]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bfq-iosched.c
block, bfq: handle bursts of queue activations
[mirror_ubuntu-bionic-kernel.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
59 * BFQ is described in [1], where also a reference to the initial, more
60 * theoretical paper on BFQ can be found. The interested reader can find
61 * in the latter paper full details on the main algorithm, as well as
62 * formulas of the guarantees and formal proofs of all the properties.
63 * With respect to the version of BFQ presented in these papers, this
64 * implementation adds a few more heuristics, such as the one that
65 * guarantees a low latency to soft real-time applications, and a
66 * hierarchical extension based on H-WF2Q+.
67 *
68 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
69 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
70 * with O(log N) complexity derives from the one introduced with EEVDF
71 * in [3].
72 *
73 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
74 * Scheduler", Proceedings of the First Workshop on Mobile System
75 * Technologies (MST-2015), May 2015.
76 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
77 *
78 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
79 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
80 * Oct 1997.
81 *
82 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
83 *
84 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
85 * First: A Flexible and Accurate Mechanism for Proportional Share
86 * Resource Allocation", technical report.
87 *
88 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
89 */
90#include <linux/module.h>
91#include <linux/slab.h>
92#include <linux/blkdev.h>
e21b7a0b 93#include <linux/cgroup.h>
aee69d78
PV
94#include <linux/elevator.h>
95#include <linux/ktime.h>
96#include <linux/rbtree.h>
97#include <linux/ioprio.h>
98#include <linux/sbitmap.h>
99#include <linux/delay.h>
100
101#include "blk.h"
102#include "blk-mq.h"
103#include "blk-mq-tag.h"
104#include "blk-mq-sched.h"
105#include <linux/blktrace_api.h>
106#include <linux/hrtimer.h>
107#include <linux/blk-cgroup.h>
108
109#define BFQ_IOPRIO_CLASSES 3
110#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
111
112#define BFQ_MIN_WEIGHT 1
113#define BFQ_MAX_WEIGHT 1000
114#define BFQ_WEIGHT_CONVERSION_COEFF 10
115
116#define BFQ_DEFAULT_QUEUE_IOPRIO 4
117
e21b7a0b 118#define BFQ_WEIGHT_LEGACY_DFL 100
aee69d78
PV
119#define BFQ_DEFAULT_GRP_IOPRIO 0
120#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
121
77b7dcea
PV
122/*
123 * Soft real-time applications are extremely more latency sensitive
124 * than interactive ones. Over-raise the weight of the former to
125 * privilege them against the latter.
126 */
127#define BFQ_SOFTRT_WEIGHT_FACTOR 100
128
aee69d78
PV
129struct bfq_entity;
130
131/**
132 * struct bfq_service_tree - per ioprio_class service tree.
133 *
134 * Each service tree represents a B-WF2Q+ scheduler on its own. Each
135 * ioprio_class has its own independent scheduler, and so its own
136 * bfq_service_tree. All the fields are protected by the queue lock
137 * of the containing bfqd.
138 */
139struct bfq_service_tree {
140 /* tree for active entities (i.e., those backlogged) */
141 struct rb_root active;
142 /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
143 struct rb_root idle;
144
145 /* idle entity with minimum F_i */
146 struct bfq_entity *first_idle;
147 /* idle entity with maximum F_i */
148 struct bfq_entity *last_idle;
149
150 /* scheduler virtual time */
151 u64 vtime;
152 /* scheduler weight sum; active and idle entities contribute to it */
153 unsigned long wsum;
154};
155
156/**
157 * struct bfq_sched_data - multi-class scheduler.
158 *
159 * bfq_sched_data is the basic scheduler queue. It supports three
e21b7a0b
AA
160 * ioprio_classes, and can be used either as a toplevel queue or as an
161 * intermediate queue on a hierarchical setup. @next_in_service
162 * points to the active entity of the sched_data service trees that
163 * will be scheduled next. It is used to reduce the number of steps
164 * needed for each hierarchical-schedule update.
aee69d78
PV
165 *
166 * The supported ioprio_classes are the same as in CFQ, in descending
167 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
168 * Requests from higher priority queues are served before all the
169 * requests from lower priority queues; among requests of the same
170 * queue requests are served according to B-WF2Q+.
171 * All the fields are protected by the queue lock of the containing bfqd.
172 */
173struct bfq_sched_data {
174 /* entity in service */
175 struct bfq_entity *in_service_entity;
e21b7a0b 176 /* head-of-line entity (see comments above) */
aee69d78
PV
177 struct bfq_entity *next_in_service;
178 /* array of service trees, one per ioprio_class */
179 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
e21b7a0b
AA
180 /* last time CLASS_IDLE was served */
181 unsigned long bfq_class_idle_last_service;
182
aee69d78
PV
183};
184
1de0c4cd
AA
185/**
186 * struct bfq_weight_counter - counter of the number of all active entities
187 * with a given weight.
188 */
189struct bfq_weight_counter {
190 unsigned int weight; /* weight of the entities this counter refers to */
191 unsigned int num_active; /* nr of active entities with this weight */
192 /*
193 * Weights tree member (see bfq_data's @queue_weights_tree and
194 * @group_weights_tree)
195 */
196 struct rb_node weights_node;
197};
198
aee69d78
PV
199/**
200 * struct bfq_entity - schedulable entity.
201 *
e21b7a0b
AA
202 * A bfq_entity is used to represent either a bfq_queue (leaf node in the
203 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
204 * entity belongs to the sched_data of the parent group in the cgroup
205 * hierarchy. Non-leaf entities have also their own sched_data, stored
206 * in @my_sched_data.
aee69d78
PV
207 *
208 * Each entity stores independently its priority values; this would
209 * allow different weights on different devices, but this
210 * functionality is not exported to userspace by now. Priorities and
211 * weights are updated lazily, first storing the new values into the
212 * new_* fields, then setting the @prio_changed flag. As soon as
213 * there is a transition in the entity state that allows the priority
214 * update to take place the effective and the requested priority
215 * values are synchronized.
216 *
e21b7a0b
AA
217 * Unless cgroups are used, the weight value is calculated from the
218 * ioprio to export the same interface as CFQ. When dealing with
219 * ``well-behaved'' queues (i.e., queues that do not spend too much
220 * time to consume their budget and have true sequential behavior, and
221 * when there are no external factors breaking anticipation) the
222 * relative weights at each level of the cgroups hierarchy should be
223 * guaranteed. All the fields are protected by the queue lock of the
224 * containing bfqd.
aee69d78
PV
225 */
226struct bfq_entity {
227 /* service_tree member */
228 struct rb_node rb_node;
1de0c4cd
AA
229 /* pointer to the weight counter associated with this entity */
230 struct bfq_weight_counter *weight_counter;
aee69d78
PV
231
232 /*
e21b7a0b
AA
233 * Flag, true if the entity is on a tree (either the active or
234 * the idle one of its service_tree) or is in service.
aee69d78 235 */
e21b7a0b 236 bool on_st;
aee69d78
PV
237
238 /* B-WF2Q+ start and finish timestamps [sectors/weight] */
239 u64 start, finish;
240
241 /* tree the entity is enqueued into; %NULL if not on a tree */
242 struct rb_root *tree;
243
244 /*
245 * minimum start time of the (active) subtree rooted at this
246 * entity; used for O(log N) lookups into active trees
247 */
248 u64 min_start;
249
250 /* amount of service received during the last service slot */
251 int service;
252
253 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
254 int budget;
255
256 /* weight of the queue */
257 int weight;
258 /* next weight if a change is in progress */
259 int new_weight;
260
261 /* original weight, used to implement weight boosting */
262 int orig_weight;
263
264 /* parent entity, for hierarchical scheduling */
265 struct bfq_entity *parent;
266
267 /*
268 * For non-leaf nodes in the hierarchy, the associated
269 * scheduler queue, %NULL on leaf nodes.
270 */
271 struct bfq_sched_data *my_sched_data;
272 /* the scheduler queue this entity belongs to */
273 struct bfq_sched_data *sched_data;
274
275 /* flag, set to request a weight, ioprio or ioprio_class change */
276 int prio_changed;
277};
278
e21b7a0b
AA
279struct bfq_group;
280
aee69d78
PV
281/**
282 * struct bfq_ttime - per process thinktime stats.
283 */
284struct bfq_ttime {
285 /* completion time of the last request */
286 u64 last_end_request;
287
288 /* total process thinktime */
289 u64 ttime_total;
290 /* number of thinktime samples */
291 unsigned long ttime_samples;
292 /* average process thinktime */
293 u64 ttime_mean;
294};
295
296/**
297 * struct bfq_queue - leaf schedulable entity.
298 *
299 * A bfq_queue is a leaf request queue; it can be associated with an
36eca894
AA
300 * io_context or more, if it is async or shared between cooperating
301 * processes. @cgroup holds a reference to the cgroup, to be sure that it
302 * does not disappear while a bfqq still references it (mostly to avoid
303 * races between request issuing and task migration followed by cgroup
304 * destruction).
305 * All the fields are protected by the queue lock of the containing bfqd.
aee69d78
PV
306 */
307struct bfq_queue {
308 /* reference counter */
309 int ref;
310 /* parent bfq_data */
311 struct bfq_data *bfqd;
312
313 /* current ioprio and ioprio class */
314 unsigned short ioprio, ioprio_class;
315 /* next ioprio and ioprio class if a change is in progress */
316 unsigned short new_ioprio, new_ioprio_class;
317
36eca894
AA
318 /*
319 * Shared bfq_queue if queue is cooperating with one or more
320 * other queues.
321 */
322 struct bfq_queue *new_bfqq;
323 /* request-position tree member (see bfq_group's @rq_pos_tree) */
324 struct rb_node pos_node;
325 /* request-position tree root (see bfq_group's @rq_pos_tree) */
326 struct rb_root *pos_root;
327
aee69d78
PV
328 /* sorted list of pending requests */
329 struct rb_root sort_list;
330 /* if fifo isn't expired, next request to serve */
331 struct request *next_rq;
332 /* number of sync and async requests queued */
333 int queued[2];
334 /* number of requests currently allocated */
335 int allocated;
336 /* number of pending metadata requests */
337 int meta_pending;
338 /* fifo list of requests in sort_list */
339 struct list_head fifo;
340
341 /* entity representing this queue in the scheduler */
342 struct bfq_entity entity;
343
344 /* maximum budget allowed from the feedback mechanism */
345 int max_budget;
346 /* budget expiration (in jiffies) */
347 unsigned long budget_timeout;
348
349 /* number of requests on the dispatch list or inside driver */
350 int dispatched;
351
352 /* status flags */
353 unsigned long flags;
354
355 /* node for active/idle bfqq list inside parent bfqd */
356 struct list_head bfqq_list;
357
358 /* associated @bfq_ttime struct */
359 struct bfq_ttime ttime;
360
361 /* bit vector: a 1 for each seeky requests in history */
362 u32 seek_history;
e1b2324d
AA
363
364 /* node for the device's burst list */
365 struct hlist_node burst_list_node;
366
aee69d78
PV
367 /* position of the last request enqueued */
368 sector_t last_request_pos;
369
370 /* Number of consecutive pairs of request completion and
371 * arrival, such that the queue becomes idle after the
372 * completion, but the next request arrives within an idle
373 * time slice; used only if the queue's IO_bound flag has been
374 * cleared.
375 */
376 unsigned int requests_within_timer;
377
378 /* pid of the process owning the queue, used for logging purposes */
379 pid_t pid;
44e44a1b 380
36eca894
AA
381 /*
382 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
383 * if the queue is shared.
384 */
385 struct bfq_io_cq *bic;
386
44e44a1b
PV
387 /* current maximum weight-raising time for this queue */
388 unsigned long wr_cur_max_time;
77b7dcea
PV
389 /*
390 * Minimum time instant such that, only if a new request is
391 * enqueued after this time instant in an idle @bfq_queue with
392 * no outstanding requests, then the task associated with the
393 * queue it is deemed as soft real-time (see the comments on
394 * the function bfq_bfqq_softrt_next_start())
395 */
396 unsigned long soft_rt_next_start;
44e44a1b
PV
397 /*
398 * Start time of the current weight-raising period if
399 * the @bfq-queue is being weight-raised, otherwise
400 * finish time of the last weight-raising period.
401 */
402 unsigned long last_wr_start_finish;
403 /* factor by which the weight of this queue is multiplied */
404 unsigned int wr_coeff;
77b7dcea
PV
405 /*
406 * Time of the last transition of the @bfq_queue from idle to
407 * backlogged.
408 */
409 unsigned long last_idle_bklogged;
410 /*
411 * Cumulative service received from the @bfq_queue since the
412 * last transition from idle to backlogged.
413 */
414 unsigned long service_from_backlogged;
36eca894 415
77b7dcea
PV
416 /*
417 * Value of wr start time when switching to soft rt
418 */
419 unsigned long wr_start_at_switch_to_srt;
36eca894
AA
420
421 unsigned long split_time; /* time of last split */
aee69d78
PV
422};
423
424/**
425 * struct bfq_io_cq - per (request_queue, io_context) structure.
426 */
427struct bfq_io_cq {
428 /* associated io_cq structure */
429 struct io_cq icq; /* must be the first member */
430 /* array of two process queues, the sync and the async */
431 struct bfq_queue *bfqq[2];
432 /* per (request_queue, blkcg) ioprio */
433 int ioprio;
e21b7a0b
AA
434#ifdef CONFIG_BFQ_GROUP_IOSCHED
435 uint64_t blkcg_serial_nr; /* the current blkcg serial */
436#endif
36eca894
AA
437 /*
438 * Snapshot of the idle window before merging; taken to
439 * remember this value while the queue is merged, so as to be
440 * able to restore it in case of split.
441 */
442 bool saved_idle_window;
443 /*
444 * Same purpose as the previous two fields for the I/O bound
445 * classification of a queue.
446 */
447 bool saved_IO_bound;
448
e1b2324d
AA
449 /*
450 * Same purpose as the previous fields for the value of the
451 * field keeping the queue's belonging to a large burst
452 */
453 bool saved_in_large_burst;
454 /*
455 * True if the queue belonged to a burst list before its merge
456 * with another cooperating queue.
457 */
458 bool was_in_burst_list;
459
36eca894
AA
460 /*
461 * Similar to previous fields: save wr information.
462 */
463 unsigned long saved_wr_coeff;
464 unsigned long saved_last_wr_start_finish;
465 unsigned long saved_wr_start_at_switch_to_srt;
466 unsigned int saved_wr_cur_max_time;
467 struct bfq_ttime saved_ttime;
aee69d78
PV
468};
469
44e44a1b
PV
470enum bfq_device_speed {
471 BFQ_BFQD_FAST,
472 BFQ_BFQD_SLOW,
473};
474
aee69d78
PV
475/**
476 * struct bfq_data - per-device data structure.
477 *
478 * All the fields are protected by @lock.
479 */
480struct bfq_data {
481 /* device request queue */
482 struct request_queue *queue;
483 /* dispatch queue */
484 struct list_head dispatch;
485
e21b7a0b
AA
486 /* root bfq_group for the device */
487 struct bfq_group *root_group;
aee69d78 488
1de0c4cd
AA
489 /*
490 * rbtree of weight counters of @bfq_queues, sorted by
491 * weight. Used to keep track of whether all @bfq_queues have
492 * the same weight. The tree contains one counter for each
493 * distinct weight associated to some active and not
494 * weight-raised @bfq_queue (see the comments to the functions
495 * bfq_weights_tree_[add|remove] for further details).
496 */
497 struct rb_root queue_weights_tree;
498 /*
499 * rbtree of non-queue @bfq_entity weight counters, sorted by
500 * weight. Used to keep track of whether all @bfq_groups have
501 * the same weight. The tree contains one counter for each
502 * distinct weight associated to some active @bfq_group (see
503 * the comments to the functions bfq_weights_tree_[add|remove]
504 * for further details).
505 */
506 struct rb_root group_weights_tree;
507
aee69d78
PV
508 /*
509 * Number of bfq_queues containing requests (including the
510 * queue in service, even if it is idling).
511 */
512 int busy_queues;
cfd69712
PV
513 /* number of weight-raised busy @bfq_queues */
514 int wr_busy_queues;
aee69d78
PV
515 /* number of queued requests */
516 int queued;
517 /* number of requests dispatched and waiting for completion */
518 int rq_in_driver;
519
520 /*
521 * Maximum number of requests in driver in the last
522 * @hw_tag_samples completed requests.
523 */
524 int max_rq_in_driver;
525 /* number of samples used to calculate hw_tag */
526 int hw_tag_samples;
527 /* flag set to one if the driver is showing a queueing behavior */
528 int hw_tag;
529
530 /* number of budgets assigned */
531 int budgets_assigned;
532
533 /*
534 * Timer set when idling (waiting) for the next request from
535 * the queue in service.
536 */
537 struct hrtimer idle_slice_timer;
538
539 /* bfq_queue in service */
540 struct bfq_queue *in_service_queue;
541 /* bfq_io_cq (bic) associated with the @in_service_queue */
542 struct bfq_io_cq *in_service_bic;
543
544 /* on-disk position of the last served request */
545 sector_t last_position;
546
ab0e43e9
PV
547 /* time of last request completion (ns) */
548 u64 last_completion;
549
550 /* time of first rq dispatch in current observation interval (ns) */
551 u64 first_dispatch;
552 /* time of last rq dispatch in current observation interval (ns) */
553 u64 last_dispatch;
554
aee69d78
PV
555 /* beginning of the last budget */
556 ktime_t last_budget_start;
557 /* beginning of the last idle slice */
558 ktime_t last_idling_start;
ab0e43e9
PV
559
560 /* number of samples in current observation interval */
aee69d78 561 int peak_rate_samples;
ab0e43e9
PV
562 /* num of samples of seq dispatches in current observation interval */
563 u32 sequential_samples;
564 /* total num of sectors transferred in current observation interval */
565 u64 tot_sectors_dispatched;
566 /* max rq size seen during current observation interval (sectors) */
567 u32 last_rq_max_size;
568 /* time elapsed from first dispatch in current observ. interval (us) */
569 u64 delta_from_first;
aee69d78 570 /*
ab0e43e9
PV
571 * Current estimate of the device peak rate, measured in
572 * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by
573 * BFQ_RATE_SHIFT is performed to increase precision in
aee69d78
PV
574 * fixed-point calculations.
575 */
ab0e43e9
PV
576 u32 peak_rate;
577
aee69d78
PV
578 /* maximum budget allotted to a bfq_queue before rescheduling */
579 int bfq_max_budget;
580
581 /* list of all the bfq_queues active on the device */
582 struct list_head active_list;
583 /* list of all the bfq_queues idle on the device */
584 struct list_head idle_list;
585
586 /*
587 * Timeout for async/sync requests; when it fires, requests
588 * are served in fifo order.
