]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/bfq-iosched.c
cfq: clear queue pointers from cfqg after unpinning them in cfq_pd_offline
[mirror_ubuntu-jammy-kernel.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
4029eef1
PV
52 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
aee69d78
PV
85 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
43c1b3d6
PV
89 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
4029eef1
PV
94 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
aee69d78
PV
102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
e21b7a0b 128#include <linux/cgroup.h>
aee69d78
PV
129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
ea25da48 140#include "bfq-iosched.h"
b5dc5d4d 141#include "blk-wbt.h"
aee69d78 142
ea25da48
PV
143#define BFQ_BFQQ_FNS(name) \
144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
44e44a1b
PV
155}
156
ea25da48
PV
157BFQ_BFQQ_FNS(just_created);
158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
d5be3fef 162BFQ_BFQQ_FNS(has_short_ttime);
ea25da48
PV
163BFQ_BFQQ_FNS(sync);
164BFQ_BFQQ_FNS(IO_bound);
165BFQ_BFQQ_FNS(in_large_burst);
166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
168BFQ_BFQQ_FNS(softrt_update);
169#undef BFQ_BFQQ_FNS \
aee69d78 170
ea25da48
PV
171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
aee69d78 173
ea25da48
PV
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
aee69d78 176
ea25da48
PV
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
e21b7a0b 179
ea25da48
PV
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
aee69d78 182
ea25da48
PV
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
aee69d78 185
ea25da48
PV
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
e21b7a0b 188
ea25da48 189/*
d5801088
PV
190 * When a sync request is dispatched, the queue that contains that
191 * request, and all the ancestor entities of that queue, are charged
192 * with the number of sectors of the request. In constrast, if the
193 * request is async, then the queue and its ancestor entities are
194 * charged with the number of sectors of the request, multiplied by
195 * the factor below. This throttles the bandwidth for async I/O,
196 * w.r.t. to sync I/O, and it is done to counter the tendency of async
197 * writes to steal I/O throughput to reads.
198 *
199 * The current value of this parameter is the result of a tuning with
200 * several hardware and software configurations. We tried to find the
201 * lowest value for which writes do not cause noticeable problems to
202 * reads. In fact, the lower this parameter, the stabler I/O control,
203 * in the following respect. The lower this parameter is, the less
204 * the bandwidth enjoyed by a group decreases
205 * - when the group does writes, w.r.t. to when it does reads;
206 * - when other groups do reads, w.r.t. to when they do writes.
ea25da48 207 */
d5801088 208static const int bfq_async_charge_factor = 3;
aee69d78 209
ea25da48
PV
210/* Default timeout values, in jiffies, approximating CFQ defaults. */
211const int bfq_timeout = HZ / 8;
aee69d78 212
7b8fa3b9
PV
213/*
214 * Time limit for merging (see comments in bfq_setup_cooperator). Set
215 * to the slowest value that, in our tests, proved to be effective in
216 * removing false positives, while not causing true positives to miss
217 * queue merging.
218 *
219 * As can be deduced from the low time limit below, queue merging, if
220 * successful, happens at the very beggining of the I/O of the involved
221 * cooperating processes, as a consequence of the arrival of the very
222 * first requests from each cooperator. After that, there is very
223 * little chance to find cooperators.
224 */
225static const unsigned long bfq_merge_time_limit = HZ/10;
226
ea25da48 227static struct kmem_cache *bfq_pool;
e21b7a0b 228
ea25da48
PV
229/* Below this threshold (in ns), we consider thinktime immediate. */
230#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
e21b7a0b 231
ea25da48
PV
232/* hw_tag detection: parallel requests threshold and min samples needed. */
233#define BFQ_HW_QUEUE_THRESHOLD 4
234#define BFQ_HW_QUEUE_SAMPLES 32
aee69d78 235
ea25da48
PV
236#define BFQQ_SEEK_THR (sector_t)(8 * 100)
237#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
238#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
f0ba5ea2 239#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
aee69d78 240
ea25da48
PV
241/* Min number of samples required to perform peak-rate update */
242#define BFQ_RATE_MIN_SAMPLES 32
243/* Min observation time interval required to perform a peak-rate update (ns) */
244#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
245/* Target observation time interval for a peak-rate update (ns) */
246#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78 247
bc56e2ca
PV
248/*
249 * Shift used for peak-rate fixed precision calculations.
250 * With
251 * - the current shift: 16 positions
252 * - the current type used to store rate: u32
253 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
254 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
255 * the range of rates that can be stored is
256 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
257 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
258 * [15, 65G] sectors/sec
259 * Which, assuming a sector size of 512B, corresponds to a range of
260 * [7.5K, 33T] B/sec
261 */
ea25da48 262#define BFQ_RATE_SHIFT 16
aee69d78 263
ea25da48 264/*
4029eef1
PV
265 * When configured for computing the duration of the weight-raising
266 * for interactive queues automatically (see the comments at the
267 * beginning of this file), BFQ does it using the following formula:
e24f1c24
PV
268 * duration = (ref_rate / r) * ref_wr_duration,
269 * where r is the peak rate of the device, and ref_rate and
270 * ref_wr_duration are two reference parameters. In particular,
271 * ref_rate is the peak rate of the reference storage device (see
272 * below), and ref_wr_duration is about the maximum time needed, with
273 * BFQ and while reading two files in parallel, to load typical large
274 * applications on the reference device (see the comments on
275 * max_service_from_wr below, for more details on how ref_wr_duration
276 * is obtained). In practice, the slower/faster the device at hand
277 * is, the more/less it takes to load applications with respect to the
4029eef1
PV
278 * reference device. Accordingly, the longer/shorter BFQ grants
279 * weight raising to interactive applications.
ea25da48 280 *
e24f1c24
PV
281 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
282 * depending on whether the device is rotational or non-rotational.
ea25da48 283 *
e24f1c24
PV
284 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
285 * are the reference values for a rotational device, whereas
286 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
287 * non-rotational device. The reference rates are not the actual peak
288 * rates of the devices used as a reference, but slightly lower
289 * values. The reason for using slightly lower values is that the
290 * peak-rate estimator tends to yield slightly lower values than the
291 * actual peak rate (it can yield the actual peak rate only if there
292 * is only one process doing I/O, and the process does sequential
293 * I/O).
ea25da48 294 *
e24f1c24
PV
295 * The reference peak rates are measured in sectors/usec, left-shifted
296 * by BFQ_RATE_SHIFT.
ea25da48 297 */
e24f1c24 298static int ref_rate[2] = {14000, 33000};
ea25da48 299/*
e24f1c24
PV
300 * To improve readability, a conversion function is used to initialize
301 * the following array, which entails that the array can be
302 * initialized only in a function.
ea25da48 303 */
e24f1c24 304static int ref_wr_duration[2];
aee69d78 305
8a8747dc
PV
306/*
307 * BFQ uses the above-detailed, time-based weight-raising mechanism to
308 * privilege interactive tasks. This mechanism is vulnerable to the
309 * following false positives: I/O-bound applications that will go on
310 * doing I/O for much longer than the duration of weight
311 * raising. These applications have basically no benefit from being
312 * weight-raised at the beginning of their I/O. On the opposite end,
313 * while being weight-raised, these applications
314 * a) unjustly steal throughput to applications that may actually need
315 * low latency;
316 * b) make BFQ uselessly perform device idling; device idling results
317 * in loss of device throughput with most flash-based storage, and may
318 * increase latencies when used purposelessly.
319 *
320 * BFQ tries to reduce these problems, by adopting the following
321 * countermeasure. To introduce this countermeasure, we need first to
322 * finish explaining how the duration of weight-raising for
323 * interactive tasks is computed.
324 *
325 * For a bfq_queue deemed as interactive, the duration of weight
326 * raising is dynamically adjusted, as a function of the estimated
327 * peak rate of the device, so as to be equal to the time needed to
328 * execute the 'largest' interactive task we benchmarked so far. By
329 * largest task, we mean the task for which each involved process has
330 * to do more I/O than for any of the other tasks we benchmarked. This
331 * reference interactive task is the start-up of LibreOffice Writer,
332 * and in this task each process/bfq_queue needs to have at most ~110K
333 * sectors transferred.
334 *
335 * This last piece of information enables BFQ to reduce the actual
336 * duration of weight-raising for at least one class of I/O-bound
337 * applications: those doing sequential or quasi-sequential I/O. An
338 * example is file copy. In fact, once started, the main I/O-bound
339 * processes of these applications usually consume the above 110K
340 * sectors in much less time than the processes of an application that
341 * is starting, because these I/O-bound processes will greedily devote
342 * almost all their CPU cycles only to their target,
343 * throughput-friendly I/O operations. This is even more true if BFQ
344 * happens to be underestimating the device peak rate, and thus
345 * overestimating the duration of weight raising. But, according to
346 * our measurements, once transferred 110K sectors, these processes
347 * have no right to be weight-raised any longer.
348 *
349 * Basing on the last consideration, BFQ ends weight-raising for a
350 * bfq_queue if the latter happens to have received an amount of
351 * service at least equal to the following constant. The constant is
352 * set to slightly more than 110K, to have a minimum safety margin.
353 *
354 * This early ending of weight-raising reduces the amount of time
355 * during which interactive false positives cause the two problems
356 * described at the beginning of these comments.
357 */
358static const unsigned long max_service_from_wr = 120000;
359
12cd3a2f 360#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
ea25da48 361#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
aee69d78 362
ea25da48 363struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
e21b7a0b 364{
ea25da48 365 return bic->bfqq[is_sync];
aee69d78
PV
366}
367
ea25da48 368void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
aee69d78 369{
ea25da48 370 bic->bfqq[is_sync] = bfqq;
aee69d78
PV
371}
372
ea25da48 373struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
aee69d78 374{
ea25da48 375 return bic->icq.q->elevator->elevator_data;
e21b7a0b 376}
aee69d78 377
ea25da48
PV
378/**
379 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
380 * @icq: the iocontext queue.
381 */
382static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
e21b7a0b 383{
ea25da48
PV
384 /* bic->icq is the first member, %NULL will convert to %NULL */
385 return container_of(icq, struct bfq_io_cq, icq);
e21b7a0b 386}
aee69d78 387
ea25da48
PV
388/**
389 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
390 * @bfqd: the lookup key.
391 * @ioc: the io_context of the process doing I/O.
392 * @q: the request queue.
393 */
394static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
395 struct io_context *ioc,
396 struct request_queue *q)
e21b7a0b 397{
ea25da48
PV
398 if (ioc) {
399 unsigned long flags;
400 struct bfq_io_cq *icq;
aee69d78 401
ea25da48
PV
402 spin_lock_irqsave(q->queue_lock, flags);
403 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
404 spin_unlock_irqrestore(q->queue_lock, flags);
aee69d78 405
ea25da48 406 return icq;
e21b7a0b 407 }
e21b7a0b 408
ea25da48 409 return NULL;
aee69d78
PV
410}
411
ea25da48
PV
412/*
413 * Scheduler run of queue, if there are requests pending and no one in the
414 * driver that will restart queueing.
415 */
416void bfq_schedule_dispatch(struct bfq_data *bfqd)
aee69d78 417{
ea25da48
PV
418 if (bfqd->queued != 0) {
419 bfq_log(bfqd, "schedule dispatch");
420 blk_mq_run_hw_queues(bfqd->queue, true);
e21b7a0b 421 }
aee69d78
PV
422}
423
424#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
425#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
426
427#define bfq_sample_valid(samples) ((samples) > 80)
428
aee69d78
PV
429/*
430 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
431 * We choose the request that is closesr to the head right now. Distance
432 * behind the head is penalized and only allowed to a certain extent.
433 */
434static struct request *bfq_choose_req(struct bfq_data *bfqd,
435 struct request *rq1,
436 struct request *rq2,
437 sector_t last)
438{
439 sector_t s1, s2, d1 = 0, d2 = 0;
440 unsigned long back_max;
441#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
442#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
443 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
444
445 if (!rq1 || rq1 == rq2)
446 return rq2;
447 if (!rq2)
448 return rq1;
449
450 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
451 return rq1;
452 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
453 return rq2;
454 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
455 return rq1;
456 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
457 return rq2;
458
459 s1 = blk_rq_pos(rq1);
460 s2 = blk_rq_pos(rq2);
461
462 /*
463 * By definition, 1KiB is 2 sectors.
464 */
465 back_max = bfqd->bfq_back_max * 2;
466
467 /*
468 * Strict one way elevator _except_ in the case where we allow
469 * short backward seeks which are biased as twice the cost of a
470 * similar forward seek.
471 */
472 if (s1 >= last)
473 d1 = s1 - last;
474 else if (s1 + back_max >= last)
475 d1 = (last - s1) * bfqd->bfq_back_penalty;
476 else
477 wrap |= BFQ_RQ1_WRAP;
478
479 if (s2 >= last)
480 d2 = s2 - last;
481 else if (s2 + back_max >= last)
482 d2 = (last - s2) * bfqd->bfq_back_penalty;
483 else
484 wrap |= BFQ_RQ2_WRAP;
485
486 /* Found required data */
487
488 /*
489 * By doing switch() on the bit mask "wrap" we avoid having to
490 * check two variables for all permutations: --> faster!
491 */
492 switch (wrap) {
493 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
494 if (d1 < d2)
495 return rq1;
496 else if (d2 < d1)
497 return rq2;
498
499 if (s1 >= s2)
500 return rq1;
501 else
502 return rq2;
503
504 case BFQ_RQ2_WRAP:
505 return rq1;
506 case BFQ_RQ1_WRAP:
507 return rq2;
508 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
509 default:
510 /*
511 * Since both rqs are wrapped,
512 * start with the one that's further behind head
513 * (--> only *one* back seek required),
514 * since back seek takes more time than forward.
515 */
516 if (s1 <= s2)
517 return rq1;
518 else
519 return rq2;
520 }
521}
522
a52a69ea
PV
523/*
524 * Async I/O can easily starve sync I/O (both sync reads and sync
525 * writes), by consuming all tags. Similarly, storms of sync writes,
526 * such as those that sync(2) may trigger, can starve sync reads.
527 * Limit depths of async I/O and sync writes so as to counter both
528 * problems.
529 */
530static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
531{
a52a69ea 532 struct bfq_data *bfqd = data->q->elevator->elevator_data;
a52a69ea
PV
533
534 if (op_is_sync(op) && !op_is_write(op))
535 return;
536
a52a69ea
PV
537 data->shallow_depth =
538 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
539
540 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
541 __func__, bfqd->wr_busy_queues, op_is_sync(op),
542 data->shallow_depth);
543}
544
36eca894
AA
545static struct bfq_queue *
546bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
547 sector_t sector, struct rb_node **ret_parent,
548 struct rb_node ***rb_link)
549{
550 struct rb_node **p, *parent;
551 struct bfq_queue *bfqq = NULL;
552
553 parent = NULL;
554 p = &root->rb_node;
555 while (*p) {
556 struct rb_node **n;
557
558 parent = *p;
559 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
560
561 /*
562 * Sort strictly based on sector. Smallest to the left,
563 * largest to the right.
564 */
565 if (sector > blk_rq_pos(bfqq->next_rq))
566 n = &(*p)->rb_right;
567 else if (sector < blk_rq_pos(bfqq->next_rq))
568 n = &(*p)->rb_left;
569 else
570 break;
571 p = n;
572 bfqq = NULL;
573 }
574
575 *ret_parent = parent;
576 if (rb_link)
577 *rb_link = p;
578
579 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
580 (unsigned long long)sector,
581 bfqq ? bfqq->pid : 0);
582
583 return bfqq;
584}
585
7b8fa3b9
PV
586static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
587{
588 return bfqq->service_from_backlogged > 0 &&
589 time_is_before_jiffies(bfqq->first_IO_time +
590 bfq_merge_time_limit);
591}
592
ea25da48 593void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
36eca894
AA
594{
595 struct rb_node **p, *parent;
596 struct bfq_queue *__bfqq;
597
598 if (bfqq->pos_root) {
599 rb_erase(&bfqq->pos_node, bfqq->pos_root);
600 bfqq->pos_root = NULL;
601 }
602
7b8fa3b9
PV
603 /*
604 * bfqq cannot be merged any longer (see comments in
605 * bfq_setup_cooperator): no point in adding bfqq into the
606 * position tree.
607 */
608 if (bfq_too_late_for_merging(bfqq))
609 return;
610
36eca894
AA
611 if (bfq_class_idle(bfqq))
612 return;
613 if (!bfqq->next_rq)
614 return;
615
616 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
617 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
618 blk_rq_pos(bfqq->next_rq), &parent, &p);
619 if (!__bfqq) {
620 rb_link_node(&bfqq->pos_node, parent, p);
621 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
622 } else
623 bfqq->pos_root = NULL;
624}
625
1de0c4cd
AA
626/*
627 * Tell whether there are active queues or groups with differentiated weights.
628 */
629static bool bfq_differentiated_weights(struct bfq_data *bfqd)
630{
631 /*
632 * For weights to differ, at least one of the trees must contain
633 * at least two nodes.
634 */
635 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
636 (bfqd->queue_weights_tree.rb_node->rb_left ||
637 bfqd->queue_weights_tree.rb_node->rb_right)
638#ifdef CONFIG_BFQ_GROUP_IOSCHED
639 ) ||
640 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
641 (bfqd->group_weights_tree.rb_node->rb_left ||
642 bfqd->group_weights_tree.rb_node->rb_right)
643#endif
644 );
645}
646
647/*
648 * The following function returns true if every queue must receive the
649 * same share of the throughput (this condition is used when deciding
650 * whether idling may be disabled, see the comments in the function
277a4a9b 651 * bfq_better_to_idle()).
1de0c4cd
AA
652 *
653 * Such a scenario occurs when:
654 * 1) all active queues have the same weight,
655 * 2) all active groups at the same level in the groups tree have the same
656 * weight,
657 * 3) all active groups at the same level in the groups tree have the same
658 * number of children.
659 *
660 * Unfortunately, keeping the necessary state for evaluating exactly the
661 * above symmetry conditions would be quite complex and time-consuming.
662 * Therefore this function evaluates, instead, the following stronger
663 * sub-conditions, for which it is much easier to maintain the needed
664 * state:
665 * 1) all active queues have the same weight,
666 * 2) all active groups have the same weight,
667 * 3) all active groups have at most one active child each.
668 * In particular, the last two conditions are always true if hierarchical
669 * support and the cgroups interface are not enabled, thus no state needs
670 * to be maintained in this case.
671 */
672static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
673{
674 return !bfq_differentiated_weights(bfqd);
675}
676
677/*
678 * If the weight-counter tree passed as input contains no counter for
679 * the weight of the input entity, then add that counter; otherwise just
680 * increment the existing counter.
681 *
682 * Note that weight-counter trees contain few nodes in mostly symmetric
683 * scenarios. For example, if all queues have the same weight, then the
684 * weight-counter tree for the queues may contain at most one node.
685 * This holds even if low_latency is on, because weight-raised queues
686 * are not inserted in the tree.
687 * In most scenarios, the rate at which nodes are created/destroyed
688 * should be low too.
689 */
ea25da48
PV
690void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
691 struct rb_root *root)
1de0c4cd
AA
692{
693 struct rb_node **new = &(root->rb_node), *parent = NULL;
694
695 /*
696 * Do not insert if the entity is already associated with a
697 * counter, which happens if:
698 * 1) the entity is associated with a queue,
699 * 2) a request arrival has caused the queue to become both
700 * non-weight-raised, and hence change its weight, and
701 * backlogged; in this respect, each of the two events
702 * causes an invocation of this function,
703 * 3) this is the invocation of this function caused by the
704 * second event. This second invocation is actually useless,
705 * and we handle this fact by exiting immediately. More
706 * efficient or clearer solutions might possibly be adopted.
707 */
708 if (entity->weight_counter)
709 return;
710
711 while (*new) {
712 struct bfq_weight_counter *__counter = container_of(*new,
713 struct bfq_weight_counter,
714 weights_node);
715 parent = *new;
716
717 if (entity->weight == __counter->weight) {
718 entity->weight_counter = __counter;
719 goto inc_counter;
720 }
721 if (entity->weight < __counter->weight)
722 new = &((*new)->rb_left);
723 else
724 new = &((*new)->rb_right);
725 }
726
727 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
728 GFP_ATOMIC);
729
730 /*
731 * In the unlucky event of an allocation failure, we just
732 * exit. This will cause the weight of entity to not be
733 * considered in bfq_differentiated_weights, which, in its
734 * turn, causes the scenario to be deemed wrongly symmetric in
735 * case entity's weight would have been the only weight making
736 * the scenario asymmetric. On the bright side, no unbalance
737 * will however occur when entity becomes inactive again (the
738 * invocation of this function is triggered by an activation
739 * of entity). In fact, bfq_weights_tree_remove does nothing
740 * if !entity->weight_counter.
741 */
742 if (unlikely(!entity->weight_counter))
743 return;
744
745 entity->weight_counter->weight = entity->weight;
746 rb_link_node(&entity->weight_counter->weights_node, parent, new);
747 rb_insert_color(&entity->weight_counter->weights_node, root);
748
749inc_counter:
750 entity->weight_counter->num_active++;
751}
752
753/*
754 * Decrement the weight counter associated with the entity, and, if the
755 * counter reaches 0, remove the counter from the tree.
756 * See the comments to the function bfq_weights_tree_add() for considerations
757 * about overhead.
758 */
0471559c
PV
759void __bfq_weights_tree_remove(struct bfq_data *bfqd,
760 struct bfq_entity *entity,
761 struct rb_root *root)
1de0c4cd
AA
762{
763 if (!entity->weight_counter)
764 return;
765
766 entity->weight_counter->num_active--;
767 if (entity->weight_counter->num_active > 0)
768 goto reset_entity_pointer;
769
770 rb_erase(&entity->weight_counter->weights_node, root);
771 kfree(entity->weight_counter);
772
773reset_entity_pointer:
774 entity->weight_counter = NULL;
775}
776
0471559c
PV
777/*
778 * Invoke __bfq_weights_tree_remove on bfqq and all its inactive
779 * parent entities.
780 */
781void bfq_weights_tree_remove(struct bfq_data *bfqd,
782 struct bfq_queue *bfqq)
783{
784 struct bfq_entity *entity = bfqq->entity.parent;
785
786 __bfq_weights_tree_remove(bfqd, &bfqq->entity,
787 &bfqd->queue_weights_tree);
788
789 for_each_entity(entity) {
790 struct bfq_sched_data *sd = entity->my_sched_data;
791
792 if (sd->next_in_service || sd->in_service_entity) {
793 /*
794 * entity is still active, because either
795 * next_in_service or in_service_entity is not
796 * NULL (see the comments on the definition of
797 * next_in_service for details on why
798 * in_service_entity must be checked too).
799 *
800 * As a consequence, the weight of entity is
801 * not to be removed. In addition, if entity
802 * is active, then its parent entities are
803 * active as well, and thus their weights are
804 * not to be removed either. In the end, this
805 * loop must stop here.
806 */
807 break;
808 }
809 __bfq_weights_tree_remove(bfqd, entity,
810 &bfqd->group_weights_tree);
811 }
812}
813
aee69d78
PV
814/*
815 * Return expired entry, or NULL to just start from scratch in rbtree.
816 */
817static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
818 struct request *last)
819{
820 struct request *rq;
821
822 if (bfq_bfqq_fifo_expire(bfqq))
823 return NULL;
824
825 bfq_mark_bfqq_fifo_expire(bfqq);
826
827 rq = rq_entry_fifo(bfqq->fifo.next);
828
829 if (rq == last || ktime_get_ns() < rq->fifo_time)
830 return NULL;
831
832 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
833 return rq;
834}
835
836static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
837 struct bfq_queue *bfqq,
838 struct request *last)
839{
840 struct rb_node *rbnext = rb_next(&last->rb_node);
841 struct rb_node *rbprev = rb_prev(&last->rb_node);
842 struct request *next, *prev = NULL;
843
844 /* Follow expired path, else get first next available. */
845 next = bfq_check_fifo(bfqq, last);
846 if (next)
847 return next;
848
849 if (rbprev)
850 prev = rb_entry_rq(rbprev);
851
852 if (rbnext)
853 next = rb_entry_rq(rbnext);
854 else {
855 rbnext = rb_first(&bfqq->sort_list);
856 if (rbnext && rbnext != &last->rb_node)
857 next = rb_entry_rq(rbnext);
858 }
859
860 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
861}
862
c074170e 863/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
864static unsigned long bfq_serv_to_charge(struct request *rq,
865 struct bfq_queue *bfqq)
866{
44e44a1b 867 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
868 return blk_rq_sectors(rq);
869
d5801088 870 return blk_rq_sectors(rq) * bfq_async_charge_factor;
aee69d78
PV
871}
872
873/**
874 * bfq_updated_next_req - update the queue after a new next_rq selection.
875 * @bfqd: the device data the queue belongs to.
