq)))
8027 bfq_handle_burst(bfqd, bfqq);
8028
6fa3e8d3 8029 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
8030
8031 return 0;
8032
8033queue_fail:
8034 spin_unlock_irq(&bfqd->lock);
8035
8036 return 1;
8037}
8038
8039static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
8040{
8041 struct bfq_data *bfqd = bfqq->bfqd;
8042 enum bfqq_expiration reason;
8043 unsigned long flags;
8044
8045 spin_lock_irqsave(&bfqd->lock, flags);
8046 bfq_clear_bfqq_wait_request(bfqq);
8047
8048 if (bfqq != bfqd->in_service_queue) {
8049 spin_unlock_irqrestore(&bfqd->lock, flags);
8050 return;
8051 }
8052
8053 if (bfq_bfqq_budget_timeout(bfqq))
8054 /*
8055 * Also here the queue can be safely expired
8056 * for budget timeout without wasting
8057 * guarantees
8058 */
8059 reason = BFQQE_BUDGET_TIMEOUT;
8060 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
8061 /*
8062 * The queue may not be empty upon timer expiration,
8063 * because we may not disable the timer when the
8064 * first request of the in-service queue arrives
8065 * during disk idling.
8066 */
8067 reason = BFQQE_TOO_IDLE;
8068 else
8069 goto schedule_dispatch;
8070
8071 bfq_bfqq_expire(bfqd, bfqq, true, reason);
8072
8073schedule_dispatch:
6fa3e8d3 8074 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
8075 bfq_schedule_dispatch(bfqd);
8076}
8077
8078/*
8079 * Handler of the expiration of the timer running if the in-service queue
8080 * is idling inside its time slice.
8081 */
8082static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
8083{
8084 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
8085 idle_slice_timer);
8086 struct bfq_queue *bfqq = bfqd->in_service_queue;
8087
8088 /*
8089 * Theoretical race here: the in-service queue can be NULL or
8090 * different from the queue that was idling if a new request
8091 * arrives for the current queue and there is a full dispatch
8092 * cycle that changes the in-service queue. This can hardly
8093 * happen, but in the worst case we just expire a queue too
8094 * early.
8095 */
8096 if (bfqq)
8097 bfq_idle_slice_timer_body(bfqq);
8098
8099 return HRTIMER_NORESTART;
8100}
8101
8102static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
8103 struct bfq_queue **bfqq_ptr)
8104{
8105 struct bfq_queue *bfqq = *bfqq_ptr;
8106
8107 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
8108 if (bfqq) {
e21b7a0b
AA
8109 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
8110
aee69d78
PV
8111 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
8112 bfqq, bfqq->ref);
8113 bfq_put_queue(bfqq);
8114 *bfqq_ptr = NULL;
8115 }
8116}
8117
8118/*
e21b7a0b
AA
8119 * Release all the bfqg references to its async queues. If we are
8120 * deallocating the group these queues may still contain requests, so
8121 * we reparent them to the root cgroup (i.e., the only one that will
8122 * exist for sure until all the requests on a device are gone).