589 */
590 u64 bfq_fifo_expire[2];
591 /* weight of backward seeks wrt forward ones */
592 unsigned int bfq_back_penalty;
593 /* maximum allowed backward seek */
594 unsigned int bfq_back_max;
595 /* maximum idling time */
596 u32 bfq_slice_idle;
aee69d78
PV
597
598 /* user-configured max budget value (0 for auto-tuning) */
599 int bfq_user_max_budget;
600 /*
601 * Timeout for bfq_queues to consume their budget; used to
602 * prevent seeky queues from imposing long latencies to
603 * sequential or quasi-sequential ones (this also implies that
604 * seeky queues cannot receive guarantees in the service
605 * domain; after a timeout they are charged for the time they
606 * have been in service, to preserve fairness among them, but
607 * without service-domain guarantees).
608 */
609 unsigned int bfq_timeout;
610
611 /*
612 * Number of consecutive requests that must be issued within
613 * the idle time slice to set again idling to a queue which
614 * was marked as non-I/O-bound (see the definition of the
615 * IO_bound flag for further details).
616 */
617 unsigned int bfq_requests_within_timer;
618
619 /*
620 * Force device idling whenever needed to provide accurate
621 * service guarantees, without caring about throughput
622 * issues. CAVEAT: this may even increase latencies, in case
623 * of useless idling for processes that did stop doing I/O.
624 */
625 bool strict_guarantees;
626
e1b2324d
AA
627 /*
628 * Last time at which a queue entered the current burst of
629 * queues being activated shortly after each other; for more
630 * details about this and the following parameters related to
631 * a burst of activations, see the comments on the function
632 * bfq_handle_burst.
633 */
634 unsigned long last_ins_in_burst;
635 /*
636 * Reference time interval used to decide whether a queue has
637 * been activated shortly after @last_ins_in_burst.
638 */
639 unsigned long bfq_burst_interval;
640 /* number of queues in the current burst of queue activations */
641 int burst_size;
642
643 /* common parent entity for the queues in the burst */
644 struct bfq_entity *burst_parent_entity;
645 /* Maximum burst size above which the current queue-activation
646 * burst is deemed as 'large'.
647 */
648 unsigned long bfq_large_burst_thresh;
649 /* true if a large queue-activation burst is in progress */
650 bool large_burst;
651 /*
652 * Head of the burst list (as for the above fields, more
653 * details in the comments on the function bfq_handle_burst).
654 */
655 struct hlist_head burst_list;
656
44e44a1b
PV
657 /* if set to true, low-latency heuristics are enabled */
658 bool low_latency;
659 /*
660 * Maximum factor by which the weight of a weight-raised queue
661 * is multiplied.
662 */
663 unsigned int bfq_wr_coeff;
664 /* maximum duration of a weight-raising period (jiffies) */
665 unsigned int bfq_wr_max_time;
77b7dcea
PV
666
667 /* Maximum weight-raising duration for soft real-time processes */
668 unsigned int bfq_wr_rt_max_time;
44e44a1b
PV
669 /*
670 * Minimum idle period after which weight-raising may be
671 * reactivated for a queue (in jiffies).
672 */
673 unsigned int bfq_wr_min_idle_time;
674 /*
675 * Minimum period between request arrivals after which
676 * weight-raising may be reactivated for an already busy async
677 * queue (in jiffies).
678 */
679 unsigned long bfq_wr_min_inter_arr_async;
77b7dcea
PV
680
681 /* Max service-rate for a soft real-time queue, in sectors/sec */
682 unsigned int bfq_wr_max_softrt_rate;
44e44a1b
PV
683 /*
684 * Cached value of the product R*T, used for computing the
685 * maximum duration of weight raising automatically.
686 */
687 u64 RT_prod;
688 /* device-speed class for the low-latency heuristic */
689 enum bfq_device_speed device_speed;
690
aee69d78
PV
691 /* fallback dummy bfqq for extreme OOM conditions */
692 struct bfq_queue oom_bfqq;
693
694 spinlock_t lock;
695
696 /*
697 * bic associated with the task issuing current bio for
698 * merging. This and the next field are used as a support to
699 * be able to perform the bic lookup, needed by bio-merge
700 * functions, before the scheduler lock is taken, and thus
701 * avoid taking the request-queue lock while the scheduler
702 * lock is being held.
703 */
704 struct bfq_io_cq *bio_bic;
705 /* bfqq associated with the task issuing current bio for merging */
706 struct bfq_queue *bio_bfqq;
36eca894
AA
707
708 /*
709 * io context to put right after bfqd->lock is released. This
710 * filed is used to perform put_io_context, when needed, to
711 * after the scheduler lock has been released, and thus
712 * prevent an ioc->lock from being possibly taken while the
713 * scheduler lock is being held.
714 */
715 struct io_context *ioc_to_put;
aee69d78
PV
716};
717
718enum bfqq_state_flags {
e1b2324d
AA
719 BFQQF_just_created = 0, /* queue just allocated */
720 BFQQF_busy, /* has requests or is in service */
aee69d78
PV
721 BFQQF_wait_request, /* waiting for a request */
722 BFQQF_non_blocking_wait_rq, /*
723 * waiting for a request
724 * without idling the device
725 */
726 BFQQF_fifo_expire, /* FIFO checked in this slice */
727 BFQQF_idle_window, /* slice idling enabled */
728 BFQQF_sync, /* synchronous queue */
aee69d78
PV
729 BFQQF_IO_bound, /*
730 * bfqq has timed-out at least once
731 * having consumed at most 2/10 of
732 * its budget
733 */
e1b2324d
AA
734 BFQQF_in_large_burst, /*
735 * bfqq activated in a large burst,
736 * see comments to bfq_handle_burst.
737 */
77b7dcea
PV
738 BFQQF_softrt_update, /*
739 * may need softrt-next-start
740 * update
741 */
36eca894
AA
742 BFQQF_coop, /* bfqq is shared */
743 BFQQF_split_coop /* shared bfqq will be split */
aee69d78
PV
744};
745
746#define BFQ_BFQQ_FNS(name) \
747static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
748{ \
749 __set_bit(BFQQF_##name, &(bfqq)->flags); \
750} \
751static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
752{ \
753 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
754} \
755static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
756{ \
757 return test_bit(BFQQF_##name, &(bfqq)->flags); \
758}
759
e1b2324d 760BFQ_BFQQ_FNS(just_created);
aee69d78
PV
761BFQ_BFQQ_FNS(busy);
762BFQ_BFQQ_FNS(wait_request);
763BFQ_BFQQ_FNS(non_blocking_wait_rq);
764BFQ_BFQQ_FNS(fifo_expire);
765BFQ_BFQQ_FNS(idle_window);
766BFQ_BFQQ_FNS(sync);
aee69d78 767BFQ_BFQQ_FNS(IO_bound);
e1b2324d 768BFQ_BFQQ_FNS(in_large_burst);
36eca894
AA
769BFQ_BFQQ_FNS(coop);
770BFQ_BFQQ_FNS(split_coop);
77b7dcea 771BFQ_BFQQ_FNS(softrt_update);
aee69d78
PV
772#undef BFQ_BFQQ_FNS
773
774/* Logging facilities. */
e21b7a0b
AA
775#ifdef CONFIG_BFQ_GROUP_IOSCHED
776static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
777static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
778
779#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
780 char __pbuf[128]; \
781 \
782 blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
783 blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid, \
784 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
785 __pbuf, ##args); \
786} while (0)
787
788#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
789 char __pbuf[128]; \
790 \
791 blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
792 blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \
793} while (0)
794
795#else /* CONFIG_BFQ_GROUP_IOSCHED */
796
797#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
798 blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \
799 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
800 ##args)
801#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
802
803#endif /* CONFIG_BFQ_GROUP_IOSCHED */
aee69d78
PV
804
805#define bfq_log(bfqd, fmt, args...) \
806 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
807
808/* Expiration reasons. */
809enum bfqq_expiration {
810 BFQQE_TOO_IDLE = 0, /*
811 * queue has been idling for
812 * too long
813 */
814 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */
815 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */
816 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */
817 BFQQE_PREEMPTED /* preemption in progress */
818};
819
e21b7a0b
AA
820struct bfqg_stats {
821#ifdef CONFIG_BFQ_GROUP_IOSCHED
822 /* number of ios merged */
823 struct blkg_rwstat merged;
824 /* total time spent on device in ns, may not be accurate w/ queueing */
825 struct blkg_rwstat service_time;
826 /* total time spent waiting in scheduler queue in ns */
827 struct blkg_rwstat wait_time;
828 /* number of IOs queued up */
829 struct blkg_rwstat queued;
830 /* total disk time and nr sectors dispatched by this group */
831 struct blkg_stat time;
832 /* sum of number of ios queued across all samples */
833 struct blkg_stat avg_queue_size_sum;
834 /* count of samples taken for average */
835 struct blkg_stat avg_queue_size_samples;
836 /* how many times this group has been removed from service tree */
837 struct blkg_stat dequeue;
838 /* total time spent waiting for it to be assigned a timeslice. */
839 struct blkg_stat group_wait_time;
840 /* time spent idling for this blkcg_gq */
841 struct blkg_stat idle_time;
842 /* total time with empty current active q with other requests queued */
843 struct blkg_stat empty_time;
844 /* fields after this shouldn't be cleared on stat reset */
845 uint64_t start_group_wait_time;
846 uint64_t start_idle_time;
847 uint64_t start_empty_time;
848 uint16_t flags;
849#endif /* CONFIG_BFQ_GROUP_IOSCHED */
850};
851
852#ifdef CONFIG_BFQ_GROUP_IOSCHED
853
854/*
855 * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
856 *
857 * @ps: @blkcg_policy_storage that this structure inherits
858 * @weight: weight of the bfq_group
859 */
860struct bfq_group_data {
861 /* must be the first member */
862 struct blkcg_policy_data pd;
863
44e44a1b 864 unsigned int weight;
e21b7a0b
AA
865};
866
867/**
868 * struct bfq_group - per (device, cgroup) data structure.
869 * @entity: schedulable entity to insert into the parent group sched_data.
870 * @sched_data: own sched_data, to contain child entities (they may be
871 * both bfq_queues and bfq_groups).
872 * @bfqd: the bfq_data for the device this group acts upon.
873 * @async_bfqq: array of async queues for all the tasks belonging to
874 * the group, one queue per ioprio value per ioprio_class,
875 * except for the idle class that has only one queue.
876 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
877 * @my_entity: pointer to @entity, %NULL for the toplevel group; used
878 * to avoid too many special cases during group creation/
879 * migration.
880 * @stats: stats for this bfqg.
1de0c4cd
AA
881 * @active_entities: number of active entities belonging to the group;
882 * unused for the root group. Used to know whether there
883 * are groups with more than one active @bfq_entity
884 * (see the comments to the function
885 * bfq_bfqq_may_idle()).
36eca894
AA
886 * @rq_pos_tree: rbtree sorted by next_request position, used when
887 * determining if two or more queues have interleaving
888 * requests (see bfq_find_close_cooperator()).
e21b7a0b
AA
889 *
890 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
891 * there is a set of bfq_groups, each one collecting the lower-level
892 * entities belonging to the group that are acting on the same device.
893 *
894 * Locking works as follows:
895 * o @bfqd is protected by the queue lock, RCU is used to access it
896 * from the readers.
897 * o All the other fields are protected by the @bfqd queue lock.
898 */
899struct bfq_group {
900 /* must be the first member */
901 struct blkg_policy_data pd;
902
903 struct bfq_entity entity;
904 struct bfq_sched_data sched_data;
905
906 void *bfqd;
907
908 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
909 struct bfq_queue *async_idle_bfqq;
910
911 struct bfq_entity *my_entity;
912
1de0c4cd
AA
913 int active_entities;
914
36eca894
AA
915 struct rb_root rq_pos_tree;
916
e21b7a0b
AA
917 struct bfqg_stats stats;
918};
919
920#else
921struct bfq_group {
922 struct bfq_sched_data sched_data;
923
924 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
925 struct bfq_queue *async_idle_bfqq;
926
927 struct rb_root rq_pos_tree;
928};
929#endif
930
aee69d78
PV
931static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
932
e21b7a0b
AA
933static unsigned int bfq_class_idx(struct bfq_entity *entity)
934{
935 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
936
937 return bfqq ? bfqq->ioprio_class - 1 :
938 BFQ_DEFAULT_GRP_CLASS - 1;
939}
940
aee69d78
PV
941static struct bfq_service_tree *
942bfq_entity_service_tree(struct bfq_entity *entity)
943{
944 struct bfq_sched_data *sched_data = entity->sched_data;
e21b7a0b 945 unsigned int idx = bfq_class_idx(entity);
aee69d78
PV
946
947 return sched_data->service_tree + idx;
948}
949
950static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
951{
952 return bic->bfqq[is_sync];
953}
954
955static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
956 bool is_sync)
957{
958 bic->bfqq[is_sync] = bfqq;
959}
960
961static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
962{
963 return bic->icq.q->elevator->elevator_data;
964}
965
36eca894
AA
966#ifdef CONFIG_BFQ_GROUP_IOSCHED
967
968static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
969{
970 struct bfq_entity *group_entity = bfqq->entity.parent;
971
972 if (!group_entity)
973 group_entity = &bfqq->bfqd->root_group->entity;
974
975 return container_of(group_entity, struct bfq_group, entity);
976}
977
978#else
979
980static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
981{
982 return bfqq->bfqd->root_group;
983}
984
985#endif
986
aee69d78
PV
987static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
988static void bfq_put_queue(struct bfq_queue *bfqq);
989static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
990 struct bio *bio, bool is_sync,
991 struct bfq_io_cq *bic);
44e44a1b
PV
992static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
993 struct bfq_group *bfqg);
e21b7a0b 994static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
aee69d78
PV
995static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
996
aee69d78
PV
997/* Expiration time of sync (0) and async (1) requests, in ns. */
998static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
999
1000/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
1001static const int bfq_back_max = 16 * 1024;
1002
1003/* Penalty of a backwards seek, in number of sectors. */
1004static const int bfq_back_penalty = 2;
1005
1006/* Idling period duration, in ns. */
1007static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
1008
1009/* Minimum number of assigned budgets for which stats are safe to compute. */
1010static const int bfq_stats_min_budgets = 194;
1011
1012/* Default maximum budget values, in sectors and number of requests. */
1013static const int bfq_default_max_budget = 16 * 1024;
1014
c074170e
PV
1015/*
1016 * Async to sync throughput distribution is controlled as follows:
1017 * when an async request is served, the entity is charged the number
1018 * of sectors of the request, multiplied by the factor below
1019 */
1020static const int bfq_async_charge_factor = 10;
1021
aee69d78
PV
1022/* Default timeout values, in jiffies, approximating CFQ defaults. */
1023static const int bfq_timeout = HZ / 8;
1024
1025static struct kmem_cache *bfq_pool;
1026
ab0e43e9 1027/* Below this threshold (in ns), we consider thinktime immediate. */
aee69d78
PV
1028#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
1029
1030/* hw_tag detection: parallel requests threshold and min samples needed. */
1031#define BFQ_HW_QUEUE_THRESHOLD 4
1032#define BFQ_HW_QUEUE_SAMPLES 32
1033
1034#define BFQQ_SEEK_THR (sector_t)(8 * 100)
1035#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
1036#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
1037#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
1038
ab0e43e9
PV
1039/* Min number of samples required to perform peak-rate update */
1040#define BFQ_RATE_MIN_SAMPLES 32
1041/* Min observation time interval required to perform a peak-rate update (ns) */
1042#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
1043/* Target observation time interval for a peak-rate update (ns) */
1044#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78
PV
1045
1046/* Shift used for peak rate fixed precision calculations. */
1047#define BFQ_RATE_SHIFT 16
1048
44e44a1b
PV
1049/*
1050 * By default, BFQ computes the duration of the weight raising for
1051 * interactive applications automatically, using the following formula:
1052 * duration = (R / r) * T, where r is the peak rate of the device, and
1053 * R and T are two reference parameters.
1054 * In particular, R is the peak rate of the reference device (see below),
1055 * and T is a reference time: given the systems that are likely to be
1056 * installed on the reference device according to its speed class, T is
1057 * about the maximum time needed, under BFQ and while reading two files in
1058 * parallel, to load typical large applications on these systems.
1059 * In practice, the slower/faster the device at hand is, the more/less it
1060 * takes to load applications with respect to the reference device.
1061 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
1062 * applications.
1063 *
1064 * BFQ uses four different reference pairs (R, T), depending on:
1065 * . whether the device is rotational or non-rotational;
1066 * . whether the device is slow, such as old or portable HDDs, as well as
1067 * SD cards, or fast, such as newer HDDs and SSDs.
1068 *
1069 * The device's speed class is dynamically (re)detected in
1070 * bfq_update_peak_rate() every time the estimated peak rate is updated.
1071 *
1072 * In the following definitions, R_slow[0]/R_fast[0] and
1073 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
1074 * rotational device, whereas R_slow[1]/R_fast[1] and
1075 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
1076 * non-rotational device. Finally, device_speed_thresh are the
1077 * thresholds used to switch between speed classes. The reference
1078 * rates are not the actual peak rates of the devices used as a
1079 * reference, but slightly lower values. The reason for using these
1080 * slightly lower values is that the peak-rate estimator tends to
1081 * yield slightly lower values than the actual peak rate (it can yield
1082 * the actual peak rate only if there is only one process doing I/O,
1083 * and the process does sequential I/O).
1084 *
1085 * Both the reference peak rates and the thresholds are measured in
1086 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
1087 */
1088static int R_slow[2] = {1000, 10700};
1089static int R_fast[2] = {14000, 33000};
1090/*
1091 * To improve readability, a conversion function is used to initialize the
1092 * following arrays, which entails that they can be initialized only in a
1093 * function.
1094 */
1095static int T_slow[2];
1096static int T_fast[2];
1097static int device_speed_thresh[2];
1098
aee69d78
PV
1099#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
1100 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
1101
1102#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
1103#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
1104
1105/**
1106 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
1107 * @icq: the iocontext queue.
1108 */
1109static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
1110{
1111 /* bic->icq is the first member, %NULL will convert to %NULL */
1112 return container_of(icq, struct bfq_io_cq, icq);
1113}
1114
1115/**
1116 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
1117 * @bfqd: the lookup key.
1118 * @ioc: the io_context of the process doing I/O.
1119 * @q: the request queue.
1120 */
1121static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
1122 struct io_context *ioc,
1123 struct request_queue *q)
1124{
1125 if (ioc) {
1126 unsigned long flags;
1127 struct bfq_io_cq *icq;
1128
1129 spin_lock_irqsave(q->queue_lock, flags);
1130 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
1131 spin_unlock_irqrestore(q->queue_lock, flags);
1132
1133 return icq;
1134 }
1135
1136 return NULL;
1137}
1138
1139/*
e21b7a0b
AA
1140 * Scheduler run of queue, if there are requests pending and no one in the
1141 * driver that will restart queueing.