876 * @bfqq: the queue to update.
877 *
878 * If the first request of a queue changes we make sure that the queue
879 * has enough budget to serve at least its first request (if the
880 * request has grown). We do this because if the queue has not enough
881 * budget for its first request, it has to go through two dispatch
882 * rounds to actually get it dispatched.
883 */
884static void bfq_updated_next_req(struct bfq_data *bfqd,
885 struct bfq_queue *bfqq)
886{
887 struct bfq_entity *entity = &bfqq->entity;
888 struct request *next_rq = bfqq->next_rq;
889 unsigned long new_budget;
890
891 if (!next_rq)
892 return;
893
894 if (bfqq == bfqd->in_service_queue)
895 /*
896 * In order not to break guarantees, budgets cannot be
897 * changed after an entity has been selected.
898 */
899 return;
900
901 new_budget = max_t(unsigned long, bfqq->max_budget,
902 bfq_serv_to_charge(next_rq, bfqq));
903 if (entity->budget != new_budget) {
904 entity->budget = new_budget;
905 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
906 new_budget);
80294c3b 907 bfq_requeue_bfqq(bfqd, bfqq, false);
aee69d78
PV
908 }
909}
910
3e2bdd6d
PV
911static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
912{
913 u64 dur;
914
915 if (bfqd->bfq_wr_max_time > 0)
916 return bfqd->bfq_wr_max_time;
917
e24f1c24 918 dur = bfqd->rate_dur_prod;
3e2bdd6d
PV
919 do_div(dur, bfqd->peak_rate);
920
921 /*
d450542e
DS
922 * Limit duration between 3 and 25 seconds. The upper limit
923 * has been conservatively set after the following worst case:
924 * on a QEMU/KVM virtual machine
925 * - running in a slow PC
926 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
927 * - serving a heavy I/O workload, such as the sequential reading
928 * of several files
929 * mplayer took 23 seconds to start, if constantly weight-raised.
930 *
931 * As for higher values than that accomodating the above bad
932 * scenario, tests show that higher values would often yield
933 * the opposite of the desired result, i.e., would worsen
934 * responsiveness by allowing non-interactive applications to
935 * preserve weight raising for too long.
3e2bdd6d
PV
936 *
937 * On the other end, lower values than 3 seconds make it
938 * difficult for most interactive tasks to complete their jobs
939 * before weight-raising finishes.
940 */
d450542e 941 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
3e2bdd6d
PV
942}
943
944/* switch back from soft real-time to interactive weight raising */
945static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
946 struct bfq_data *bfqd)
947{
948 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
949 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
950 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
951}
952
36eca894 953static void
13c931bd
PV
954bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
955 struct bfq_io_cq *bic, bool bfq_already_existing)
36eca894 956{
13c931bd
PV
957 unsigned int old_wr_coeff = bfqq->wr_coeff;
958 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
959
d5be3fef
PV
960 if (bic->saved_has_short_ttime)
961 bfq_mark_bfqq_has_short_ttime(bfqq);
36eca894 962 else
d5be3fef 963 bfq_clear_bfqq_has_short_ttime(bfqq);
36eca894
AA
964
965 if (bic->saved_IO_bound)
966 bfq_mark_bfqq_IO_bound(bfqq);
967 else
968 bfq_clear_bfqq_IO_bound(bfqq);
969
970 bfqq->ttime = bic->saved_ttime;
971 bfqq->wr_coeff = bic->saved_wr_coeff;
972 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
973 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
974 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
975
e1b2324d 976 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 977 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 978 bfqq->wr_cur_max_time))) {
3e2bdd6d
PV
979 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
980 !bfq_bfqq_in_large_burst(bfqq) &&
981 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
982 bfq_wr_duration(bfqd))) {
983 switch_back_to_interactive_wr(bfqq, bfqd);
984 } else {
985 bfqq->wr_coeff = 1;
986 bfq_log_bfqq(bfqq->bfqd, bfqq,
987 "resume state: switching off wr");
988 }
36eca894
AA
989 }
990
991 /* make sure weight will be updated, however we got here */
992 bfqq->entity.prio_changed = 1;
13c931bd
PV
993
994 if (likely(!busy))
995 return;
996
997 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
998 bfqd->wr_busy_queues++;
999 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1000 bfqd->wr_busy_queues--;
36eca894
AA
1001}
1002
1003static int bfqq_process_refs(struct bfq_queue *bfqq)
1004{
1005 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1006}
1007
e1b2324d
AA
1008/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1009static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1010{
1011 struct bfq_queue *item;
1012 struct hlist_node *n;
1013
1014 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1015 hlist_del_init(&item->burst_list_node);
1016 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1017 bfqd->burst_size = 1;
1018 bfqd->burst_parent_entity = bfqq->entity.parent;
1019}
1020
1021/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1022static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1023{
1024 /* Increment burst size to take into account also bfqq */
1025 bfqd->burst_size++;
1026
1027 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1028 struct bfq_queue *pos, *bfqq_item;
1029 struct hlist_node *n;
1030
1031 /*
1032 * Enough queues have been activated shortly after each
1033 * other to consider this burst as large.
1034 */
1035 bfqd->large_burst = true;
1036
1037 /*
1038 * We can now mark all queues in the burst list as
1039 * belonging to a large burst.
1040 */
1041 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1042 burst_list_node)
1043 bfq_mark_bfqq_in_large_burst(bfqq_item);
1044 bfq_mark_bfqq_in_large_burst(bfqq);
1045
1046 /*
1047 * From now on, and until the current burst finishes, any
1048 * new queue being activated shortly after the last queue
1049 * was inserted in the burst can be immediately marked as
1050 * belonging to a large burst. So the burst list is not
1051 * needed any more. Remove it.
1052 */
1053 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1054 burst_list_node)
1055 hlist_del_init(&pos->burst_list_node);
1056 } else /*
1057 * Burst not yet large: add bfqq to the burst list. Do
1058 * not increment the ref counter for bfqq, because bfqq
1059 * is removed from the burst list before freeing bfqq
1060 * in put_queue.
1061 */
1062 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1063}
1064
1065/*
1066 * If many queues belonging to the same group happen to be created
1067 * shortly after each other, then the processes associated with these
1068 * queues have typically a common goal. In particular, bursts of queue
1069 * creations are usually caused by services or applications that spawn
1070 * many parallel threads/processes. Examples are systemd during boot,
1071 * or git grep. To help these processes get their job done as soon as
1072 * possible, it is usually better to not grant either weight-raising
1073 * or device idling to their queues.
1074 *
1075 * In this comment we describe, firstly, the reasons why this fact
1076 * holds, and, secondly, the next function, which implements the main
1077 * steps needed to properly mark these queues so that they can then be
1078 * treated in a different way.
1079 *
1080 * The above services or applications benefit mostly from a high
1081 * throughput: the quicker the requests of the activated queues are
1082 * cumulatively served, the sooner the target job of these queues gets
1083 * completed. As a consequence, weight-raising any of these queues,
1084 * which also implies idling the device for it, is almost always
1085 * counterproductive. In most cases it just lowers throughput.
1086 *
1087 * On the other hand, a burst of queue creations may be caused also by
1088 * the start of an application that does not consist of a lot of
1089 * parallel I/O-bound threads. In fact, with a complex application,
1090 * several short processes may need to be executed to start-up the
1091 * application. In this respect, to start an application as quickly as
1092 * possible, the best thing to do is in any case to privilege the I/O
1093 * related to the application with respect to all other
1094 * I/O. Therefore, the best strategy to start as quickly as possible
1095 * an application that causes a burst of queue creations is to
1096 * weight-raise all the queues created during the burst. This is the
1097 * exact opposite of the best strategy for the other type of bursts.
1098 *
1099 * In the end, to take the best action for each of the two cases, the
1100 * two types of bursts need to be distinguished. Fortunately, this
1101 * seems relatively easy, by looking at the sizes of the bursts. In
1102 * particular, we found a threshold such that only bursts with a
1103 * larger size than that threshold are apparently caused by
1104 * services or commands such as systemd or git grep. For brevity,
1105 * hereafter we call just 'large' these bursts. BFQ *does not*
1106 * weight-raise queues whose creation occurs in a large burst. In
1107 * addition, for each of these queues BFQ performs or does not perform
1108 * idling depending on which choice boosts the throughput more. The
1109 * exact choice depends on the device and request pattern at
1110 * hand.
1111 *
1112 * Unfortunately, false positives may occur while an interactive task
1113 * is starting (e.g., an application is being started). The
1114 * consequence is that the queues associated with the task do not
1115 * enjoy weight raising as expected. Fortunately these false positives
1116 * are very rare. They typically occur if some service happens to
1117 * start doing I/O exactly when the interactive task starts.
1118 *
1119 * Turning back to the next function, it implements all the steps
1120 * needed to detect the occurrence of a large burst and to properly
1121 * mark all the queues belonging to it (so that they can then be
1122 * treated in a different way). This goal is achieved by maintaining a
1123 * "burst list" that holds, temporarily, the queues that belong to the
1124 * burst in progress. The list is then used to mark these queues as
1125 * belonging to a large burst if the burst does become large. The main
1126 * steps are the following.
1127 *
1128 * . when the very first queue is created, the queue is inserted into the
1129 * list (as it could be the first queue in a possible burst)
1130 *
1131 * . if the current burst has not yet become large, and a queue Q that does
1132 * not yet belong to the burst is activated shortly after the last time
1133 * at which a new queue entered the burst list, then the function appends
1134 * Q to the burst list
1135 *
1136 * . if, as a consequence of the previous step, the burst size reaches
1137 * the large-burst threshold, then
1138 *
1139 * . all the queues in the burst list are marked as belonging to a
1140 * large burst
1141 *
1142 * . the burst list is deleted; in fact, the burst list already served
1143 * its purpose (keeping temporarily track of the queues in a burst,
1144 * so as to be able to mark them as belonging to a large burst in the
1145 * previous sub-step), and now is not needed any more
1146 *
1147 * . the device enters a large-burst mode
1148 *
1149 * . if a queue Q that does not belong to the burst is created while
1150 * the device is in large-burst mode and shortly after the last time
1151 * at which a queue either entered the burst list or was marked as
1152 * belonging to the current large burst, then Q is immediately marked
1153 * as belonging to a large burst.
1154 *
1155 * . if a queue Q that does not belong to the burst is created a while
1156 * later, i.e., not shortly after, than the last time at which a queue
1157 * either entered the burst list or was marked as belonging to the
1158 * current large burst, then the current burst is deemed as finished and:
1159 *
1160 * . the large-burst mode is reset if set
1161 *
1162 * . the burst list is emptied
1163 *
1164 * . Q is inserted in the burst list, as Q may be the first queue
1165 * in a possible new burst (then the burst list contains just Q
1166 * after this step).
1167 */
1168static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1169{
1170 /*
1171 * If bfqq is already in the burst list or is part of a large
1172 * burst, or finally has just been split, then there is
1173 * nothing else to do.
1174 */
1175 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1176 bfq_bfqq_in_large_burst(bfqq) ||
1177 time_is_after_eq_jiffies(bfqq->split_time +
1178 msecs_to_jiffies(10)))
1179 return;
1180
1181 /*
1182 * If bfqq's creation happens late enough, or bfqq belongs to
1183 * a different group than the burst group, then the current
1184 * burst is finished, and related data structures must be
1185 * reset.
1186 *
1187 * In this respect, consider the special case where bfqq is
1188 * the very first queue created after BFQ is selected for this
1189 * device. In this case, last_ins_in_burst and
1190 * burst_parent_entity are not yet significant when we get
1191 * here. But it is easy to verify that, whether or not the
1192 * following condition is true, bfqq will end up being
1193 * inserted into the burst list. In particular the list will
1194 * happen to contain only bfqq. And this is exactly what has
1195 * to happen, as bfqq may be the first queue of the first
1196 * burst.
1197 */
1198 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1199 bfqd->bfq_burst_interval) ||
1200 bfqq->entity.parent != bfqd->burst_parent_entity) {
1201 bfqd->large_burst = false;
1202 bfq_reset_burst_list(bfqd, bfqq);
1203 goto end;
1204 }
1205
1206 /*
1207 * If we get here, then bfqq is being activated shortly after the
1208 * last queue. So, if the current burst is also large, we can mark
1209 * bfqq as belonging to this large burst immediately.
1210 */
1211 if (bfqd->large_burst) {
1212 bfq_mark_bfqq_in_large_burst(bfqq);
1213 goto end;
1214 }
1215
1216 /*
1217 * If we get here, then a large-burst state has not yet been
1218 * reached, but bfqq is being activated shortly after the last
1219 * queue. Then we add bfqq to the burst.
1220 */
1221 bfq_add_to_burst(bfqd, bfqq);
1222end:
1223 /*
1224 * At this point, bfqq either has been added to the current
1225 * burst or has caused the current burst to terminate and a
1226 * possible new burst to start. In particular, in the second
1227 * case, bfqq has become the first queue in the possible new
1228 * burst. In both cases last_ins_in_burst needs to be moved
1229 * forward.
1230 */
1231 bfqd->last_ins_in_burst = jiffies;
1232}
1233
aee69d78
PV
1234static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1235{
1236 struct bfq_entity *entity = &bfqq->entity;
1237
1238 return entity->budget - entity->service;
1239}
1240
1241/*
1242 * If enough samples have been computed, return the current max budget
1243 * stored in bfqd, which is dynamically updated according to the
1244 * estimated disk peak rate; otherwise return the default max budget
1245 */
1246static int bfq_max_budget(struct bfq_data *bfqd)
1247{
1248 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1249 return bfq_default_max_budget;
1250 else
1251 return bfqd->bfq_max_budget;
1252}
1253
1254/*
1255 * Return min budget, which is a fraction of the current or default
1256 * max budget (trying with 1/32)
1257 */
1258static int bfq_min_budget(struct bfq_data *bfqd)
1259{
1260 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1261 return bfq_default_max_budget / 32;
1262 else
1263 return bfqd->bfq_max_budget / 32;
1264}
1265
aee69d78
PV
1266/*
1267 * The next function, invoked after the input queue bfqq switches from
1268 * idle to busy, updates the budget of bfqq. The function also tells
1269 * whether the in-service queue should be expired, by returning
1270 * true. The purpose of expiring the in-service queue is to give bfqq
1271 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
1272 * for preempting the in-service queue is to achieve one of the two
1273 * goals below.
aee69d78 1274 *
44e44a1b
PV
1275 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1276 * expired because it has remained idle. In particular, bfqq may have
1277 * expired for one of the following two reasons:
aee69d78
PV
1278 *
1279 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1280 * and did not make it to issue a new request before its last
1281 * request was served;
1282 *
1283 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1284 * a new request before the expiration of the idling-time.
1285 *
1286 * Even if bfqq has expired for one of the above reasons, the process
1287 * associated with the queue may be however issuing requests greedily,
1288 * and thus be sensitive to the bandwidth it receives (bfqq may have
1289 * remained idle for other reasons: CPU high load, bfqq not enjoying
1290 * idling, I/O throttling somewhere in the path from the process to
1291 * the I/O scheduler, ...). But if, after every expiration for one of
1292 * the above two reasons, bfqq has to wait for the service of at least
1293 * one full budget of another queue before being served again, then
1294 * bfqq is likely to get a much lower bandwidth or resource time than
1295 * its reserved ones. To address this issue, two countermeasures need
1296 * to be taken.
1297 *
1298 * First, the budget and the timestamps of bfqq need to be updated in
1299 * a special way on bfqq reactivation: they need to be updated as if
1300 * bfqq did not remain idle and did not expire. In fact, if they are
1301 * computed as if bfqq expired and remained idle until reactivation,
1302 * then the process associated with bfqq is treated as if, instead of
1303 * being greedy, it stopped issuing requests when bfqq remained idle,
1304 * and restarts issuing requests only on this reactivation. In other
1305 * words, the scheduler does not help the process recover the "service
1306 * hole" between bfqq expiration and reactivation. As a consequence,
1307 * the process receives a lower bandwidth than its reserved one. In
1308 * contrast, to recover this hole, the budget must be updated as if
1309 * bfqq was not expired at all before this reactivation, i.e., it must
1310 * be set to the value of the remaining budget when bfqq was
1311 * expired. Along the same line, timestamps need to be assigned the
1312 * value they had the last time bfqq was selected for service, i.e.,
1313 * before last expiration. Thus timestamps need to be back-shifted
1314 * with respect to their normal computation (see [1] for more details
1315 * on this tricky aspect).
1316 *
1317 * Secondly, to allow the process to recover the hole, the in-service
1318 * queue must be expired too, to give bfqq the chance to preempt it
1319 * immediately. In fact, if bfqq has to wait for a full budget of the
1320 * in-service queue to be completed, then it may become impossible to
1321 * let the process recover the hole, even if the back-shifted
1322 * timestamps of bfqq are lower than those of the in-service queue. If
1323 * this happens for most or all of the holes, then the process may not
1324 * receive its reserved bandwidth. In this respect, it is worth noting
1325 * that, being the service of outstanding requests unpreemptible, a
1326 * little fraction of the holes may however be unrecoverable, thereby
1327 * causing a little loss of bandwidth.
1328 *
1329 * The last important point is detecting whether bfqq does need this
1330 * bandwidth recovery. In this respect, the next function deems the
1331 * process associated with bfqq greedy, and thus allows it to recover
1332 * the hole, if: 1) the process is waiting for the arrival of a new
1333 * request (which implies that bfqq expired for one of the above two
1334 * reasons), and 2) such a request has arrived soon. The first
1335 * condition is controlled through the flag non_blocking_wait_rq,
1336 * while the second through the flag arrived_in_time. If both
1337 * conditions hold, then the function computes the budget in the
1338 * above-described special way, and signals that the in-service queue
1339 * should be expired. Timestamp back-shifting is done later in
1340 * __bfq_activate_entity.
44e44a1b
PV
1341 *
1342 * 2. Reduce latency. Even if timestamps are not backshifted to let
1343 * the process associated with bfqq recover a service hole, bfqq may
1344 * however happen to have, after being (re)activated, a lower finish
1345 * timestamp than the in-service queue. That is, the next budget of
1346 * bfqq may have to be completed before the one of the in-service
1347 * queue. If this is the case, then preempting the in-service queue
1348 * allows this goal to be achieved, apart from the unpreemptible,
1349 * outstanding requests mentioned above.
1350 *
1351 * Unfortunately, regardless of which of the above two goals one wants
1352 * to achieve, service trees need first to be updated to know whether
1353 * the in-service queue must be preempted. To have service trees
1354 * correctly updated, the in-service queue must be expired and
1355 * rescheduled, and bfqq must be scheduled too. This is one of the
1356 * most costly operations (in future versions, the scheduling
1357 * mechanism may be re-designed in such a way to make it possible to
1358 * know whether preemption is needed without needing to update service
1359 * trees). In addition, queue preemptions almost always cause random
1360 * I/O, and thus loss of throughput. Because of these facts, the next
1361 * function adopts the following simple scheme to avoid both costly
1362 * operations and too frequent preemptions: it requests the expiration
1363 * of the in-service queue (unconditionally) only for queues that need
1364 * to recover a hole, or that either are weight-raised or deserve to
1365 * be weight-raised.
aee69d78
PV
1366 */
1367static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1368 struct bfq_queue *bfqq,
44e44a1b
PV
1369 bool arrived_in_time,
1370 bool wr_or_deserves_wr)
aee69d78
PV
1371{
1372 struct bfq_entity *entity = &bfqq->entity;
1373
1374 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1375 /*
1376 * We do not clear the flag non_blocking_wait_rq here, as
1377 * the latter is used in bfq_activate_bfqq to signal
1378 * that timestamps need to be back-shifted (and is
1379 * cleared right after).
1380 */
1381
1382 /*
1383 * In next assignment we rely on that either
1384 * entity->service or entity->budget are not updated
1385 * on expiration if bfqq is empty (see
1386 * __bfq_bfqq_recalc_budget). Thus both quantities
1387 * remain unchanged after such an expiration, and the
1388 * following statement therefore assigns to
1389 * entity->budget the remaining budget on such an
9fae8dd5 1390 * expiration.
aee69d78
PV
1391 */
1392 entity->budget = min_t(unsigned long,
1393 bfq_bfqq_budget_left(bfqq),
1394 bfqq->max_budget);
1395
9fae8dd5
PV
1396 /*
1397 * At this point, we have used entity->service to get
1398 * the budget left (needed for updating
1399 * entity->budget). Thus we finally can, and have to,
1400 * reset entity->service. The latter must be reset
1401 * because bfqq would otherwise be charged again for
1402 * the service it has received during its previous
1403 * service slot(s).
1404 */
1405 entity->service = 0;
1406
aee69d78
PV
1407 return true;
1408 }
1409
9fae8dd5
PV
1410 /*
1411 * We can finally complete expiration, by setting service to 0.
1412 */
1413 entity->service = 0;
aee69d78
PV
1414 entity->budget = max_t(unsigned long, bfqq->max_budget,
1415 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1416 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
1417 return wr_or_deserves_wr;
1418}
1419
4baa8bb1
PV
1420/*
1421 * Return the farthest past time instant according to jiffies
1422 * macros.
1423 */
1424static unsigned long bfq_smallest_from_now(void)
1425{
1426 return jiffies - MAX_JIFFY_OFFSET;
1427}
1428
44e44a1b
PV
1429static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1430 struct bfq_queue *bfqq,
1431 unsigned int old_wr_coeff,
1432 bool wr_or_deserves_wr,
77b7dcea 1433 bool interactive,
e1b2324d 1434 bool in_burst,
77b7dcea 1435 bool soft_rt)
44e44a1b
PV
1436{
1437 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1438 /* start a weight-raising period */
77b7dcea 1439 if (interactive) {
8a8747dc 1440 bfqq->service_from_wr = 0;
77b7dcea
PV
1441 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1442 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1443 } else {
4baa8bb1
PV
1444 /*
1445 * No interactive weight raising in progress
1446 * here: assign minus infinity to
1447 * wr_start_at_switch_to_srt, to make sure
1448 * that, at the end of the soft-real-time
1449 * weight raising periods that is starting
1450 * now, no interactive weight-raising period
1451 * may be wrongly considered as still in
1452 * progress (and thus actually started by
1453 * mistake).
1454 */
1455 bfqq->wr_start_at_switch_to_srt =
1456 bfq_smallest_from_now();
77b7dcea
PV
1457 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1458 BFQ_SOFTRT_WEIGHT_FACTOR;
1459 bfqq->wr_cur_max_time =
1460 bfqd->bfq_wr_rt_max_time;
1461 }
44e44a1b
PV
1462
1463 /*
1464 * If needed, further reduce budget to make sure it is
1465 * close to bfqq's backlog, so as to reduce the
1466 * scheduling-error component due to a too large
1467 * budget. Do not care about throughput consequences,
1468 * but only about latency. Finally, do not assign a
1469 * too small budget either, to avoid increasing
1470 * latency by causing too frequent expirations.
1471 */
1472 bfqq->entity.budget = min_t(unsigned long,
1473 bfqq->entity.budget,
1474 2 * bfq_min_budget(bfqd));
1475 } else if (old_wr_coeff > 1) {
77b7dcea
PV
1476 if (interactive) { /* update wr coeff and duration */
1477 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1478 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
1479 } else if (in_burst)
1480 bfqq->wr_coeff = 1;
1481 else if (soft_rt) {
77b7dcea
PV
1482 /*
1483 * The application is now or still meeting the
1484 * requirements for being deemed soft rt. We
1485 * can then correctly and safely (re)charge
1486 * the weight-raising duration for the
1487 * application with the weight-raising
1488 * duration for soft rt applications.
1489 *
1490 * In particular, doing this recharge now, i.e.,
1491 * before the weight-raising period for the
1492 * application finishes, reduces the probability
1493 * of the following negative scenario:
1494 * 1) the weight of a soft rt application is
1495 * raised at startup (as for any newly
1496 * created application),
1497 * 2) since the application is not interactive,
1498 * at a certain time weight-raising is
1499 * stopped for the application,
1500 * 3) at that time the application happens to
1501 * still have pending requests, and hence
1502 * is destined to not have a chance to be
1503 * deemed soft rt before these requests are
1504 * completed (see the comments to the
1505 * function bfq_bfqq_softrt_next_start()
1506 * for details on soft rt detection),
1507 * 4) these pending requests experience a high
1508 * latency because the application is not
1509 * weight-raised while they are pending.