aee69d78 8123 */
e21b7a0b 8124static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
8125{
8126 int i, j;
8127
8128 for (i = 0; i < 2; i++)
8129 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 8130 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 8131
e21b7a0b 8132 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
8133}
8134
8135static void bfq_exit_queue(struct elevator_queue *e)
8136{
8137 struct bfq_data *bfqd = e->elevator_data;
8138 struct bfq_queue *bfqq, *n;
8139
8140 hrtimer_cancel(&bfqd->idle_slice_timer);
8141
8142 spin_lock_irq(&bfqd->lock);
8143 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 8144 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
8145 spin_unlock_irq(&bfqd->lock);
8146
8147 hrtimer_cancel(&bfqd->idle_slice_timer);
8148
e21b7a0b
AA
8149#ifdef CONFIG_BFQ_GROUP_IOSCHED
8150 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
8151#else
8152 spin_lock_irq(&bfqd->lock);
8153 bfq_put_async_queues(bfqd, bfqd->root_group);
8154 kfree(bfqd->root_group);
8155 spin_unlock_irq(&bfqd->lock);
8156#endif
8157
aee69d78
PV
8158 kfree(bfqd);
8159}
8160
e21b7a0b
AA
8161static void bfq_init_root_group(struct bfq_group *root_group,
8162 struct bfq_data *bfqd)
8163{
8164 int i;
8165
8166#ifdef CONFIG_BFQ_GROUP_IOSCHED
8167 root_group->entity.parent = NULL;
8168 root_group->my_entity = NULL;
8169 root_group->bfqd = bfqd;
8170#endif
36eca894 8171 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
8172 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
8173 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
8174 root_group->sched_data.bfq_class_idle_last_service = jiffies;
8175}
8176
aee69d78
PV
8177static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
8178{
8179 struct bfq_data *bfqd;
8180 struct elevator_queue *eq;
aee69d78
PV
8181
8182 eq = elevator_alloc(q, e);
8183 if (!eq)
8184 return -ENOMEM;
8185
8186 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
8187 if (!bfqd) {
8188 kobject_put(&eq->kobj);
8189 return -ENOMEM;
8190 }
8191 eq->elevator_data = bfqd;
8192
e21b7a0b
AA
8193 spin_lock_irq(q->queue_lock);
8194 q->elevator = eq;
8195 spin_unlock_irq(q->queue_lock);
8196
aee69d78
PV
8197 /*
8198 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
8199 * Grab a permanent reference to it, so that the normal code flow
8200 * will not attempt to free it.
8201 */
8202 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
8203 bfqd->oom_bfqq.ref++;
8204 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
8205 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
8206 bfqd->oom_bfqq.entity.new_weight =
8207 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
8208
8209 /* oom_bfqq does not participate to bursts */
8210 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
8211
aee69d78
PV
8212 /*
8213 * Trigger weight initialization, according to ioprio, at the
8214 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
8215 * class won't be changed any more.
8216 */
8217 bfqd->oom_bfqq.entity.prio_changed = 1;
8218
8219 bfqd->queue = q;
8220
e21b7a0b 8221 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
8222
8223 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
8224 HRTIMER_MODE_REL);
8225 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
8226
1de0c4cd
AA
8227 bfqd->queue_weights_tree = RB_ROOT;
8228 bfqd->group_weights_tree = RB_ROOT;
8229
aee69d78
PV
8230 INIT_LIST_HEAD(&bfqd->active_list);
8231 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 8232 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
8233
8234 bfqd->hw_tag = -1;
8235
8236 bfqd->bfq_max_budget = bfq_default_max_budget;
8237
8238 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
8239 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
8240 bfqd->bfq_back_max = bfq_back_max;
8241 bfqd->bfq_back_penalty = bfq_back_penalty;
8242 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
8243 bfqd->bfq_timeout = bfq_timeout;
8244
8245 bfqd->bfq_requests_within_timer = 120;
8246
e1b2324d
AA
8247 bfqd->bfq_large_burst_thresh = 8;
8248 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
8249
44e44a1b
PV
8250 bfqd->low_latency = true;
8251
8252 /*
8253 * Trade-off between responsiveness and fairness.
8254 */
8255 bfqd->bfq_wr_coeff = 30;
77b7dcea 8256 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
8257 bfqd->bfq_wr_max_time = 0;
8258 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
8259 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
8260 bfqd->bfq_wr_max_softrt_rate = 7000; /*
8261 * Approximate rate required
8262 * to playback or record a
8263 * high-definition compressed
8264 * video.
8265 */
cfd69712 8266 bfqd->wr_busy_queues = 0;
44e44a1b
PV
8267
8268 /*
8269 * Begin by assuming, optimistically, that the device is a
8270 * high-speed one, and that its peak rate is equal to 2/3 of
8271 * the highest reference rate.