1142 */
1143static void bfq_schedule_dispatch(struct bfq_data *bfqd)
1144{
1145 if (bfqd->queued != 0) {
1146 bfq_log(bfqd, "schedule dispatch");
1147 blk_mq_run_hw_queues(bfqd->queue, true);
1148 }
1149}
1150
36eca894
AA
1151/*
1152 * Next two functions release bfqd->lock and put the io context
1153 * pointed by bfqd->ioc_to_put. This delayed put is used to not risk
1154 * to take an ioc->lock while the scheduler lock is being held.
1155 */
1156static void bfq_unlock_put_ioc(struct bfq_data *bfqd)
1157{
1158 struct io_context *ioc_to_put = bfqd->ioc_to_put;
1159
1160 bfqd->ioc_to_put = NULL;
1161 spin_unlock_irq(&bfqd->lock);
1162
1163 if (ioc_to_put)
1164 put_io_context(ioc_to_put);
1165}
1166
1167static void bfq_unlock_put_ioc_restore(struct bfq_data *bfqd,
1168 unsigned long flags)
1169{
1170 struct io_context *ioc_to_put = bfqd->ioc_to_put;
1171
1172 bfqd->ioc_to_put = NULL;
1173 spin_unlock_irqrestore(&bfqd->lock, flags);
1174
1175 if (ioc_to_put)
1176 put_io_context(ioc_to_put);
1177}
1178
e21b7a0b
AA
1179/**
1180 * bfq_gt - compare two timestamps.
1181 * @a: first ts.
1182 * @b: second ts.
1183 *
1184 * Return @a > @b, dealing with wrapping correctly.
1185 */
1186static int bfq_gt(u64 a, u64 b)
1187{
1188 return (s64)(a - b) > 0;
1189}
1190
1191static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
1192{
1193 struct rb_node *node = tree->rb_node;
1194
1195 return rb_entry(node, struct bfq_entity, rb_node);
1196}
1197
1198static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
1199
1200static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
1201
1202/**
1203 * bfq_update_next_in_service - update sd->next_in_service
1204 * @sd: sched_data for which to perform the update.
1205 * @new_entity: if not NULL, pointer to the entity whose activation,
1206 * requeueing or repositionig triggered the invocation of
1207 * this function.
1208 *
1209 * This function is called to update sd->next_in_service, which, in
1210 * its turn, may change as a consequence of the insertion or
1211 * extraction of an entity into/from one of the active trees of
1212 * sd. These insertions/extractions occur as a consequence of
1213 * activations/deactivations of entities, with some activations being
1214 * 'true' activations, and other activations being requeueings (i.e.,
1215 * implementing the second, requeueing phase of the mechanism used to
1216 * reposition an entity in its active tree; see comments on
1217 * __bfq_activate_entity and __bfq_requeue_entity for details). In
1218 * both the last two activation sub-cases, new_entity points to the
1219 * just activated or requeued entity.
1220 *
1221 * Returns true if sd->next_in_service changes in such a way that
1222 * entity->parent may become the next_in_service for its parent
1223 * entity.
aee69d78 1224 */
e21b7a0b
AA
1225static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
1226 struct bfq_entity *new_entity)
1227{
1228 struct bfq_entity *next_in_service = sd->next_in_service;
1229 bool parent_sched_may_change = false;
1230
1231 /*
1232 * If this update is triggered by the activation, requeueing
1233 * or repositiong of an entity that does not coincide with
1234 * sd->next_in_service, then a full lookup in the active tree
1235 * can be avoided. In fact, it is enough to check whether the
1236 * just-modified entity has a higher priority than
1237 * sd->next_in_service, or, even if it has the same priority
1238 * as sd->next_in_service, is eligible and has a lower virtual
1239 * finish time than sd->next_in_service. If this compound
1240 * condition holds, then the new entity becomes the new
1241 * next_in_service. Otherwise no change is needed.
1242 */
1243 if (new_entity && new_entity != sd->next_in_service) {
1244 /*
1245 * Flag used to decide whether to replace
1246 * sd->next_in_service with new_entity. Tentatively
1247 * set to true, and left as true if
1248 * sd->next_in_service is NULL.
1249 */
1250 bool replace_next = true;
1251
1252 /*
1253 * If there is already a next_in_service candidate
1254 * entity, then compare class priorities or timestamps
1255 * to decide whether to replace sd->service_tree with
1256 * new_entity.
1257 */
1258 if (next_in_service) {
1259 unsigned int new_entity_class_idx =
1260 bfq_class_idx(new_entity);
1261 struct bfq_service_tree *st =
1262 sd->service_tree + new_entity_class_idx;
1263
1264 /*
1265 * For efficiency, evaluate the most likely
1266 * sub-condition first.
1267 */
1268 replace_next =
1269 (new_entity_class_idx ==
1270 bfq_class_idx(next_in_service)
1271 &&
1272 !bfq_gt(new_entity->start, st->vtime)
1273 &&
1274 bfq_gt(next_in_service->finish,
1275 new_entity->finish))
1276 ||
1277 new_entity_class_idx <
1278 bfq_class_idx(next_in_service);
1279 }
1280
1281 if (replace_next)
1282 next_in_service = new_entity;
1283 } else /* invoked because of a deactivation: lookup needed */
1284 next_in_service = bfq_lookup_next_entity(sd);
1285
1286 if (next_in_service) {
1287 parent_sched_may_change = !sd->next_in_service ||
1288 bfq_update_parent_budget(next_in_service);
1289 }
1290
1291 sd->next_in_service = next_in_service;
1292
1293 if (!next_in_service)
1294 return parent_sched_may_change;
1295
1296 return parent_sched_may_change;
1297}
1298
1299#ifdef CONFIG_BFQ_GROUP_IOSCHED
1300/* both next loops stop at one of the child entities of the root group */
aee69d78 1301#define for_each_entity(entity) \
e21b7a0b 1302 for (; entity ; entity = entity->parent)
aee69d78 1303
e21b7a0b
AA
1304/*
1305 * For each iteration, compute parent in advance, so as to be safe if
1306 * entity is deallocated during the iteration. Such a deallocation may
1307 * happen as a consequence of a bfq_put_queue that frees the bfq_queue
1308 * containing entity.
1309 */
aee69d78 1310#define for_each_entity_safe(entity, parent) \
e21b7a0b 1311 for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
aee69d78 1312
e21b7a0b
AA
1313/*
1314 * Returns true if this budget changes may let next_in_service->parent
1315 * become the next_in_service entity for its parent entity.
1316 */
1317static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
aee69d78 1318{
e21b7a0b
AA
1319 struct bfq_entity *bfqg_entity;
1320 struct bfq_group *bfqg;
1321 struct bfq_sched_data *group_sd;
1322 bool ret = false;
1323
1324 group_sd = next_in_service->sched_data;
1325
1326 bfqg = container_of(group_sd, struct bfq_group, sched_data);
1327 /*
1328 * bfq_group's my_entity field is not NULL only if the group
1329 * is not the root group. We must not touch the root entity
1330 * as it must never become an in-service entity.
1331 */
1332 bfqg_entity = bfqg->my_entity;
1333 if (bfqg_entity) {
1334 if (bfqg_entity->budget > next_in_service->budget)
1335 ret = true;
1336 bfqg_entity->budget = next_in_service->budget;
1337 }
1338
1339 return ret;
1340}
1341
1342/*
1343 * This function tells whether entity stops being a candidate for next
1344 * service, according to the following logic.
1345 *
1346 * This function is invoked for an entity that is about to be set in
1347 * service. If such an entity is a queue, then the entity is no longer
1348 * a candidate for next service (i.e, a candidate entity to serve
1349 * after the in-service entity is expired). The function then returns
1350 * true.
1de0c4cd
AA
1351 *
1352 * In contrast, the entity could stil be a candidate for next service
1353 * if it is not a queue, and has more than one child. In fact, even if
1354 * one of its children is about to be set in service, other children
1355 * may still be the next to serve. As a consequence, a non-queue
1356 * entity is not a candidate for next-service only if it has only one
1357 * child. And only if this condition holds, then the function returns
1358 * true for a non-queue entity.
e21b7a0b
AA
1359 */
1360static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
1361{
1de0c4cd
AA
1362 struct bfq_group *bfqg;
1363
e21b7a0b
AA
1364 if (bfq_entity_to_bfqq(entity))
1365 return true;
1366
1de0c4cd
AA
1367 bfqg = container_of(entity, struct bfq_group, entity);
1368
1369 if (bfqg->active_entities == 1)
1370 return true;
1371
e21b7a0b 1372 return false;
aee69d78
PV
1373}
1374
e21b7a0b
AA
1375#else /* CONFIG_BFQ_GROUP_IOSCHED */
1376/*
1377 * Next two macros are fake loops when cgroups support is not
1378 * enabled. I fact, in such a case, there is only one level to go up
1379 * (to reach the root group).
1380 */
1381#define for_each_entity(entity) \
1382 for (; entity ; entity = NULL)
1383
1384#define for_each_entity_safe(entity, parent) \
1385 for (parent = NULL; entity ; entity = parent)
1386
1387static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
aee69d78 1388{
e21b7a0b 1389 return false;
aee69d78
PV
1390}
1391
e21b7a0b 1392static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
aee69d78 1393{
e21b7a0b 1394 return true;
aee69d78
PV
1395}
1396
e21b7a0b
AA
1397#endif /* CONFIG_BFQ_GROUP_IOSCHED */
1398
aee69d78
PV
1399/*
1400 * Shift for timestamp calculations. This actually limits the maximum
1401 * service allowed in one timestamp delta (small shift values increase it),
1402 * the maximum total weight that can be used for the queues in the system
1403 * (big shift values increase it), and the period of virtual time
1404 * wraparounds.
1405 */
1406#define WFQ_SERVICE_SHIFT 22
1407
aee69d78
PV
1408static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
1409{
1410 struct bfq_queue *bfqq = NULL;
1411
1412 if (!entity->my_sched_data)
1413 bfqq = container_of(entity, struct bfq_queue, entity);
1414
1415 return bfqq;
1416}
1417
1418
1419/**
1420 * bfq_delta - map service into the virtual time domain.
1421 * @service: amount of service.
1422 * @weight: scale factor (weight of an entity or weight sum).
1423 */
1424static u64 bfq_delta(unsigned long service, unsigned long weight)
1425{
1426 u64 d = (u64)service << WFQ_SERVICE_SHIFT;
1427
1428 do_div(d, weight);
1429 return d;
1430}
1431
1432/**
1433 * bfq_calc_finish - assign the finish time to an entity.
1434 * @entity: the entity to act upon.
1435 * @service: the service to be charged to the entity.
1436 */
1437static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
1438{
1439 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1440
1441 entity->finish = entity->start +
1442 bfq_delta(service, entity->weight);
1443
1444 if (bfqq) {
1445 bfq_log_bfqq(bfqq->bfqd, bfqq,
1446 "calc_finish: serv %lu, w %d",
1447 service, entity->weight);
1448 bfq_log_bfqq(bfqq->bfqd, bfqq,
1449 "calc_finish: start %llu, finish %llu, delta %llu",
1450 entity->start, entity->finish,
1451 bfq_delta(service, entity->weight));
1452 }
1453}
1454
1455/**
1456 * bfq_entity_of - get an entity from a node.
1457 * @node: the node field of the entity.
1458 *
1459 * Convert a node pointer to the relative entity. This is used only
1460 * to simplify the logic of some functions and not as the generic
1461 * conversion mechanism because, e.g., in the tree walking functions,
1462 * the check for a %NULL value would be redundant.
1463 */
1464static struct bfq_entity *bfq_entity_of(struct rb_node *node)
1465{
1466 struct bfq_entity *entity = NULL;
1467
1468 if (node)
1469 entity = rb_entry(node, struct bfq_entity, rb_node);
1470
1471 return entity;
1472}
1473
1474/**
1475 * bfq_extract - remove an entity from a tree.
1476 * @root: the tree root.
1477 * @entity: the entity to remove.
1478 */
1479static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
1480{
1481 entity->tree = NULL;
1482 rb_erase(&entity->rb_node, root);
1483}
1484
1485/**
1486 * bfq_idle_extract - extract an entity from the idle tree.
1487 * @st: the service tree of the owning @entity.
1488 * @entity: the entity being removed.
1489 */
1490static void bfq_idle_extract(struct bfq_service_tree *st,
1491 struct bfq_entity *entity)
1492{
1493 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1494 struct rb_node *next;
1495
1496 if (entity == st->first_idle) {
1497 next = rb_next(&entity->rb_node);
1498 st->first_idle = bfq_entity_of(next);
1499 }
1500
1501 if (entity == st->last_idle) {
1502 next = rb_prev(&entity->rb_node);
1503 st->last_idle = bfq_entity_of(next);
1504 }
1505
1506 bfq_extract(&st->idle, entity);
1507
1508 if (bfqq)
1509 list_del(&bfqq->bfqq_list);
1510}
1511
1512/**
1513 * bfq_insert - generic tree insertion.
1514 * @root: tree root.
1515 * @entity: entity to insert.
1516 *
1517 * This is used for the idle and the active tree, since they are both
1518 * ordered by finish time.
1519 */
1520static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
1521{
1522 struct bfq_entity *entry;
1523 struct rb_node **node = &root->rb_node;
1524 struct rb_node *parent = NULL;
1525
1526 while (*node) {
1527 parent = *node;
1528 entry = rb_entry(parent, struct bfq_entity, rb_node);
1529
1530 if (bfq_gt(entry->finish, entity->finish))
1531 node = &parent->rb_left;
1532 else
1533 node = &parent->rb_right;
1534 }
1535
1536 rb_link_node(&entity->rb_node, parent, node);
1537 rb_insert_color(&entity->rb_node, root);
1538
1539 entity->tree = root;
1540}
1541
1542/**
1543 * bfq_update_min - update the min_start field of a entity.
1544 * @entity: the entity to update.
1545 * @node: one of its children.
1546 *
1547 * This function is called when @entity may store an invalid value for
1548 * min_start due to updates to the active tree. The function assumes
1549 * that the subtree rooted at @node (which may be its left or its right
1550 * child) has a valid min_start value.
1551 */
1552static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
1553{
1554 struct bfq_entity *child;
1555
1556 if (node) {
1557 child = rb_entry(node, struct bfq_entity, rb_node);
1558 if (bfq_gt(entity->min_start, child->min_start))
1559 entity->min_start = child->min_start;
1560 }
1561}
1562
1563/**
1564 * bfq_update_active_node - recalculate min_start.
1565 * @node: the node to update.
1566 *
1567 * @node may have changed position or one of its children may have moved,
1568 * this function updates its min_start value. The left and right subtrees
1569 * are assumed to hold a correct min_start value.
1570 */
1571static void bfq_update_active_node(struct rb_node *node)
1572{
1573 struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
1574
1575 entity->min_start = entity->start;
1576 bfq_update_min(entity, node->rb_right);
1577 bfq_update_min(entity, node->rb_left);
1578}
1579
1580/**
1581 * bfq_update_active_tree - update min_start for the whole active tree.
1582 * @node: the starting node.
1583 *
1584 * @node must be the deepest modified node after an update. This function
1585 * updates its min_start using the values held by its children, assuming
1586 * that they did not change, and then updates all the nodes that may have
1587 * changed in the path to the root. The only nodes that may have changed
1588 * are the ones in the path or their siblings.
1589 */
1590static void bfq_update_active_tree(struct rb_node *node)
1591{
1592 struct rb_node *parent;
1593
1594up:
1595 bfq_update_active_node(node);
1596
1597 parent = rb_parent(node);
1598 if (!parent)
1599 return;
1600
1601 if (node == parent->rb_left && parent->rb_right)
1602 bfq_update_active_node(parent->rb_right);
1603 else if (parent->rb_left)
1604 bfq_update_active_node(parent->rb_left);
1605
1606 node = parent;
1607 goto up;
1608}
1609
1de0c4cd
AA
1610static void bfq_weights_tree_add(struct bfq_data *bfqd,
1611 struct bfq_entity *entity,
1612 struct rb_root *root);
1613
1614static void bfq_weights_tree_remove(struct bfq_data *bfqd,
1615 struct bfq_entity *entity,
1616 struct rb_root *root);
1617
1618
aee69d78
PV
1619/**
1620 * bfq_active_insert - insert an entity in the active tree of its
1621 * group/device.
1622 * @st: the service tree of the entity.
1623 * @entity: the entity being inserted.
1624 *
1625 * The active tree is ordered by finish time, but an extra key is kept
1626 * per each node, containing the minimum value for the start times of
1627 * its children (and the node itself), so it's possible to search for
1628 * the eligible node with the lowest finish time in logarithmic time.
1629 */
1630static void bfq_active_insert(struct bfq_service_tree *st,
1631 struct bfq_entity *entity)
1632{
1633 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1634 struct rb_node *node = &entity->rb_node;
e21b7a0b
AA
1635#ifdef CONFIG_BFQ_GROUP_IOSCHED
1636 struct bfq_sched_data *sd = NULL;
1637 struct bfq_group *bfqg = NULL;
1638 struct bfq_data *bfqd = NULL;
1639#endif
aee69d78
PV
1640
1641 bfq_insert(&st->active, entity);
1642
1643 if (node->rb_left)
1644 node = node->rb_left;
1645 else if (node->rb_right)
1646 node = node->rb_right;
1647
1648 bfq_update_active_tree(node);
1649
e21b7a0b
AA
1650#ifdef CONFIG_BFQ_GROUP_IOSCHED
1651 sd = entity->sched_data;
1652 bfqg = container_of(sd, struct bfq_group, sched_data);
1653 bfqd = (struct bfq_data *)bfqg->bfqd;
1654#endif
aee69d78
PV
1655 if (bfqq)
1656 list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
1de0c4cd
AA
1657#ifdef CONFIG_BFQ_GROUP_IOSCHED
1658 else /* bfq_group */
1659 bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
1660
1661 if (bfqg != bfqd->root_group)
1662 bfqg->active_entities++;
1663#endif
aee69d78
PV
1664}
1665
1666/**
1667 * bfq_ioprio_to_weight - calc a weight from an ioprio.
1668 * @ioprio: the ioprio value to convert.
1669 */
1670static unsigned short bfq_ioprio_to_weight(int ioprio)
1671{
1672 return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
1673}
1674
1675/**
1676 * bfq_weight_to_ioprio - calc an ioprio from a weight.
1677 * @weight: the weight value to convert.
1678 *
1679 * To preserve as much as possible the old only-ioprio user interface,
1680 * 0 is used as an escape ioprio value for weights (numerically) equal or
1681 * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
1682 */
1683static unsigned short bfq_weight_to_ioprio(int weight)
1684{
1685 return max_t(int, 0,
1686 IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
1687}
1688
1689static void bfq_get_entity(struct bfq_entity *entity)
1690{
1691 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1692
1693 if (bfqq) {
1694 bfqq->ref++;
1695 bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
1696 bfqq, bfqq->ref);
1697 }
1698}
1699
1700/**
1701 * bfq_find_deepest - find the deepest node that an extraction can modify.
1702 * @node: the node being removed.