1510 */
1511 if (bfqq->wr_cur_max_time !=
1512 bfqd->bfq_wr_rt_max_time) {
1513 bfqq->wr_start_at_switch_to_srt =
1514 bfqq->last_wr_start_finish;
1515
1516 bfqq->wr_cur_max_time =
1517 bfqd->bfq_wr_rt_max_time;
1518 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1519 BFQ_SOFTRT_WEIGHT_FACTOR;
1520 }
1521 bfqq->last_wr_start_finish = jiffies;
1522 }
44e44a1b
PV
1523 }
1524}
1525
1526static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1527 struct bfq_queue *bfqq)
1528{
1529 return bfqq->dispatched == 0 &&
1530 time_is_before_jiffies(
1531 bfqq->budget_timeout +
1532 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
1533}
1534
1535static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1536 struct bfq_queue *bfqq,
44e44a1b
PV
1537 int old_wr_coeff,
1538 struct request *rq,
1539 bool *interactive)
aee69d78 1540{
e1b2324d
AA
1541 bool soft_rt, in_burst, wr_or_deserves_wr,
1542 bfqq_wants_to_preempt,
44e44a1b 1543 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
1544 /*
1545 * See the comments on
1546 * bfq_bfqq_update_budg_for_activation for
1547 * details on the usage of the next variable.
1548 */
1549 arrived_in_time = ktime_get_ns() <=
1550 bfqq->ttime.last_end_request +
1551 bfqd->bfq_slice_idle * 3;
1552
e21b7a0b 1553
aee69d78 1554 /*
44e44a1b
PV
1555 * bfqq deserves to be weight-raised if:
1556 * - it is sync,
e1b2324d 1557 * - it does not belong to a large burst,
36eca894
AA
1558 * - it has been idle for enough time or is soft real-time,
1559 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 1560 */
e1b2324d 1561 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 1562 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 1563 !in_burst &&
f6c3ca0e
DS
1564 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1565 bfqq->dispatched == 0;
e1b2324d 1566 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
1567 wr_or_deserves_wr = bfqd->low_latency &&
1568 (bfqq->wr_coeff > 1 ||
36eca894
AA
1569 (bfq_bfqq_sync(bfqq) &&
1570 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
1571
1572 /*
1573 * Using the last flag, update budget and check whether bfqq
1574 * may want to preempt the in-service queue.
aee69d78
PV
1575 */
1576 bfqq_wants_to_preempt =
1577 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
1578 arrived_in_time,
1579 wr_or_deserves_wr);
aee69d78 1580
e1b2324d
AA
1581 /*
1582 * If bfqq happened to be activated in a burst, but has been
1583 * idle for much more than an interactive queue, then we
1584 * assume that, in the overall I/O initiated in the burst, the
1585 * I/O associated with bfqq is finished. So bfqq does not need
1586 * to be treated as a queue belonging to a burst
1587 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1588 * if set, and remove bfqq from the burst list if it's
1589 * there. We do not decrement burst_size, because the fact
1590 * that bfqq does not need to belong to the burst list any
1591 * more does not invalidate the fact that bfqq was created in
1592 * a burst.
1593 */
1594 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1595 idle_for_long_time &&
1596 time_is_before_jiffies(
1597 bfqq->budget_timeout +
1598 msecs_to_jiffies(10000))) {
1599 hlist_del_init(&bfqq->burst_list_node);
1600 bfq_clear_bfqq_in_large_burst(bfqq);
1601 }
1602
1603 bfq_clear_bfqq_just_created(bfqq);
1604
1605
aee69d78
PV
1606 if (!bfq_bfqq_IO_bound(bfqq)) {
1607 if (arrived_in_time) {
1608 bfqq->requests_within_timer++;
1609 if (bfqq->requests_within_timer >=
1610 bfqd->bfq_requests_within_timer)
1611 bfq_mark_bfqq_IO_bound(bfqq);
1612 } else
1613 bfqq->requests_within_timer = 0;
1614 }
1615
44e44a1b 1616 if (bfqd->low_latency) {
36eca894
AA
1617 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1618 /* wraparound */
1619 bfqq->split_time =
1620 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1621
1622 if (time_is_before_jiffies(bfqq->split_time +
1623 bfqd->bfq_wr_min_idle_time)) {
1624 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1625 old_wr_coeff,
1626 wr_or_deserves_wr,
1627 *interactive,
e1b2324d 1628 in_burst,
36eca894
AA
1629 soft_rt);
1630
1631 if (old_wr_coeff != bfqq->wr_coeff)
1632 bfqq->entity.prio_changed = 1;
1633 }
44e44a1b
PV
1634 }
1635
77b7dcea
PV
1636 bfqq->last_idle_bklogged = jiffies;
1637 bfqq->service_from_backlogged = 0;
1638 bfq_clear_bfqq_softrt_update(bfqq);
1639
aee69d78
PV
1640 bfq_add_bfqq_busy(bfqd, bfqq);
1641
1642 /*
1643 * Expire in-service queue only if preemption may be needed
1644 * for guarantees. In this respect, the function
1645 * next_queue_may_preempt just checks a simple, necessary
1646 * condition, and not a sufficient condition based on
1647 * timestamps. In fact, for the latter condition to be
1648 * evaluated, timestamps would need first to be updated, and
1649 * this operation is quite costly (see the comments on the
1650 * function bfq_bfqq_update_budg_for_activation).
1651 */
1652 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 1653 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
1654 next_queue_may_preempt(bfqd))
1655 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1656 false, BFQQE_PREEMPTED);
1657}
1658
1659static void bfq_add_request(struct request *rq)
1660{
1661 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1662 struct bfq_data *bfqd = bfqq->bfqd;
1663 struct request *next_rq, *prev;
44e44a1b
PV
1664 unsigned int old_wr_coeff = bfqq->wr_coeff;
1665 bool interactive = false;
aee69d78
PV
1666
1667 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1668 bfqq->queued[rq_is_sync(rq)]++;
1669 bfqd->queued++;
1670
1671 elv_rb_add(&bfqq->sort_list, rq);
1672
1673 /*
1674 * Check if this request is a better next-serve candidate.
1675 */
1676 prev = bfqq->next_rq;
1677 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1678 bfqq->next_rq = next_rq;
1679
36eca894
AA
1680 /*
1681 * Adjust priority tree position, if next_rq changes.
1682 */
1683 if (prev != bfqq->next_rq)
1684 bfq_pos_tree_add_move(bfqd, bfqq);
1685
aee69d78 1686 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
1687 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1688 rq, &interactive);
1689 else {
1690 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1691 time_is_before_jiffies(
1692 bfqq->last_wr_start_finish +
1693 bfqd->bfq_wr_min_inter_arr_async)) {
1694 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1695 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1696
cfd69712 1697 bfqd->wr_busy_queues++;
44e44a1b
PV
1698 bfqq->entity.prio_changed = 1;
1699 }
1700 if (prev != bfqq->next_rq)
1701 bfq_updated_next_req(bfqd, bfqq);
1702 }
1703
1704 /*
1705 * Assign jiffies to last_wr_start_finish in the following
1706 * cases:
1707 *
1708 * . if bfqq is not going to be weight-raised, because, for
1709 * non weight-raised queues, last_wr_start_finish stores the
1710 * arrival time of the last request; as of now, this piece
1711 * of information is used only for deciding whether to
1712 * weight-raise async queues
1713 *
1714 * . if bfqq is not weight-raised, because, if bfqq is now
1715 * switching to weight-raised, then last_wr_start_finish
1716 * stores the time when weight-raising starts
1717 *
1718 * . if bfqq is interactive, because, regardless of whether
1719 * bfqq is currently weight-raised, the weight-raising
1720 * period must start or restart (this case is considered
1721 * separately because it is not detected by the above
1722 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
1723 *
1724 * last_wr_start_finish has to be updated also if bfqq is soft
1725 * real-time, because the weight-raising period is constantly
1726 * restarted on idle-to-busy transitions for these queues, but
1727 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1728 * needed.
44e44a1b
PV
1729 */
1730 if (bfqd->low_latency &&
1731 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1732 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
1733}
1734
1735static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1736 struct bio *bio,
1737 struct request_queue *q)
1738{
1739 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1740
1741
1742 if (bfqq)
1743 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1744
1745 return NULL;
1746}
1747
ab0e43e9
PV
1748static sector_t get_sdist(sector_t last_pos, struct request *rq)
1749{
1750 if (last_pos)
1751 return abs(blk_rq_pos(rq) - last_pos);
1752
1753 return 0;
1754}
1755
aee69d78
PV
1756#if 0 /* Still not clear if we can do without next two functions */
1757static void bfq_activate_request(struct request_queue *q, struct request *rq)
1758{
1759 struct bfq_data *bfqd = q->elevator->elevator_data;
1760
1761 bfqd->rq_in_driver++;
aee69d78
PV
1762}
1763
1764static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1765{
1766 struct bfq_data *bfqd = q->elevator->elevator_data;
1767
1768 bfqd->rq_in_driver--;
1769}
1770#endif
1771
1772static void bfq_remove_request(struct request_queue *q,
1773 struct request *rq)
1774{
1775 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1776 struct bfq_data *bfqd = bfqq->bfqd;
1777 const int sync = rq_is_sync(rq);
1778
1779 if (bfqq->next_rq == rq) {
1780 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1781 bfq_updated_next_req(bfqd, bfqq);
1782 }
1783
1784 if (rq->queuelist.prev != &rq->queuelist)
1785 list_del_init(&rq->queuelist);
1786 bfqq->queued[sync]--;
1787 bfqd->queued--;
1788 elv_rb_del(&bfqq->sort_list, rq);
1789
1790 elv_rqhash_del(q, rq);
1791 if (q->last_merge == rq)
1792 q->last_merge = NULL;
1793
1794 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1795 bfqq->next_rq = NULL;
1796
1797 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 1798 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
1799 /*
1800 * bfqq emptied. In normal operation, when
1801 * bfqq is empty, bfqq->entity.service and
1802 * bfqq->entity.budget must contain,
1803 * respectively, the service received and the
1804 * budget used last time bfqq emptied. These
1805 * facts do not hold in this case, as at least
1806 * this last removal occurred while bfqq is
1807 * not in service. To avoid inconsistencies,
1808 * reset both bfqq->entity.service and
1809 * bfqq->entity.budget, if bfqq has still a
1810 * process that may issue I/O requests to it.
1811 */
1812 bfqq->entity.budget = bfqq->entity.service = 0;
1813 }
36eca894
AA
1814
1815 /*
1816 * Remove queue from request-position tree as it is empty.
1817 */
1818 if (bfqq->pos_root) {
1819 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1820 bfqq->pos_root = NULL;
1821 }
05e90283
PV
1822 } else {
1823 bfq_pos_tree_add_move(bfqd, bfqq);
aee69d78
PV
1824 }
1825
1826 if (rq->cmd_flags & REQ_META)
1827 bfqq->meta_pending--;
e21b7a0b 1828
aee69d78
PV
1829}
1830
1831static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1832{
1833 struct request_queue *q = hctx->queue;
1834 struct bfq_data *bfqd = q->elevator->elevator_data;
1835 struct request *free = NULL;
1836 /*
1837 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1838 * store its return value for later use, to avoid nesting
1839 * queue_lock inside the bfqd->lock. We assume that the bic
1840 * returned by bfq_bic_lookup does not go away before
1841 * bfqd->lock is taken.
1842 */
1843 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1844 bool ret;
1845
1846 spin_lock_irq(&bfqd->lock);
1847
1848 if (bic)
1849 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1850 else
1851 bfqd->bio_bfqq = NULL;
1852 bfqd->bio_bic = bic;
1853
1854 ret = blk_mq_sched_try_merge(q, bio, &free);
1855
1856 if (free)
1857 blk_mq_free_request(free);
1858 spin_unlock_irq(&bfqd->lock);
1859
1860 return ret;
1861}
1862
1863static int bfq_request_merge(struct request_queue *q, struct request **req,
1864 struct bio *bio)
1865{
1866 struct bfq_data *bfqd = q->elevator->elevator_data;
1867 struct request *__rq;
1868
1869 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1870 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1871 *req = __rq;
1872 return ELEVATOR_FRONT_MERGE;
1873 }
1874
1875 return ELEVATOR_NO_MERGE;
1876}
1877
18e5a57d
PV
1878static struct bfq_queue *bfq_init_rq(struct request *rq);
1879
aee69d78
PV
1880static void bfq_request_merged(struct request_queue *q, struct request *req,
1881 enum elv_merge type)
1882{
1883 if (type == ELEVATOR_FRONT_MERGE &&
1884 rb_prev(&req->rb_node) &&
1885 blk_rq_pos(req) <
1886 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1887 struct request, rb_node))) {
18e5a57d 1888 struct bfq_queue *bfqq = bfq_init_rq(req);
aee69d78
PV
1889 struct bfq_data *bfqd = bfqq->bfqd;
1890 struct request *prev, *next_rq;
1891
1892 /* Reposition request in its sort_list */
1893 elv_rb_del(&bfqq->sort_list, req);
1894 elv_rb_add(&bfqq->sort_list, req);
1895
1896 /* Choose next request to be served for bfqq */
1897 prev = bfqq->next_rq;
1898 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1899 bfqd->last_position);
1900 bfqq->next_rq = next_rq;
1901 /*
36eca894
AA
1902 * If next_rq changes, update both the queue's budget to
1903 * fit the new request and the queue's position in its
1904 * rq_pos_tree.
aee69d78 1905 */
36eca894 1906 if (prev != bfqq->next_rq) {
aee69d78 1907 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
1908 bfq_pos_tree_add_move(bfqd, bfqq);
1909 }
aee69d78
PV
1910 }
1911}
1912
8abfa4d6
PV
1913/*
1914 * This function is called to notify the scheduler that the requests
1915 * rq and 'next' have been merged, with 'next' going away. BFQ
1916 * exploits this hook to address the following issue: if 'next' has a
1917 * fifo_time lower that rq, then the fifo_time of rq must be set to
1918 * the value of 'next', to not forget the greater age of 'next'.
8abfa4d6
PV
1919 *
1920 * NOTE: in this function we assume that rq is in a bfq_queue, basing
1921 * on that rq is picked from the hash table q->elevator->hash, which,
1922 * in its turn, is filled only with I/O requests present in
1923 * bfq_queues, while BFQ is in use for the request queue q. In fact,
1924 * the function that fills this hash table (elv_rqhash_add) is called
1925 * only by bfq_insert_request.
1926 */
aee69d78
PV
1927static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1928 struct request *next)
1929{
18e5a57d
PV
1930 struct bfq_queue *bfqq = bfq_init_rq(rq),
1931 *next_bfqq = bfq_init_rq(next);
aee69d78 1932
aee69d78
PV
1933 /*
1934 * If next and rq belong to the same bfq_queue and next is older
1935 * than rq, then reposition rq in the fifo (by substituting next
1936 * with rq). Otherwise, if next and rq belong to different
1937 * bfq_queues, never reposition rq: in fact, we would have to
1938 * reposition it with respect to next's position in its own fifo,
1939 * which would most certainly be too expensive with respect to
1940 * the benefits.
1941 */
1942 if (bfqq == next_bfqq &&
1943 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1944 next->fifo_time < rq->fifo_time) {
1945 list_del_init(&rq->queuelist);
1946 list_replace_init(&next->queuelist, &rq->queuelist);
1947 rq->fifo_time = next->fifo_time;
1948 }
1949
1950 if (bfqq->next_rq == next)
1951 bfqq->next_rq = rq;
1952
e21b7a0b 1953 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1954}
1955
44e44a1b
PV
1956/* Must be called with bfqq != NULL */
1957static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1958{
cfd69712
PV
1959 if (bfq_bfqq_busy(bfqq))
1960 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
1961 bfqq->wr_coeff = 1;
1962 bfqq->wr_cur_max_time = 0;
77b7dcea 1963 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
1964 /*
1965 * Trigger a weight change on the next invocation of
1966 * __bfq_entity_update_weight_prio.
1967 */
1968 bfqq->entity.prio_changed = 1;
1969}
1970
ea25da48
PV
1971void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1972 struct bfq_group *bfqg)
44e44a1b
PV
1973{
1974 int i, j;
1975
1976 for (i = 0; i < 2; i++)
1977 for (j = 0; j < IOPRIO_BE_NR; j++)
1978 if (bfqg->async_bfqq[i][j])
1979 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1980 if (bfqg->async_idle_bfqq)
1981 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1982}
1983
1984static void bfq_end_wr(struct bfq_data *bfqd)
1985{
1986 struct bfq_queue *bfqq;
1987
1988 spin_lock_irq(&bfqd->lock);
1989
1990 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1991 bfq_bfqq_end_wr(bfqq);
1992 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1993 bfq_bfqq_end_wr(bfqq);
1994 bfq_end_wr_async(bfqd);
1995
1996 spin_unlock_irq(&bfqd->lock);
1997}
1998
36eca894
AA
1999static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2000{
2001 if (request)
2002 return blk_rq_pos(io_struct);
2003 else
2004 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2005}
2006
2007static int bfq_rq_close_to_sector(void *io_struct, bool request,
2008 sector_t sector)
2009{
2010 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2011 BFQQ_CLOSE_THR;
2012}
2013
2014static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2015 struct bfq_queue *bfqq,
2016 sector_t sector)
2017{
2018 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2019 struct rb_node *parent, *node;
2020 struct bfq_queue *__bfqq;
2021
2022 if (RB_EMPTY_ROOT(root))
2023 return NULL;
2024
2025 /*
2026 * First, if we find a request starting at the end of the last
2027 * request, choose it.
2028 */
2029 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2030 if (__bfqq)
2031 return __bfqq;
2032
2033 /*
2034 * If the exact sector wasn't found, the parent of the NULL leaf
2035 * will contain the closest sector (rq_pos_tree sorted by
2036 * next_request position).
2037 */
2038 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2039 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2040 return __bfqq;
2041
2042 if (blk_rq_pos(__bfqq->next_rq) < sector)
2043 node = rb_next(&__bfqq->pos_node);
2044 else
2045 node = rb_prev(&__bfqq->pos_node);
2046 if (!node)
2047 return NULL;
2048
2049 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2050 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2051 return __bfqq;
2052
2053 return NULL;
2054}
2055
2056static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2057 struct bfq_queue *cur_bfqq,
2058 sector_t sector)
2059{
2060 struct bfq_queue *bfqq;
2061
2062 /*
2063 * We shall notice if some of the queues are cooperating,
2064 * e.g., working closely on the same area of the device. In
2065 * that case, we can group them together and: 1) don't waste
2066 * time idling, and 2) serve the union of their requests in
2067 * the best possible order for throughput.
2068 */
2069 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2070 if (!bfqq || bfqq == cur_bfqq)
2071 return NULL;
2072
2073 return bfqq;
2074}
2075
2076static struct bfq_queue *
2077bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2078{
2079 int process_refs, new_process_refs;
2080 struct bfq_queue *__bfqq;
2081
2082 /*
2083 * If there are no process references on the new_bfqq, then it is
2084 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2085 * may have dropped their last reference (not just their last process
2086 * reference).
2087 */
2088 if (!bfqq_process_refs(new_bfqq))
2089 return NULL;
2090
2091 /* Avoid a circular list and skip interim queue merges. */
2092 while ((__bfqq = new_bfqq->new_bfqq)) {
2093 if (__bfqq == bfqq)
2094 return NULL;
2095 new_bfqq = __bfqq;
2096 }
2097
2098 process_refs = bfqq_process_refs(bfqq);
2099 new_process_refs = bfqq_process_refs(new_bfqq);
2100 /*
2101 * If the process for the bfqq has gone away, there is no
2102 * sense in merging the queues.
2103 */
2104 if (process_refs == 0 || new_process_refs == 0)
2105 return NULL;
2106
2107 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2108 new_bfqq->pid);
2109
2110 /*
2111 * Merging is just a redirection: the requests of the process
2112 * owning one of the two queues are redirected to the other queue.
2113 * The latter queue, in its turn, is set as shared if this is the
2114 * first time that the requests of some process are redirected to
2115 * it.
2116 *
6fa3e8d3
PV
2117 * We redirect bfqq to new_bfqq and not the opposite, because
2118 * we are in the context of the process owning bfqq, thus we
2119 * have the io_cq of this process. So we can immediately
2120 * configure this io_cq to redirect the requests of the
2121 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2122 * not available any more (new_bfqq->bic == NULL).
36eca894 2123 *
6fa3e8d3
PV
2124 * Anyway, even in case new_bfqq coincides with the in-service
2125 * queue, redirecting requests the in-service queue is the
2126 * best option, as we feed the in-service queue with new
2127 * requests close to the last request served and, by doing so,
2128 * are likely to increase the throughput.
36eca894
AA
2129 */
2130 bfqq->new_bfqq = new_bfqq;
2131 new_bfqq->ref += process_refs;
2132 return new_bfqq;
2133}
2134
2135static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2136 struct bfq_queue *new_bfqq)
2137{
7b8fa3b9
PV
2138 if (bfq_too_late_for_merging(new_bfqq))
2139 return false;
2140
36eca894
AA
2141 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2142 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2143 return false;
2144
2145 /*
2146 * If either of the queues has already been detected as seeky,
2147 * then merging it with the other queue is unlikely to lead to
2148 * sequential I/O.
2149 */
2150 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2151 return false;
2152
2153 /*
2154 * Interleaved I/O is known to be done by (some) applications
2155 * only for reads, so it does not make sense to merge async
2156 * queues.
2157 */
2158 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2159 return false;
2160
2161 return true;
2162}
2163
36eca894
AA
2164/*
2165 * Attempt to schedule a merge of bfqq with the currently in-service
2166 * queue or with a close queue among the scheduled queues. Return
2167 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2168 * structure otherwise.
2169 *
2170 * The OOM queue is not allowed to participate to cooperation: in fact, since
2171 * the requests temporarily redirected to the OOM queue could be redirected
2172 * again to dedicated queues at any time, the state needed to correctly
2173 * handle merging with the OOM queue would be quite complex and expensive
2174 * to maintain. Besides, in such a critical condition as an out of memory,
2175 * the benefits of queue merging may be little relevant, or even negligible.
2176 *
36eca894
AA
2177 * WARNING: queue merging may impair fairness among non-weight raised
2178 * queues, for at least two reasons: 1) the original weight of a
2179 * merged queue may change during the merged state, 2) even being the
2180 * weight the same, a merged queue may be bloated with many more
2181 * requests than the ones produced by its originally-associated
2182 * process.
2183 */
2184static struct bfq_queue *
2185bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2186 void *io_struct, bool request)
2187{
2188 struct bfq_queue *in_service_bfqq, *new_bfqq;
2189
7b8fa3b9
PV
2190 /*
2191 * Prevent bfqq from being merged if it has been created too
2192 * long ago. The idea is that true cooperating processes, and
2193 * thus their associated bfq_queues, are supposed to be
2194 * created shortly after each other. This is the case, e.g.,
2195 * for KVM/QEMU and dump I/O threads. Basing on this
2196 * assumption, the following filtering greatly reduces the
2197 * probability that two non-cooperating processes, which just
2198 * happen to do close I/O for some short time interval, have
2199 * their queues merged by mistake.
2200 */
2201 if (bfq_too_late_for_merging(bfqq))
2202 return NULL;
2203
36eca894
AA
2204 if (bfqq->new_bfqq)
2205 return bfqq->new_bfqq;
2206
4403e4e4 2207 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
36eca894
AA
2208 return NULL;
2209
2210 /* If there is only one backlogged queue, don't search. */
2211 if (bfqd->busy_queues == 1)
2212 return NULL;
2213
2214 in_service_bfqq = bfqd->in_service_queue;
2215
4403e4e4
AR
2216 if (in_service_bfqq && in_service_bfqq != bfqq &&
2217 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2218 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
36eca894
AA
2219 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2220 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2221 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2222 if (new_bfqq)
2223 return new_bfqq;
2224 }
2225 /*
2226 * Check whether there is a cooperator among currently scheduled
2227 * queues. The only thing we need is that the bio/request is not
2228 * NULL, as we need it to establish whether a cooperator exists.
2229 */
36eca894
AA
2230 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2231 bfq_io_struct_pos(io_struct, request));
2232
4403e4e4 2233 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
36eca894
AA
2234 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2235 return bfq_setup_merge(bfqq, new_bfqq);
2236
2237 return NULL;
2238}
2239
2240static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2241{
2242 struct bfq_io_cq *bic = bfqq->bic;
2243
2244 /*
2245 * If !bfqq->bic, the queue is already shared or its requests
2246 * have already been redirected to a shared queue; both idle window
2247 * and weight raising state have already been saved. Do nothing.
2248 */
2249 if (!bic)
2250 return;
2251
2252 bic->saved_ttime = bfqq->ttime;
d5be3fef 2253 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
36eca894 2254 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
2255 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2256 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
894df937 2257 if (unlikely(bfq_bfqq_just_created(bfqq) &&
1be6e8a9
AR
2258 !bfq_bfqq_in_large_burst(bfqq) &&
2259 bfqq->bfqd->low_latency)) {
894df937
PV
2260 /*
2261 * bfqq being merged right after being created: bfqq
2262 * would have deserved interactive weight raising, but
2263 * did not make it to be set in a weight-raised state,
2264 * because of this early merge. Store directly the
2265 * weight-raising state that would have been assigned
2266 * to bfqq, so that to avoid that bfqq unjustly fails
2267 * to enjoy weight raising if split soon.