8272 */
8273 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
8274 T_fast[blk_queue_nonrot(bfqd->queue)];
8275 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
8276 bfqd->device_speed = BFQ_BFQD_FAST;
8277
aee69d78 8278 spin_lock_init(&bfqd->lock);
aee69d78 8279
e21b7a0b
AA
8280 /*
8281 * The invocation of the next bfq_create_group_hierarchy
8282 * function is the head of a chain of function calls
8283 * (bfq_create_group_hierarchy->blkcg_activate_policy->
8284 * blk_mq_freeze_queue) that may lead to the invocation of the
8285 * has_work hook function. For this reason,
8286 * bfq_create_group_hierarchy is invoked only after all
8287 * scheduler data has been initialized, apart from the fields
8288 * that can be initialized only after invoking
8289 * bfq_create_group_hierarchy. This, in particular, enables
8290 * has_work to correctly return false. Of course, to avoid
8291 * other inconsistencies, the blk-mq stack must then refrain
8292 * from invoking further scheduler hooks before this init
8293 * function is finished.
8294 */
8295 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
8296 if (!bfqd->root_group)
8297 goto out_free;
8298 bfq_init_root_group(bfqd->root_group, bfqd);
8299 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
8300
aee69d78
PV
8301
8302 return 0;
e21b7a0b
AA
8303
8304out_free:
8305 kfree(bfqd);
8306 kobject_put(&eq->kobj);
8307 return -ENOMEM;
aee69d78
PV
8308}
8309
8310static void bfq_slab_kill(void)
8311{
8312 kmem_cache_destroy(bfq_pool);
8313}
8314
8315static int __init bfq_slab_setup(void)
8316{
8317 bfq_pool = KMEM_CACHE(bfq_queue, 0);
8318 if (!bfq_pool)
8319 return -ENOMEM;
8320 return 0;
8321}
8322
8323static ssize_t bfq_var_show(unsigned int var, char *page)
8324{
8325 return sprintf(page, "%u\n", var);
8326}
8327
8328static ssize_t bfq_var_store(unsigned long *var, const char *page,
8329 size_t count)
8330{
8331 unsigned long new_val;
8332 int ret = kstrtoul(page, 10, &new_val);
8333
8334 if (ret == 0)
8335 *var = new_val;
8336
8337 return count;
8338}
8339
8340#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
8341static ssize_t __FUNC(struct elevator_queue *e, char *page) \
8342{ \
8343 struct bfq_data *bfqd = e->elevator_data; \
8344 u64 __data = __VAR; \
8345 if (__CONV == 1) \
8346 __data = jiffies_to_msecs(__data); \
8347 else if (__CONV == 2) \
8348 __data = div_u64(__data, NSEC_PER_MSEC); \
8349 return bfq_var_show(__data, (page)); \
8350}
8351SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
8352SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
8353SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
8354SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
8355SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
8356SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
8357SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
8358SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 8359SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
8360#undef SHOW_FUNCTION
8361
8362#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
8363static ssize_t __FUNC(struct elevator_queue *e, char *page) \
8364{ \
8365 struct bfq_data *bfqd = e->elevator_data; \
8366 u64 __data = __VAR; \
8367 __data = div_u64(__data, NSEC_PER_USEC); \
8368 return bfq_var_show(__data, (page)); \
8369}
8370USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
8371#undef USEC_SHOW_FUNCTION
8372
8373#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
8374static ssize_t \
8375__FUNC(struct elevator_queue *e, const char *page, size_t count) \
8376{ \
8377 struct bfq_data *bfqd = e->elevator_data; \
8378 unsigned long uninitialized_var(__data); \
8379 int ret = bfq_var_store(&__data, (page), count); \
8380 if (__data < (MIN)) \
8381 __data = (MIN); \
8382 else if (__data > (MAX)) \
8383 __data = (MAX); \
8384 if (__CONV == 1) \
8385 *(__PTR) = msecs_to_jiffies(__data); \
8386 else if (__CONV == 2) \
8387 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
8388 else \
8389 *(__PTR) = __data; \
8390 return ret; \
8391}
8392STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
8393 INT_MAX, 2);
8394STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
8395 INT_MAX, 2);
8396STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
8397STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
8398 INT_MAX, 0);
8399STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
8400#undef STORE_FUNCTION
8401
8402#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
8403static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
8404{ \
8405 struct bfq_data *bfqd = e->elevator_data; \
8406 unsigned long uninitialized_var(__data); \
8407 int ret = bfq_var_store(&__data, (page), count); \
8408 if (__data < (MIN)) \
8409 __data = (MIN); \
8410 else if (__data > (MAX)) \
8411 __data = (MAX); \
8412 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
8413 return ret; \
8414}
8415USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
8416 UINT_MAX);
8417#undef USEC_STORE_FUNCTION
8418
aee69d78
PV
8419static ssize_t bfq_max_budget_store(struct elevator_queue *e,
8420 const char *page, size_t count)
8421{
8422 struct bfq_data *bfqd = e->elevator_data;
8423 unsigned long uninitialized_var(__data);
8424 int ret = bfq_var_store(&__data, (page), count);
8425
8426 if (__data == 0)
ab0e43e9 8427 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
8428 else {
8429 if (__data > INT_MAX)
8430 __data = INT_MAX;
8431 bfqd->bfq_max_budget = __data;
8432 }
8433
8434 bfqd->bfq_user_max_budget = __data;
8435
8436 return ret;
8437}
8438
8439/*
8440 * Leaving this name to preserve name compatibility with cfq
8441 * parameters, but this timeout is used for both sync and async.