1703 *
1704 * Do the first step of an extraction in an rb tree, looking for the
1705 * node that will replace @node, and returning the deepest node that
1706 * the following modifications to the tree can touch. If @node is the
1707 * last node in the tree return %NULL.
1708 */
1709static struct rb_node *bfq_find_deepest(struct rb_node *node)
1710{
1711 struct rb_node *deepest;
1712
1713 if (!node->rb_right && !node->rb_left)
1714 deepest = rb_parent(node);
1715 else if (!node->rb_right)
1716 deepest = node->rb_left;
1717 else if (!node->rb_left)
1718 deepest = node->rb_right;
1719 else {
1720 deepest = rb_next(node);
1721 if (deepest->rb_right)
1722 deepest = deepest->rb_right;
1723 else if (rb_parent(deepest) != node)
1724 deepest = rb_parent(deepest);
1725 }
1726
1727 return deepest;
1728}
1729
1730/**
1731 * bfq_active_extract - remove an entity from the active tree.
1732 * @st: the service_tree containing the tree.
1733 * @entity: the entity being removed.
1734 */
1735static void bfq_active_extract(struct bfq_service_tree *st,
1736 struct bfq_entity *entity)
1737{
1738 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1739 struct rb_node *node;
e21b7a0b
AA
1740#ifdef CONFIG_BFQ_GROUP_IOSCHED
1741 struct bfq_sched_data *sd = NULL;
1742 struct bfq_group *bfqg = NULL;
1743 struct bfq_data *bfqd = NULL;
1744#endif
aee69d78
PV
1745
1746 node = bfq_find_deepest(&entity->rb_node);
1747 bfq_extract(&st->active, entity);
1748
1749 if (node)
1750 bfq_update_active_tree(node);
1751
e21b7a0b
AA
1752#ifdef CONFIG_BFQ_GROUP_IOSCHED
1753 sd = entity->sched_data;
1754 bfqg = container_of(sd, struct bfq_group, sched_data);
1755 bfqd = (struct bfq_data *)bfqg->bfqd;
1756#endif
aee69d78
PV
1757 if (bfqq)
1758 list_del(&bfqq->bfqq_list);
1de0c4cd
AA
1759#ifdef CONFIG_BFQ_GROUP_IOSCHED
1760 else /* bfq_group */
1761 bfq_weights_tree_remove(bfqd, entity,
1762 &bfqd->group_weights_tree);
1763
1764 if (bfqg != bfqd->root_group)
1765 bfqg->active_entities--;
1766#endif
aee69d78
PV
1767}
1768
1769/**
1770 * bfq_idle_insert - insert an entity into the idle tree.
1771 * @st: the service tree containing the tree.
1772 * @entity: the entity to insert.
1773 */
1774static void bfq_idle_insert(struct bfq_service_tree *st,
1775 struct bfq_entity *entity)
1776{
1777 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1778 struct bfq_entity *first_idle = st->first_idle;
1779 struct bfq_entity *last_idle = st->last_idle;
1780
1781 if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
1782 st->first_idle = entity;
1783 if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
1784 st->last_idle = entity;
1785
1786 bfq_insert(&st->idle, entity);
1787
1788 if (bfqq)
1789 list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
1790}
1791
1792/**
1793 * bfq_forget_entity - do not consider entity any longer for scheduling
1794 * @st: the service tree.
1795 * @entity: the entity being removed.
1796 * @is_in_service: true if entity is currently the in-service entity.
1797 *
1798 * Forget everything about @entity. In addition, if entity represents
1799 * a queue, and the latter is not in service, then release the service
1800 * reference to the queue (the one taken through bfq_get_entity). In
1801 * fact, in this case, there is really no more service reference to
1802 * the queue, as the latter is also outside any service tree. If,
1803 * instead, the queue is in service, then __bfq_bfqd_reset_in_service
1804 * will take care of putting the reference when the queue finally
1805 * stops being served.
1806 */
1807static void bfq_forget_entity(struct bfq_service_tree *st,
1808 struct bfq_entity *entity,
1809 bool is_in_service)
1810{
1811 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1812
e21b7a0b 1813 entity->on_st = false;
aee69d78
PV
1814 st->wsum -= entity->weight;
1815 if (bfqq && !is_in_service)
1816 bfq_put_queue(bfqq);
1817}
1818
1819/**
1820 * bfq_put_idle_entity - release the idle tree ref of an entity.
1821 * @st: service tree for the entity.
1822 * @entity: the entity being released.
1823 */
1824static void bfq_put_idle_entity(struct bfq_service_tree *st,
1825 struct bfq_entity *entity)
1826{
1827 bfq_idle_extract(st, entity);
1828 bfq_forget_entity(st, entity,
1829 entity == entity->sched_data->in_service_entity);
1830}
1831
1832/**
1833 * bfq_forget_idle - update the idle tree if necessary.
1834 * @st: the service tree to act upon.
1835 *
1836 * To preserve the global O(log N) complexity we only remove one entry here;
1837 * as the idle tree will not grow indefinitely this can be done safely.
1838 */
1839static void bfq_forget_idle(struct bfq_service_tree *st)
1840{
1841 struct bfq_entity *first_idle = st->first_idle;
1842 struct bfq_entity *last_idle = st->last_idle;
1843
1844 if (RB_EMPTY_ROOT(&st->active) && last_idle &&
1845 !bfq_gt(last_idle->finish, st->vtime)) {
1846 /*
1847 * Forget the whole idle tree, increasing the vtime past
1848 * the last finish time of idle entities.
1849 */
1850 st->vtime = last_idle->finish;
1851 }
1852
1853 if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
1854 bfq_put_idle_entity(st, first_idle);
1855}
1856
1857static struct bfq_service_tree *
1858__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
e21b7a0b 1859 struct bfq_entity *entity)
aee69d78
PV
1860{
1861 struct bfq_service_tree *new_st = old_st;
1862
1863 if (entity->prio_changed) {
1864 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
44e44a1b 1865 unsigned int prev_weight, new_weight;
aee69d78 1866 struct bfq_data *bfqd = NULL;
1de0c4cd 1867 struct rb_root *root;
e21b7a0b
AA
1868#ifdef CONFIG_BFQ_GROUP_IOSCHED
1869 struct bfq_sched_data *sd;
1870 struct bfq_group *bfqg;
1871#endif
aee69d78
PV
1872
1873 if (bfqq)
1874 bfqd = bfqq->bfqd;
e21b7a0b
AA
1875#ifdef CONFIG_BFQ_GROUP_IOSCHED
1876 else {
1877 sd = entity->my_sched_data;
1878 bfqg = container_of(sd, struct bfq_group, sched_data);
1879 bfqd = (struct bfq_data *)bfqg->bfqd;
1880 }
1881#endif
aee69d78
PV
1882
1883 old_st->wsum -= entity->weight;
1884
1885 if (entity->new_weight != entity->orig_weight) {
1886 if (entity->new_weight < BFQ_MIN_WEIGHT ||
1887 entity->new_weight > BFQ_MAX_WEIGHT) {
1888 pr_crit("update_weight_prio: new_weight %d\n",
1889 entity->new_weight);
1890 if (entity->new_weight < BFQ_MIN_WEIGHT)
1891 entity->new_weight = BFQ_MIN_WEIGHT;
1892 else
1893 entity->new_weight = BFQ_MAX_WEIGHT;
1894 }
1895 entity->orig_weight = entity->new_weight;
1896 if (bfqq)
1897 bfqq->ioprio =
1898 bfq_weight_to_ioprio(entity->orig_weight);
1899 }
1900
1901 if (bfqq)
1902 bfqq->ioprio_class = bfqq->new_ioprio_class;
1903 entity->prio_changed = 0;
1904
1905 /*
1906 * NOTE: here we may be changing the weight too early,
1907 * this will cause unfairness. The correct approach
1908 * would have required additional complexity to defer
1909 * weight changes to the proper time instants (i.e.,
1910 * when entity->finish <= old_st->vtime).
1911 */
1912 new_st = bfq_entity_service_tree(entity);
1913
1914 prev_weight = entity->weight;
44e44a1b
PV
1915 new_weight = entity->orig_weight *
1916 (bfqq ? bfqq->wr_coeff : 1);
1de0c4cd
AA
1917 /*
1918 * If the weight of the entity changes, remove the entity
1919 * from its old weight counter (if there is a counter
1920 * associated with the entity), and add it to the counter
1921 * associated with its new weight.
1922 */
1923 if (prev_weight != new_weight) {
1924 root = bfqq ? &bfqd->queue_weights_tree :
1925 &bfqd->group_weights_tree;
1926 bfq_weights_tree_remove(bfqd, entity, root);
1927 }
aee69d78 1928 entity->weight = new_weight;
1de0c4cd
AA
1929 /*
1930 * Add the entity to its weights tree only if it is
1931 * not associated with a weight-raised queue.
1932 */
1933 if (prev_weight != new_weight &&
1934 (bfqq ? bfqq->wr_coeff == 1 : 1))
1935 /* If we get here, root has been initialized. */
1936 bfq_weights_tree_add(bfqd, entity, root);
aee69d78
PV
1937
1938 new_st->wsum += entity->weight;
1939
1940 if (new_st != old_st)
1941 entity->start = new_st->vtime;
1942 }
1943
1944 return new_st;
1945}
1946
e21b7a0b
AA
1947static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
1948static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1949
aee69d78
PV
1950/**
1951 * bfq_bfqq_served - update the scheduler status after selection for
1952 * service.
1953 * @bfqq: the queue being served.
1954 * @served: bytes to transfer.
1955 *
1956 * NOTE: this can be optimized, as the timestamps of upper level entities
1957 * are synchronized every time a new bfqq is selected for service. By now,
1958 * we keep it to better check consistency.
1959 */
1960static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
1961{
1962 struct bfq_entity *entity = &bfqq->entity;
1963 struct bfq_service_tree *st;
1964
1965 for_each_entity(entity) {
1966 st = bfq_entity_service_tree(entity);
1967
1968 entity->service += served;
1969
1970 st->vtime += bfq_delta(served, st->wsum);
1971 bfq_forget_idle(st);
1972 }
e21b7a0b 1973 bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
aee69d78
PV
1974 bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
1975}
1976
1977/**
c074170e
PV
1978 * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
1979 * of the time interval during which bfqq has been in
1980 * service.
1981 * @bfqd: the device
aee69d78 1982 * @bfqq: the queue that needs a service update.
c074170e 1983 * @time_ms: the amount of time during which the queue has received service
aee69d78 1984 *
c074170e
PV
1985 * If a queue does not consume its budget fast enough, then providing
1986 * the queue with service fairness may impair throughput, more or less
1987 * severely. For this reason, queues that consume their budget slowly
1988 * are provided with time fairness instead of service fairness. This
1989 * goal is achieved through the BFQ scheduling engine, even if such an
1990 * engine works in the service, and not in the time domain. The trick
1991 * is charging these queues with an inflated amount of service, equal
1992 * to the amount of service that they would have received during their
1993 * service slot if they had been fast, i.e., if their requests had
1994 * been dispatched at a rate equal to the estimated peak rate.
1995 *
1996 * It is worth noting that time fairness can cause important
1997 * distortions in terms of bandwidth distribution, on devices with
1998 * internal queueing. The reason is that I/O requests dispatched
1999 * during the service slot of a queue may be served after that service
2000 * slot is finished, and may have a total processing time loosely
2001 * correlated with the duration of the service slot. This is
2002 * especially true for short service slots.
aee69d78 2003 */
c074170e
PV
2004static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2005 unsigned long time_ms)
aee69d78
PV
2006{
2007 struct bfq_entity *entity = &bfqq->entity;
c074170e
PV
2008 int tot_serv_to_charge = entity->service;
2009 unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
2010
2011 if (time_ms > 0 && time_ms < timeout_ms)
2012 tot_serv_to_charge =
2013 (bfqd->bfq_max_budget * time_ms) / timeout_ms;
aee69d78 2014
c074170e
PV
2015 if (tot_serv_to_charge < entity->service)
2016 tot_serv_to_charge = entity->service;
aee69d78 2017
c074170e
PV
2018 /* Increase budget to avoid inconsistencies */
2019 if (tot_serv_to_charge > entity->budget)
2020 entity->budget = tot_serv_to_charge;
2021
2022 bfq_bfqq_served(bfqq,
2023 max_t(int, 0, tot_serv_to_charge - entity->service));
aee69d78
PV
2024}
2025
e21b7a0b
AA
2026static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
2027 struct bfq_service_tree *st,
2028 bool backshifted)
aee69d78 2029{
44e44a1b
PV
2030 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
2031
aee69d78
PV
2032 st = __bfq_entity_update_weight_prio(st, entity);
2033 bfq_calc_finish(entity, entity->budget);
2034
2035 /*
2036 * If some queues enjoy backshifting for a while, then their
2037 * (virtual) finish timestamps may happen to become lower and
2038 * lower than the system virtual time. In particular, if
2039 * these queues often happen to be idle for short time
2040 * periods, and during such time periods other queues with
2041 * higher timestamps happen to be busy, then the backshifted
2042 * timestamps of the former queues can become much lower than
2043 * the system virtual time. In fact, to serve the queues with
2044 * higher timestamps while the ones with lower timestamps are
2045 * idle, the system virtual time may be pushed-up to much
2046 * higher values than the finish timestamps of the idle
2047 * queues. As a consequence, the finish timestamps of all new
2048 * or newly activated queues may end up being much larger than
2049 * those of lucky queues with backshifted timestamps. The
2050 * latter queues may then monopolize the device for a lot of
2051 * time. This would simply break service guarantees.
2052 *
2053 * To reduce this problem, push up a little bit the
2054 * backshifted timestamps of the queue associated with this
2055 * entity (only a queue can happen to have the backshifted
2056 * flag set): just enough to let the finish timestamp of the
2057 * queue be equal to the current value of the system virtual
2058 * time. This may introduce a little unfairness among queues
2059 * with backshifted timestamps, but it does not break
2060 * worst-case fairness guarantees.
44e44a1b
PV
2061 *
2062 * As a special case, if bfqq is weight-raised, push up
2063 * timestamps much less, to keep very low the probability that
2064 * this push up causes the backshifted finish timestamps of
2065 * weight-raised queues to become higher than the backshifted
2066 * finish timestamps of non weight-raised queues.
aee69d78
PV
2067 */
2068 if (backshifted && bfq_gt(st->vtime, entity->finish)) {
2069 unsigned long delta = st->vtime - entity->finish;
2070
44e44a1b
PV
2071 if (bfqq)
2072 delta /= bfqq->wr_coeff;
2073
aee69d78
PV
2074 entity->start += delta;
2075 entity->finish += delta;
2076 }
2077
2078 bfq_active_insert(st, entity);
2079}
2080
2081/**
e21b7a0b
AA
2082 * __bfq_activate_entity - handle activation of entity.
2083 * @entity: the entity being activated.
2084 * @non_blocking_wait_rq: true if entity was waiting for a request
2085 *
2086 * Called for a 'true' activation, i.e., if entity is not active and
2087 * one of its children receives a new request.
2088 *
2089 * Basically, this function updates the timestamps of entity and
2090 * inserts entity into its active tree, ater possible extracting it
2091 * from its idle tree.
2092 */
2093static void __bfq_activate_entity(struct bfq_entity *entity,
2094 bool non_blocking_wait_rq)
2095{
2096 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2097 bool backshifted = false;
2098 unsigned long long min_vstart;
2099
2100 /* See comments on bfq_fqq_update_budg_for_activation */
2101 if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
2102 backshifted = true;
2103 min_vstart = entity->finish;
2104 } else
2105 min_vstart = st->vtime;
2106
2107 if (entity->tree == &st->idle) {
2108 /*
2109 * Must be on the idle tree, bfq_idle_extract() will
2110 * check for that.
2111 */
2112 bfq_idle_extract(st, entity);
2113 entity->start = bfq_gt(min_vstart, entity->finish) ?
2114 min_vstart : entity->finish;
2115 } else {
2116 /*
2117 * The finish time of the entity may be invalid, and
2118 * it is in the past for sure, otherwise the queue
2119 * would have been on the idle tree.
2120 */
2121 entity->start = min_vstart;
2122 st->wsum += entity->weight;
2123 /*
2124 * entity is about to be inserted into a service tree,
2125 * and then set in service: get a reference to make
2126 * sure entity does not disappear until it is no
2127 * longer in service or scheduled for service.
2128 */
2129 bfq_get_entity(entity);
2130
2131 entity->on_st = true;
2132 }
2133
2134 bfq_update_fin_time_enqueue(entity, st, backshifted);
2135}
2136
2137/**
2138 * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
2139 * @entity: the entity being requeued or repositioned.
2140 *
2141 * Requeueing is needed if this entity stops being served, which
2142 * happens if a leaf descendant entity has expired. On the other hand,
2143 * repositioning is needed if the next_inservice_entity for the child
2144 * entity has changed. See the comments inside the function for
2145 * details.
2146 *
2147 * Basically, this function: 1) removes entity from its active tree if
2148 * present there, 2) updates the timestamps of entity and 3) inserts
2149 * entity back into its active tree (in the new, right position for
2150 * the new values of the timestamps).
2151 */
2152static void __bfq_requeue_entity(struct bfq_entity *entity)
2153{
2154 struct bfq_sched_data *sd = entity->sched_data;
2155 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2156
2157 if (entity == sd->in_service_entity) {
2158 /*
2159 * We are requeueing the current in-service entity,
2160 * which may have to be done for one of the following
2161 * reasons:
2162 * - entity represents the in-service queue, and the
2163 * in-service queue is being requeued after an
2164 * expiration;
2165 * - entity represents a group, and its budget has
2166 * changed because one of its child entities has
2167 * just been either activated or requeued for some
2168 * reason; the timestamps of the entity need then to
2169 * be updated, and the entity needs to be enqueued
2170 * or repositioned accordingly.
2171 *
2172 * In particular, before requeueing, the start time of
2173 * the entity must be moved forward to account for the
2174 * service that the entity has received while in
2175 * service. This is done by the next instructions. The
2176 * finish time will then be updated according to this
2177 * new value of the start time, and to the budget of
2178 * the entity.
2179 */
2180 bfq_calc_finish(entity, entity->service);
2181 entity->start = entity->finish;
2182 /*
2183 * In addition, if the entity had more than one child
2184 * when set in service, then was not extracted from
2185 * the active tree. This implies that the position of
2186 * the entity in the active tree may need to be
2187 * changed now, because we have just updated the start
2188 * time of the entity, and we will update its finish
2189 * time in a moment (the requeueing is then, more
2190 * precisely, a repositioning in this case). To
2191 * implement this repositioning, we: 1) dequeue the
2192 * entity here, 2) update the finish time and
2193 * requeue the entity according to the new
2194 * timestamps below.