2268 */
2269 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2270 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2271 bic->saved_last_wr_start_finish = jiffies;
2272 } else {
2273 bic->saved_wr_coeff = bfqq->wr_coeff;
2274 bic->saved_wr_start_at_switch_to_srt =
2275 bfqq->wr_start_at_switch_to_srt;
2276 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2277 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2278 }
36eca894
AA
2279}
2280
36eca894
AA
2281static void
2282bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2283 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2284{
2285 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2286 (unsigned long)new_bfqq->pid);
2287 /* Save weight raising and idle window of the merged queues */
2288 bfq_bfqq_save_state(bfqq);
2289 bfq_bfqq_save_state(new_bfqq);
2290 if (bfq_bfqq_IO_bound(bfqq))
2291 bfq_mark_bfqq_IO_bound(new_bfqq);
2292 bfq_clear_bfqq_IO_bound(bfqq);
2293
2294 /*
2295 * If bfqq is weight-raised, then let new_bfqq inherit
2296 * weight-raising. To reduce false positives, neglect the case
2297 * where bfqq has just been created, but has not yet made it
2298 * to be weight-raised (which may happen because EQM may merge
2299 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
2300 * time for bfqq). Handling this case would however be very
2301 * easy, thanks to the flag just_created.
36eca894
AA
2302 */
2303 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2304 new_bfqq->wr_coeff = bfqq->wr_coeff;
2305 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2306 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2307 new_bfqq->wr_start_at_switch_to_srt =
2308 bfqq->wr_start_at_switch_to_srt;
2309 if (bfq_bfqq_busy(new_bfqq))
2310 bfqd->wr_busy_queues++;
2311 new_bfqq->entity.prio_changed = 1;
2312 }
2313
2314 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2315 bfqq->wr_coeff = 1;
2316 bfqq->entity.prio_changed = 1;
2317 if (bfq_bfqq_busy(bfqq))
2318 bfqd->wr_busy_queues--;
2319 }
2320
2321 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2322 bfqd->wr_busy_queues);
2323
36eca894
AA
2324 /*
2325 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2326 */
2327 bic_set_bfqq(bic, new_bfqq, 1);
2328 bfq_mark_bfqq_coop(new_bfqq);
2329 /*
2330 * new_bfqq now belongs to at least two bics (it is a shared queue):
2331 * set new_bfqq->bic to NULL. bfqq either:
2332 * - does not belong to any bic any more, and hence bfqq->bic must
2333 * be set to NULL, or
2334 * - is a queue whose owning bics have already been redirected to a
2335 * different queue, hence the queue is destined to not belong to
2336 * any bic soon and bfqq->bic is already NULL (therefore the next
2337 * assignment causes no harm).
2338 */
2339 new_bfqq->bic = NULL;
2340 bfqq->bic = NULL;
2341 /* release process reference to bfqq */
2342 bfq_put_queue(bfqq);
2343}
2344
aee69d78
PV
2345static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2346 struct bio *bio)
2347{
2348 struct bfq_data *bfqd = q->elevator->elevator_data;
2349 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 2350 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
2351
2352 /*
2353 * Disallow merge of a sync bio into an async request.
2354 */
2355 if (is_sync && !rq_is_sync(rq))
2356 return false;
2357
2358 /*
2359 * Lookup the bfqq that this bio will be queued with. Allow
2360 * merge only if rq is queued there.
2361 */
2362 if (!bfqq)
2363 return false;
2364
36eca894
AA
2365 /*
2366 * We take advantage of this function to perform an early merge
2367 * of the queues of possible cooperating processes.
2368 */
2369 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2370 if (new_bfqq) {
2371 /*
2372 * bic still points to bfqq, then it has not yet been
2373 * redirected to some other bfq_queue, and a queue
2374 * merge beween bfqq and new_bfqq can be safely
2375 * fulfillled, i.e., bic can be redirected to new_bfqq
2376 * and bfqq can be put.
2377 */
2378 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2379 new_bfqq);
2380 /*
2381 * If we get here, bio will be queued into new_queue,
2382 * so use new_bfqq to decide whether bio and rq can be
2383 * merged.
2384 */
2385 bfqq = new_bfqq;
2386
2387 /*
2388 * Change also bqfd->bio_bfqq, as
2389 * bfqd->bio_bic now points to new_bfqq, and
2390 * this function may be invoked again (and then may
2391 * use again bqfd->bio_bfqq).
2392 */
2393 bfqd->bio_bfqq = bfqq;
2394 }
2395
aee69d78
PV
2396 return bfqq == RQ_BFQQ(rq);
2397}
2398
44e44a1b
PV
2399/*
2400 * Set the maximum time for the in-service queue to consume its
2401 * budget. This prevents seeky processes from lowering the throughput.
2402 * In practice, a time-slice service scheme is used with seeky
2403 * processes.
2404 */
2405static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2406 struct bfq_queue *bfqq)
2407{
77b7dcea
PV
2408 unsigned int timeout_coeff;
2409
2410 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2411 timeout_coeff = 1;
2412 else
2413 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2414
44e44a1b
PV
2415 bfqd->last_budget_start = ktime_get();
2416
2417 bfqq->budget_timeout = jiffies +
77b7dcea 2418 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
2419}
2420
aee69d78
PV
2421static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2422 struct bfq_queue *bfqq)
2423{
2424 if (bfqq) {
aee69d78
PV
2425 bfq_clear_bfqq_fifo_expire(bfqq);
2426
2427 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2428
77b7dcea
PV
2429 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2430 bfqq->wr_coeff > 1 &&
2431 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2432 time_is_before_jiffies(bfqq->budget_timeout)) {
2433 /*
2434 * For soft real-time queues, move the start
2435 * of the weight-raising period forward by the
2436 * time the queue has not received any
2437 * service. Otherwise, a relatively long
2438 * service delay is likely to cause the
2439 * weight-raising period of the queue to end,
2440 * because of the short duration of the
2441 * weight-raising period of a soft real-time
2442 * queue. It is worth noting that this move
2443 * is not so dangerous for the other queues,
2444 * because soft real-time queues are not
2445 * greedy.
2446 *
2447 * To not add a further variable, we use the
2448 * overloaded field budget_timeout to
2449 * determine for how long the queue has not
2450 * received service, i.e., how much time has
2451 * elapsed since the queue expired. However,
2452 * this is a little imprecise, because
2453 * budget_timeout is set to jiffies if bfqq
2454 * not only expires, but also remains with no
2455 * request.
2456 */
2457 if (time_after(bfqq->budget_timeout,
2458 bfqq->last_wr_start_finish))
2459 bfqq->last_wr_start_finish +=
2460 jiffies - bfqq->budget_timeout;
2461 else
2462 bfqq->last_wr_start_finish = jiffies;
2463 }
2464
44e44a1b 2465 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
2466 bfq_log_bfqq(bfqd, bfqq,
2467 "set_in_service_queue, cur-budget = %d",
2468 bfqq->entity.budget);
2469 }
2470
2471 bfqd->in_service_queue = bfqq;
2472}
2473
2474/*
2475 * Get and set a new queue for service.
2476 */
2477static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2478{
2479 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2480
2481 __bfq_set_in_service_queue(bfqd, bfqq);
2482 return bfqq;
2483}
2484
aee69d78
PV
2485static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2486{
2487 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
2488 u32 sl;
2489
aee69d78
PV
2490 bfq_mark_bfqq_wait_request(bfqq);
2491
2492 /*
2493 * We don't want to idle for seeks, but we do want to allow
2494 * fair distribution of slice time for a process doing back-to-back
2495 * seeks. So allow a little bit of time for him to submit a new rq.
2496 */
2497 sl = bfqd->bfq_slice_idle;
2498 /*
1de0c4cd
AA
2499 * Unless the queue is being weight-raised or the scenario is
2500 * asymmetric, grant only minimum idle time if the queue
2501 * is seeky. A long idling is preserved for a weight-raised
2502 * queue, or, more in general, in an asymmetric scenario,
2503 * because a long idling is needed for guaranteeing to a queue
2504 * its reserved share of the throughput (in particular, it is
2505 * needed if the queue has a higher weight than some other
2506 * queue).
aee69d78 2507 */
1de0c4cd
AA
2508 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2509 bfq_symmetric_scenario(bfqd))
aee69d78
PV
2510 sl = min_t(u64, sl, BFQ_MIN_TT);
2511
2512 bfqd->last_idling_start = ktime_get();
2513 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2514 HRTIMER_MODE_REL);
e21b7a0b 2515 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
2516}
2517
ab0e43e9
PV
2518/*
2519 * In autotuning mode, max_budget is dynamically recomputed as the
2520 * amount of sectors transferred in timeout at the estimated peak
2521 * rate. This enables BFQ to utilize a full timeslice with a full
2522 * budget, even if the in-service queue is served at peak rate. And
2523 * this maximises throughput with sequential workloads.
2524 */
2525static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2526{
2527 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2528 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2529}
2530
44e44a1b
PV
2531/*
2532 * Update parameters related to throughput and responsiveness, as a
2533 * function of the estimated peak rate. See comments on
e24f1c24 2534 * bfq_calc_max_budget(), and on the ref_wr_duration array.
44e44a1b
PV
2535 */
2536static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2537{
e24f1c24 2538 if (bfqd->bfq_user_max_budget == 0) {
44e44a1b
PV
2539 bfqd->bfq_max_budget =
2540 bfq_calc_max_budget(bfqd);
e24f1c24 2541 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
44e44a1b 2542 }
44e44a1b
PV
2543}
2544
ab0e43e9
PV
2545static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2546 struct request *rq)
2547{
2548 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2549 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2550 bfqd->peak_rate_samples = 1;
2551 bfqd->sequential_samples = 0;
2552 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2553 blk_rq_sectors(rq);
2554 } else /* no new rq dispatched, just reset the number of samples */
2555 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2556
2557 bfq_log(bfqd,
2558 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2559 bfqd->peak_rate_samples, bfqd->sequential_samples,
2560 bfqd->tot_sectors_dispatched);
2561}
2562
2563static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2564{
2565 u32 rate, weight, divisor;
2566
2567 /*
2568 * For the convergence property to hold (see comments on
2569 * bfq_update_peak_rate()) and for the assessment to be
2570 * reliable, a minimum number of samples must be present, and
2571 * a minimum amount of time must have elapsed. If not so, do
2572 * not compute new rate. Just reset parameters, to get ready
2573 * for a new evaluation attempt.
2574 */
2575 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2576 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2577 goto reset_computation;
2578
2579 /*
2580 * If a new request completion has occurred after last
2581 * dispatch, then, to approximate the rate at which requests
2582 * have been served by the device, it is more precise to
2583 * extend the observation interval to the last completion.
2584 */
2585 bfqd->delta_from_first =
2586 max_t(u64, bfqd->delta_from_first,
2587 bfqd->last_completion - bfqd->first_dispatch);
2588
2589 /*
2590 * Rate computed in sects/usec, and not sects/nsec, for
2591 * precision issues.
2592 */
2593 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2594 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2595
2596 /*
2597 * Peak rate not updated if:
2598 * - the percentage of sequential dispatches is below 3/4 of the
2599 * total, and rate is below the current estimated peak rate
2600 * - rate is unreasonably high (> 20M sectors/sec)
2601 */
2602 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2603 rate <= bfqd->peak_rate) ||
2604 rate > 20<<BFQ_RATE_SHIFT)
2605 goto reset_computation;
2606
2607 /*
2608 * We have to update the peak rate, at last! To this purpose,
2609 * we use a low-pass filter. We compute the smoothing constant
2610 * of the filter as a function of the 'weight' of the new
2611 * measured rate.
2612 *
2613 * As can be seen in next formulas, we define this weight as a
2614 * quantity proportional to how sequential the workload is,
2615 * and to how long the observation time interval is.
2616 *
2617 * The weight runs from 0 to 8. The maximum value of the
2618 * weight, 8, yields the minimum value for the smoothing
2619 * constant. At this minimum value for the smoothing constant,
2620 * the measured rate contributes for half of the next value of
2621 * the estimated peak rate.
2622 *
2623 * So, the first step is to compute the weight as a function
2624 * of how sequential the workload is. Note that the weight
2625 * cannot reach 9, because bfqd->sequential_samples cannot
2626 * become equal to bfqd->peak_rate_samples, which, in its
2627 * turn, holds true because bfqd->sequential_samples is not
2628 * incremented for the first sample.
2629 */
2630 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2631
2632 /*
2633 * Second step: further refine the weight as a function of the
2634 * duration of the observation interval.
2635 */
2636 weight = min_t(u32, 8,
2637 div_u64(weight * bfqd->delta_from_first,
2638 BFQ_RATE_REF_INTERVAL));
2639
2640 /*
2641 * Divisor ranging from 10, for minimum weight, to 2, for
2642 * maximum weight.
2643 */
2644 divisor = 10 - weight;
2645
2646 /*
2647 * Finally, update peak rate:
2648 *
2649 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2650 */
2651 bfqd->peak_rate *= divisor-1;
2652 bfqd->peak_rate /= divisor;
2653 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2654
2655 bfqd->peak_rate += rate;
bc56e2ca
PV
2656
2657 /*
2658 * For a very slow device, bfqd->peak_rate can reach 0 (see
2659 * the minimum representable values reported in the comments
2660 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2661 * divisions by zero where bfqd->peak_rate is used as a
2662 * divisor.
2663 */
2664 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2665
44e44a1b 2666 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
2667
2668reset_computation:
2669 bfq_reset_rate_computation(bfqd, rq);
2670}
2671
2672/*
2673 * Update the read/write peak rate (the main quantity used for
2674 * auto-tuning, see update_thr_responsiveness_params()).
2675 *
2676 * It is not trivial to estimate the peak rate (correctly): because of
2677 * the presence of sw and hw queues between the scheduler and the
2678 * device components that finally serve I/O requests, it is hard to
2679 * say exactly when a given dispatched request is served inside the
2680 * device, and for how long. As a consequence, it is hard to know
2681 * precisely at what rate a given set of requests is actually served
2682 * by the device.
2683 *
2684 * On the opposite end, the dispatch time of any request is trivially
2685 * available, and, from this piece of information, the "dispatch rate"
2686 * of requests can be immediately computed. So, the idea in the next
2687 * function is to use what is known, namely request dispatch times
2688 * (plus, when useful, request completion times), to estimate what is
2689 * unknown, namely in-device request service rate.
2690 *
2691 * The main issue is that, because of the above facts, the rate at
2692 * which a certain set of requests is dispatched over a certain time
2693 * interval can vary greatly with respect to the rate at which the
2694 * same requests are then served. But, since the size of any
2695 * intermediate queue is limited, and the service scheme is lossless
2696 * (no request is silently dropped), the following obvious convergence
2697 * property holds: the number of requests dispatched MUST become
2698 * closer and closer to the number of requests completed as the
2699 * observation interval grows. This is the key property used in
2700 * the next function to estimate the peak service rate as a function
2701 * of the observed dispatch rate. The function assumes to be invoked
2702 * on every request dispatch.
2703 */
2704static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2705{
2706 u64 now_ns = ktime_get_ns();
2707
2708 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2709 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2710 bfqd->peak_rate_samples);
2711 bfq_reset_rate_computation(bfqd, rq);
2712 goto update_last_values; /* will add one sample */
2713 }
2714
2715 /*
2716 * Device idle for very long: the observation interval lasting
2717 * up to this dispatch cannot be a valid observation interval
2718 * for computing a new peak rate (similarly to the late-
2719 * completion event in bfq_completed_request()). Go to
2720 * update_rate_and_reset to have the following three steps
2721 * taken:
2722 * - close the observation interval at the last (previous)
2723 * request dispatch or completion
2724 * - compute rate, if possible, for that observation interval
2725 * - start a new observation interval with this dispatch
2726 */
2727 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2728 bfqd->rq_in_driver == 0)
2729 goto update_rate_and_reset;
2730
2731 /* Update sampling information */
2732 bfqd->peak_rate_samples++;
2733
2734 if ((bfqd->rq_in_driver > 0 ||
2735 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2736 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2737 bfqd->sequential_samples++;
2738
2739 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2740
2741 /* Reset max observed rq size every 32 dispatches */
2742 if (likely(bfqd->peak_rate_samples % 32))
2743 bfqd->last_rq_max_size =
2744 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2745 else
2746 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2747
2748 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2749
2750 /* Target observation interval not yet reached, go on sampling */
2751 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2752 goto update_last_values;
2753
2754update_rate_and_reset:
2755 bfq_update_rate_reset(bfqd, rq);
2756update_last_values:
2757 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2758 bfqd->last_dispatch = now_ns;
2759}
2760
aee69d78
PV
2761/*
2762 * Remove request from internal lists.
2763 */
2764static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2765{
2766 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2767
2768 /*
2769 * For consistency, the next instruction should have been
2770 * executed after removing the request from the queue and
2771 * dispatching it. We execute instead this instruction before
2772 * bfq_remove_request() (and hence introduce a temporary
2773 * inconsistency), for efficiency. In fact, should this
2774 * dispatch occur for a non in-service bfqq, this anticipated
2775 * increment prevents two counters related to bfqq->dispatched
2776 * from risking to be, first, uselessly decremented, and then
2777 * incremented again when the (new) value of bfqq->dispatched
2778 * happens to be taken into account.
2779 */
2780 bfqq->dispatched++;
ab0e43e9 2781 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
2782
2783 bfq_remove_request(q, rq);
2784}
2785
2786static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2787{
36eca894
AA
2788 /*
2789 * If this bfqq is shared between multiple processes, check
2790 * to make sure that those processes are still issuing I/Os
2791 * within the mean seek distance. If not, it may be time to
2792 * break the queues apart again.
2793 */
2794 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2795 bfq_mark_bfqq_split_coop(bfqq);
2796
44e44a1b
PV
2797 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2798 if (bfqq->dispatched == 0)
2799 /*
2800 * Overloading budget_timeout field to store
2801 * the time at which the queue remains with no
2802 * backlog and no outstanding request; used by
2803 * the weight-raising mechanism.
2804 */
2805 bfqq->budget_timeout = jiffies;
2806
e21b7a0b 2807 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 2808 } else {
80294c3b 2809 bfq_requeue_bfqq(bfqd, bfqq, true);
36eca894
AA
2810 /*
2811 * Resort priority tree of potential close cooperators.
2812 */
2813 bfq_pos_tree_add_move(bfqd, bfqq);
2814 }
e21b7a0b
AA
2815
2816 /*
2817 * All in-service entities must have been properly deactivated
2818 * or requeued before executing the next function, which
2819 * resets all in-service entites as no more in service.
2820 */
2821 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
2822}
2823
2824/**
2825 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2826 * @bfqd: device data.
2827 * @bfqq: queue to update.
2828 * @reason: reason for expiration.
2829 *
2830 * Handle the feedback on @bfqq budget at queue expiration.
2831 * See the body for detailed comments.
2832 */
2833static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2834 struct bfq_queue *bfqq,
2835 enum bfqq_expiration reason)
2836{
2837 struct request *next_rq;
2838 int budget, min_budget;
2839
aee69d78
PV
2840 min_budget = bfq_min_budget(bfqd);
2841
44e44a1b
PV
2842 if (bfqq->wr_coeff == 1)
2843 budget = bfqq->max_budget;
2844 else /*
2845 * Use a constant, low budget for weight-raised queues,
2846 * to help achieve a low latency. Keep it slightly higher
2847 * than the minimum possible budget, to cause a little
2848 * bit fewer expirations.
2849 */
2850 budget = 2 * min_budget;
2851
aee69d78
PV
2852 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2853 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2854 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2855 budget, bfq_min_budget(bfqd));
2856 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2857 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2858
44e44a1b 2859 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
2860 switch (reason) {
2861 /*
2862 * Caveat: in all the following cases we trade latency
2863 * for throughput.
2864 */
2865 case BFQQE_TOO_IDLE:
54b60456
PV
2866 /*
2867 * This is the only case where we may reduce
2868 * the budget: if there is no request of the
2869 * process still waiting for completion, then
2870 * we assume (tentatively) that the timer has
2871 * expired because the batch of requests of
2872 * the process could have been served with a
2873 * smaller budget. Hence, betting that
2874 * process will behave in the same way when it
2875 * becomes backlogged again, we reduce its
2876 * next budget. As long as we guess right,
2877 * this budget cut reduces the latency
2878 * experienced by the process.
2879 *
2880 * However, if there are still outstanding
2881 * requests, then the process may have not yet
2882 * issued its next request just because it is
2883 * still waiting for the completion of some of
2884 * the still outstanding ones. So in this
2885 * subcase we do not reduce its budget, on the
2886 * contrary we increase it to possibly boost
2887 * the throughput, as discussed in the
2888 * comments to the BUDGET_TIMEOUT case.
2889 */
2890 if (bfqq->dispatched > 0) /* still outstanding reqs */
2891 budget = min(budget * 2, bfqd->bfq_max_budget);
2892 else {
2893 if (budget > 5 * min_budget)
2894 budget -= 4 * min_budget;
2895 else
2896 budget = min_budget;
2897 }
aee69d78
PV
2898 break;
2899 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
2900 /*
2901 * We double the budget here because it gives
2902 * the chance to boost the throughput if this
2903 * is not a seeky process (and has bumped into
2904 * this timeout because of, e.g., ZBR).
2905 */
2906 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
2907 break;
2908 case BFQQE_BUDGET_EXHAUSTED:
2909 /*
2910 * The process still has backlog, and did not
2911 * let either the budget timeout or the disk
2912 * idling timeout expire. Hence it is not
2913 * seeky, has a short thinktime and may be
2914 * happy with a higher budget too. So
2915 * definitely increase the budget of this good
2916 * candidate to boost the disk throughput.
2917 */
54b60456 2918 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
2919 break;
2920 case BFQQE_NO_MORE_REQUESTS:
2921 /*
2922 * For queues that expire for this reason, it
2923 * is particularly important to keep the
2924 * budget close to the actual service they
2925 * need. Doing so reduces the timestamp
2926 * misalignment problem described in the
2927 * comments in the body of
2928 * __bfq_activate_entity. In fact, suppose
2929 * that a queue systematically expires for
2930 * BFQQE_NO_MORE_REQUESTS and presents a
2931 * new request in time to enjoy timestamp
2932 * back-shifting. The larger the budget of the
2933 * queue is with respect to the service the
2934 * queue actually requests in each service
2935 * slot, the more times the queue can be
2936 * reactivated with the same virtual finish
2937 * time. It follows that, even if this finish
2938 * time is pushed to the system virtual time
2939 * to reduce the consequent timestamp
2940 * misalignment, the queue unjustly enjoys for
2941 * many re-activations a lower finish time
2942 * than all newly activated queues.
2943 *
2944 * The service needed by bfqq is measured
2945 * quite precisely by bfqq->entity.service.
2946 * Since bfqq does not enjoy device idling,
2947 * bfqq->entity.service is equal to the number
2948 * of sectors that the process associated with
2949 * bfqq requested to read/write before waiting
2950 * for request completions, or blocking for
2951 * other reasons.
2952 */
2953 budget = max_t(int, bfqq->entity.service, min_budget);
2954 break;
2955 default:
2956 return;
2957 }
44e44a1b 2958 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
2959 /*
2960 * Async queues get always the maximum possible
2961 * budget, as for them we do not care about latency
2962 * (in addition, their ability to dispatch is limited
2963 * by the charging factor).
2964 */
2965 budget = bfqd->bfq_max_budget;
2966 }
2967
2968 bfqq->max_budget = budget;
2969
2970 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2971 !bfqd->bfq_user_max_budget)
2972 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2973
2974 /*
2975 * If there is still backlog, then assign a new budget, making
2976 * sure that it is large enough for the next request. Since
2977 * the finish time of bfqq must be kept in sync with the
2978 * budget, be sure to call __bfq_bfqq_expire() *after* this
2979 * update.
2980 *
2981 * If there is no backlog, then no need to update the budget;
2982 * it will be updated on the arrival of a new request.
2983 */
2984 next_rq = bfqq->next_rq;
2985 if (next_rq)
2986 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2987 bfq_serv_to_charge(next_rq, bfqq));
2988
2989 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2990 next_rq ? blk_rq_sectors(next_rq) : 0,
2991 bfqq->entity.budget);
2992}
2993
aee69d78 2994/*
ab0e43e9
PV
2995 * Return true if the process associated with bfqq is "slow". The slow
2996 * flag is used, in addition to the budget timeout, to reduce the
2997 * amount of service provided to seeky processes, and thus reduce
2998 * their chances to lower the throughput. More details in the comments
2999 * on the function bfq_bfqq_expire().