8442 */
8443static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
8444 const char *page, size_t count)
8445{
8446 struct bfq_data *bfqd = e->elevator_data;
8447 unsigned long uninitialized_var(__data);
8448 int ret = bfq_var_store(&__data, (page), count);
8449
8450 if (__data < 1)
8451 __data = 1;
8452 else if (__data > INT_MAX)
8453 __data = INT_MAX;
8454
8455 bfqd->bfq_timeout = msecs_to_jiffies(__data);
8456 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 8457 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
8458
8459 return ret;
8460}
8461
8462static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
8463 const char *page, size_t count)
8464{
8465 struct bfq_data *bfqd = e->elevator_data;
8466 unsigned long uninitialized_var(__data);
8467 int ret = bfq_var_store(&__data, (page), count);
8468
8469 if (__data > 1)
8470 __data = 1;
8471 if (!bfqd->strict_guarantees && __data == 1
8472 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
8473 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
8474
8475 bfqd->strict_guarantees = __data;
8476
8477 return ret;
8478}
8479
44e44a1b
PV
8480static ssize_t bfq_low_latency_store(struct elevator_queue *e,
8481 const char *page, size_t count)
8482{
8483 struct bfq_data *bfqd = e->elevator_data;
8484 unsigned long uninitialized_var(__data);
8485 int ret = bfq_var_store(&__data, (page), count);
8486
8487 if (__data > 1)
8488 __data = 1;
8489 if (__data == 0 && bfqd->low_latency != 0)
8490 bfq_end_wr(bfqd);
8491 bfqd->low_latency = __data;
8492
8493 return ret;
8494}
8495
aee69d78
PV
8496#define BFQ_ATTR(name) \
8497 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
8498
8499static struct elv_fs_entry bfq_attrs[] = {
8500 BFQ_ATTR(fifo_expire_sync),
8501 BFQ_ATTR(fifo_expire_async),
8502 BFQ_ATTR(back_seek_max),
8503 BFQ_ATTR(back_seek_penalty),
8504 BFQ_ATTR(slice_idle),
8505 BFQ_ATTR(slice_idle_us),
8506 BFQ_ATTR(max_budget),
8507 BFQ_ATTR(timeout_sync),
8508 BFQ_ATTR(strict_guarantees),
44e44a1b 8509 BFQ_ATTR(low_latency),
aee69d78
PV
8510 __ATTR_NULL
8511};
8512
8513static struct elevator_type iosched_bfq_mq = {
8514 .ops.mq = {
8515 .get_rq_priv = bfq_get_rq_private,
8516 .put_rq_priv = bfq_put_rq_private,
8517 .exit_icq = bfq_exit_icq,
8518 .insert_requests = bfq_insert_requests,
8519 .dispatch_request = bfq_dispatch_request,
8520 .next_request = elv_rb_latter_request,
8521 .former_request = elv_rb_former_request,
8522 .allow_merge = bfq_allow_bio_merge,
8523 .bio_merge = bfq_bio_merge,
8524 .request_merge = bfq_request_merge,
8525 .requests_merged = bfq_requests_merged,
8526 .request_merged = bfq_request_merged,
8527 .has_work = bfq_has_work,
8528 .init_sched = bfq_init_queue,
8529 .exit_sched = bfq_exit_queue,
8530 },
8531
8532 .uses_mq = true,
8533 .icq_size = sizeof(struct bfq_io_cq),
8534 .icq_align = __alignof__(struct bfq_io_cq),
8535 .elevator_attrs = bfq_attrs,
8536 .elevator_name = "bfq",
8537 .elevator_owner = THIS_MODULE,
8538};
8539
e21b7a0b
AA
8540#ifdef CONFIG_BFQ_GROUP_IOSCHED
8541static struct blkcg_policy blkcg_policy_bfq = {
8542 .dfl_cftypes = bfq_blkg_files,