2195 */
2196 if (entity->tree)
2197 bfq_active_extract(st, entity);
2198 } else { /* The entity is already active, and not in service */
2199 /*
2200 * In this case, this function gets called only if the
2201 * next_in_service entity below this entity has
2202 * changed, and this change has caused the budget of
2203 * this entity to change, which, finally implies that
2204 * the finish time of this entity must be
2205 * updated. Such an update may cause the scheduling,
2206 * i.e., the position in the active tree, of this
2207 * entity to change. We handle this change by: 1)
2208 * dequeueing the entity here, 2) updating the finish
2209 * time and requeueing the entity according to the new
2210 * timestamps below. This is the same approach as the
2211 * non-extracted-entity sub-case above.
2212 */
2213 bfq_active_extract(st, entity);
2214 }
2215
2216 bfq_update_fin_time_enqueue(entity, st, false);
2217}
2218
2219static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
2220 struct bfq_sched_data *sd,
2221 bool non_blocking_wait_rq)
2222{
2223 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2224
2225 if (sd->in_service_entity == entity || entity->tree == &st->active)
2226 /*
2227 * in service or already queued on the active tree,
2228 * requeue or reposition
2229 */
2230 __bfq_requeue_entity(entity);
2231 else
2232 /*
2233 * Not in service and not queued on its active tree:
2234 * the activity is idle and this is a true activation.
2235 */
2236 __bfq_activate_entity(entity, non_blocking_wait_rq);
2237}
2238
2239
2240/**
2241 * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
2242 * and activate, requeue or reposition all ancestors
2243 * for which such an update becomes necessary.
aee69d78
PV
2244 * @entity: the entity to activate.
2245 * @non_blocking_wait_rq: true if this entity was waiting for a request
e21b7a0b
AA
2246 * @requeue: true if this is a requeue, which implies that bfqq is
2247 * being expired; thus ALL its ancestors stop being served and must
2248 * therefore be requeued
aee69d78 2249 */
e21b7a0b
AA
2250static void bfq_activate_requeue_entity(struct bfq_entity *entity,
2251 bool non_blocking_wait_rq,
2252 bool requeue)
aee69d78
PV
2253{
2254 struct bfq_sched_data *sd;
2255
2256 for_each_entity(entity) {
aee69d78 2257 sd = entity->sched_data;
e21b7a0b
AA
2258 __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
2259
2260 if (!bfq_update_next_in_service(sd, entity) && !requeue)
aee69d78
PV
2261 break;
2262 }
2263}
2264
2265/**
2266 * __bfq_deactivate_entity - deactivate an entity from its service tree.
2267 * @entity: the entity to deactivate.
e21b7a0b
AA
2268 * @ins_into_idle_tree: if false, the entity will not be put into the
2269 * idle tree.
aee69d78 2270 *
e21b7a0b
AA
2271 * Deactivates an entity, independently from its previous state. Must
2272 * be invoked only if entity is on a service tree. Extracts the entity
2273 * from that tree, and if necessary and allowed, puts it on the idle
2274 * tree.
aee69d78 2275 */
e21b7a0b
AA
2276static bool __bfq_deactivate_entity(struct bfq_entity *entity,
2277 bool ins_into_idle_tree)
aee69d78
PV
2278{
2279 struct bfq_sched_data *sd = entity->sched_data;
2280 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
2281 int is_in_service = entity == sd->in_service_entity;
aee69d78 2282
e21b7a0b
AA
2283 if (!entity->on_st) /* entity never activated, or already inactive */
2284 return false;
aee69d78 2285
e21b7a0b 2286 if (is_in_service)
aee69d78 2287 bfq_calc_finish(entity, entity->service);
e21b7a0b
AA
2288
2289 if (entity->tree == &st->active)
aee69d78 2290 bfq_active_extract(st, entity);
e21b7a0b 2291 else if (!is_in_service && entity->tree == &st->idle)
aee69d78
PV
2292 bfq_idle_extract(st, entity);
2293
e21b7a0b 2294 if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
aee69d78
PV
2295 bfq_forget_entity(st, entity, is_in_service);
2296 else
2297 bfq_idle_insert(st, entity);
2298
e21b7a0b 2299 return true;
aee69d78
PV
2300}
2301
2302/**
e21b7a0b 2303 * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
aee69d78 2304 * @entity: the entity to deactivate.
e21b7a0b 2305 * @ins_into_idle_tree: true if the entity can be put on the idle tree
aee69d78 2306 */
e21b7a0b
AA
2307static void bfq_deactivate_entity(struct bfq_entity *entity,
2308 bool ins_into_idle_tree,
2309 bool expiration)
aee69d78
PV
2310{
2311 struct bfq_sched_data *sd;
2312 struct bfq_entity *parent = NULL;
2313
2314 for_each_entity_safe(entity, parent) {
2315 sd = entity->sched_data;
2316
e21b7a0b 2317 if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
aee69d78 2318 /*
e21b7a0b
AA
2319 * entity is not in any tree any more, so
2320 * this deactivation is a no-op, and there is
2321 * nothing to change for upper-level entities
2322 * (in case of expiration, this can never
2323 * happen).
aee69d78 2324 */
e21b7a0b
AA
2325 return;
2326 }
2327
2328 if (sd->next_in_service == entity)
2329 /*
2330 * entity was the next_in_service entity,
2331 * then, since entity has just been
2332 * deactivated, a new one must be found.
2333 */
2334 bfq_update_next_in_service(sd, NULL);
aee69d78
PV
2335
2336 if (sd->next_in_service)
2337 /*
e21b7a0b
AA
2338 * The parent entity is still backlogged,
2339 * because next_in_service is not NULL. So, no
2340 * further upwards deactivation must be
2341 * performed. Yet, next_in_service has
2342 * changed. Then the schedule does need to be
2343 * updated upwards.
aee69d78 2344 */
e21b7a0b 2345 break;
aee69d78
PV
2346
2347 /*
e21b7a0b
AA
2348 * If we get here, then the parent is no more
2349 * backlogged and we need to propagate the
2350 * deactivation upwards. Thus let the loop go on.
aee69d78 2351 */
aee69d78 2352
e21b7a0b
AA
2353 /*
2354 * Also let parent be queued into the idle tree on
2355 * deactivation, to preserve service guarantees, and
2356 * assuming that who invoked this function does not
2357 * need parent entities too to be removed completely.
2358 */
2359 ins_into_idle_tree = true;
2360 }
aee69d78 2361
e21b7a0b
AA
2362 /*
2363 * If the deactivation loop is fully executed, then there are
2364 * no more entities to touch and next loop is not executed at
2365 * all. Otherwise, requeue remaining entities if they are
2366 * about to stop receiving service, or reposition them if this
2367 * is not the case.
2368 */
aee69d78
PV
2369 entity = parent;
2370 for_each_entity(entity) {
e21b7a0b
AA
2371 /*
2372 * Invoke __bfq_requeue_entity on entity, even if
2373 * already active, to requeue/reposition it in the
2374 * active tree (because sd->next_in_service has
2375 * changed)
2376 */
2377 __bfq_requeue_entity(entity);
aee69d78
PV
2378
2379 sd = entity->sched_data;
e21b7a0b
AA
2380 if (!bfq_update_next_in_service(sd, entity) &&
2381 !expiration)
2382 /*
2383 * next_in_service unchanged or not causing
2384 * any change in entity->parent->sd, and no
2385 * requeueing needed for expiration: stop
2386 * here.
2387 */
aee69d78
PV
2388 break;
2389 }
2390}
2391
2392/**
e21b7a0b
AA
2393 * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
2394 * if needed, to have at least one entity eligible.
aee69d78
PV
2395 * @st: the service tree to act upon.
2396 *
e21b7a0b 2397 * Assumes that st is not empty.
aee69d78 2398 */
e21b7a0b 2399static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
aee69d78 2400{
e21b7a0b
AA
2401 struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
2402
2403 if (bfq_gt(root_entity->min_start, st->vtime))
2404 return root_entity->min_start;
2405
2406 return st->vtime;
2407}
aee69d78 2408
e21b7a0b
AA
2409static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
2410{
2411 if (new_value > st->vtime) {
2412 st->vtime = new_value;
aee69d78
PV
2413 bfq_forget_idle(st);
2414 }
2415}
2416
2417/**
2418 * bfq_first_active_entity - find the eligible entity with
2419 * the smallest finish time
2420 * @st: the service tree to select from.
e21b7a0b 2421 * @vtime: the system virtual to use as a reference for eligibility
aee69d78
PV
2422 *
2423 * This function searches the first schedulable entity, starting from the
2424 * root of the tree and going on the left every time on this side there is
2425 * a subtree with at least one eligible (start >= vtime) entity. The path on
2426 * the right is followed only if a) the left subtree contains no eligible
2427 * entities and b) no eligible entity has been found yet.
2428 */
e21b7a0b
AA
2429static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
2430 u64 vtime)
aee69d78
PV
2431{
2432 struct bfq_entity *entry, *first = NULL;
2433 struct rb_node *node = st->active.rb_node;
2434
2435 while (node) {
2436 entry = rb_entry(node, struct bfq_entity, rb_node);
2437left:
e21b7a0b 2438 if (!bfq_gt(entry->start, vtime))
aee69d78
PV
2439 first = entry;
2440
2441 if (node->rb_left) {
2442 entry = rb_entry(node->rb_left,
2443 struct bfq_entity, rb_node);
e21b7a0b 2444 if (!bfq_gt(entry->min_start, vtime)) {
aee69d78
PV
2445 node = node->rb_left;
2446 goto left;
2447 }
2448 }
2449 if (first)
2450 break;
2451 node = node->rb_right;
2452 }
2453
e21b7a0b
AA
2454 return first;
2455}
2456
2457/**
2458 * __bfq_lookup_next_entity - return the first eligible entity in @st.
2459 * @st: the service tree.
2460 *
2461 * If there is no in-service entity for the sched_data st belongs to,
2462 * then return the entity that will be set in service if:
2463 * 1) the parent entity this st belongs to is set in service;
2464 * 2) no entity belonging to such parent entity undergoes a state change
2465 * that would influence the timestamps of the entity (e.g., becomes idle,
2466 * becomes backlogged, changes its budget, ...).
2467 *
2468 * In this first case, update the virtual time in @st too (see the
2469 * comments on this update inside the function).
2470 *
2471 * In constrast, if there is an in-service entity, then return the
2472 * entity that would be set in service if not only the above
2473 * conditions, but also the next one held true: the currently
2474 * in-service entity, on expiration,
2475 * 1) gets a finish time equal to the current one, or
2476 * 2) is not eligible any more, or
2477 * 3) is idle.
2478 */
2479static struct bfq_entity *
2480__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
2481{
2482 struct bfq_entity *entity;
2483 u64 new_vtime;
2484
2485 if (RB_EMPTY_ROOT(&st->active))
2486 return NULL;
2487
2488 /*
2489 * Get the value of the system virtual time for which at
2490 * least one entity is eligible.
2491 */
2492 new_vtime = bfq_calc_vtime_jump(st);
2493
2494 /*
2495 * If there is no in-service entity for the sched_data this
2496 * active tree belongs to, then push the system virtual time
2497 * up to the value that guarantees that at least one entity is
2498 * eligible. If, instead, there is an in-service entity, then
2499 * do not make any such update, because there is already an
2500 * eligible entity, namely the in-service one (even if the
2501 * entity is not on st, because it was extracted when set in
2502 * service).
2503 */
2504 if (!in_service)
2505 bfq_update_vtime(st, new_vtime);
2506
2507 entity = bfq_first_active_entity(st, new_vtime);
2508
2509 return entity;
2510}
2511
2512/**
2513 * bfq_lookup_next_entity - return the first eligible entity in @sd.
2514 * @sd: the sched_data.
2515 *
2516 * This function is invoked when there has been a change in the trees
2517 * for sd, and we need know what is the new next entity after this
2518 * change.
2519 */
2520static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
2521{
2522 struct bfq_service_tree *st = sd->service_tree;
2523 struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
2524 struct bfq_entity *entity = NULL;
2525 int class_idx = 0;
2526
2527 /*
2528 * Choose from idle class, if needed to guarantee a minimum
2529 * bandwidth to this class (and if there is some active entity
2530 * in idle class). This should also mitigate
2531 * priority-inversion problems in case a low priority task is
2532 * holding file system resources.
2533 */
2534 if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
2535 BFQ_CL_IDLE_TIMEOUT)) {
2536 if (!RB_EMPTY_ROOT(&idle_class_st->active))
2537 class_idx = BFQ_IOPRIO_CLASSES - 1;
2538 /* About to be served if backlogged, or not yet backlogged */
2539 sd->bfq_class_idle_last_service = jiffies;
2540 }
2541
2542 /*
2543 * Find the next entity to serve for the highest-priority
2544 * class, unless the idle class needs to be served.
2545 */
2546 for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
2547 entity = __bfq_lookup_next_entity(st + class_idx,
2548 sd->in_service_entity);
2549
2550 if (entity)
2551 break;
2552 }
2553
2554 if (!entity)
2555 return NULL;
2556
2557 return entity;
2558}
2559
2560static bool next_queue_may_preempt(struct bfq_data *bfqd)
2561{
2562 struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
2563
2564 return sd->next_in_service != sd->in_service_entity;
2565}
2566
2567/*
2568 * Get next queue for service.
2569 */
2570static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
2571{
2572 struct bfq_entity *entity = NULL;
2573 struct bfq_sched_data *sd;
2574 struct bfq_queue *bfqq;
2575
2576 if (bfqd->busy_queues == 0)
2577 return NULL;
2578
2579 /*
2580 * Traverse the path from the root to the leaf entity to
2581 * serve. Set in service all the entities visited along the
2582 * way.
2583 */
2584 sd = &bfqd->root_group->sched_data;
2585 for (; sd ; sd = entity->my_sched_data) {
2586 /*
2587 * WARNING. We are about to set the in-service entity
2588 * to sd->next_in_service, i.e., to the (cached) value
2589 * returned by bfq_lookup_next_entity(sd) the last
2590 * time it was invoked, i.e., the last time when the
2591 * service order in sd changed as a consequence of the
2592 * activation or deactivation of an entity. In this
2593 * respect, if we execute bfq_lookup_next_entity(sd)
2594 * in this very moment, it may, although with low
2595 * probability, yield a different entity than that
2596 * pointed to by sd->next_in_service. This rare event
2597 * happens in case there was no CLASS_IDLE entity to
2598 * serve for sd when bfq_lookup_next_entity(sd) was
2599 * invoked for the last time, while there is now one
2600 * such entity.
2601 *
2602 * If the above event happens, then the scheduling of
2603 * such entity in CLASS_IDLE is postponed until the
2604 * service of the sd->next_in_service entity
2605 * finishes. In fact, when the latter is expired,
2606 * bfq_lookup_next_entity(sd) gets called again,
2607 * exactly to update sd->next_in_service.
2608 */
2609
2610 /* Make next_in_service entity become in_service_entity */
2611 entity = sd->next_in_service;
2612 sd->in_service_entity = entity;
2613
2614 /*
2615 * Reset the accumulator of the amount of service that
2616 * the entity is about to receive.
2617 */
2618 entity->service = 0;
2619
2620 /*
2621 * If entity is no longer a candidate for next
2622 * service, then we extract it from its active tree,
2623 * for the following reason. To further boost the
2624 * throughput in some special case, BFQ needs to know
2625 * which is the next candidate entity to serve, while
2626 * there is already an entity in service. In this
2627 * respect, to make it easy to compute/update the next
2628 * candidate entity to serve after the current
2629 * candidate has been set in service, there is a case
2630 * where it is necessary to extract the current
2631 * candidate from its service tree. Such a case is
2632 * when the entity just set in service cannot be also
2633 * a candidate for next service. Details about when
2634 * this conditions holds are reported in the comments
2635 * on the function bfq_no_longer_next_in_service()
2636 * invoked below.
2637 */
2638 if (bfq_no_longer_next_in_service(entity))
2639 bfq_active_extract(bfq_entity_service_tree(entity),
2640 entity);
2641
2642 /*
2643 * For the same reason why we may have just extracted
2644 * entity from its active tree, we may need to update
2645 * next_in_service for the sched_data of entity too,
2646 * regardless of whether entity has been extracted.
2647 * In fact, even if entity has not been extracted, a
2648 * descendant entity may get extracted. Such an event
2649 * would cause a change in next_in_service for the
2650 * level of the descendant entity, and thus possibly
2651 * back to upper levels.
2652 *
2653 * We cannot perform the resulting needed update
2654 * before the end of this loop, because, to know which
2655 * is the correct next-to-serve candidate entity for
2656 * each level, we need first to find the leaf entity
2657 * to set in service. In fact, only after we know
2658 * which is the next-to-serve leaf entity, we can
2659 * discover whether the parent entity of the leaf
2660 * entity becomes the next-to-serve, and so on.
2661 */
2662
2663 }
2664
2665 bfqq = bfq_entity_to_bfqq(entity);
2666
2667 /*
2668 * We can finally update all next-to-serve entities along the
2669 * path from the leaf entity just set in service to the root.
2670 */
2671 for_each_entity(entity) {
2672 struct bfq_sched_data *sd = entity->sched_data;
2673
2674 if (!bfq_update_next_in_service(sd, NULL))
2675 break;
2676 }
2677
2678 return bfqq;
2679}
2680
2681static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
2682{
2683 struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
2684 struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
2685 struct bfq_entity *entity = in_serv_entity;
2686
2687 if (bfqd->in_service_bic) {
36eca894
AA
2688 /*
2689 * Schedule the release of a reference to
2690 * bfqd->in_service_bic->icq.ioc to right after the
2691 * scheduler lock is released. This ioc is not
2692 * released immediately, to not risk to possibly take
2693 * an ioc->lock while holding the scheduler lock.
2694 */
2695 bfqd->ioc_to_put = bfqd->in_service_bic->icq.ioc;
e21b7a0b
AA
2696 bfqd->in_service_bic = NULL;
2697 }
2698
2699 bfq_clear_bfqq_wait_request(in_serv_bfqq);
2700 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
2701 bfqd->in_service_queue = NULL;
2702
2703 /*
2704 * When this function is called, all in-service entities have
2705 * been properly deactivated or requeued, so we can safely
2706 * execute the final step: reset in_service_entity along the
2707 * path from entity to the root.
2708 */
2709 for_each_entity(entity)
2710 entity->sched_data->in_service_entity = NULL;
2711
2712 /*
2713 * in_serv_entity is no longer in service, so, if it is in no
2714 * service tree either, then release the service reference to
2715 * the queue it represents (taken with bfq_get_entity).
2716 */
2717 if (!in_serv_entity->on_st)
2718 bfq_put_queue(in_serv_bfqq);
2719}
2720
2721static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2722 bool ins_into_idle_tree, bool expiration)
2723{
2724 struct bfq_entity *entity = &bfqq->entity;
2725
2726 bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
2727}
2728
2729static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2730{
2731 struct bfq_entity *entity = &bfqq->entity;
2732
2733 bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
2734 false);
2735 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
2736}
2737
2738static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2739{
2740 struct bfq_entity *entity = &bfqq->entity;
2741
2742 bfq_activate_requeue_entity(entity, false,
2743 bfqq == bfqd->in_service_queue);
2744}
2745
2746static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
2747
2748/*
2749 * Called when the bfqq no longer has requests pending, remove it from
2750 * the service tree. As a special case, it can be invoked during an
2751 * expiration.