3000 *
3001 * An important observation is in order: as discussed in the comments
3002 * on the function bfq_update_peak_rate(), with devices with internal
3003 * queues, it is hard if ever possible to know when and for how long
3004 * an I/O request is processed by the device (apart from the trivial
3005 * I/O pattern where a new request is dispatched only after the
3006 * previous one has been completed). This makes it hard to evaluate
3007 * the real rate at which the I/O requests of each bfq_queue are
3008 * served. In fact, for an I/O scheduler like BFQ, serving a
3009 * bfq_queue means just dispatching its requests during its service
3010 * slot (i.e., until the budget of the queue is exhausted, or the
3011 * queue remains idle, or, finally, a timeout fires). But, during the
3012 * service slot of a bfq_queue, around 100 ms at most, the device may
3013 * be even still processing requests of bfq_queues served in previous
3014 * service slots. On the opposite end, the requests of the in-service
3015 * bfq_queue may be completed after the service slot of the queue
3016 * finishes.
3017 *
3018 * Anyway, unless more sophisticated solutions are used
3019 * (where possible), the sum of the sizes of the requests dispatched
3020 * during the service slot of a bfq_queue is probably the only
3021 * approximation available for the service received by the bfq_queue
3022 * during its service slot. And this sum is the quantity used in this
3023 * function to evaluate the I/O speed of a process.
aee69d78 3024 */
ab0e43e9
PV
3025static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3026 bool compensate, enum bfqq_expiration reason,
3027 unsigned long *delta_ms)
aee69d78 3028{
ab0e43e9
PV
3029 ktime_t delta_ktime;
3030 u32 delta_usecs;
3031 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 3032
ab0e43e9 3033 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
3034 return false;
3035
3036 if (compensate)
ab0e43e9 3037 delta_ktime = bfqd->last_idling_start;
aee69d78 3038 else
ab0e43e9
PV
3039 delta_ktime = ktime_get();
3040 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3041 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
3042
3043 /* don't use too short time intervals */
ab0e43e9
PV
3044 if (delta_usecs < 1000) {
3045 if (blk_queue_nonrot(bfqd->queue))
3046 /*
3047 * give same worst-case guarantees as idling
3048 * for seeky
3049 */
3050 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3051 else /* charge at least one seek */
3052 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3053
3054 return slow;
3055 }
aee69d78 3056
ab0e43e9 3057 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
3058
3059 /*
ab0e43e9
PV
3060 * Use only long (> 20ms) intervals to filter out excessive
3061 * spikes in service rate estimation.
aee69d78 3062 */
ab0e43e9
PV
3063 if (delta_usecs > 20000) {
3064 /*
3065 * Caveat for rotational devices: processes doing I/O
3066 * in the slower disk zones tend to be slow(er) even
3067 * if not seeky. In this respect, the estimated peak
3068 * rate is likely to be an average over the disk
3069 * surface. Accordingly, to not be too harsh with
3070 * unlucky processes, a process is deemed slow only if
3071 * its rate has been lower than half of the estimated
3072 * peak rate.
3073 */
3074 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
3075 }
3076
ab0e43e9 3077 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 3078
ab0e43e9 3079 return slow;
aee69d78
PV
3080}
3081
77b7dcea
PV
3082/*
3083 * To be deemed as soft real-time, an application must meet two
3084 * requirements. First, the application must not require an average
3085 * bandwidth higher than the approximate bandwidth required to playback or
3086 * record a compressed high-definition video.
3087 * The next function is invoked on the completion of the last request of a
3088 * batch, to compute the next-start time instant, soft_rt_next_start, such
3089 * that, if the next request of the application does not arrive before
3090 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3091 *
3092 * The second requirement is that the request pattern of the application is
3093 * isochronous, i.e., that, after issuing a request or a batch of requests,
3094 * the application stops issuing new requests until all its pending requests
3095 * have been completed. After that, the application may issue a new batch,
3096 * and so on.
3097 * For this reason the next function is invoked to compute
3098 * soft_rt_next_start only for applications that meet this requirement,
3099 * whereas soft_rt_next_start is set to infinity for applications that do
3100 * not.
3101 *
a34b0244
PV
3102 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3103 * happen to meet, occasionally or systematically, both the above
3104 * bandwidth and isochrony requirements. This may happen at least in
3105 * the following circumstances. First, if the CPU load is high. The
3106 * application may stop issuing requests while the CPUs are busy
3107 * serving other processes, then restart, then stop again for a while,
3108 * and so on. The other circumstances are related to the storage
3109 * device: the storage device is highly loaded or reaches a low-enough
3110 * throughput with the I/O of the application (e.g., because the I/O
3111 * is random and/or the device is slow). In all these cases, the
3112 * I/O of the application may be simply slowed down enough to meet
3113 * the bandwidth and isochrony requirements. To reduce the probability
3114 * that greedy applications are deemed as soft real-time in these
3115 * corner cases, a further rule is used in the computation of
3116 * soft_rt_next_start: the return value of this function is forced to
3117 * be higher than the maximum between the following two quantities.
3118 *
3119 * (a) Current time plus: (1) the maximum time for which the arrival
3120 * of a request is waited for when a sync queue becomes idle,
3121 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3122 * postpone for a moment the reason for adding a few extra
3123 * jiffies; we get back to it after next item (b). Lower-bounding
3124 * the return value of this function with the current time plus
3125 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3126 * because the latter issue their next request as soon as possible
3127 * after the last one has been completed. In contrast, a soft
3128 * real-time application spends some time processing data, after a
3129 * batch of its requests has been completed.
3130 *
3131 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3132 * above, greedy applications may happen to meet both the
3133 * bandwidth and isochrony requirements under heavy CPU or
3134 * storage-device load. In more detail, in these scenarios, these
3135 * applications happen, only for limited time periods, to do I/O
3136 * slowly enough to meet all the requirements described so far,
3137 * including the filtering in above item (a). These slow-speed
3138 * time intervals are usually interspersed between other time
3139 * intervals during which these applications do I/O at a very high
3140 * speed. Fortunately, exactly because of the high speed of the
3141 * I/O in the high-speed intervals, the values returned by this
3142 * function happen to be so high, near the end of any such
3143 * high-speed interval, to be likely to fall *after* the end of
3144 * the low-speed time interval that follows. These high values are
3145 * stored in bfqq->soft_rt_next_start after each invocation of
3146 * this function. As a consequence, if the last value of
3147 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3148 * next value that this function may return, then, from the very
3149 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3150 * likely to be constantly kept so high that any I/O request
3151 * issued during the low-speed interval is considered as arriving
3152 * to soon for the application to be deemed as soft
3153 * real-time. Then, in the high-speed interval that follows, the
3154 * application will not be deemed as soft real-time, just because
3155 * it will do I/O at a high speed. And so on.
3156 *
3157 * Getting back to the filtering in item (a), in the following two
3158 * cases this filtering might be easily passed by a greedy
3159 * application, if the reference quantity was just
3160 * bfqd->bfq_slice_idle:
3161 * 1) HZ is so low that the duration of a jiffy is comparable to or
3162 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3163 * devices with HZ=100. The time granularity may be so coarse
3164 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3165 * is rather lower than the exact value.
77b7dcea
PV
3166 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3167 * for a while, then suddenly 'jump' by several units to recover the lost
3168 * increments. This seems to happen, e.g., inside virtual machines.
a34b0244
PV
3169 * To address this issue, in the filtering in (a) we do not use as a
3170 * reference time interval just bfqd->bfq_slice_idle, but
3171 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3172 * minimum number of jiffies for which the filter seems to be quite
3173 * precise also in embedded systems and KVM/QEMU virtual machines.
77b7dcea
PV
3174 */
3175static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3176 struct bfq_queue *bfqq)
3177{
a34b0244
PV
3178 return max3(bfqq->soft_rt_next_start,
3179 bfqq->last_idle_bklogged +
3180 HZ * bfqq->service_from_backlogged /
3181 bfqd->bfq_wr_max_softrt_rate,
3182 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
77b7dcea
PV
3183}
3184
d0edc247
PV
3185static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
3186{
3187 return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3188 blk_queue_nonrot(bfqq->bfqd->queue) &&
3189 bfqq->bfqd->hw_tag;
3190}
3191
aee69d78
PV
3192/**
3193 * bfq_bfqq_expire - expire a queue.
3194 * @bfqd: device owning the queue.
3195 * @bfqq: the queue to expire.
3196 * @compensate: if true, compensate for the time spent idling.
3197 * @reason: the reason causing the expiration.
3198 *
c074170e
PV
3199 * If the process associated with bfqq does slow I/O (e.g., because it
3200 * issues random requests), we charge bfqq with the time it has been
3201 * in service instead of the service it has received (see
3202 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3203 * a consequence, bfqq will typically get higher timestamps upon
3204 * reactivation, and hence it will be rescheduled as if it had
3205 * received more service than what it has actually received. In the
3206 * end, bfqq receives less service in proportion to how slowly its
3207 * associated process consumes its budgets (and hence how seriously it
3208 * tends to lower the throughput). In addition, this time-charging
3209 * strategy guarantees time fairness among slow processes. In
3210 * contrast, if the process associated with bfqq is not slow, we
3211 * charge bfqq exactly with the service it has received.
aee69d78 3212 *
c074170e
PV
3213 * Charging time to the first type of queues and the exact service to
3214 * the other has the effect of using the WF2Q+ policy to schedule the
3215 * former on a timeslice basis, without violating service domain
3216 * guarantees among the latter.
aee69d78 3217 */
ea25da48
PV
3218void bfq_bfqq_expire(struct bfq_data *bfqd,
3219 struct bfq_queue *bfqq,
3220 bool compensate,
3221 enum bfqq_expiration reason)
aee69d78
PV
3222{
3223 bool slow;
ab0e43e9
PV
3224 unsigned long delta = 0;
3225 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
3226 int ref;
3227
3228 /*
ab0e43e9 3229 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 3230 */
ab0e43e9 3231 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78
PV
3232
3233 /*
c074170e
PV
3234 * As above explained, charge slow (typically seeky) and
3235 * timed-out queues with the time and not the service
3236 * received, to favor sequential workloads.
3237 *
3238 * Processes doing I/O in the slower disk zones will tend to
3239 * be slow(er) even if not seeky. Therefore, since the
3240 * estimated peak rate is actually an average over the disk
3241 * surface, these processes may timeout just for bad luck. To
3242 * avoid punishing them, do not charge time to processes that
3243 * succeeded in consuming at least 2/3 of their budget. This
3244 * allows BFQ to preserve enough elasticity to still perform
3245 * bandwidth, and not time, distribution with little unlucky
3246 * or quasi-sequential processes.
aee69d78 3247 */
44e44a1b
PV
3248 if (bfqq->wr_coeff == 1 &&
3249 (slow ||
3250 (reason == BFQQE_BUDGET_TIMEOUT &&
3251 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 3252 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
3253
3254 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 3255 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
3256 bfq_clear_bfqq_IO_bound(bfqq);
3257
44e44a1b
PV
3258 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3259 bfqq->last_wr_start_finish = jiffies;
3260
77b7dcea
PV
3261 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3262 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3263 /*
3264 * If we get here, and there are no outstanding
3265 * requests, then the request pattern is isochronous
3266 * (see the comments on the function
3267 * bfq_bfqq_softrt_next_start()). Thus we can compute
3268 * soft_rt_next_start. If, instead, the queue still
3269 * has outstanding requests, then we have to wait for
3270 * the completion of all the outstanding requests to
3271 * discover whether the request pattern is actually
3272 * isochronous.
3273 */
3274 if (bfqq->dispatched == 0)
3275 bfqq->soft_rt_next_start =
3276 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3277 else {
77b7dcea
PV
3278 /*
3279 * Schedule an update of soft_rt_next_start to when
3280 * the task may be discovered to be isochronous.
3281 */
3282 bfq_mark_bfqq_softrt_update(bfqq);
3283 }
3284 }
3285
aee69d78 3286 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
3287 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3288 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
aee69d78
PV
3289
3290 /*
3291 * Increase, decrease or leave budget unchanged according to
3292 * reason.
3293 */
3294 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3295 ref = bfqq->ref;
3296 __bfq_bfqq_expire(bfqd, bfqq);
3297
9fae8dd5
PV
3298 if (ref == 1) /* bfqq is gone, no more actions on it */
3299 return;
3300
d0edc247
PV
3301 bfqq->injected_service = 0;
3302
aee69d78 3303 /* mark bfqq as waiting a request only if a bic still points to it */
9fae8dd5 3304 if (!bfq_bfqq_busy(bfqq) &&
aee69d78 3305 reason != BFQQE_BUDGET_TIMEOUT &&
9fae8dd5 3306 reason != BFQQE_BUDGET_EXHAUSTED) {
aee69d78 3307 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
9fae8dd5
PV
3308 /*
3309 * Not setting service to 0, because, if the next rq
3310 * arrives in time, the queue will go on receiving
3311 * service with this same budget (as if it never expired)
3312 */
3313 } else
3314 entity->service = 0;
8a511ba5
PV
3315
3316 /*
3317 * Reset the received-service counter for every parent entity.
3318 * Differently from what happens with bfqq->entity.service,
3319 * the resetting of this counter never needs to be postponed
3320 * for parent entities. In fact, in case bfqq may have a
3321 * chance to go on being served using the last, partially
3322 * consumed budget, bfqq->entity.service needs to be kept,
3323 * because if bfqq then actually goes on being served using
3324 * the same budget, the last value of bfqq->entity.service is
3325 * needed to properly decrement bfqq->entity.budget by the
3326 * portion already consumed. In contrast, it is not necessary
3327 * to keep entity->service for parent entities too, because
3328 * the bubble up of the new value of bfqq->entity.budget will
3329 * make sure that the budgets of parent entities are correct,
3330 * even in case bfqq and thus parent entities go on receiving
3331 * service with the same budget.
3332 */
3333 entity = entity->parent;
3334 for_each_entity(entity)
3335 entity->service = 0;
aee69d78
PV
3336}
3337
3338/*
3339 * Budget timeout is not implemented through a dedicated timer, but
3340 * just checked on request arrivals and completions, as well as on
3341 * idle timer expirations.
3342 */
3343static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3344{
44e44a1b 3345 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
3346}
3347
3348/*
3349 * If we expire a queue that is actively waiting (i.e., with the
3350 * device idled) for the arrival of a new request, then we may incur
3351 * the timestamp misalignment problem described in the body of the
3352 * function __bfq_activate_entity. Hence we return true only if this
3353 * condition does not hold, or if the queue is slow enough to deserve
3354 * only to be kicked off for preserving a high throughput.
3355 */
3356static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3357{
3358 bfq_log_bfqq(bfqq->bfqd, bfqq,
3359 "may_budget_timeout: wait_request %d left %d timeout %d",
3360 bfq_bfqq_wait_request(bfqq),
3361 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3362 bfq_bfqq_budget_timeout(bfqq));
3363
3364 return (!bfq_bfqq_wait_request(bfqq) ||
3365 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3366 &&
3367 bfq_bfqq_budget_timeout(bfqq);
3368}
3369
3370/*
3371 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
3372 * this function returns true for the queue. As a consequence, since
3373 * device idling plays a critical role in both throughput boosting and
3374 * service guarantees, the return value of this function plays a
3375 * critical role in both these aspects as well.
3376 *
3377 * In a nutshell, this function returns true only if idling is
3378 * beneficial for throughput or, even if detrimental for throughput,
3379 * idling is however necessary to preserve service guarantees (low
3380 * latency, desired throughput distribution, ...). In particular, on
3381 * NCQ-capable devices, this function tries to return false, so as to
3382 * help keep the drives' internal queues full, whenever this helps the
3383 * device boost the throughput without causing any service-guarantee
3384 * issue.
3385 *
3386 * In more detail, the return value of this function is obtained by,
3387 * first, computing a number of boolean variables that take into
3388 * account throughput and service-guarantee issues, and, then,
3389 * combining these variables in a logical expression. Most of the
3390 * issues taken into account are not trivial. We discuss these issues
3391 * individually while introducing the variables.
aee69d78 3392 */
277a4a9b 3393static bool bfq_better_to_idle(struct bfq_queue *bfqq)
aee69d78
PV
3394{
3395 struct bfq_data *bfqd = bfqq->bfqd;
edaf9428
PV
3396 bool rot_without_queueing =
3397 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3398 bfqq_sequential_and_IO_bound,
3399 idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 3400 idling_needed_for_service_guarantees,
cfd69712 3401 asymmetric_scenario;
aee69d78
PV
3402
3403 if (bfqd->strict_guarantees)
3404 return true;
3405
d5be3fef
PV
3406 /*
3407 * Idling is performed only if slice_idle > 0. In addition, we
3408 * do not idle if
3409 * (a) bfqq is async
3410 * (b) bfqq is in the idle io prio class: in this case we do
3411 * not idle because we want to minimize the bandwidth that
3412 * queues in this class can steal to higher-priority queues
3413 */
3414 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3415 bfq_class_idle(bfqq))
3416 return false;
3417
edaf9428
PV
3418 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3419 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3420
aee69d78 3421 /*
44e44a1b
PV
3422 * The next variable takes into account the cases where idling
3423 * boosts the throughput.
3424 *
e01eff01
PV
3425 * The value of the variable is computed considering, first, that
3426 * idling is virtually always beneficial for the throughput if:
edaf9428
PV
3427 * (a) the device is not NCQ-capable and rotational, or
3428 * (b) regardless of the presence of NCQ, the device is rotational and
3429 * the request pattern for bfqq is I/O-bound and sequential, or
3430 * (c) regardless of whether it is rotational, the device is
3431 * not NCQ-capable and the request pattern for bfqq is
3432 * I/O-bound and sequential.
bf2b79e7
PV
3433 *
3434 * Secondly, and in contrast to the above item (b), idling an
3435 * NCQ-capable flash-based device would not boost the
e01eff01 3436 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
3437 * the throughput in proportion to how fast the device
3438 * is. Accordingly, the next variable is true if any of the
edaf9428
PV
3439 * above conditions (a), (b) or (c) is true, and, in
3440 * particular, happens to be false if bfqd is an NCQ-capable
3441 * flash-based device.
aee69d78 3442 */
edaf9428
PV
3443 idling_boosts_thr = rot_without_queueing ||
3444 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3445 bfqq_sequential_and_IO_bound);
aee69d78 3446
cfd69712
PV
3447 /*
3448 * The value of the next variable,
3449 * idling_boosts_thr_without_issues, is equal to that of
3450 * idling_boosts_thr, unless a special case holds. In this
3451 * special case, described below, idling may cause problems to
3452 * weight-raised queues.
3453 *
3454 * When the request pool is saturated (e.g., in the presence
3455 * of write hogs), if the processes associated with
3456 * non-weight-raised queues ask for requests at a lower rate,
3457 * then processes associated with weight-raised queues have a
3458 * higher probability to get a request from the pool
3459 * immediately (or at least soon) when they need one. Thus
3460 * they have a higher probability to actually get a fraction
3461 * of the device throughput proportional to their high
3462 * weight. This is especially true with NCQ-capable drives,
3463 * which enqueue several requests in advance, and further
3464 * reorder internally-queued requests.
3465 *
3466 * For this reason, we force to false the value of
3467 * idling_boosts_thr_without_issues if there are weight-raised
3468 * busy queues. In this case, and if bfqq is not weight-raised,
3469 * this guarantees that the device is not idled for bfqq (if,
3470 * instead, bfqq is weight-raised, then idling will be
3471 * guaranteed by another variable, see below). Combined with
3472 * the timestamping rules of BFQ (see [1] for details), this
3473 * behavior causes bfqq, and hence any sync non-weight-raised
3474 * queue, to get a lower number of requests served, and thus
3475 * to ask for a lower number of requests from the request
3476 * pool, before the busy weight-raised queues get served
3477 * again. This often mitigates starvation problems in the
3478 * presence of heavy write workloads and NCQ, thereby
3479 * guaranteeing a higher application and system responsiveness
3480 * in these hostile scenarios.
3481 */
3482 idling_boosts_thr_without_issues = idling_boosts_thr &&
3483 bfqd->wr_busy_queues == 0;
3484
aee69d78 3485 /*
bf2b79e7
PV
3486 * There is then a case where idling must be performed not
3487 * for throughput concerns, but to preserve service
3488 * guarantees.
3489 *
3490 * To introduce this case, we can note that allowing the drive
3491 * to enqueue more than one request at a time, and hence
44e44a1b 3492 * delegating de facto final scheduling decisions to the
bf2b79e7 3493 * drive's internal scheduler, entails loss of control on the
44e44a1b 3494 * actual request service order. In particular, the critical
bf2b79e7 3495 * situation is when requests from different processes happen
44e44a1b
PV
3496 * to be present, at the same time, in the internal queue(s)
3497 * of the drive. In such a situation, the drive, by deciding
3498 * the service order of the internally-queued requests, does
3499 * determine also the actual throughput distribution among
3500 * these processes. But the drive typically has no notion or
3501 * concern about per-process throughput distribution, and
3502 * makes its decisions only on a per-request basis. Therefore,
3503 * the service distribution enforced by the drive's internal
3504 * scheduler is likely to coincide with the desired
3505 * device-throughput distribution only in a completely
bf2b79e7
PV
3506 * symmetric scenario where:
3507 * (i) each of these processes must get the same throughput as
3508 * the others;
3509 * (ii) all these processes have the same I/O pattern
3510 (either sequential or random).
3511 * In fact, in such a scenario, the drive will tend to treat
3512 * the requests of each of these processes in about the same
3513 * way as the requests of the others, and thus to provide
3514 * each of these processes with about the same throughput
3515 * (which is exactly the desired throughput distribution). In
3516 * contrast, in any asymmetric scenario, device idling is
3517 * certainly needed to guarantee that bfqq receives its
3518 * assigned fraction of the device throughput (see [1] for
3519 * details).
3520 *
3521 * We address this issue by controlling, actually, only the
3522 * symmetry sub-condition (i), i.e., provided that
3523 * sub-condition (i) holds, idling is not performed,
3524 * regardless of whether sub-condition (ii) holds. In other
3525 * words, only if sub-condition (i) holds, then idling is
3526 * allowed, and the device tends to be prevented from queueing
3527 * many requests, possibly of several processes. The reason
3528 * for not controlling also sub-condition (ii) is that we
3529 * exploit preemption to preserve guarantees in case of
3530 * symmetric scenarios, even if (ii) does not hold, as
3531 * explained in the next two paragraphs.
3532 *
3533 * Even if a queue, say Q, is expired when it remains idle, Q
3534 * can still preempt the new in-service queue if the next
3535 * request of Q arrives soon (see the comments on
3536 * bfq_bfqq_update_budg_for_activation). If all queues and
3537 * groups have the same weight, this form of preemption,
3538 * combined with the hole-recovery heuristic described in the
3539 * comments on function bfq_bfqq_update_budg_for_activation,
3540 * are enough to preserve a correct bandwidth distribution in
3541 * the mid term, even without idling. In fact, even if not
3542 * idling allows the internal queues of the device to contain
3543 * many requests, and thus to reorder requests, we can rather
3544 * safely assume that the internal scheduler still preserves a
3545 * minimum of mid-term fairness. The motivation for using
3546 * preemption instead of idling is that, by not idling,
3547 * service guarantees are preserved without minimally
3548 * sacrificing throughput. In other words, both a high
3549 * throughput and its desired distribution are obtained.
3550 *
3551 * More precisely, this preemption-based, idleless approach
3552 * provides fairness in terms of IOPS, and not sectors per
3553 * second. This can be seen with a simple example. Suppose
3554 * that there are two queues with the same weight, but that
3555 * the first queue receives requests of 8 sectors, while the
3556 * second queue receives requests of 1024 sectors. In
3557 * addition, suppose that each of the two queues contains at
3558 * most one request at a time, which implies that each queue
3559 * always remains idle after it is served. Finally, after
3560 * remaining idle, each queue receives very quickly a new
3561 * request. It follows that the two queues are served
3562 * alternatively, preempting each other if needed. This
3563 * implies that, although both queues have the same weight,
3564 * the queue with large requests receives a service that is
3565 * 1024/8 times as high as the service received by the other
3566 * queue.
44e44a1b 3567 *
bf2b79e7
PV
3568 * On the other hand, device idling is performed, and thus
3569 * pure sector-domain guarantees are provided, for the
3570 * following queues, which are likely to need stronger
3571 * throughput guarantees: weight-raised queues, and queues
3572 * with a higher weight than other queues. When such queues
3573 * are active, sub-condition (i) is false, which triggers
3574 * device idling.
44e44a1b 3575 *
bf2b79e7
PV
3576 * According to the above considerations, the next variable is
3577 * true (only) if sub-condition (i) holds. To compute the
3578 * value of this variable, we not only use the return value of
3579 * the function bfq_symmetric_scenario(), but also check
3580 * whether bfqq is being weight-raised, because
3581 * bfq_symmetric_scenario() does not take into account also
3582 * weight-raised queues (see comments on
c8765de0
PV
3583 * bfq_weights_tree_add()). In particular, if bfqq is being
3584 * weight-raised, it is important to idle only if there are
3585 * other, non-weight-raised queues that may steal throughput
3586 * to bfqq. Actually, we should be even more precise, and
3587 * differentiate between interactive weight raising and
3588 * soft real-time weight raising.