8543 .legacy_cftypes = bfq_blkcg_legacy_files,
8544
8545 .cpd_alloc_fn = bfq_cpd_alloc,
8546 .cpd_init_fn = bfq_cpd_init,
8547 .cpd_bind_fn = bfq_cpd_init,
8548 .cpd_free_fn = bfq_cpd_free,
8549
8550 .pd_alloc_fn = bfq_pd_alloc,
8551 .pd_init_fn = bfq_pd_init,
8552 .pd_offline_fn = bfq_pd_offline,
8553 .pd_free_fn = bfq_pd_free,
8554 .pd_reset_stats_fn = bfq_pd_reset_stats,
8555};
8556#endif
8557
aee69d78
PV
8558static int __init bfq_init(void)
8559{
8560 int ret;
8561
e21b7a0b
AA
8562#ifdef CONFIG_BFQ_GROUP_IOSCHED
8563 ret = blkcg_policy_register(&blkcg_policy_bfq);
8564 if (ret)
8565 return ret;
8566#endif
8567
aee69d78
PV
8568 ret = -ENOMEM;
8569 if (bfq_slab_setup())
8570 goto err_pol_unreg;
8571
44e44a1b
PV
8572 /*
8573 * Times to load large popular applications for the typical
8574 * systems installed on the reference devices (see the
8575 * comments before the definitions of the next two
8576 * arrays). Actually, we use slightly slower values, as the
8577 * estimated peak rate tends to be smaller than the actual
8578 * peak rate. The reason for this last fact is that estimates
8579 * are computed over much shorter time intervals than the long
8580 * intervals typically used for benchmarking. Why? First, to
8581 * adapt more quickly to variations. Second, because an I/O
8582 * scheduler cannot rely on a peak-rate-evaluation workload to
8583 * be run for a long time.
8584 */
8585 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
8586 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
8587 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
8588 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
8589
8590 /*
8591 * Thresholds that determine the switch between speed classes
8592 * (see the comments before the definition of the array
8593 * device_speed_thresh). These thresholds are biased towards
8594 * transitions to the fast class. This is safer than the
8595 * opposite bias. In fact, a wrong transition to the slow
8596 * class results in short weight-raising periods, because the
8597 * speed of the device then tends to be higher that the
8598 * reference peak rate. On the opposite end, a wrong
8599 * transition to the fast class tends to increase
8600 * weight-raising periods, because of the opposite reason.
8601 */
8602 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
8603 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
8604
aee69d78
PV
8605 ret = elv_register(&iosched_bfq_mq);
8606 if (ret)
8607 goto err_pol_unreg;
8608
8609 return 0;
8610
8611err_pol_unreg:
e21b7a0b
AA
8612#ifdef CONFIG_BFQ_GROUP_IOSCHED
8613 blkcg_policy_unregister(&blkcg_policy_bfq);
8614#endif
aee69d78
PV
8615 return ret;
8616}
8617
8618static void __exit bfq_exit(void)
8619{
8620 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
8621#ifdef CONFIG_BFQ_GROUP_IOSCHED
8622 blkcg_policy_unregister(&blkcg_policy_bfq);
8623#endif
aee69d78
PV
8624 bfq_slab_kill();
8625}
8626
8627module_init(bfq_init);
8628module_exit(bfq_exit);
8629
8630MODULE_AUTHOR("Paolo Valente");
8631MODULE_LICENSE("GPL");
8632MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");