2752 */
2753static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2754 bool expiration)
2755{
2756 bfq_log_bfqq(bfqd, bfqq, "del from busy");
2757
2758 bfq_clear_bfqq_busy(bfqq);
2759
2760 bfqd->busy_queues--;
2761
1de0c4cd
AA
2762 if (!bfqq->dispatched)
2763 bfq_weights_tree_remove(bfqd, &bfqq->entity,
2764 &bfqd->queue_weights_tree);
2765
cfd69712
PV
2766 if (bfqq->wr_coeff > 1)
2767 bfqd->wr_busy_queues--;
2768
e21b7a0b
AA
2769 bfqg_stats_update_dequeue(bfqq_group(bfqq));
2770
2771 bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
2772}
2773
2774/*
2775 * Called when an inactive queue receives a new request.
2776 */
2777static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2778{
2779 bfq_log_bfqq(bfqd, bfqq, "add to busy");
2780
2781 bfq_activate_bfqq(bfqd, bfqq);
2782
2783 bfq_mark_bfqq_busy(bfqq);
2784 bfqd->busy_queues++;
cfd69712 2785
1de0c4cd
AA
2786 if (!bfqq->dispatched)
2787 if (bfqq->wr_coeff == 1)
2788 bfq_weights_tree_add(bfqd, &bfqq->entity,
2789 &bfqd->queue_weights_tree);
2790
cfd69712
PV
2791 if (bfqq->wr_coeff > 1)
2792 bfqd->wr_busy_queues++;
e21b7a0b
AA
2793}
2794
2795#ifdef CONFIG_BFQ_GROUP_IOSCHED
2796
2797/* bfqg stats flags */
2798enum bfqg_stats_flags {
2799 BFQG_stats_waiting = 0,
2800 BFQG_stats_idling,
2801 BFQG_stats_empty,
2802};
2803
2804#define BFQG_FLAG_FNS(name) \
2805static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \
2806{ \
2807 stats->flags |= (1 << BFQG_stats_##name); \
2808} \
2809static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \
2810{ \
2811 stats->flags &= ~(1 << BFQG_stats_##name); \
2812} \
2813static int bfqg_stats_##name(struct bfqg_stats *stats) \
2814{ \
2815 return (stats->flags & (1 << BFQG_stats_##name)) != 0; \
2816} \
2817
2818BFQG_FLAG_FNS(waiting)
2819BFQG_FLAG_FNS(idling)
2820BFQG_FLAG_FNS(empty)
2821#undef BFQG_FLAG_FNS
2822
2823/* This should be called with the queue_lock held. */
2824static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
2825{
2826 unsigned long long now;
2827
2828 if (!bfqg_stats_waiting(stats))
2829 return;
2830
2831 now = sched_clock();
2832 if (time_after64(now, stats->start_group_wait_time))
2833 blkg_stat_add(&stats->group_wait_time,
2834 now - stats->start_group_wait_time);
2835 bfqg_stats_clear_waiting(stats);
2836}
2837
2838/* This should be called with the queue_lock held. */
2839static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
2840 struct bfq_group *curr_bfqg)
2841{
2842 struct bfqg_stats *stats = &bfqg->stats;
2843
2844 if (bfqg_stats_waiting(stats))
2845 return;
2846 if (bfqg == curr_bfqg)
2847 return;
2848 stats->start_group_wait_time = sched_clock();
2849 bfqg_stats_mark_waiting(stats);
2850}
2851
2852/* This should be called with the queue_lock held. */
2853static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
2854{
2855 unsigned long long now;
2856
2857 if (!bfqg_stats_empty(stats))
2858 return;
2859
2860 now = sched_clock();
2861 if (time_after64(now, stats->start_empty_time))
2862 blkg_stat_add(&stats->empty_time,
2863 now - stats->start_empty_time);
2864 bfqg_stats_clear_empty(stats);
2865}
2866
2867static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
2868{
2869 blkg_stat_add(&bfqg->stats.dequeue, 1);
2870}
2871
2872static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
2873{
2874 struct bfqg_stats *stats = &bfqg->stats;
2875
2876 if (blkg_rwstat_total(&stats->queued))
2877 return;
2878
2879 /*
2880 * group is already marked empty. This can happen if bfqq got new
2881 * request in parent group and moved to this group while being added
2882 * to service tree. Just ignore the event and move on.
2883 */
2884 if (bfqg_stats_empty(stats))
2885 return;
2886
2887 stats->start_empty_time = sched_clock();
2888 bfqg_stats_mark_empty(stats);
2889}
2890
2891static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
2892{
2893 struct bfqg_stats *stats = &bfqg->stats;
2894
2895 if (bfqg_stats_idling(stats)) {
2896 unsigned long long now = sched_clock();
2897
2898 if (time_after64(now, stats->start_idle_time))
2899 blkg_stat_add(&stats->idle_time,
2900 now - stats->start_idle_time);
2901 bfqg_stats_clear_idling(stats);
2902 }
2903}
2904
2905static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
2906{
2907 struct bfqg_stats *stats = &bfqg->stats;
2908
2909 stats->start_idle_time = sched_clock();
2910 bfqg_stats_mark_idling(stats);
2911}
2912
2913static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
2914{
2915 struct bfqg_stats *stats = &bfqg->stats;
2916
2917 blkg_stat_add(&stats->avg_queue_size_sum,
2918 blkg_rwstat_total(&stats->queued));
2919 blkg_stat_add(&stats->avg_queue_size_samples, 1);
2920 bfqg_stats_update_group_wait_time(stats);
2921}
2922
2923/*
2924 * blk-cgroup policy-related handlers
2925 * The following functions help in converting between blk-cgroup
2926 * internal structures and BFQ-specific structures.
2927 */
2928
2929static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
2930{
2931 return pd ? container_of(pd, struct bfq_group, pd) : NULL;
2932}
2933
2934static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
2935{
2936 return pd_to_blkg(&bfqg->pd);
2937}
2938
2939static struct blkcg_policy blkcg_policy_bfq;
2940
2941static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
2942{
2943 return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq));
2944}
2945
2946/*
2947 * bfq_group handlers
2948 * The following functions help in navigating the bfq_group hierarchy
2949 * by allowing to find the parent of a bfq_group or the bfq_group
2950 * associated to a bfq_queue.
2951 */
2952
2953static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
2954{
2955 struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
2956
2957 return pblkg ? blkg_to_bfqg(pblkg) : NULL;
2958}
2959
2960static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
2961{
2962 struct bfq_entity *group_entity = bfqq->entity.parent;
2963
2964 return group_entity ? container_of(group_entity, struct bfq_group,
2965 entity) :
2966 bfqq->bfqd->root_group;
2967}
2968
2969/*
2970 * The following two functions handle get and put of a bfq_group by
2971 * wrapping the related blk-cgroup hooks.
2972 */
2973
2974static void bfqg_get(struct bfq_group *bfqg)
2975{
2976 return blkg_get(bfqg_to_blkg(bfqg));
2977}
2978
2979static void bfqg_put(struct bfq_group *bfqg)
2980{
2981 return blkg_put(bfqg_to_blkg(bfqg));
2982}
2983
2984static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
2985 struct bfq_queue *bfqq,
2986 unsigned int op)
2987{
2988 blkg_rwstat_add(&bfqg->stats.queued, op, 1);
2989 bfqg_stats_end_empty_time(&bfqg->stats);
2990 if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
2991 bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
2992}
2993
2994static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
2995{
2996 blkg_rwstat_add(&bfqg->stats.queued, op, -1);
2997}
2998
2999static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
3000{
3001 blkg_rwstat_add(&bfqg->stats.merged, op, 1);
3002}
3003
3004static void bfqg_stats_update_completion(struct bfq_group *bfqg,
3005 uint64_t start_time, uint64_t io_start_time,
3006 unsigned int op)
3007{
3008 struct bfqg_stats *stats = &bfqg->stats;
3009 unsigned long long now = sched_clock();
3010
3011 if (time_after64(now, io_start_time))
3012 blkg_rwstat_add(&stats->service_time, op,
3013 now - io_start_time);
3014 if (time_after64(io_start_time, start_time))
3015 blkg_rwstat_add(&stats->wait_time, op,
3016 io_start_time - start_time);
3017}
3018
3019/* @stats = 0 */
3020static void bfqg_stats_reset(struct bfqg_stats *stats)
3021{
3022 /* queued stats shouldn't be cleared */
3023 blkg_rwstat_reset(&stats->merged);
3024 blkg_rwstat_reset(&stats->service_time);
3025 blkg_rwstat_reset(&stats->wait_time);
3026 blkg_stat_reset(&stats->time);
3027 blkg_stat_reset(&stats->avg_queue_size_sum);
3028 blkg_stat_reset(&stats->avg_queue_size_samples);
3029 blkg_stat_reset(&stats->dequeue);
3030 blkg_stat_reset(&stats->group_wait_time);
3031 blkg_stat_reset(&stats->idle_time);
3032 blkg_stat_reset(&stats->empty_time);
3033}
3034
3035/* @to += @from */
3036static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
3037{
3038 if (!to || !from)
3039 return;
3040
3041 /* queued stats shouldn't be cleared */
3042 blkg_rwstat_add_aux(&to->merged, &from->merged);
3043 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
3044 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
3045 blkg_stat_add_aux(&from->time, &from->time);
3046 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
3047 blkg_stat_add_aux(&to->avg_queue_size_samples,
3048 &from->avg_queue_size_samples);
3049 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
3050 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
3051 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
3052 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
3053}
3054
3055/*
3056 * Transfer @bfqg's stats to its parent's aux counts so that the ancestors'
3057 * recursive stats can still account for the amount used by this bfqg after
3058 * it's gone.
3059 */
3060static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
3061{
3062 struct bfq_group *parent;
3063
3064 if (!bfqg) /* root_group */
3065 return;
3066
3067 parent = bfqg_parent(bfqg);
3068
3069 lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
3070
3071 if (unlikely(!parent))
3072 return;
3073
3074 bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
3075 bfqg_stats_reset(&bfqg->stats);
3076}
3077
3078static void bfq_init_entity(struct bfq_entity *entity,
3079 struct bfq_group *bfqg)
3080{
3081 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3082
3083 entity->weight = entity->new_weight;
3084 entity->orig_weight = entity->new_weight;
3085 if (bfqq) {
3086 bfqq->ioprio = bfqq->new_ioprio;
3087 bfqq->ioprio_class = bfqq->new_ioprio_class;
3088 bfqg_get(bfqg);
3089 }
3090 entity->parent = bfqg->my_entity; /* NULL for root group */
3091 entity->sched_data = &bfqg->sched_data;
3092}
3093
3094static void bfqg_stats_exit(struct bfqg_stats *stats)
3095{
3096 blkg_rwstat_exit(&stats->merged);
3097 blkg_rwstat_exit(&stats->service_time);
3098 blkg_rwstat_exit(&stats->wait_time);
3099 blkg_rwstat_exit(&stats->queued);
3100 blkg_stat_exit(&stats->time);
3101 blkg_stat_exit(&stats->avg_queue_size_sum);
3102 blkg_stat_exit(&stats->avg_queue_size_samples);
3103 blkg_stat_exit(&stats->dequeue);
3104 blkg_stat_exit(&stats->group_wait_time);
3105 blkg_stat_exit(&stats->idle_time);
3106 blkg_stat_exit(&stats->empty_time);
3107}
3108
3109static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
3110{
3111 if (blkg_rwstat_init(&stats->merged, gfp) ||
3112 blkg_rwstat_init(&stats->service_time, gfp) ||
3113 blkg_rwstat_init(&stats->wait_time, gfp) ||
3114 blkg_rwstat_init(&stats->queued, gfp) ||
3115 blkg_stat_init(&stats->time, gfp) ||
3116 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
3117 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
3118 blkg_stat_init(&stats->dequeue, gfp) ||
3119 blkg_stat_init(&stats->group_wait_time, gfp) ||
3120 blkg_stat_init(&stats->idle_time, gfp) ||
3121 blkg_stat_init(&stats->empty_time, gfp)) {
3122 bfqg_stats_exit(stats);
3123 return -ENOMEM;
3124 }
3125
3126 return 0;
3127}
3128
3129static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
3130{
3131 return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
3132}
3133
3134static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
3135{
3136 return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
3137}
3138
3139static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
3140{
3141 struct bfq_group_data *bgd;
3142
3143 bgd = kzalloc(sizeof(*bgd), gfp);
3144 if (!bgd)
3145 return NULL;
3146 return &bgd->pd;
3147}
3148
3149static void bfq_cpd_init(struct blkcg_policy_data *cpd)
3150{
3151 struct bfq_group_data *d = cpd_to_bfqgd(cpd);
3152
3153 d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
3154 CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
3155}
3156
3157static void bfq_cpd_free(struct blkcg_policy_data *cpd)
3158{
3159 kfree(cpd_to_bfqgd(cpd));
3160}
3161
3162static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
3163{
3164 struct bfq_group *bfqg;
3165
3166 bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
3167 if (!bfqg)
3168 return NULL;
3169
3170 if (bfqg_stats_init(&bfqg->stats, gfp)) {
3171 kfree(bfqg);
3172 return NULL;
3173 }
3174
3175 return &bfqg->pd;
3176}
3177
3178static void bfq_pd_init(struct blkg_policy_data *pd)
3179{
3180 struct blkcg_gq *blkg = pd_to_blkg(pd);
3181 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3182 struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
3183 struct bfq_entity *entity = &bfqg->entity;
3184 struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
3185
3186 entity->orig_weight = entity->weight = entity->new_weight = d->weight;
3187 entity->my_sched_data = &bfqg->sched_data;
3188 bfqg->my_entity = entity; /*
3189 * the root_group's will be set to NULL
3190 * in bfq_init_queue()
3191 */
3192 bfqg->bfqd = bfqd;
1de0c4cd 3193 bfqg->active_entities = 0;
36eca894 3194 bfqg->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
3195}
3196
3197static void bfq_pd_free(struct blkg_policy_data *pd)
3198{
3199 struct bfq_group *bfqg = pd_to_bfqg(pd);
3200
3201 bfqg_stats_exit(&bfqg->stats);
3202 return kfree(bfqg);
3203}
3204
3205static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
3206{
3207 struct bfq_group *bfqg = pd_to_bfqg(pd);
3208
3209 bfqg_stats_reset(&bfqg->stats);
3210}
3211
3212static void bfq_group_set_parent(struct bfq_group *bfqg,
3213 struct bfq_group *parent)
3214{
3215 struct bfq_entity *entity;
3216
3217 entity = &bfqg->entity;
3218 entity->parent = parent->my_entity;
3219 entity->sched_data = &parent->sched_data;
3220}
3221
3222static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
3223 struct blkcg *blkcg)
3224{
3225 struct blkcg_gq *blkg;
3226
3227 blkg = blkg_lookup(blkcg, bfqd->queue);
3228 if (likely(blkg))
3229 return blkg_to_bfqg(blkg);
3230 return NULL;
3231}
3232
3233static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
3234 struct blkcg *blkcg)
3235{
3236 struct bfq_group *bfqg, *parent;
3237 struct bfq_entity *entity;
3238
3239 bfqg = bfq_lookup_bfqg(bfqd, blkcg);
3240
3241 if (unlikely(!bfqg))
3242 return NULL;
3243
3244 /*
3245 * Update chain of bfq_groups as we might be handling a leaf group
3246 * which, along with some of its relatives, has not been hooked yet
3247 * to the private hierarchy of BFQ.
3248 */
3249 entity = &bfqg->entity;
3250 for_each_entity(entity) {
3251 bfqg = container_of(entity, struct bfq_group, entity);
3252 if (bfqg != bfqd->root_group) {
3253 parent = bfqg_parent(bfqg);
3254 if (!parent)
3255 parent = bfqd->root_group;
3256 bfq_group_set_parent(bfqg, parent);
3257 }
3258 }
3259
3260 return bfqg;
3261}
3262
36eca894
AA
3263static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
3264 struct bfq_queue *bfqq);
e21b7a0b
AA
3265static void bfq_bfqq_expire(struct bfq_data *bfqd,
3266 struct bfq_queue *bfqq,
3267 bool compensate,
3268 enum bfqq_expiration reason);
3269
3270/**
3271 * bfq_bfqq_move - migrate @bfqq to @bfqg.
3272 * @bfqd: queue descriptor.
3273 * @bfqq: the queue to move.
3274 * @bfqg: the group to move to.
3275 *
3276 * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
3277 * it on the new one. Avoid putting the entity on the old group idle tree.
3278 *
3279 * Must be called under the queue lock; the cgroup owning @bfqg must
3280 * not disappear (by now this just means that we are called under
3281 * rcu_read_lock()).
3282 */
3283static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3284 struct bfq_group *bfqg)
3285{
3286 struct bfq_entity *entity = &bfqq->entity;
3287
3288 /* If bfqq is empty, then bfq_bfqq_expire also invokes
3289 * bfq_del_bfqq_busy, thereby removing bfqq and its entity
3290 * from data structures related to current group. Otherwise we
3291 * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
3292 * we do below.
3293 */
3294 if (bfqq == bfqd->in_service_queue)
3295 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
3296 false, BFQQE_PREEMPTED);
3297
3298 if (bfq_bfqq_busy(bfqq))
3299 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
3300 else if (entity->on_st)
3301 bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
3302 bfqg_put(bfqq_group(bfqq));
3303
3304 /*
3305 * Here we use a reference to bfqg. We don't need a refcounter
3306 * as the cgroup reference will not be dropped, so that its
3307 * destroy() callback will not be invoked.
3308 */
3309 entity->parent = bfqg->my_entity;
3310 entity->sched_data = &bfqg->sched_data;
3311 bfqg_get(bfqg);
3312
36eca894
AA
3313 if (bfq_bfqq_busy(bfqq)) {
3314 bfq_pos_tree_add_move(bfqd, bfqq);
e21b7a0b 3315 bfq_activate_bfqq(bfqd, bfqq);
36eca894 3316 }
e21b7a0b
AA
3317
3318 if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
3319 bfq_schedule_dispatch(bfqd);
3320}
3321
3322/**
3323 * __bfq_bic_change_cgroup - move @bic to @cgroup.
3324 * @bfqd: the queue descriptor.
3325 * @bic: the bic to move.
3326 * @blkcg: the blk-cgroup to move to.
3327 *
3328 * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
3329 * has to make sure that the reference to cgroup is valid across the call.
3330 *
3331 * NOTE: an alternative approach might have been to store the current
3332 * cgroup in bfqq and getting a reference to it, reducing the lookup
3333 * time here, at the price of slightly more complex code.