44e44a1b
PV
3589 *
3590 * As a side note, it is worth considering that the above
3591 * device-idling countermeasures may however fail in the
3592 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
3593 * disabled in a time period during which all symmetry
3594 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
3595 * enqueue many requests, but at some later point in time some
3596 * sub-condition stops to hold, then it may become impossible
3597 * to let requests be served in the desired order until all
3598 * the requests already queued in the device have been served.
3599 */
c8765de0
PV
3600 asymmetric_scenario = (bfqq->wr_coeff > 1 &&
3601 bfqd->wr_busy_queues < bfqd->busy_queues) ||
bf2b79e7 3602 !bfq_symmetric_scenario(bfqd);
44e44a1b 3603
e1b2324d
AA
3604 /*
3605 * Finally, there is a case where maximizing throughput is the
3606 * best choice even if it may cause unfairness toward
3607 * bfqq. Such a case is when bfqq became active in a burst of
3608 * queue activations. Queues that became active during a large
3609 * burst benefit only from throughput, as discussed in the
3610 * comments on bfq_handle_burst. Thus, if bfqq became active
3611 * in a burst and not idling the device maximizes throughput,
3612 * then the device must no be idled, because not idling the
3613 * device provides bfqq and all other queues in the burst with
3614 * maximum benefit. Combining this and the above case, we can
3615 * now establish when idling is actually needed to preserve
3616 * service guarantees.
3617 */
3618 idling_needed_for_service_guarantees =
3619 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3620
44e44a1b 3621 /*
d5be3fef
PV
3622 * We have now all the components we need to compute the
3623 * return value of the function, which is true only if idling
3624 * either boosts the throughput (without issues), or is
3625 * necessary to preserve service guarantees.
aee69d78 3626 */
d5be3fef
PV
3627 return idling_boosts_thr_without_issues ||
3628 idling_needed_for_service_guarantees;
aee69d78
PV
3629}
3630
3631/*
277a4a9b 3632 * If the in-service queue is empty but the function bfq_better_to_idle
aee69d78
PV
3633 * returns true, then:
3634 * 1) the queue must remain in service and cannot be expired, and
3635 * 2) the device must be idled to wait for the possible arrival of a new
3636 * request for the queue.
277a4a9b 3637 * See the comments on the function bfq_better_to_idle for the reasons
aee69d78 3638 * why performing device idling is the best choice to boost the throughput
277a4a9b 3639 * and preserve service guarantees when bfq_better_to_idle itself
aee69d78
PV
3640 * returns true.
3641 */
3642static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3643{
277a4a9b 3644 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
aee69d78
PV
3645}
3646
d0edc247
PV
3647static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3648{
3649 struct bfq_queue *bfqq;
3650
3651 /*
3652 * A linear search; but, with a high probability, very few
3653 * steps are needed to find a candidate queue, i.e., a queue
3654 * with enough budget left for its next request. In fact:
3655 * - BFQ dynamically updates the budget of every queue so as
3656 * to accommodate the expected backlog of the queue;
3657 * - if a queue gets all its requests dispatched as injected
3658 * service, then the queue is removed from the active list
3659 * (and re-added only if it gets new requests, but with
3660 * enough budget for its new backlog).
3661 */
3662 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
3663 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
3664 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
3665 bfq_bfqq_budget_left(bfqq))
3666 return bfqq;
3667
3668 return NULL;
3669}
3670
aee69d78
PV
3671/*
3672 * Select a queue for service. If we have a current queue in service,
3673 * check whether to continue servicing it, or retrieve and set a new one.
3674 */
3675static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3676{
3677 struct bfq_queue *bfqq;
3678 struct request *next_rq;
3679 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3680
3681 bfqq = bfqd->in_service_queue;
3682 if (!bfqq)
3683 goto new_queue;
3684
3685 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3686
4420b095
PV
3687 /*
3688 * Do not expire bfqq for budget timeout if bfqq may be about
3689 * to enjoy device idling. The reason why, in this case, we
3690 * prevent bfqq from expiring is the same as in the comments
3691 * on the case where bfq_bfqq_must_idle() returns true, in
3692 * bfq_completed_request().
3693 */
aee69d78 3694 if (bfq_may_expire_for_budg_timeout(bfqq) &&
aee69d78
PV
3695 !bfq_bfqq_must_idle(bfqq))
3696 goto expire;
3697
3698check_queue:
3699 /*
3700 * This loop is rarely executed more than once. Even when it
3701 * happens, it is much more convenient to re-execute this loop
3702 * than to return NULL and trigger a new dispatch to get a
3703 * request served.
3704 */
3705 next_rq = bfqq->next_rq;
3706 /*
3707 * If bfqq has requests queued and it has enough budget left to
3708 * serve them, keep the queue, otherwise expire it.
3709 */
3710 if (next_rq) {
3711 if (bfq_serv_to_charge(next_rq, bfqq) >
3712 bfq_bfqq_budget_left(bfqq)) {
3713 /*
3714 * Expire the queue for budget exhaustion,
3715 * which makes sure that the next budget is
3716 * enough to serve the next request, even if
3717 * it comes from the fifo expired path.
3718 */
3719 reason = BFQQE_BUDGET_EXHAUSTED;
3720 goto expire;
3721 } else {
3722 /*
3723 * The idle timer may be pending because we may
3724 * not disable disk idling even when a new request
3725 * arrives.
3726 */
3727 if (bfq_bfqq_wait_request(bfqq)) {
3728 /*
3729 * If we get here: 1) at least a new request
3730 * has arrived but we have not disabled the
3731 * timer because the request was too small,
3732 * 2) then the block layer has unplugged
3733 * the device, causing the dispatch to be
3734 * invoked.
3735 *
3736 * Since the device is unplugged, now the
3737 * requests are probably large enough to
3738 * provide a reasonable throughput.
3739 * So we disable idling.
3740 */
3741 bfq_clear_bfqq_wait_request(bfqq);
3742 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3743 }
3744 goto keep_queue;
3745 }
3746 }
3747
3748 /*
3749 * No requests pending. However, if the in-service queue is idling
3750 * for a new request, or has requests waiting for a completion and
3751 * may idle after their completion, then keep it anyway.
d0edc247
PV
3752 *
3753 * Yet, to boost throughput, inject service from other queues if
3754 * possible.
aee69d78
PV
3755 */
3756 if (bfq_bfqq_wait_request(bfqq) ||
277a4a9b 3757 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
d0edc247
PV
3758 if (bfq_bfqq_injectable(bfqq) &&
3759 bfqq->injected_service * bfqq->inject_coeff <
3760 bfqq->entity.service * 10)
3761 bfqq = bfq_choose_bfqq_for_injection(bfqd);
3762 else
3763 bfqq = NULL;
3764
aee69d78
PV
3765 goto keep_queue;
3766 }
3767
3768 reason = BFQQE_NO_MORE_REQUESTS;
3769expire:
3770 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3771new_queue:
3772 bfqq = bfq_set_in_service_queue(bfqd);
3773 if (bfqq) {
3774 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3775 goto check_queue;
3776 }
3777keep_queue:
3778 if (bfqq)
3779 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3780 else
3781 bfq_log(bfqd, "select_queue: no queue returned");
3782
3783 return bfqq;
3784}
3785
44e44a1b
PV
3786static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3787{
3788 struct bfq_entity *entity = &bfqq->entity;
3789
3790 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3791 bfq_log_bfqq(bfqd, bfqq,
3792 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3793 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3794 jiffies_to_msecs(bfqq->wr_cur_max_time),
3795 bfqq->wr_coeff,
3796 bfqq->entity.weight, bfqq->entity.orig_weight);
3797
3798 if (entity->prio_changed)
3799 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3800
3801 /*
e1b2324d
AA
3802 * If the queue was activated in a burst, or too much
3803 * time has elapsed from the beginning of this
3804 * weight-raising period, then end weight raising.
44e44a1b 3805 */
e1b2324d
AA
3806 if (bfq_bfqq_in_large_burst(bfqq))
3807 bfq_bfqq_end_wr(bfqq);
3808 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3809 bfqq->wr_cur_max_time)) {
77b7dcea
PV
3810 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3811 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 3812 bfq_wr_duration(bfqd)))
77b7dcea
PV
3813 bfq_bfqq_end_wr(bfqq);
3814 else {
3e2bdd6d 3815 switch_back_to_interactive_wr(bfqq, bfqd);
77b7dcea
PV
3816 bfqq->entity.prio_changed = 1;
3817 }
44e44a1b 3818 }
8a8747dc
PV
3819 if (bfqq->wr_coeff > 1 &&
3820 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3821 bfqq->service_from_wr > max_service_from_wr) {
3822 /* see comments on max_service_from_wr */
3823 bfq_bfqq_end_wr(bfqq);
3824 }
44e44a1b 3825 }
431b17f9
PV
3826 /*
3827 * To improve latency (for this or other queues), immediately
3828 * update weight both if it must be raised and if it must be
3829 * lowered. Since, entity may be on some active tree here, and
3830 * might have a pending change of its ioprio class, invoke
3831 * next function with the last parameter unset (see the
3832 * comments on the function).
3833 */
44e44a1b 3834 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
431b17f9
PV
3835 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3836 entity, false);
44e44a1b
PV
3837}
3838
aee69d78
PV
3839/*
3840 * Dispatch next request from bfqq.
3841 */
3842static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3843 struct bfq_queue *bfqq)
3844{
3845 struct request *rq = bfqq->next_rq;
3846 unsigned long service_to_charge;
3847
3848 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3849
3850 bfq_bfqq_served(bfqq, service_to_charge);
3851
3852 bfq_dispatch_remove(bfqd->queue, rq);
3853
d0edc247
PV
3854 if (bfqq != bfqd->in_service_queue) {
3855 if (likely(bfqd->in_service_queue))
3856 bfqd->in_service_queue->injected_service +=
3857 bfq_serv_to_charge(rq, bfqq);
3858
3859 goto return_rq;
3860 }
3861
44e44a1b
PV
3862 /*
3863 * If weight raising has to terminate for bfqq, then next
3864 * function causes an immediate update of bfqq's weight,
3865 * without waiting for next activation. As a consequence, on
3866 * expiration, bfqq will be timestamped as if has never been
3867 * weight-raised during this service slot, even if it has
3868 * received part or even most of the service as a
3869 * weight-raised queue. This inflates bfqq's timestamps, which
3870 * is beneficial, as bfqq is then more willing to leave the
3871 * device immediately to possible other weight-raised queues.
3872 */
3873 bfq_update_wr_data(bfqd, bfqq);
3874
aee69d78
PV
3875 /*
3876 * Expire bfqq, pretending that its budget expired, if bfqq
3877 * belongs to CLASS_IDLE and other queues are waiting for
3878 * service.
3879 */
d0edc247
PV
3880 if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
3881 goto return_rq;
aee69d78 3882
aee69d78 3883 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
d0edc247
PV
3884
3885return_rq:
aee69d78
PV
3886 return rq;
3887}
3888
3889static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3890{
3891 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3892
3893 /*
3894 * Avoiding lock: a race on bfqd->busy_queues should cause at
3895 * most a call to dispatch for nothing
3896 */
3897 return !list_empty_careful(&bfqd->dispatch) ||
3898 bfqd->busy_queues > 0;
3899}
3900
3901static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3902{
3903 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3904 struct request *rq = NULL;
3905 struct bfq_queue *bfqq = NULL;
3906
3907 if (!list_empty(&bfqd->dispatch)) {
3908 rq = list_first_entry(&bfqd->dispatch, struct request,
3909 queuelist);
3910 list_del_init(&rq->queuelist);
3911
3912 bfqq = RQ_BFQQ(rq);
3913
3914 if (bfqq) {
3915 /*
3916 * Increment counters here, because this
3917 * dispatch does not follow the standard
3918 * dispatch flow (where counters are
3919 * incremented)
3920 */
3921 bfqq->dispatched++;
3922
3923 goto inc_in_driver_start_rq;
3924 }
3925
3926 /*
a7877390
PV
3927 * We exploit the bfq_finish_requeue_request hook to
3928 * decrement rq_in_driver, but
3929 * bfq_finish_requeue_request will not be invoked on
3930 * this request. So, to avoid unbalance, just start
3931 * this request, without incrementing rq_in_driver. As
3932 * a negative consequence, rq_in_driver is deceptively
3933 * lower than it should be while this request is in
3934 * service. This may cause bfq_schedule_dispatch to be
3935 * invoked uselessly.
aee69d78
PV
3936 *
3937 * As for implementing an exact solution, the
a7877390
PV
3938 * bfq_finish_requeue_request hook, if defined, is
3939 * probably invoked also on this request. So, by
3940 * exploiting this hook, we could 1) increment
3941 * rq_in_driver here, and 2) decrement it in
3942 * bfq_finish_requeue_request. Such a solution would
3943 * let the value of the counter be always accurate,
3944 * but it would entail using an extra interface
3945 * function. This cost seems higher than the benefit,
3946 * being the frequency of non-elevator-private
aee69d78
PV
3947 * requests very low.
3948 */
3949 goto start_rq;
3950 }
3951
3952 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3953
3954 if (bfqd->busy_queues == 0)
3955 goto exit;
3956
3957 /*
3958 * Force device to serve one request at a time if
3959 * strict_guarantees is true. Forcing this service scheme is
3960 * currently the ONLY way to guarantee that the request
3961 * service order enforced by the scheduler is respected by a
3962 * queueing device. Otherwise the device is free even to make
3963 * some unlucky request wait for as long as the device
3964 * wishes.
3965 *
3966 * Of course, serving one request at at time may cause loss of
3967 * throughput.
3968 */
3969 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3970 goto exit;
3971
3972 bfqq = bfq_select_queue(bfqd);
3973 if (!bfqq)
3974 goto exit;
3975
3976 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3977
3978 if (rq) {
3979inc_in_driver_start_rq:
3980 bfqd->rq_in_driver++;
3981start_rq:
3982 rq->rq_flags |= RQF_STARTED;
3983 }
3984exit:
3985 return rq;
3986}
3987
a33801e8 3988#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
9b25bd03
PV
3989static void bfq_update_dispatch_stats(struct request_queue *q,
3990 struct request *rq,
3991 struct bfq_queue *in_serv_queue,
3992 bool idle_timer_disabled)
3993{
3994 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
aee69d78 3995
24bfd19b 3996 if (!idle_timer_disabled && !bfqq)
9b25bd03 3997 return;
24bfd19b
PV
3998
3999 /*
4000 * rq and bfqq are guaranteed to exist until this function
4001 * ends, for the following reasons. First, rq can be
4002 * dispatched to the device, and then can be completed and
4003 * freed, only after this function ends. Second, rq cannot be
4004 * merged (and thus freed because of a merge) any longer,
4005 * because it has already started. Thus rq cannot be freed
4006 * before this function ends, and, since rq has a reference to
4007 * bfqq, the same guarantee holds for bfqq too.
4008 *
4009 * In addition, the following queue lock guarantees that
4010 * bfqq_group(bfqq) exists as well.
4011 */
9b25bd03 4012 spin_lock_irq(q->queue_lock);
24bfd19b
PV
4013 if (idle_timer_disabled)
4014 /*
4015 * Since the idle timer has been disabled,
4016 * in_serv_queue contained some request when
4017 * __bfq_dispatch_request was invoked above, which
4018 * implies that rq was picked exactly from
4019 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4020 * therefore guaranteed to exist because of the above
4021 * arguments.
4022 */
4023 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4024 if (bfqq) {
4025 struct bfq_group *bfqg = bfqq_group(bfqq);
4026
4027 bfqg_stats_update_avg_queue_size(bfqg);
4028 bfqg_stats_set_start_empty_time(bfqg);
4029 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4030 }
9b25bd03
PV
4031 spin_unlock_irq(q->queue_lock);
4032}
4033#else
4034static inline void bfq_update_dispatch_stats(struct request_queue *q,
4035 struct request *rq,
4036 struct bfq_queue *in_serv_queue,
4037 bool idle_timer_disabled) {}
24bfd19b
PV
4038#endif
4039
9b25bd03
PV
4040static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4041{
4042 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4043 struct request *rq;
4044 struct bfq_queue *in_serv_queue;
4045 bool waiting_rq, idle_timer_disabled;
4046
4047 spin_lock_irq(&bfqd->lock);
4048
4049 in_serv_queue = bfqd->in_service_queue;
4050 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4051
4052 rq = __bfq_dispatch_request(hctx);
4053
4054 idle_timer_disabled =
4055 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4056
4057 spin_unlock_irq(&bfqd->lock);
4058
4059 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4060 idle_timer_disabled);
4061
aee69d78
PV
4062 return rq;
4063}
4064
4065/*
4066 * Task holds one reference to the queue, dropped when task exits. Each rq
4067 * in-flight on this queue also holds a reference, dropped when rq is freed.
4068 *
4069 * Scheduler lock must be held here. Recall not to use bfqq after calling
4070 * this function on it.
4071 */
ea25da48 4072void bfq_put_queue(struct bfq_queue *bfqq)
aee69d78 4073{
e21b7a0b
AA
4074#ifdef CONFIG_BFQ_GROUP_IOSCHED
4075 struct bfq_group *bfqg = bfqq_group(bfqq);
4076#endif
4077
aee69d78
PV
4078 if (bfqq->bfqd)
4079 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4080 bfqq, bfqq->ref);
4081
4082 bfqq->ref--;
4083 if (bfqq->ref)
4084 return;
4085
99fead8d 4086 if (!hlist_unhashed(&bfqq->burst_list_node)) {
e1b2324d 4087 hlist_del_init(&bfqq->burst_list_node);
99fead8d
PV
4088 /*
4089 * Decrement also burst size after the removal, if the
4090 * process associated with bfqq is exiting, and thus
4091 * does not contribute to the burst any longer. This
4092 * decrement helps filter out false positives of large
4093 * bursts, when some short-lived process (often due to
4094 * the execution of commands by some service) happens
4095 * to start and exit while a complex application is
4096 * starting, and thus spawning several processes that
4097 * do I/O (and that *must not* be treated as a large
4098 * burst, see comments on bfq_handle_burst).
4099 *
4100 * In particular, the decrement is performed only if:
4101 * 1) bfqq is not a merged queue, because, if it is,
4102 * then this free of bfqq is not triggered by the exit
4103 * of the process bfqq is associated with, but exactly
4104 * by the fact that bfqq has just been merged.
4105 * 2) burst_size is greater than 0, to handle
4106 * unbalanced decrements. Unbalanced decrements may
4107 * happen in te following case: bfqq is inserted into
4108 * the current burst list--without incrementing
4109 * bust_size--because of a split, but the current
4110 * burst list is not the burst list bfqq belonged to
4111 * (see comments on the case of a split in
4112 * bfq_set_request).
4113 */
4114 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4115 bfqq->bfqd->burst_size--;
7cb04004 4116 }
e21b7a0b 4117
aee69d78 4118 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b 4119#ifdef CONFIG_BFQ_GROUP_IOSCHED
8f9bebc3 4120 bfqg_and_blkg_put(bfqg);
e21b7a0b 4121#endif
aee69d78
PV
4122}
4123
36eca894
AA
4124static void bfq_put_cooperator(struct bfq_queue *bfqq)
4125{
4126 struct bfq_queue *__bfqq, *next;
4127
4128 /*
4129 * If this queue was scheduled to merge with another queue, be
4130 * sure to drop the reference taken on that queue (and others in
4131 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4132 */
4133 __bfqq = bfqq->new_bfqq;
4134 while (__bfqq) {
4135 if (__bfqq == bfqq)
4136 break;
4137 next = __bfqq->new_bfqq;
4138 bfq_put_queue(__bfqq);
4139 __bfqq = next;
4140 }
4141}
4142
aee69d78
PV
4143static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4144{
4145 if (bfqq == bfqd->in_service_queue) {
4146 __bfq_bfqq_expire(bfqd, bfqq);
4147 bfq_schedule_dispatch(bfqd);
4148 }
4149
4150 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4151
36eca894
AA
4152 bfq_put_cooperator(bfqq);
4153
aee69d78
PV
4154 bfq_put_queue(bfqq); /* release process reference */
4155}
4156
4157static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4158{
4159 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4160 struct bfq_data *bfqd;
4161
4162 if (bfqq)
4163 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4164
4165 if (bfqq && bfqd) {
4166 unsigned long flags;
4167
4168 spin_lock_irqsave(&bfqd->lock, flags);
4169 bfq_exit_bfqq(bfqd, bfqq);
4170 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 4171 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4172 }
4173}
4174
4175static void bfq_exit_icq(struct io_cq *icq)
4176{
4177 struct bfq_io_cq *bic = icq_to_bic(icq);
4178
4179 bfq_exit_icq_bfqq(bic, true);
4180 bfq_exit_icq_bfqq(bic, false);
4181}
4182
4183/*
4184 * Update the entity prio values; note that the new values will not
4185 * be used until the next (re)activation.
4186 */
4187static void
4188bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4189{
4190 struct task_struct *tsk = current;
4191 int ioprio_class;
4192 struct bfq_data *bfqd = bfqq->bfqd;
4193
4194 if (!bfqd)
4195 return;
4196
4197 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4198 switch (ioprio_class) {
4199 default:
4200 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4201 "bfq: bad prio class %d\n", ioprio_class);
fa393d1b 4202 /* fall through */
aee69d78
PV
4203 case IOPRIO_CLASS_NONE:
4204 /*
4205 * No prio set, inherit CPU scheduling settings.
4206 */
4207 bfqq->new_ioprio = task_nice_ioprio(tsk);
4208 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4209 break;
4210 case IOPRIO_CLASS_RT:
4211 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4212 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4213 break;
4214 case IOPRIO_CLASS_BE:
4215 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4216 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4217 break;
4218 case IOPRIO_CLASS_IDLE:
4219 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4220 bfqq->new_ioprio = 7;
aee69d78
PV
4221 break;
4222 }
4223
4224 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4225 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4226 bfqq->new_ioprio);
4227 bfqq->new_ioprio = IOPRIO_BE_NR;
4228 }
4229
4230 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4231 bfqq->entity.prio_changed = 1;
4232}
4233
ea25da48
PV
4234static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4235 struct bio *bio, bool is_sync,
4236 struct bfq_io_cq *bic);
4237
aee69d78
PV
4238static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4239{
4240 struct bfq_data *bfqd = bic_to_bfqd(bic);
4241 struct bfq_queue *bfqq;
4242 int ioprio = bic->icq.ioc->ioprio;
4243
4244 /*
4245 * This condition may trigger on a newly created bic, be sure to
4246 * drop the lock before returning.
4247 */
4248 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4249 return;
4250
4251 bic->ioprio = ioprio;
4252
4253 bfqq = bic_to_bfqq(bic, false);
4254 if (bfqq) {
4255 /* release process reference on this queue */
4256 bfq_put_queue(bfqq);
4257 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4258 bic_set_bfqq(bic, bfqq, false);
4259 }
4260
4261 bfqq = bic_to_bfqq(bic, true);
4262 if (bfqq)
4263 bfq_set_next_ioprio_data(bfqq, bic);
4264}
4265
4266static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4267 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4268{
4269 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4270 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 4271 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
4272
4273 bfqq->ref = 0;
4274 bfqq->bfqd = bfqd;
4275
4276 if (bic)
4277 bfq_set_next_ioprio_data(bfqq, bic);
4278
4279 if (is_sync) {
d5be3fef
PV
4280 /*
4281 * No need to mark as has_short_ttime if in
4282 * idle_class, because no device idling is performed
4283 * for queues in idle class
4284 */
aee69d78 4285 if (!bfq_class_idle(bfqq))
d5be3fef
PV
4286 /* tentatively mark as has_short_ttime */
4287 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 4288 bfq_mark_bfqq_sync(bfqq);
e1b2324d 4289 bfq_mark_bfqq_just_created(bfqq);
d0edc247
PV
4290 /*
4291 * Aggressively inject a lot of service: up to 90%.
4292 * This coefficient remains constant during bfqq life,
4293 * but this behavior might be changed, after enough
4294 * testing and tuning.
4295 */
4296 bfqq->inject_coeff = 1;
aee69d78
PV
4297 } else
4298 bfq_clear_bfqq_sync(bfqq);
4299
4300 /* set end request to minus infinity from now */
4301 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4302
4303 bfq_mark_bfqq_IO_bound(bfqq);
4304
4305 bfqq->pid = pid;
4306
4307 /* Tentative initial value to trade off between thr and lat */
54b60456 4308 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 4309 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 4310
44e44a1b 4311 bfqq->wr_coeff = 1;
36eca894 4312 bfqq->last_wr_start_finish = jiffies;
77b7dcea 4313 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 4314 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
4315
4316 /*
a34b0244
PV
4317 * To not forget the possibly high bandwidth consumed by a
4318 * process/queue in the recent past,
4319 * bfq_bfqq_softrt_next_start() returns a value at least equal
4320 * to the current value of bfqq->soft_rt_next_start (see
4321 * comments on bfq_bfqq_softrt_next_start). Set
4322 * soft_rt_next_start to now, to mean that bfqq has consumed
4323 * no bandwidth so far.