3334 */
3335static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
3336 struct bfq_io_cq *bic,
3337 struct blkcg *blkcg)
3338{
3339 struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
3340 struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
3341 struct bfq_group *bfqg;
3342 struct bfq_entity *entity;
3343
3344 bfqg = bfq_find_set_group(bfqd, blkcg);
3345
3346 if (unlikely(!bfqg))
3347 bfqg = bfqd->root_group;
3348
3349 if (async_bfqq) {
3350 entity = &async_bfqq->entity;
3351
3352 if (entity->sched_data != &bfqg->sched_data) {
3353 bic_set_bfqq(bic, NULL, 0);
3354 bfq_log_bfqq(bfqd, async_bfqq,
3355 "bic_change_group: %p %d",
36eca894 3356 async_bfqq, async_bfqq->ref);
e21b7a0b
AA
3357 bfq_put_queue(async_bfqq);
3358 }
3359 }
3360
3361 if (sync_bfqq) {
3362 entity = &sync_bfqq->entity;
3363 if (entity->sched_data != &bfqg->sched_data)
3364 bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
3365 }
3366
3367 return bfqg;
3368}
3369
3370static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
3371{
3372 struct bfq_data *bfqd = bic_to_bfqd(bic);
3373 struct bfq_group *bfqg = NULL;
3374 uint64_t serial_nr;
3375
3376 rcu_read_lock();
3377 serial_nr = bio_blkcg(bio)->css.serial_nr;
3378
3379 /*
3380 * Check whether blkcg has changed. The condition may trigger
3381 * spuriously on a newly created cic but there's no harm.
3382 */
3383 if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
3384 goto out;
3385
3386 bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
3387 bic->blkcg_serial_nr = serial_nr;
3388out:
3389 rcu_read_unlock();
3390}
3391
3392/**
3393 * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
3394 * @st: the service tree being flushed.
3395 */
3396static void bfq_flush_idle_tree(struct bfq_service_tree *st)
3397{
3398 struct bfq_entity *entity = st->first_idle;
3399
3400 for (; entity ; entity = st->first_idle)
3401 __bfq_deactivate_entity(entity, false);
3402}
3403
3404/**
3405 * bfq_reparent_leaf_entity - move leaf entity to the root_group.
3406 * @bfqd: the device data structure with the root group.
3407 * @entity: the entity to move.
3408 */
3409static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
3410 struct bfq_entity *entity)
3411{
3412 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3413
3414 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
aee69d78
PV
3415}
3416
3417/**
e21b7a0b
AA
3418 * bfq_reparent_active_entities - move to the root group all active
3419 * entities.
3420 * @bfqd: the device data structure with the root group.
3421 * @bfqg: the group to move from.
3422 * @st: the service tree with the entities.
aee69d78 3423 *
e21b7a0b 3424 * Needs queue_lock to be taken and reference to be valid over the call.
aee69d78 3425 */
e21b7a0b
AA
3426static void bfq_reparent_active_entities(struct bfq_data *bfqd,
3427 struct bfq_group *bfqg,
3428 struct bfq_service_tree *st)
aee69d78 3429{
e21b7a0b
AA
3430 struct rb_root *active = &st->active;
3431 struct bfq_entity *entity = NULL;
aee69d78 3432
e21b7a0b
AA
3433 if (!RB_EMPTY_ROOT(&st->active))
3434 entity = bfq_entity_of(rb_first(active));
aee69d78 3435
e21b7a0b
AA
3436 for (; entity ; entity = bfq_entity_of(rb_first(active)))
3437 bfq_reparent_leaf_entity(bfqd, entity);
aee69d78 3438
e21b7a0b
AA
3439 if (bfqg->sched_data.in_service_entity)
3440 bfq_reparent_leaf_entity(bfqd,
3441 bfqg->sched_data.in_service_entity);
aee69d78
PV
3442}
3443
3444/**
e21b7a0b
AA
3445 * bfq_pd_offline - deactivate the entity associated with @pd,
3446 * and reparent its children entities.
3447 * @pd: descriptor of the policy going offline.
aee69d78 3448 *
e21b7a0b
AA
3449 * blkio already grabs the queue_lock for us, so no need to use
3450 * RCU-based magic
aee69d78 3451 */
e21b7a0b 3452static void bfq_pd_offline(struct blkg_policy_data *pd)
aee69d78 3453{
e21b7a0b
AA
3454 struct bfq_service_tree *st;
3455 struct bfq_group *bfqg = pd_to_bfqg(pd);
3456 struct bfq_data *bfqd = bfqg->bfqd;
3457 struct bfq_entity *entity = bfqg->my_entity;
3458 unsigned long flags;
3459 int i;
aee69d78 3460
e21b7a0b
AA
3461 if (!entity) /* root group */
3462 return;
3463
3464 spin_lock_irqsave(&bfqd->lock, flags);
aee69d78 3465 /*
e21b7a0b
AA
3466 * Empty all service_trees belonging to this group before
3467 * deactivating the group itself.
aee69d78 3468 */
e21b7a0b
AA
3469 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
3470 st = bfqg->sched_data.service_tree + i;
3471
3472 /*
3473 * The idle tree may still contain bfq_queues belonging
3474 * to exited task because they never migrated to a different
3475 * cgroup from the one being destroyed now. No one else
3476 * can access them so it's safe to act without any lock.
3477 */
3478 bfq_flush_idle_tree(st);
3479
3480 /*
3481 * It may happen that some queues are still active
3482 * (busy) upon group destruction (if the corresponding
3483 * processes have been forced to terminate). We move
3484 * all the leaf entities corresponding to these queues
3485 * to the root_group.
3486 * Also, it may happen that the group has an entity
3487 * in service, which is disconnected from the active
3488 * tree: it must be moved, too.
3489 * There is no need to put the sync queues, as the
3490 * scheduler has taken no reference.
3491 */
3492 bfq_reparent_active_entities(bfqd, bfqg, st);
aee69d78
PV
3493 }
3494
e21b7a0b
AA
3495 __bfq_deactivate_entity(entity, false);
3496 bfq_put_async_queues(bfqd, bfqg);
3497
36eca894 3498 bfq_unlock_put_ioc_restore(bfqd, flags);
e21b7a0b
AA
3499 /*
3500 * @blkg is going offline and will be ignored by
3501 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
3502 * that they don't get lost. If IOs complete after this point, the
3503 * stats for them will be lost. Oh well...
3504 */
3505 bfqg_stats_xfer_dead(bfqg);
aee69d78
PV
3506}
3507
44e44a1b
PV
3508static void bfq_end_wr_async(struct bfq_data *bfqd)
3509{
3510 struct blkcg_gq *blkg;
3511
3512 list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
3513 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3514
3515 bfq_end_wr_async_queues(bfqd, bfqg);
3516 }
3517 bfq_end_wr_async_queues(bfqd, bfqd->root_group);
3518}
3519
e21b7a0b 3520static int bfq_io_show_weight(struct seq_file *sf, void *v)
aee69d78 3521{
e21b7a0b
AA
3522 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3523 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3524 unsigned int val = 0;
aee69d78 3525
e21b7a0b
AA
3526 if (bfqgd)
3527 val = bfqgd->weight;
aee69d78 3528
e21b7a0b 3529 seq_printf(sf, "%u\n", val);
aee69d78 3530
e21b7a0b
AA
3531 return 0;
3532}
3533
3534static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
3535 struct cftype *cftype,
3536 u64 val)
aee69d78 3537{
e21b7a0b
AA
3538 struct blkcg *blkcg = css_to_blkcg(css);
3539 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3540 struct blkcg_gq *blkg;
3541 int ret = -ERANGE;
aee69d78 3542
e21b7a0b
AA
3543 if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
3544 return ret;
aee69d78 3545
e21b7a0b
AA
3546 ret = 0;
3547 spin_lock_irq(&blkcg->lock);
3548 bfqgd->weight = (unsigned short)val;
3549 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3550 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3551
3552 if (!bfqg)
3553 continue;
3554 /*
3555 * Setting the prio_changed flag of the entity
3556 * to 1 with new_weight == weight would re-set
3557 * the value of the weight to its ioprio mapping.
3558 * Set the flag only if necessary.
3559 */
3560 if ((unsigned short)val != bfqg->entity.new_weight) {
3561 bfqg->entity.new_weight = (unsigned short)val;
3562 /*
3563 * Make sure that the above new value has been
3564 * stored in bfqg->entity.new_weight before
3565 * setting the prio_changed flag. In fact,
3566 * this flag may be read asynchronously (in
3567 * critical sections protected by a different
3568 * lock than that held here), and finding this
3569 * flag set may cause the execution of the code
3570 * for updating parameters whose value may
3571 * depend also on bfqg->entity.new_weight (in
3572 * __bfq_entity_update_weight_prio).
3573 * This barrier makes sure that the new value
3574 * of bfqg->entity.new_weight is correctly
3575 * seen in that code.
3576 */
3577 smp_wmb();
3578 bfqg->entity.prio_changed = 1;
3579 }
aee69d78 3580 }
e21b7a0b 3581 spin_unlock_irq(&blkcg->lock);
aee69d78 3582
e21b7a0b
AA
3583 return ret;
3584}
aee69d78 3585
e21b7a0b
AA
3586static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
3587 char *buf, size_t nbytes,
3588 loff_t off)
3589{
3590 u64 weight;
3591 /* First unsigned long found in the file is used */
3592 int ret = kstrtoull(strim(buf), 0, &weight);
3593
3594 if (ret)
3595 return ret;
3596
3597 return bfq_io_set_weight_legacy(of_css(of), NULL, weight);
aee69d78
PV
3598}
3599
e21b7a0b 3600static int bfqg_print_stat(struct seq_file *sf, void *v)
aee69d78 3601{
e21b7a0b
AA
3602 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
3603 &blkcg_policy_bfq, seq_cft(sf)->private, false);
3604 return 0;
3605}
aee69d78 3606
e21b7a0b
AA
3607static int bfqg_print_rwstat(struct seq_file *sf, void *v)
3608{
3609 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
3610 &blkcg_policy_bfq, seq_cft(sf)->private, true);
3611 return 0;
3612}
aee69d78 3613
e21b7a0b
AA
3614static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
3615 struct blkg_policy_data *pd, int off)
3616{
3617 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
3618 &blkcg_policy_bfq, off);
3619 return __blkg_prfill_u64(sf, pd, sum);
3620}
aee69d78 3621
e21b7a0b
AA
3622static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
3623 struct blkg_policy_data *pd, int off)
3624{
3625 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
3626 &blkcg_policy_bfq,
3627 off);
3628 return __blkg_prfill_rwstat(sf, pd, &sum);
aee69d78
PV
3629}
3630
e21b7a0b 3631static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
aee69d78 3632{
e21b7a0b
AA
3633 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3634 bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
3635 seq_cft(sf)->private, false);
3636 return 0;
3637}
aee69d78 3638
e21b7a0b
AA
3639static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
3640{
3641 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3642 bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
3643 seq_cft(sf)->private, true);
3644 return 0;
aee69d78
PV
3645}
3646
e21b7a0b
AA
3647static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
3648 int off)
aee69d78 3649{
e21b7a0b 3650 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
aee69d78 3651
e21b7a0b 3652 return __blkg_prfill_u64(sf, pd, sum >> 9);
aee69d78
PV
3653}
3654
e21b7a0b 3655static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
aee69d78 3656{
e21b7a0b
AA
3657 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3658 bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
3659 return 0;
3660}
aee69d78 3661
e21b7a0b
AA
3662static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
3663 struct blkg_policy_data *pd, int off)
3664{
3665 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
3666 offsetof(struct blkcg_gq, stat_bytes));
3667 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
3668 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
aee69d78 3669
e21b7a0b
AA
3670 return __blkg_prfill_u64(sf, pd, sum >> 9);
3671}
aee69d78 3672
e21b7a0b
AA
3673static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
3674{
3675 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3676 bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
3677 false);
3678 return 0;
aee69d78
PV
3679}
3680
e21b7a0b
AA
3681static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
3682 struct blkg_policy_data *pd, int off)
aee69d78 3683{
e21b7a0b
AA
3684 struct bfq_group *bfqg = pd_to_bfqg(pd);
3685 u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
3686 u64 v = 0;
aee69d78 3687
e21b7a0b
AA
3688 if (samples) {
3689 v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
3690 v = div64_u64(v, samples);
3691 }
3692 __blkg_prfill_u64(sf, pd, v);
3693 return 0;
3694}
aee69d78 3695
e21b7a0b
AA
3696/* print avg_queue_size */
3697static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
3698{
3699 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3700 bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
3701 0, false);
3702 return 0;
3703}
3704
3705static struct bfq_group *
3706bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
3707{
3708 int ret;
3709
3710 ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
3711 if (ret)
3712 return NULL;
3713
3714 return blkg_to_bfqg(bfqd->queue->root_blkg);
aee69d78
PV
3715}
3716
e21b7a0b
AA
3717static struct cftype bfq_blkcg_legacy_files[] = {
3718 {
3719 .name = "bfq.weight",
3720 .flags = CFTYPE_NOT_ON_ROOT,
3721 .seq_show = bfq_io_show_weight,
3722 .write_u64 = bfq_io_set_weight_legacy,
3723 },
3724
3725 /* statistics, covers only the tasks in the bfqg */
3726 {
3727 .name = "bfq.time",
3728 .private = offsetof(struct bfq_group, stats.time),
3729 .seq_show = bfqg_print_stat,
3730 },
3731 {
3732 .name = "bfq.sectors",
3733 .seq_show = bfqg_print_stat_sectors,
3734 },
3735 {
3736 .name = "bfq.io_service_bytes",
3737 .private = (unsigned long)&blkcg_policy_bfq,
3738 .seq_show = blkg_print_stat_bytes,
3739 },
3740 {
3741 .name = "bfq.io_serviced",
3742 .private = (unsigned long)&blkcg_policy_bfq,
3743 .seq_show = blkg_print_stat_ios,
3744 },
3745 {
3746 .name = "bfq.io_service_time",
3747 .private = offsetof(struct bfq_group, stats.service_time),
3748 .seq_show = bfqg_print_rwstat,
3749 },
3750 {
3751 .name = "bfq.io_wait_time",
3752 .private = offsetof(struct bfq_group, stats.wait_time),
3753 .seq_show = bfqg_print_rwstat,
3754 },
3755 {
3756 .name = "bfq.io_merged",
3757 .private = offsetof(struct bfq_group, stats.merged),
3758 .seq_show = bfqg_print_rwstat,
3759 },
3760 {
3761 .name = "bfq.io_queued",
3762 .private = offsetof(struct bfq_group, stats.queued),
3763 .seq_show = bfqg_print_rwstat,
3764 },
3765
3766 /* the same statictics which cover the bfqg and its descendants */
3767 {
3768 .name = "bfq.time_recursive",
3769 .private = offsetof(struct bfq_group, stats.time),
3770 .seq_show = bfqg_print_stat_recursive,
3771 },
3772 {
3773 .name = "bfq.sectors_recursive",
3774 .seq_show = bfqg_print_stat_sectors_recursive,
3775 },
3776 {
3777 .name = "bfq.io_service_bytes_recursive",
3778 .private = (unsigned long)&blkcg_policy_bfq,
3779 .seq_show = blkg_print_stat_bytes_recursive,
3780 },
3781 {
3782 .name = "bfq.io_serviced_recursive",
3783 .private = (unsigned long)&blkcg_policy_bfq,
3784 .seq_show = blkg_print_stat_ios_recursive,
3785 },
3786 {
3787 .name = "bfq.io_service_time_recursive",
3788 .private = offsetof(struct bfq_group, stats.service_time),
3789 .seq_show = bfqg_print_rwstat_recursive,
3790 },
3791 {
3792 .name = "bfq.io_wait_time_recursive",
3793 .private = offsetof(struct bfq_group, stats.wait_time),
3794 .seq_show = bfqg_print_rwstat_recursive,
3795 },
3796 {
3797 .name = "bfq.io_merged_recursive",
3798 .private = offsetof(struct bfq_group, stats.merged),
3799 .seq_show = bfqg_print_rwstat_recursive,
3800 },
3801 {
3802 .name = "bfq.io_queued_recursive",
3803 .private = offsetof(struct bfq_group, stats.queued),
3804 .seq_show = bfqg_print_rwstat_recursive,
3805 },
3806 {
3807 .name = "bfq.avg_queue_size",
3808 .seq_show = bfqg_print_avg_queue_size,
3809 },
3810 {
3811 .name = "bfq.group_wait_time",
3812 .private = offsetof(struct bfq_group, stats.group_wait_time),
3813 .seq_show = bfqg_print_stat,
3814 },
3815 {
3816 .name = "bfq.idle_time",
3817 .private = offsetof(struct bfq_group, stats.idle_time),
3818 .seq_show = bfqg_print_stat,
3819 },
3820 {
3821 .name = "bfq.empty_time",
3822 .private = offsetof(struct bfq_group, stats.empty_time),
3823 .seq_show = bfqg_print_stat,
3824 },
3825 {
3826 .name = "bfq.dequeue",
3827 .private = offsetof(struct bfq_group, stats.dequeue),
3828 .seq_show = bfqg_print_stat,
3829 },
3830 { } /* terminate */
3831};
3832
3833static struct cftype bfq_blkg_files[] = {
3834 {
3835 .name = "bfq.weight",
3836 .flags = CFTYPE_NOT_ON_ROOT,
3837 .seq_show = bfq_io_show_weight,
3838 .write = bfq_io_set_weight,
3839 },
3840 {} /* terminate */
3841};
3842
3843#else /* CONFIG_BFQ_GROUP_IOSCHED */
3844
3845static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
3846 struct bfq_queue *bfqq, unsigned int op) { }
3847static inline void
3848bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
3849static inline void
3850bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
3851static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
3852 uint64_t start_time, uint64_t io_start_time,
3853 unsigned int op) { }
3854static inline void
3855bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
3856 struct bfq_group *curr_bfqg) { }
3857static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
3858static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
3859static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
3860static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
3861static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
3862static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
3863
3864static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3865 struct bfq_group *bfqg) {}
3866
3867static void bfq_init_entity(struct bfq_entity *entity,
3868 struct bfq_group *bfqg)
aee69d78
PV
3869{
3870 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3871
3872 entity->weight = entity->new_weight;
3873 entity->orig_weight = entity->new_weight;
e21b7a0b
AA
3874 if (bfqq) {
3875 bfqq->ioprio = bfqq->new_ioprio;
3876 bfqq->ioprio_class = bfqq->new_ioprio_class;
3877 }
3878 entity->sched_data = &bfqg->sched_data;
3879}
3880
3881static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
3882
44e44a1b
PV
3883static void bfq_end_wr_async(struct bfq_data *bfqd)
3884{
3885 bfq_end_wr_async_queues(bfqd, bfqd->root_group);
3886}
3887
e21b7a0b
AA
3888static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
3889 struct blkcg *blkcg)
3890{
3891 return bfqd->root_group;
3892}
3893
3894static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
3895{
3896 return bfqq->bfqd->root_group;
3897}
aee69d78 3898
e21b7a0b
AA
3899static struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd,
3900 int node)
3901{
3902 struct bfq_group *bfqg;
3903 int i;
3904
3905 bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
3906 if (!bfqg)
3907 return NULL;
aee69d78 3908
e21b7a0b
AA
3909 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
3910 bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
3911
3912 return bfqg;
aee69d78 3913}
e21b7a0b 3914#endif /* CONFIG_BFQ_GROUP_IOSCHED */
aee69d78
PV
3915
3916#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
3917#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
3918
3919#define bfq_sample_valid(samples) ((samples) > 80)
3920
aee69d78
PV
3921/*
3922 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
3923 * We choose the request that is closesr to the head right now. Distance
3924 * behind the head is penalized and only allowed to a certain extent.