77b7dcea 4324 */
a34b0244 4325 bfqq->soft_rt_next_start = jiffies;
44e44a1b 4326
aee69d78
PV
4327 /* first request is almost certainly seeky */
4328 bfqq->seek_history = 1;
4329}
4330
4331static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 4332 struct bfq_group *bfqg,
aee69d78
PV
4333 int ioprio_class, int ioprio)
4334{
4335 switch (ioprio_class) {
4336 case IOPRIO_CLASS_RT:
e21b7a0b 4337 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
4338 case IOPRIO_CLASS_NONE:
4339 ioprio = IOPRIO_NORM;
4340 /* fall through */
4341 case IOPRIO_CLASS_BE:
e21b7a0b 4342 return &bfqg->async_bfqq[1][ioprio];
aee69d78 4343 case IOPRIO_CLASS_IDLE:
e21b7a0b 4344 return &bfqg->async_idle_bfqq;
aee69d78
PV
4345 default:
4346 return NULL;
4347 }
4348}
4349
4350static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4351 struct bio *bio, bool is_sync,
4352 struct bfq_io_cq *bic)
4353{
4354 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4355 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4356 struct bfq_queue **async_bfqq = NULL;
4357 struct bfq_queue *bfqq;
e21b7a0b 4358 struct bfq_group *bfqg;
aee69d78
PV
4359
4360 rcu_read_lock();
4361
27e6fa99 4362 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
e21b7a0b
AA
4363 if (!bfqg) {
4364 bfqq = &bfqd->oom_bfqq;
4365 goto out;
4366 }
4367
aee69d78 4368 if (!is_sync) {
e21b7a0b 4369 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
4370 ioprio);
4371 bfqq = *async_bfqq;
4372 if (bfqq)
4373 goto out;
4374 }
4375
4376 bfqq = kmem_cache_alloc_node(bfq_pool,
4377 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4378 bfqd->queue->node);
4379
4380 if (bfqq) {
4381 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4382 is_sync);
e21b7a0b 4383 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
4384 bfq_log_bfqq(bfqd, bfqq, "allocated");
4385 } else {
4386 bfqq = &bfqd->oom_bfqq;
4387 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4388 goto out;
4389 }
4390
4391 /*
4392 * Pin the queue now that it's allocated, scheduler exit will
4393 * prune it.
4394 */
4395 if (async_bfqq) {
e21b7a0b
AA
4396 bfqq->ref++; /*
4397 * Extra group reference, w.r.t. sync
4398 * queue. This extra reference is removed
4399 * only if bfqq->bfqg disappears, to
4400 * guarantee that this queue is not freed
4401 * until its group goes away.
4402 */
4403 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
4404 bfqq, bfqq->ref);
4405 *async_bfqq = bfqq;
4406 }
4407
4408out:
4409 bfqq->ref++; /* get a process reference to this queue */
4410 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4411 rcu_read_unlock();
4412 return bfqq;
4413}
4414
4415static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4416 struct bfq_queue *bfqq)
4417{
4418 struct bfq_ttime *ttime = &bfqq->ttime;
4419 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4420
4421 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4422
4423 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4424 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4425 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4426 ttime->ttime_samples);
4427}
4428
4429static void
4430bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4431 struct request *rq)
4432{
aee69d78 4433 bfqq->seek_history <<= 1;
ab0e43e9
PV
4434 bfqq->seek_history |=
4435 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
4436 (!blk_queue_nonrot(bfqd->queue) ||
4437 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4438}
4439
d5be3fef
PV
4440static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4441 struct bfq_queue *bfqq,
4442 struct bfq_io_cq *bic)
aee69d78 4443{
d5be3fef 4444 bool has_short_ttime = true;
aee69d78 4445
d5be3fef
PV
4446 /*
4447 * No need to update has_short_ttime if bfqq is async or in
4448 * idle io prio class, or if bfq_slice_idle is zero, because
4449 * no device idling is performed for bfqq in this case.
4450 */
4451 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4452 bfqd->bfq_slice_idle == 0)
aee69d78
PV
4453 return;
4454
36eca894
AA
4455 /* Idle window just restored, statistics are meaningless. */
4456 if (time_is_after_eq_jiffies(bfqq->split_time +
4457 bfqd->bfq_wr_min_idle_time))
4458 return;
4459
d5be3fef
PV
4460 /* Think time is infinite if no process is linked to
4461 * bfqq. Otherwise check average think time to
4462 * decide whether to mark as has_short_ttime
4463 */
aee69d78 4464 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
d5be3fef
PV
4465 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4466 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4467 has_short_ttime = false;
4468
4469 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4470 has_short_ttime);
aee69d78 4471
d5be3fef
PV
4472 if (has_short_ttime)
4473 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 4474 else
d5be3fef 4475 bfq_clear_bfqq_has_short_ttime(bfqq);
aee69d78
PV
4476}
4477
4478/*
4479 * Called when a new fs request (rq) is added to bfqq. Check if there's
4480 * something we should do about it.
4481 */
4482static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4483 struct request *rq)
4484{
4485 struct bfq_io_cq *bic = RQ_BIC(rq);
4486
4487 if (rq->cmd_flags & REQ_META)
4488 bfqq->meta_pending++;
4489
4490 bfq_update_io_thinktime(bfqd, bfqq);
d5be3fef 4491 bfq_update_has_short_ttime(bfqd, bfqq, bic);
aee69d78 4492 bfq_update_io_seektime(bfqd, bfqq, rq);
aee69d78
PV
4493
4494 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
4495 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4496 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
aee69d78
PV
4497
4498 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4499
4500 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4501 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4502 blk_rq_sectors(rq) < 32;
4503 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4504
4505 /*
4506 * There is just this request queued: if the request
4507 * is small and the queue is not to be expired, then
4508 * just exit.
4509 *
4510 * In this way, if the device is being idled to wait
4511 * for a new request from the in-service queue, we
4512 * avoid unplugging the device and committing the
4513 * device to serve just a small request. On the
4514 * contrary, we wait for the block layer to decide
4515 * when to unplug the device: hopefully, new requests
4516 * will be merged to this one quickly, then the device
4517 * will be unplugged and larger requests will be
4518 * dispatched.
4519 */
4520 if (small_req && !budget_timeout)
4521 return;
4522
4523 /*
4524 * A large enough request arrived, or the queue is to
4525 * be expired: in both cases disk idling is to be
4526 * stopped, so clear wait_request flag and reset
4527 * timer.
4528 */
4529 bfq_clear_bfqq_wait_request(bfqq);
4530 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4531
4532 /*
4533 * The queue is not empty, because a new request just
4534 * arrived. Hence we can safely expire the queue, in
4535 * case of budget timeout, without risking that the
4536 * timestamps of the queue are not updated correctly.
4537 * See [1] for more details.
4538 */
4539 if (budget_timeout)
4540 bfq_bfqq_expire(bfqd, bfqq, false,
4541 BFQQE_BUDGET_TIMEOUT);
4542 }
4543}
4544
24bfd19b
PV
4545/* returns true if it causes the idle timer to be disabled */
4546static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
aee69d78 4547{
36eca894
AA
4548 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4549 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
24bfd19b 4550 bool waiting, idle_timer_disabled = false;
36eca894
AA
4551
4552 if (new_bfqq) {
4553 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4554 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4555 /*
4556 * Release the request's reference to the old bfqq
4557 * and make sure one is taken to the shared queue.
4558 */
4559 new_bfqq->allocated++;
4560 bfqq->allocated--;
4561 new_bfqq->ref++;
4562 /*
4563 * If the bic associated with the process
4564 * issuing this request still points to bfqq
4565 * (and thus has not been already redirected
4566 * to new_bfqq or even some other bfq_queue),
4567 * then complete the merge and redirect it to
4568 * new_bfqq.
4569 */
4570 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4571 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4572 bfqq, new_bfqq);
894df937
PV
4573
4574 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
4575 /*
4576 * rq is about to be enqueued into new_bfqq,
4577 * release rq reference on bfqq
4578 */
4579 bfq_put_queue(bfqq);
4580 rq->elv.priv[1] = new_bfqq;
4581 bfqq = new_bfqq;
4582 }
aee69d78 4583
24bfd19b 4584 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
aee69d78 4585 bfq_add_request(rq);
24bfd19b 4586 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
aee69d78
PV
4587
4588 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4589 list_add_tail(&rq->queuelist, &bfqq->fifo);
4590
4591 bfq_rq_enqueued(bfqd, bfqq, rq);
24bfd19b
PV
4592
4593 return idle_timer_disabled;
aee69d78
PV
4594}
4595
9b25bd03
PV
4596#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4597static void bfq_update_insert_stats(struct request_queue *q,
4598 struct bfq_queue *bfqq,
4599 bool idle_timer_disabled,
4600 unsigned int cmd_flags)
4601{
4602 if (!bfqq)
4603 return;
4604
4605 /*
4606 * bfqq still exists, because it can disappear only after
4607 * either it is merged with another queue, or the process it
4608 * is associated with exits. But both actions must be taken by
4609 * the same process currently executing this flow of
4610 * instructions.
4611 *
4612 * In addition, the following queue lock guarantees that
4613 * bfqq_group(bfqq) exists as well.
4614 */
4615 spin_lock_irq(q->queue_lock);
4616 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4617 if (idle_timer_disabled)
4618 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4619 spin_unlock_irq(q->queue_lock);
4620}
4621#else
4622static inline void bfq_update_insert_stats(struct request_queue *q,
4623 struct bfq_queue *bfqq,
4624 bool idle_timer_disabled,
4625 unsigned int cmd_flags) {}
4626#endif
4627
aee69d78
PV
4628static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4629 bool at_head)
4630{
4631 struct request_queue *q = hctx->queue;
4632 struct bfq_data *bfqd = q->elevator->elevator_data;
18e5a57d 4633 struct bfq_queue *bfqq;
24bfd19b
PV
4634 bool idle_timer_disabled = false;
4635 unsigned int cmd_flags;
aee69d78
PV
4636
4637 spin_lock_irq(&bfqd->lock);
4638 if (blk_mq_sched_try_insert_merge(q, rq)) {
4639 spin_unlock_irq(&bfqd->lock);
4640 return;
4641 }
4642
4643 spin_unlock_irq(&bfqd->lock);
4644
4645 blk_mq_sched_request_inserted(rq);
4646
4647 spin_lock_irq(&bfqd->lock);
18e5a57d 4648 bfqq = bfq_init_rq(rq);
aee69d78
PV
4649 if (at_head || blk_rq_is_passthrough(rq)) {
4650 if (at_head)
4651 list_add(&rq->queuelist, &bfqd->dispatch);
4652 else
4653 list_add_tail(&rq->queuelist, &bfqd->dispatch);
18e5a57d 4654 } else { /* bfqq is assumed to be non null here */
24bfd19b 4655 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
614822f8
LM
4656 /*
4657 * Update bfqq, because, if a queue merge has occurred
4658 * in __bfq_insert_request, then rq has been
4659 * redirected into a new queue.
4660 */
4661 bfqq = RQ_BFQQ(rq);
aee69d78
PV
4662
4663 if (rq_mergeable(rq)) {
4664 elv_rqhash_add(q, rq);
4665 if (!q->last_merge)
4666 q->last_merge = rq;
4667 }
4668 }
4669
24bfd19b
PV
4670 /*
4671 * Cache cmd_flags before releasing scheduler lock, because rq
4672 * may disappear afterwards (for example, because of a request
4673 * merge).
4674 */
4675 cmd_flags = rq->cmd_flags;
9b25bd03 4676
6fa3e8d3 4677 spin_unlock_irq(&bfqd->lock);
24bfd19b 4678
9b25bd03
PV
4679 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4680 cmd_flags);
aee69d78
PV
4681}
4682
4683static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4684 struct list_head *list, bool at_head)
4685{
4686 while (!list_empty(list)) {
4687 struct request *rq;
4688
4689 rq = list_first_entry(list, struct request, queuelist);
4690 list_del_init(&rq->queuelist);
4691 bfq_insert_request(hctx, rq, at_head);
4692 }
4693}
4694
4695static void bfq_update_hw_tag(struct bfq_data *bfqd)
4696{
4697 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4698 bfqd->rq_in_driver);
4699
4700 if (bfqd->hw_tag == 1)
4701 return;
4702
4703 /*
4704 * This sample is valid if the number of outstanding requests
4705 * is large enough to allow a queueing behavior. Note that the
4706 * sum is not exact, as it's not taking into account deactivated
4707 * requests.
4708 */
4709 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4710 return;
4711
4712 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4713 return;
4714
4715 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4716 bfqd->max_rq_in_driver = 0;
4717 bfqd->hw_tag_samples = 0;
4718}
4719
4720static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4721{
ab0e43e9
PV
4722 u64 now_ns;
4723 u32 delta_us;
4724
aee69d78
PV
4725 bfq_update_hw_tag(bfqd);
4726
4727 bfqd->rq_in_driver--;
4728 bfqq->dispatched--;
4729
44e44a1b
PV
4730 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4731 /*
4732 * Set budget_timeout (which we overload to store the
4733 * time at which the queue remains with no backlog and
4734 * no outstanding request; used by the weight-raising
4735 * mechanism).
4736 */
4737 bfqq->budget_timeout = jiffies;
1de0c4cd 4738
0471559c 4739 bfq_weights_tree_remove(bfqd, bfqq);
44e44a1b
PV
4740 }
4741
ab0e43e9
PV
4742 now_ns = ktime_get_ns();
4743
4744 bfqq->ttime.last_end_request = now_ns;
4745
4746 /*
4747 * Using us instead of ns, to get a reasonable precision in
4748 * computing rate in next check.
4749 */
4750 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4751
4752 /*
4753 * If the request took rather long to complete, and, according
4754 * to the maximum request size recorded, this completion latency
4755 * implies that the request was certainly served at a very low
4756 * rate (less than 1M sectors/sec), then the whole observation
4757 * interval that lasts up to this time instant cannot be a
4758 * valid time interval for computing a new peak rate. Invoke
4759 * bfq_update_rate_reset to have the following three steps
4760 * taken:
4761 * - close the observation interval at the last (previous)
4762 * request dispatch or completion
4763 * - compute rate, if possible, for that observation interval
4764 * - reset to zero samples, which will trigger a proper
4765 * re-initialization of the observation interval on next
4766 * dispatch
4767 */
4768 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4769 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4770 1UL<<(BFQ_RATE_SHIFT - 10))
4771 bfq_update_rate_reset(bfqd, NULL);
4772 bfqd->last_completion = now_ns;
aee69d78 4773
77b7dcea
PV
4774 /*
4775 * If we are waiting to discover whether the request pattern
4776 * of the task associated with the queue is actually
4777 * isochronous, and both requisites for this condition to hold
4778 * are now satisfied, then compute soft_rt_next_start (see the
4779 * comments on the function bfq_bfqq_softrt_next_start()). We
4780 * schedule this delayed check when bfqq expires, if it still
4781 * has in-flight requests.
4782 */
4783 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4784 RB_EMPTY_ROOT(&bfqq->sort_list))
4785 bfqq->soft_rt_next_start =
4786 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4787
aee69d78
PV
4788 /*
4789 * If this is the in-service queue, check if it needs to be expired,
4790 * or if we want to idle in case it has no pending requests.
4791 */
4792 if (bfqd->in_service_queue == bfqq) {
4420b095
PV
4793 if (bfq_bfqq_must_idle(bfqq)) {
4794 if (bfqq->dispatched == 0)
4795 bfq_arm_slice_timer(bfqd);
4796 /*
4797 * If we get here, we do not expire bfqq, even
4798 * if bfqq was in budget timeout or had no
4799 * more requests (as controlled in the next
4800 * conditional instructions). The reason for
4801 * not expiring bfqq is as follows.
4802 *
4803 * Here bfqq->dispatched > 0 holds, but
4804 * bfq_bfqq_must_idle() returned true. This
4805 * implies that, even if no request arrives
4806 * for bfqq before bfqq->dispatched reaches 0,
4807 * bfqq will, however, not be expired on the
4808 * completion event that causes bfqq->dispatch
4809 * to reach zero. In contrast, on this event,
4810 * bfqq will start enjoying device idling
4811 * (I/O-dispatch plugging).
4812 *
4813 * But, if we expired bfqq here, bfqq would
4814 * not have the chance to enjoy device idling
4815 * when bfqq->dispatched finally reaches
4816 * zero. This would expose bfqq to violation
4817 * of its reserved service guarantees.
4818 */
aee69d78
PV
4819 return;
4820 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4821 bfq_bfqq_expire(bfqd, bfqq, false,
4822 BFQQE_BUDGET_TIMEOUT);
4823 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4824 (bfqq->dispatched == 0 ||
277a4a9b 4825 !bfq_better_to_idle(bfqq)))
aee69d78
PV
4826 bfq_bfqq_expire(bfqd, bfqq, false,
4827 BFQQE_NO_MORE_REQUESTS);
4828 }
3f7cb4f4
HT
4829
4830 if (!bfqd->rq_in_driver)
4831 bfq_schedule_dispatch(bfqd);
aee69d78
PV
4832}
4833
a7877390 4834static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
aee69d78
PV
4835{
4836 bfqq->allocated--;
4837
4838 bfq_put_queue(bfqq);
4839}
4840
a7877390
PV
4841/*
4842 * Handle either a requeue or a finish for rq. The things to do are
4843 * the same in both cases: all references to rq are to be dropped. In
4844 * particular, rq is considered completed from the point of view of
4845 * the scheduler.
4846 */
4847static void bfq_finish_requeue_request(struct request *rq)
aee69d78 4848{
a7877390 4849 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5bbf4e5a
CH
4850 struct bfq_data *bfqd;
4851
a7877390
PV
4852 /*
4853 * Requeue and finish hooks are invoked in blk-mq without
4854 * checking whether the involved request is actually still
4855 * referenced in the scheduler. To handle this fact, the
4856 * following two checks make this function exit in case of
4857 * spurious invocations, for which there is nothing to do.
4858 *
4859 * First, check whether rq has nothing to do with an elevator.
4860 */
4861 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4862 return;
4863
4864 /*
4865 * rq either is not associated with any icq, or is an already
4866 * requeued request that has not (yet) been re-inserted into
4867 * a bfq_queue.
4868 */
4869 if (!rq->elv.icq || !bfqq)
5bbf4e5a
CH
4870 return;
4871
5bbf4e5a 4872 bfqd = bfqq->bfqd;
aee69d78 4873
e21b7a0b
AA
4874 if (rq->rq_flags & RQF_STARTED)
4875 bfqg_stats_update_completion(bfqq_group(bfqq),
522a7775
OS
4876 rq->start_time_ns,
4877 rq->io_start_time_ns,
e21b7a0b 4878 rq->cmd_flags);
aee69d78
PV
4879
4880 if (likely(rq->rq_flags & RQF_STARTED)) {
4881 unsigned long flags;
4882
4883 spin_lock_irqsave(&bfqd->lock, flags);
4884
4885 bfq_completed_request(bfqq, bfqd);
a7877390 4886 bfq_finish_requeue_request_body(bfqq);
aee69d78 4887
6fa3e8d3 4888 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4889 } else {
4890 /*
4891 * Request rq may be still/already in the scheduler,
a7877390
PV
4892 * in which case we need to remove it (this should
4893 * never happen in case of requeue). And we cannot
aee69d78
PV
4894 * defer such a check and removal, to avoid
4895 * inconsistencies in the time interval from the end
4896 * of this function to the start of the deferred work.
4897 * This situation seems to occur only in process
4898 * context, as a consequence of a merge. In the
4899 * current version of the code, this implies that the
4900 * lock is held.
4901 */
4902
614822f8 4903 if (!RB_EMPTY_NODE(&rq->rb_node)) {
7b9e9361 4904 bfq_remove_request(rq->q, rq);
614822f8
LM
4905 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4906 rq->cmd_flags);
4907 }
a7877390 4908 bfq_finish_requeue_request_body(bfqq);
aee69d78
PV
4909 }
4910
a7877390
PV
4911 /*
4912 * Reset private fields. In case of a requeue, this allows
4913 * this function to correctly do nothing if it is spuriously
4914 * invoked again on this same request (see the check at the
4915 * beginning of the function). Probably, a better general
4916 * design would be to prevent blk-mq from invoking the requeue
4917 * or finish hooks of an elevator, for a request that is not
4918 * referred by that elevator.
4919 *
4920 * Resetting the following fields would break the
4921 * request-insertion logic if rq is re-inserted into a bfq
4922 * internal queue, without a re-preparation. Here we assume
4923 * that re-insertions of requeued requests, without
4924 * re-preparation, can happen only for pass_through or at_head
4925 * requests (which are not re-inserted into bfq internal
4926 * queues).
4927 */
aee69d78
PV
4928 rq->elv.priv[0] = NULL;
4929 rq->elv.priv[1] = NULL;
4930}
4931
36eca894
AA
4932/*
4933 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4934 * was the last process referring to that bfqq.
4935 */
4936static struct bfq_queue *
4937bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4938{
4939 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4940
4941 if (bfqq_process_refs(bfqq) == 1) {
4942 bfqq->pid = current->pid;
4943 bfq_clear_bfqq_coop(bfqq);
4944 bfq_clear_bfqq_split_coop(bfqq);
4945 return bfqq;
4946 }
4947
4948 bic_set_bfqq(bic, NULL, 1);
4949
4950 bfq_put_cooperator(bfqq);
4951
4952 bfq_put_queue(bfqq);
4953 return NULL;
4954}
4955
4956static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4957 struct bfq_io_cq *bic,
4958 struct bio *bio,
4959 bool split, bool is_sync,
4960 bool *new_queue)
4961{
4962 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4963
4964 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4965 return bfqq;
4966
4967 if (new_queue)
4968 *new_queue = true;
4969
4970 if (bfqq)
4971 bfq_put_queue(bfqq);
4972 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4973
4974 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
4975 if (split && is_sync) {
4976 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4977 bic->saved_in_large_burst)
4978 bfq_mark_bfqq_in_large_burst(bfqq);
4979 else {
4980 bfq_clear_bfqq_in_large_burst(bfqq);
4981 if (bic->was_in_burst_list)
99fead8d
PV
4982 /*
4983 * If bfqq was in the current
4984 * burst list before being
4985 * merged, then we have to add
4986 * it back. And we do not need
4987 * to increase burst_size, as
4988 * we did not decrement
4989 * burst_size when we removed
4990 * bfqq from the burst list as
4991 * a consequence of a merge
4992 * (see comments in
4993 * bfq_put_queue). In this
4994 * respect, it would be rather
4995 * costly to know whether the
4996 * current burst list is still
4997 * the same burst list from
4998 * which bfqq was removed on
4999 * the merge. To avoid this
5000 * cost, if bfqq was in a
5001 * burst list, then we add
5002 * bfqq to the current burst
5003 * list without any further
5004 * check. This can cause
5005 * inappropriate insertions,
5006 * but rarely enough to not
5007 * harm the detection of large
5008 * bursts significantly.
5009 */
e1b2324d
AA
5010 hlist_add_head(&bfqq->burst_list_node,
5011 &bfqd->burst_list);
5012 }
36eca894 5013 bfqq->split_time = jiffies;
e1b2324d 5014 }
36eca894
AA
5015
5016 return bfqq;
5017}
5018
aee69d78 5019/*
18e5a57d
PV
5020 * Only reset private fields. The actual request preparation will be
5021 * performed by bfq_init_rq, when rq is either inserted or merged. See
5022 * comments on bfq_init_rq for the reason behind this delayed
5023 * preparation.
aee69d78 5024 */
5bbf4e5a 5025static void bfq_prepare_request(struct request *rq, struct bio *bio)
18e5a57d
PV
5026{
5027 /*
5028 * Regardless of whether we have an icq attached, we have to
5029 * clear the scheduler pointers, as they might point to
5030 * previously allocated bic/bfqq structs.
5031 */
5032 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5033}
5034
5035/*
5036 * If needed, init rq, allocate bfq data structures associated with
5037 * rq, and increment reference counters in the destination bfq_queue
5038 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5039 * not associated with any bfq_queue.
5040 *
5041 * This function is invoked by the functions that perform rq insertion
5042 * or merging. One may have expected the above preparation operations
5043 * to be performed in bfq_prepare_request, and not delayed to when rq
5044 * is inserted or merged. The rationale behind this delayed
5045 * preparation is that, after the prepare_request hook is invoked for
5046 * rq, rq may still be transformed into a request with no icq, i.e., a
5047 * request not associated with any queue. No bfq hook is invoked to
5048 * signal this tranformation. As a consequence, should these
5049 * preparation operations be performed when the prepare_request hook
5050 * is invoked, and should rq be transformed one moment later, bfq
5051 * would end up in an inconsistent state, because it would have
5052 * incremented some queue counters for an rq destined to
5053 * transformation, without any chance to correctly lower these
5054 * counters back. In contrast, no transformation can still happen for
5055 * rq after rq has been inserted or merged. So, it is safe to execute
5056 * these preparation operations when rq is finally inserted or merged.
5057 */
5058static struct bfq_queue *bfq_init_rq(struct request *rq)
aee69d78 5059{
5bbf4e5a 5060 struct request_queue *q = rq->q;
18e5a57d 5061 struct bio *bio = rq->bio;
aee69d78 5062 struct bfq_data *bfqd = q->elevator->elevator_data;
9f210738 5063 struct bfq_io_cq *bic;
aee69d78
PV
5064 const int is_sync = rq_is_sync(rq);
5065 struct bfq_queue *bfqq;
36eca894 5066 bool new_queue = false;
13c931bd 5067 bool bfqq_already_existing = false, split = false;
aee69d78 5068
18e5a57d
PV
5069 if (unlikely(!rq->elv.icq))
5070 return NULL;
5071
72961c4e 5072 /*
18e5a57d
PV
5073 * Assuming that elv.priv[1] is set only if everything is set
5074 * for this rq. This holds true, because this function is
5075 * invoked only for insertion or merging, and, after such
5076 * events, a request cannot be manipulated any longer before
5077 * being removed from bfq.
72961c4e 5078 */
18e5a57d
PV
5079 if (rq->elv.priv[1])
5080 return rq->elv.priv[1];
72961c4e 5081
9f210738 5082 bic = icq_to_bic(rq->elv.icq);
aee69d78 5083
8c9ff1ad
CIK
5084 bfq_check_ioprio_change(bic, bio);
5085
e21b7a0b
AA
5086 bfq_bic_update_cgroup(bic, bio);
5087
36eca894
AA
5088 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5089 &new_queue);
5090
5091 if (likely(!new_queue)) {
5092 /* If the queue was seeky for too long, break it apart. */
5093 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5094 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
5095
5096 /* Update bic before losing reference to bfqq */
5097 if (bfq_bfqq_in_large_burst(bfqq))
5098 bic->saved_in_large_burst = true;
5099
36eca894 5100 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 5101 split = true;
36eca894
AA
5102
5103 if (!bfqq)
5104 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5105 true, is_sync,
5106 NULL);
13c931bd
PV
5107 else
5108 bfqq_already_existing = true;
36eca894 5109 }
aee69d78
PV
5110 }
5111
5112 bfqq->allocated++;
5113 bfqq->ref++;
5114 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5115 rq, bfqq, bfqq->ref);
5116
5117 rq->elv.priv[0] = bic;
5118 rq->elv.priv[1] = bfqq;
5119
36eca894
AA
5120 /*
5121 * If a bfq_queue has only one process reference, it is owned
5122 * by only this bic: we can then set bfqq->bic = bic. in
5123 * addition, if the queue has also just been split, we have to
5124 * resume its state.
5125 */
5126 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5127 bfqq->bic = bic;
6fa3e8d3 5128 if (split) {
36eca894
AA
5129 /*
5130 * The queue has just been split from a shared
5131 * queue: restore the idle window and the
5132 * possible weight raising period.
5133 */
13c931bd
PV
5134 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5135 bfqq_already_existing);
36eca894
AA
5136 }
5137 }
5138
e1b2324d
AA
5139 if (unlikely(bfq_bfqq_just_created(bfqq)))
5140 bfq_handle_burst(bfqd, bfqq);
5141
18e5a57d 5142 return bfqq;
aee69d78
PV
5143}
5144
5145static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5146{
5147 struct bfq_data *bfqd = bfqq->bfqd;
5148 enum bfqq_expiration reason;
5149 unsigned long flags;
5150
5151 spin_lock_irqsave(&bfqd->lock, flags);
5152 bfq_clear_bfqq_wait_request(bfqq);
5153
5154 if (bfqq != bfqd->in_service_queue) {
5155 spin_unlock_irqrestore(&bfqd->lock, flags);
5156 return;
5157 }
5158
5159 if (bfq_bfqq_budget_timeout(bfqq))
5160 /*
5161 * Also here the queue can be safely expired
5162 * for budget timeout without wasting
5163 * guarantees
5164 */
5165 reason = BFQQE_BUDGET_TIMEOUT;
5166 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5167 /*
5168 * The queue may not be empty upon timer expiration,
5169 * because we may not disable the timer when the
5170 * first request of the in-service queue arrives
5171 * during disk idling.
5172 */
5173 reason = BFQQE_TOO_IDLE;
5174 else
5175 goto schedule_dispatch;
5176
5177 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5178
5179schedule_dispatch:
6fa3e8d3 5180 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
5181 bfq_schedule_dispatch(bfqd);
5182}
5183
5184/*
5185 * Handler of the expiration of the timer running if the in-service queue
5186 * is idling inside its time slice.
5187 */
5188static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5189{
5190 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5191 idle_slice_timer);
5192 struct bfq_queue *bfqq = bfqd->in_service_queue;
5193
5194 /*
5195 * Theoretical race here: the in-service queue can be NULL or
5196 * different from the queue that was idling if a new request
5197 * arrives for the current queue and there is a full dispatch
5198 * cycle that changes the in-service queue. This can hardly
5199 * happen, but in the worst case we just expire a queue too
5200 * early.
5201 */
5202 if (bfqq)
5203 bfq_idle_slice_timer_body(bfqq);
5204
5205 return HRTIMER_NORESTART;
5206}
5207
5208static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5209 struct bfq_queue **bfqq_ptr)
5210{
5211 struct bfq_queue *bfqq = *bfqq_ptr;
5212
5213 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5214 if (bfqq) {
e21b7a0b
AA
5215 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5216
aee69d78
PV
5217 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5218 bfqq, bfqq->ref);
5219 bfq_put_queue(bfqq);
5220 *bfqq_ptr = NULL;
5221 }
5222}
5223
5224/*
e21b7a0b
AA
5225 * Release all the bfqg references to its async queues. If we are
5226 * deallocating the group these queues may still contain requests, so
5227 * we reparent them to the root cgroup (i.e., the only one that will
5228 * exist for sure until all the requests on a device are gone).
aee69d78 5229 */
ea25da48 5230void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
5231{
5232 int i, j;
5233
5234 for (i = 0; i < 2; i++)
5235 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 5236 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 5237
e21b7a0b 5238 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
5239}
5240
f0635b8a
JA
5241/*
5242 * See the comments on bfq_limit_depth for the purpose of
483b7bf2 5243 * the depths set in the function. Return minimum shallow depth we'll use.
f0635b8a 5244 */
483b7bf2
JA
5245static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5246 struct sbitmap_queue *bt)
f0635b8a 5247{
483b7bf2
JA
5248 unsigned int i, j, min_shallow = UINT_MAX;
5249
f0635b8a
JA
5250 /*
5251 * In-word depths if no bfq_queue is being weight-raised:
5252 * leaving 25% of tags only for sync reads.
5253 *
5254 * In next formulas, right-shift the value
bd7d4ef6
JA
5255 * (1U<<bt->sb.shift), instead of computing directly
5256 * (1U<<(bt->sb.shift - something)), to be robust against
5257 * any possible value of bt->sb.shift, without having to
f0635b8a
JA
5258 * limit 'something'.
5259 */
5260 /* no more than 50% of tags for async I/O */
bd7d4ef6 5261 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
f0635b8a
JA
5262 /*
5263 * no more than 75% of tags for sync writes (25% extra tags
5264 * w.r.t. async I/O, to prevent async I/O from starving sync
5265 * writes)
5266 */
bd7d4ef6 5267 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
f0635b8a
JA
5268
5269 /*
5270 * In-word depths in case some bfq_queue is being weight-
5271 * raised: leaving ~63% of tags for sync reads. This is the
5272 * highest percentage for which, in our tests, application
5273 * start-up times didn't suffer from any regression due to tag
5274 * shortage.
5275 */
5276 /* no more than ~18% of tags for async I/O */
bd7d4ef6 5277 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
f0635b8a 5278 /* no more than ~37% of tags for sync writes (~20% extra tags) */
bd7d4ef6 5279 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
483b7bf2
JA
5280
5281 for (i = 0; i < 2; i++)
5282 for (j = 0; j < 2; j++)
5283 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5284
5285 return min_shallow;
f0635b8a
JA
5286}
5287
5288static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5289{
5290 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5291 struct blk_mq_tags *tags = hctx->sched_tags;
483b7bf2 5292 unsigned int min_shallow;
f0635b8a 5293
483b7bf2
JA
5294 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5295 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
f0635b8a
JA
5296 return 0;
5297}
5298
aee69d78
PV
5299static void bfq_exit_queue(struct elevator_queue *e)
5300{
5301 struct bfq_data *bfqd = e->elevator_data;
5302 struct bfq_queue *bfqq, *n;
5303
5304 hrtimer_cancel(&bfqd->idle_slice_timer);
5305
5306 spin_lock_irq(&bfqd->lock);
5307 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 5308 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
5309 spin_unlock_irq(&bfqd->lock);
5310
5311 hrtimer_cancel(&bfqd->idle_slice_timer);
5312
8abef10b 5313#ifdef CONFIG_BFQ_GROUP_IOSCHED
0d52af59
PV
5314 /* release oom-queue reference to root group */
5315 bfqg_and_blkg_put(bfqd->root_group);
5316
e21b7a0b
AA
5317 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5318#else
5319 spin_lock_irq(&bfqd->lock);
5320 bfq_put_async_queues(bfqd, bfqd->root_group);
5321 kfree(bfqd->root_group);
5322 spin_unlock_irq(&bfqd->lock);
5323#endif
5324
aee69d78
PV
5325 kfree(bfqd);
5326}
5327
e21b7a0b
AA
5328static void bfq_init_root_group(struct bfq_group *root_group,
5329 struct bfq_data *bfqd)
5330{
5331 int i;
5332
5333#ifdef CONFIG_BFQ_GROUP_IOSCHED
5334 root_group->entity.parent = NULL;
5335 root_group->my_entity = NULL;
5336 root_group->bfqd = bfqd;
5337#endif
36eca894 5338 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
5339 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5340 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5341 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5342}
5343
aee69d78
PV
5344static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5345{
5346 struct bfq_data *bfqd;
5347 struct elevator_queue *eq;
aee69d78
PV
5348
5349 eq = elevator_alloc(q, e);
5350 if (!eq)
5351 return -ENOMEM;
5352
5353 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5354 if (!bfqd) {
5355 kobject_put(&eq->kobj);
5356 return -ENOMEM;
5357 }
5358 eq->elevator_data = bfqd;
5359
e21b7a0b
AA
5360 spin_lock_irq(q->queue_lock);
5361 q->elevator = eq;
5362 spin_unlock_irq(q->queue_lock);
5363
aee69d78
PV
5364 /*
5365 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5366 * Grab a permanent reference to it, so that the normal code flow
5367 * will not attempt to free it.
5368 */
5369 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5370 bfqd->oom_bfqq.ref++;
5371 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5372 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5373 bfqd->oom_bfqq.entity.new_weight =
5374 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
5375
5376 /* oom_bfqq does not participate to bursts */
5377 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5378
aee69d78
PV
5379 /*
5380 * Trigger weight initialization, according to ioprio, at the
5381 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5382 * class won't be changed any more.
5383 */
5384 bfqd->oom_bfqq.entity.prio_changed = 1;
5385
5386 bfqd->queue = q;
5387
e21b7a0b 5388 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
5389
5390 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5391 HRTIMER_MODE_REL);
5392 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5393
1de0c4cd
AA
5394 bfqd->queue_weights_tree = RB_ROOT;
5395 bfqd->group_weights_tree = RB_ROOT;
5396
aee69d78
PV
5397 INIT_LIST_HEAD(&bfqd->active_list);
5398 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 5399 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
5400
5401 bfqd->hw_tag = -1;
5402
5403 bfqd->bfq_max_budget = bfq_default_max_budget;
5404
5405 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5406 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5407 bfqd->bfq_back_max = bfq_back_max;
5408 bfqd->bfq_back_penalty = bfq_back_penalty;
5409 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
5410 bfqd->bfq_timeout = bfq_timeout;
5411
5412 bfqd->bfq_requests_within_timer = 120;
5413
e1b2324d
AA
5414 bfqd->bfq_large_burst_thresh = 8;
5415 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5416
44e44a1b
PV
5417 bfqd->low_latency = true;
5418
5419 /*
5420 * Trade-off between responsiveness and fairness.
5421 */
5422 bfqd->bfq_wr_coeff = 30;
77b7dcea 5423 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
5424 bfqd->bfq_wr_max_time = 0;
5425 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5426 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
5427 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5428 * Approximate rate required
5429 * to playback or record a
5430 * high-definition compressed
5431 * video.
5432 */
cfd69712 5433 bfqd->wr_busy_queues = 0;
44e44a1b
PV
5434
5435 /*
e24f1c24
PV
5436 * Begin by assuming, optimistically, that the device peak
5437 * rate is equal to 2/3 of the highest reference rate.
44e44a1b 5438 */
e24f1c24
PV
5439 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5440 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5441 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
44e44a1b 5442
aee69d78 5443 spin_lock_init(&bfqd->lock);
aee69d78 5444
e21b7a0b
AA
5445 /*
5446 * The invocation of the next bfq_create_group_hierarchy
5447 * function is the head of a chain of function calls
5448 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5449 * blk_mq_freeze_queue) that may lead to the invocation of the
5450 * has_work hook function. For this reason,
5451 * bfq_create_group_hierarchy is invoked only after all
5452 * scheduler data has been initialized, apart from the fields
5453 * that can be initialized only after invoking
5454 * bfq_create_group_hierarchy. This, in particular, enables
5455 * has_work to correctly return false. Of course, to avoid
5456 * other inconsistencies, the blk-mq stack must then refrain
5457 * from invoking further scheduler hooks before this init
5458 * function is finished.
5459 */
5460 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5461 if (!bfqd->root_group)
5462 goto out_free;
5463 bfq_init_root_group(bfqd->root_group, bfqd);
5464 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5465
b5dc5d4d 5466 wbt_disable_default(q);
aee69d78 5467 return 0;
e21b7a0b
AA
5468
5469out_free:
5470 kfree(bfqd);
5471 kobject_put(&eq->kobj);
5472 return -ENOMEM;
aee69d78
PV
5473}
5474
5475static void bfq_slab_kill(void)
5476{
5477 kmem_cache_destroy(bfq_pool);
5478}
5479
5480static int __init bfq_slab_setup(void)
5481{
5482 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5483 if (!bfq_pool)
5484 return -ENOMEM;
5485 return 0;
5486}
5487
5488static ssize_t bfq_var_show(unsigned int var, char *page)
5489{
5490 return sprintf(page, "%u\n", var);
5491}
5492
2f79136b 5493static int bfq_var_store(unsigned long *var, const char *page)
aee69d78
PV
5494{
5495 unsigned long new_val;
5496 int ret = kstrtoul(page, 10, &new_val);
5497
2f79136b
BVA
5498 if (ret)
5499 return ret;
5500 *var = new_val;
5501 return 0;
aee69d78
PV
5502}
5503
5504#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5505static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5506{ \
5507 struct bfq_data *bfqd = e->elevator_data; \
5508 u64 __data = __VAR; \
5509 if (__CONV == 1) \
5510 __data = jiffies_to_msecs(__data); \
5511 else if (__CONV == 2) \
5512 __data = div_u64(__data, NSEC_PER_MSEC); \
5513 return bfq_var_show(__data, (page)); \
5514}
5515SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5516SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5517SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5518SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5519SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5520SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5521SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5522SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 5523SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
5524#undef SHOW_FUNCTION
5525
5526#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5527static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5528{ \
5529 struct bfq_data *bfqd = e->elevator_data; \
5530 u64 __data = __VAR; \
5531 __data = div_u64(__data, NSEC_PER_USEC); \
5532 return bfq_var_show(__data, (page)); \
5533}
5534USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5535#undef USEC_SHOW_FUNCTION
5536
5537#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5538static ssize_t \
5539__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5540{ \
5541 struct bfq_data *bfqd = e->elevator_data; \
1530486c 5542 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
5543 int ret; \
5544 \
5545 ret = bfq_var_store(&__data, (page)); \
5546 if (ret) \
5547 return ret; \
1530486c
BVA
5548 if (__data < __min) \
5549 __data = __min; \
5550 else if (__data > __max) \
5551 __data = __max; \
aee69d78
PV
5552 if (__CONV == 1) \
5553 *(__PTR) = msecs_to_jiffies(__data); \
5554 else if (__CONV == 2) \
5555 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5556 else \
5557 *(__PTR) = __data; \
235f8da1 5558 return count; \
aee69d78
PV
5559}
5560STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5561 INT_MAX, 2);
5562STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5563 INT_MAX, 2);
5564STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5565STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5566 INT_MAX, 0);
5567STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5568#undef STORE_FUNCTION
5569
5570#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5571static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5572{ \
5573 struct bfq_data *bfqd = e->elevator_data; \
1530486c 5574 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
5575 int ret; \
5576 \
5577 ret = bfq_var_store(&__data, (page)); \
5578 if (ret) \
5579 return ret; \
1530486c
BVA
5580 if (__data < __min) \
5581 __data = __min; \
5582 else if (__data > __max) \
5583 __data = __max; \
aee69d78 5584 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
235f8da1 5585 return count; \
aee69d78
PV
5586}
5587USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5588 UINT_MAX);
5589#undef USEC_STORE_FUNCTION
5590
aee69d78
PV
5591static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5592 const char *page, size_t count)
5593{
5594 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5595 unsigned long __data;
5596 int ret;
235f8da1 5597
2f79136b
BVA
5598 ret = bfq_var_store(&__data, (page));
5599 if (ret)
5600 return ret;
aee69d78
PV
5601
5602 if (__data == 0)
ab0e43e9 5603 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
5604 else {
5605 if (__data > INT_MAX)
5606 __data = INT_MAX;
5607 bfqd->bfq_max_budget = __data;
5608 }
5609
5610 bfqd->bfq_user_max_budget = __data;
5611
235f8da1 5612 return count;
aee69d78
PV
5613}
5614
5615/*
5616 * Leaving this name to preserve name compatibility with cfq
5617 * parameters, but this timeout is used for both sync and async.
5618 */
5619static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5620 const char *page, size_t count)
5621{
5622 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5623 unsigned long __data;
5624 int ret;
235f8da1 5625
2f79136b
BVA
5626 ret = bfq_var_store(&__data, (page));
5627 if (ret)
5628 return ret;
aee69d78
PV
5629
5630 if (__data < 1)
5631 __data = 1;
5632 else if (__data > INT_MAX)
5633 __data = INT_MAX;
5634
5635 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5636 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 5637 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78 5638
235f8da1 5639 return count;
aee69d78
PV
5640}
5641
5642static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5643 const char *page, size_t count)
5644{
5645 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5646 unsigned long __data;
5647 int ret;
235f8da1 5648
2f79136b
BVA
5649 ret = bfq_var_store(&__data, (page));
5650 if (ret)
5651 return ret;
aee69d78
PV
5652
5653 if (__data > 1)
5654 __data = 1;
5655 if (!bfqd->strict_guarantees && __data == 1
5656 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5657 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5658
5659 bfqd->strict_guarantees = __data;
5660
235f8da1 5661 return count;
aee69d78
PV
5662}
5663
44e44a1b
PV
5664static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5665 const char *page, size_t count)
5666{
5667 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5668 unsigned long __data;
5669 int ret;
235f8da1 5670
2f79136b
BVA
5671 ret = bfq_var_store(&__data, (page));
5672 if (ret)
5673 return ret;
44e44a1b
PV
5674
5675 if (__data > 1)
5676 __data = 1;
5677 if (__data == 0 && bfqd->low_latency != 0)
5678 bfq_end_wr(bfqd);
5679 bfqd->low_latency = __data;
5680
235f8da1 5681 return count;
44e44a1b
PV
5682}
5683
aee69d78
PV
5684#define BFQ_ATTR(name) \
5685 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5686
5687static struct elv_fs_entry bfq_attrs[] = {
5688 BFQ_ATTR(fifo_expire_sync),
5689 BFQ_ATTR(fifo_expire_async),
5690 BFQ_ATTR(back_seek_max),
5691 BFQ_ATTR(back_seek_penalty),
5692 BFQ_ATTR(slice_idle),
5693 BFQ_ATTR(slice_idle_us),
5694 BFQ_ATTR(max_budget),
5695 BFQ_ATTR(timeout_sync),
5696 BFQ_ATTR(strict_guarantees),
44e44a1b 5697 BFQ_ATTR(low_latency),
aee69d78
PV
5698 __ATTR_NULL
5699};
5700
5701static struct elevator_type iosched_bfq_mq = {
5702 .ops.mq = {
a52a69ea 5703 .limit_depth = bfq_limit_depth,
5bbf4e5a 5704 .prepare_request = bfq_prepare_request,
a7877390
PV
5705 .requeue_request = bfq_finish_requeue_request,
5706 .finish_request = bfq_finish_requeue_request,
aee69d78
PV
5707 .exit_icq = bfq_exit_icq,
5708 .insert_requests = bfq_insert_requests,
5709 .dispatch_request = bfq_dispatch_request,
5710 .next_request = elv_rb_latter_request,
5711 .former_request = elv_rb_former_request,
5712 .allow_merge = bfq_allow_bio_merge,
5713 .bio_merge = bfq_bio_merge,
5714 .request_merge = bfq_request_merge,
5715 .requests_merged = bfq_requests_merged,
5716 .request_merged = bfq_request_merged,
5717 .has_work = bfq_has_work,
f0635b8a 5718 .init_hctx = bfq_init_hctx,
aee69d78
PV
5719 .init_sched = bfq_init_queue,
5720 .exit_sched = bfq_exit_queue,
5721 },
5722
5723 .uses_mq = true,
5724 .icq_size = sizeof(struct bfq_io_cq),
5725 .icq_align = __alignof__(struct bfq_io_cq),
5726 .elevator_attrs = bfq_attrs,
5727 .elevator_name = "bfq",
5728 .elevator_owner = THIS_MODULE,
5729};
26b4cf24 5730MODULE_ALIAS("bfq-iosched");
aee69d78
PV
5731
5732static int __init bfq_init(void)
5733{
5734 int ret;
5735
e21b7a0b
AA
5736#ifdef CONFIG_BFQ_GROUP_IOSCHED
5737 ret = blkcg_policy_register(&blkcg_policy_bfq);
5738 if (ret)
5739 return ret;
5740#endif
5741
aee69d78
PV
5742 ret = -ENOMEM;
5743 if (bfq_slab_setup())
5744 goto err_pol_unreg;
5745
44e44a1b
PV
5746 /*
5747 * Times to load large popular applications for the typical
5748 * systems installed on the reference devices (see the
e24f1c24
PV
5749 * comments before the definition of the next
5750 * array). Actually, we use slightly lower values, as the
44e44a1b
PV
5751 * estimated peak rate tends to be smaller than the actual
5752 * peak rate. The reason for this last fact is that estimates
5753 * are computed over much shorter time intervals than the long
5754 * intervals typically used for benchmarking. Why? First, to
5755 * adapt more quickly to variations. Second, because an I/O
5756 * scheduler cannot rely on a peak-rate-evaluation workload to
5757 * be run for a long time.
5758 */
e24f1c24
PV
5759 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5760 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
44e44a1b 5761
aee69d78
PV
5762 ret = elv_register(&iosched_bfq_mq);
5763 if (ret)
37dcd657 5764 goto slab_kill;
aee69d78
PV
5765
5766 return 0;
5767
37dcd657 5768slab_kill:
5769 bfq_slab_kill();
aee69d78 5770err_pol_unreg:
e21b7a0b
AA
5771#ifdef CONFIG_BFQ_GROUP_IOSCHED
5772 blkcg_policy_unregister(&blkcg_policy_bfq);
5773#endif
aee69d78
PV
5774 return ret;
5775}
5776
5777static void __exit bfq_exit(void)
5778{
5779 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
5780#ifdef CONFIG_BFQ_GROUP_IOSCHED
5781 blkcg_policy_unregister(&blkcg_policy_bfq);
5782#endif
aee69d78
PV
5783 bfq_slab_kill();
5784}
5785
5786module_init(bfq_init);
5787module_exit(bfq_exit);
5788
5789MODULE_AUTHOR("Paolo Valente");
5790MODULE_LICENSE("GPL");
5791MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");