3925 */
3926static struct request *bfq_choose_req(struct bfq_data *bfqd,
3927 struct request *rq1,
3928 struct request *rq2,
3929 sector_t last)
3930{
3931 sector_t s1, s2, d1 = 0, d2 = 0;
3932 unsigned long back_max;
3933#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
3934#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
3935 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
3936
3937 if (!rq1 || rq1 == rq2)
3938 return rq2;
3939 if (!rq2)
3940 return rq1;
3941
3942 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
3943 return rq1;
3944 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
3945 return rq2;
3946 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
3947 return rq1;
3948 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
3949 return rq2;
3950
3951 s1 = blk_rq_pos(rq1);
3952 s2 = blk_rq_pos(rq2);
3953
3954 /*
3955 * By definition, 1KiB is 2 sectors.
3956 */
3957 back_max = bfqd->bfq_back_max * 2;
3958
3959 /*
3960 * Strict one way elevator _except_ in the case where we allow
3961 * short backward seeks which are biased as twice the cost of a
3962 * similar forward seek.
3963 */
3964 if (s1 >= last)
3965 d1 = s1 - last;
3966 else if (s1 + back_max >= last)
3967 d1 = (last - s1) * bfqd->bfq_back_penalty;
3968 else
3969 wrap |= BFQ_RQ1_WRAP;
3970
3971 if (s2 >= last)
3972 d2 = s2 - last;
3973 else if (s2 + back_max >= last)
3974 d2 = (last - s2) * bfqd->bfq_back_penalty;
3975 else
3976 wrap |= BFQ_RQ2_WRAP;
3977
3978 /* Found required data */
3979
3980 /*
3981 * By doing switch() on the bit mask "wrap" we avoid having to
3982 * check two variables for all permutations: --> faster!
3983 */
3984 switch (wrap) {
3985 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
3986 if (d1 < d2)
3987 return rq1;
3988 else if (d2 < d1)
3989 return rq2;
3990
3991 if (s1 >= s2)
3992 return rq1;
3993 else
3994 return rq2;
3995
3996 case BFQ_RQ2_WRAP:
3997 return rq1;
3998 case BFQ_RQ1_WRAP:
3999 return rq2;
4000 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
4001 default:
4002 /*
4003 * Since both rqs are wrapped,
4004 * start with the one that's further behind head
4005 * (--> only *one* back seek required),
4006 * since back seek takes more time than forward.
4007 */
4008 if (s1 <= s2)
4009 return rq1;
4010 else
4011 return rq2;
4012 }
4013}
4014
36eca894
AA
4015static struct bfq_queue *
4016bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
4017 sector_t sector, struct rb_node **ret_parent,
4018 struct rb_node ***rb_link)
4019{
4020 struct rb_node **p, *parent;
4021 struct bfq_queue *bfqq = NULL;
4022
4023 parent = NULL;
4024 p = &root->rb_node;
4025 while (*p) {
4026 struct rb_node **n;
4027
4028 parent = *p;
4029 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
4030
4031 /*
4032 * Sort strictly based on sector. Smallest to the left,
4033 * largest to the right.
4034 */
4035 if (sector > blk_rq_pos(bfqq->next_rq))
4036 n = &(*p)->rb_right;
4037 else if (sector < blk_rq_pos(bfqq->next_rq))
4038 n = &(*p)->rb_left;
4039 else
4040 break;
4041 p = n;
4042 bfqq = NULL;
4043 }
4044
4045 *ret_parent = parent;
4046 if (rb_link)
4047 *rb_link = p;
4048
4049 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
4050 (unsigned long long)sector,
4051 bfqq ? bfqq->pid : 0);
4052
4053 return bfqq;
4054}
4055
4056static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4057{
4058 struct rb_node **p, *parent;
4059 struct bfq_queue *__bfqq;
4060
4061 if (bfqq->pos_root) {
4062 rb_erase(&bfqq->pos_node, bfqq->pos_root);
4063 bfqq->pos_root = NULL;
4064 }
4065
4066 if (bfq_class_idle(bfqq))
4067 return;
4068 if (!bfqq->next_rq)
4069 return;
4070
4071 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
4072 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
4073 blk_rq_pos(bfqq->next_rq), &parent, &p);
4074 if (!__bfqq) {
4075 rb_link_node(&bfqq->pos_node, parent, p);
4076 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
4077 } else
4078 bfqq->pos_root = NULL;
4079}
4080
1de0c4cd
AA
4081/*
4082 * Tell whether there are active queues or groups with differentiated weights.
4083 */
4084static bool bfq_differentiated_weights(struct bfq_data *bfqd)
4085{
4086 /*
4087 * For weights to differ, at least one of the trees must contain
4088 * at least two nodes.
4089 */
4090 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
4091 (bfqd->queue_weights_tree.rb_node->rb_left ||
4092 bfqd->queue_weights_tree.rb_node->rb_right)
4093#ifdef CONFIG_BFQ_GROUP_IOSCHED
4094 ) ||
4095 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
4096 (bfqd->group_weights_tree.rb_node->rb_left ||
4097 bfqd->group_weights_tree.rb_node->rb_right)
4098#endif
4099 );
4100}
4101
4102/*
4103 * The following function returns true if every queue must receive the
4104 * same share of the throughput (this condition is used when deciding
4105 * whether idling may be disabled, see the comments in the function
4106 * bfq_bfqq_may_idle()).
4107 *
4108 * Such a scenario occurs when:
4109 * 1) all active queues have the same weight,
4110 * 2) all active groups at the same level in the groups tree have the same
4111 * weight,
4112 * 3) all active groups at the same level in the groups tree have the same
4113 * number of children.
4114 *
4115 * Unfortunately, keeping the necessary state for evaluating exactly the
4116 * above symmetry conditions would be quite complex and time-consuming.
4117 * Therefore this function evaluates, instead, the following stronger
4118 * sub-conditions, for which it is much easier to maintain the needed
4119 * state:
4120 * 1) all active queues have the same weight,
4121 * 2) all active groups have the same weight,
4122 * 3) all active groups have at most one active child each.
4123 * In particular, the last two conditions are always true if hierarchical
4124 * support and the cgroups interface are not enabled, thus no state needs
4125 * to be maintained in this case.
4126 */
4127static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
4128{
4129 return !bfq_differentiated_weights(bfqd);
4130}
4131
4132/*
4133 * If the weight-counter tree passed as input contains no counter for
4134 * the weight of the input entity, then add that counter; otherwise just
4135 * increment the existing counter.
4136 *
4137 * Note that weight-counter trees contain few nodes in mostly symmetric
4138 * scenarios. For example, if all queues have the same weight, then the
4139 * weight-counter tree for the queues may contain at most one node.
4140 * This holds even if low_latency is on, because weight-raised queues
4141 * are not inserted in the tree.
4142 * In most scenarios, the rate at which nodes are created/destroyed
4143 * should be low too.
4144 */
4145static void bfq_weights_tree_add(struct bfq_data *bfqd,
4146 struct bfq_entity *entity,
4147 struct rb_root *root)
4148{
4149 struct rb_node **new = &(root->rb_node), *parent = NULL;
4150
4151 /*
4152 * Do not insert if the entity is already associated with a
4153 * counter, which happens if:
4154 * 1) the entity is associated with a queue,
4155 * 2) a request arrival has caused the queue to become both
4156 * non-weight-raised, and hence change its weight, and
4157 * backlogged; in this respect, each of the two events
4158 * causes an invocation of this function,
4159 * 3) this is the invocation of this function caused by the
4160 * second event. This second invocation is actually useless,
4161 * and we handle this fact by exiting immediately. More
4162 * efficient or clearer solutions might possibly be adopted.
4163 */
4164 if (entity->weight_counter)
4165 return;
4166
4167 while (*new) {
4168 struct bfq_weight_counter *__counter = container_of(*new,
4169 struct bfq_weight_counter,
4170 weights_node);
4171 parent = *new;
4172
4173 if (entity->weight == __counter->weight) {
4174 entity->weight_counter = __counter;
4175 goto inc_counter;
4176 }
4177 if (entity->weight < __counter->weight)
4178 new = &((*new)->rb_left);
4179 else
4180 new = &((*new)->rb_right);
4181 }
4182
4183 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
4184 GFP_ATOMIC);
4185
4186 /*
4187 * In the unlucky event of an allocation failure, we just
4188 * exit. This will cause the weight of entity to not be
4189 * considered in bfq_differentiated_weights, which, in its
4190 * turn, causes the scenario to be deemed wrongly symmetric in
4191 * case entity's weight would have been the only weight making
4192 * the scenario asymmetric. On the bright side, no unbalance
4193 * will however occur when entity becomes inactive again (the
4194 * invocation of this function is triggered by an activation
4195 * of entity). In fact, bfq_weights_tree_remove does nothing
4196 * if !entity->weight_counter.
4197 */
4198 if (unlikely(!entity->weight_counter))
4199 return;
4200
4201 entity->weight_counter->weight = entity->weight;
4202 rb_link_node(&entity->weight_counter->weights_node, parent, new);
4203 rb_insert_color(&entity->weight_counter->weights_node, root);
4204
4205inc_counter:
4206 entity->weight_counter->num_active++;
4207}
4208
4209/*
4210 * Decrement the weight counter associated with the entity, and, if the
4211 * counter reaches 0, remove the counter from the tree.
4212 * See the comments to the function bfq_weights_tree_add() for considerations
4213 * about overhead.
4214 */
4215static void bfq_weights_tree_remove(struct bfq_data *bfqd,
4216 struct bfq_entity *entity,
4217 struct rb_root *root)
4218{
4219 if (!entity->weight_counter)
4220 return;
4221
4222 entity->weight_counter->num_active--;
4223 if (entity->weight_counter->num_active > 0)
4224 goto reset_entity_pointer;
4225
4226 rb_erase(&entity->weight_counter->weights_node, root);
4227 kfree(entity->weight_counter);
4228
4229reset_entity_pointer:
4230 entity->weight_counter = NULL;
4231}
4232
aee69d78
PV
4233/*
4234 * Return expired entry, or NULL to just start from scratch in rbtree.
4235 */
4236static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
4237 struct request *last)
4238{
4239 struct request *rq;
4240
4241 if (bfq_bfqq_fifo_expire(bfqq))
4242 return NULL;
4243
4244 bfq_mark_bfqq_fifo_expire(bfqq);
4245
4246 rq = rq_entry_fifo(bfqq->fifo.next);
4247
4248 if (rq == last || ktime_get_ns() < rq->fifo_time)
4249 return NULL;
4250
4251 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
4252 return rq;
4253}
4254
4255static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
4256 struct bfq_queue *bfqq,
4257 struct request *last)
4258{
4259 struct rb_node *rbnext = rb_next(&last->rb_node);
4260 struct rb_node *rbprev = rb_prev(&last->rb_node);
4261 struct request *next, *prev = NULL;
4262
4263 /* Follow expired path, else get first next available. */
4264 next = bfq_check_fifo(bfqq, last);
4265 if (next)
4266 return next;
4267
4268 if (rbprev)
4269 prev = rb_entry_rq(rbprev);
4270
4271 if (rbnext)
4272 next = rb_entry_rq(rbnext);
4273 else {
4274 rbnext = rb_first(&bfqq->sort_list);
4275 if (rbnext && rbnext != &last->rb_node)
4276 next = rb_entry_rq(rbnext);
4277 }
4278
4279 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
4280}
4281
c074170e 4282/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
4283static unsigned long bfq_serv_to_charge(struct request *rq,
4284 struct bfq_queue *bfqq)
4285{
44e44a1b 4286 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
4287 return blk_rq_sectors(rq);
4288
cfd69712
PV
4289 /*
4290 * If there are no weight-raised queues, then amplify service
4291 * by just the async charge factor; otherwise amplify service
4292 * by twice the async charge factor, to further reduce latency
4293 * for weight-raised queues.
4294 */
4295 if (bfqq->bfqd->wr_busy_queues == 0)
4296 return blk_rq_sectors(rq) * bfq_async_charge_factor;
4297
4298 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
4299}
4300
4301/**
4302 * bfq_updated_next_req - update the queue after a new next_rq selection.
4303 * @bfqd: the device data the queue belongs to.
4304 * @bfqq: the queue to update.
4305 *
4306 * If the first request of a queue changes we make sure that the queue
4307 * has enough budget to serve at least its first request (if the
4308 * request has grown). We do this because if the queue has not enough
4309 * budget for its first request, it has to go through two dispatch
4310 * rounds to actually get it dispatched.
4311 */
4312static void bfq_updated_next_req(struct bfq_data *bfqd,
4313 struct bfq_queue *bfqq)
4314{
4315 struct bfq_entity *entity = &bfqq->entity;
4316 struct request *next_rq = bfqq->next_rq;
4317 unsigned long new_budget;
4318
4319 if (!next_rq)
4320 return;
4321
4322 if (bfqq == bfqd->in_service_queue)
4323 /*
4324 * In order not to break guarantees, budgets cannot be
4325 * changed after an entity has been selected.
4326 */
4327 return;
4328
4329 new_budget = max_t(unsigned long, bfqq->max_budget,
4330 bfq_serv_to_charge(next_rq, bfqq));
4331 if (entity->budget != new_budget) {
4332 entity->budget = new_budget;
4333 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
4334 new_budget);
e21b7a0b 4335 bfq_requeue_bfqq(bfqd, bfqq);
aee69d78
PV
4336 }
4337}
4338
36eca894
AA
4339static void
4340bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4341{
4342 if (bic->saved_idle_window)
4343 bfq_mark_bfqq_idle_window(bfqq);
4344 else
4345 bfq_clear_bfqq_idle_window(bfqq);
4346
4347 if (bic->saved_IO_bound)
4348 bfq_mark_bfqq_IO_bound(bfqq);
4349 else
4350 bfq_clear_bfqq_IO_bound(bfqq);
4351
4352 bfqq->ttime = bic->saved_ttime;
4353 bfqq->wr_coeff = bic->saved_wr_coeff;
4354 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
4355 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
4356 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
4357
e1b2324d 4358 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 4359 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 4360 bfqq->wr_cur_max_time))) {
36eca894
AA
4361 bfq_log_bfqq(bfqq->bfqd, bfqq,
4362 "resume state: switching off wr");
4363
4364 bfqq->wr_coeff = 1;
4365 }
4366
4367 /* make sure weight will be updated, however we got here */
4368 bfqq->entity.prio_changed = 1;
4369}
4370
4371static int bfqq_process_refs(struct bfq_queue *bfqq)
4372{
4373 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
4374}
4375
e1b2324d
AA
4376/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
4377static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4378{
4379 struct bfq_queue *item;
4380 struct hlist_node *n;
4381
4382 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
4383 hlist_del_init(&item->burst_list_node);
4384 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
4385 bfqd->burst_size = 1;
4386 bfqd->burst_parent_entity = bfqq->entity.parent;
4387}
4388
4389/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
4390static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4391{
4392 /* Increment burst size to take into account also bfqq */
4393 bfqd->burst_size++;
4394
4395 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
4396 struct bfq_queue *pos, *bfqq_item;
4397 struct hlist_node *n;
4398
4399 /*
4400 * Enough queues have been activated shortly after each
4401 * other to consider this burst as large.
4402 */
4403 bfqd->large_burst = true;
4404
4405 /*
4406 * We can now mark all queues in the burst list as
4407 * belonging to a large burst.
4408 */
4409 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
4410 burst_list_node)
4411 bfq_mark_bfqq_in_large_burst(bfqq_item);
4412 bfq_mark_bfqq_in_large_burst(bfqq);
4413
4414 /*
4415 * From now on, and until the current burst finishes, any
4416 * new queue being activated shortly after the last queue
4417 * was inserted in the burst can be immediately marked as
4418 * belonging to a large burst. So the burst list is not
4419 * needed any more. Remove it.
4420 */
4421 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
4422 burst_list_node)
4423 hlist_del_init(&pos->burst_list_node);
4424 } else /*
4425 * Burst not yet large: add bfqq to the burst list. Do
4426 * not increment the ref counter for bfqq, because bfqq
4427 * is removed from the burst list before freeing bfqq
4428 * in put_queue.
4429 */
4430 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
4431}
4432
4433/*
4434 * If many queues belonging to the same group happen to be created
4435 * shortly after each other, then the processes associated with these
4436 * queues have typically a common goal. In particular, bursts of queue
4437 * creations are usually caused by services or applications that spawn
4438 * many parallel threads/processes. Examples are systemd during boot,
4439 * or git grep. To help these processes get their job done as soon as
4440 * possible, it is usually better to not grant either weight-raising
4441 * or device idling to their queues.
4442 *
4443 * In this comment we describe, firstly, the reasons why this fact
4444 * holds, and, secondly, the next function, which implements the main
4445 * steps needed to properly mark these queues so that they can then be
4446 * treated in a different way.
4447 *
4448 * The above services or applications benefit mostly from a high
4449 * throughput: the quicker the requests of the activated queues are
4450 * cumulatively served, the sooner the target job of these queues gets
4451 * completed. As a consequence, weight-raising any of these queues,
4452 * which also implies idling the device for it, is almost always
4453 * counterproductive. In most cases it just lowers throughput.
4454 *
4455 * On the other hand, a burst of queue creations may be caused also by
4456 * the start of an application that does not consist of a lot of
4457 * parallel I/O-bound threads. In fact, with a complex application,
4458 * several short processes may need to be executed to start-up the
4459 * application. In this respect, to start an application as quickly as
4460 * possible, the best thing to do is in any case to privilege the I/O
4461 * related to the application with respect to all other
4462 * I/O. Therefore, the best strategy to start as quickly as possible
4463 * an application that causes a burst of queue creations is to
4464 * weight-raise all the queues created during the burst. This is the
4465 * exact opposite of the best strategy for the other type of bursts.
4466 *
4467 * In the end, to take the best action for each of the two cases, the
4468 * two types of bursts need to be distinguished. Fortunately, this
4469 * seems relatively easy, by looking at the sizes of the bursts. In
4470 * particular, we found a threshold such that only bursts with a
4471 * larger size than that threshold are apparently caused by
4472 * services or commands such as systemd or git grep. For brevity,
4473 * hereafter we call just 'large' these bursts. BFQ *does not*
4474 * weight-raise queues whose creation occurs in a large burst. In
4475 * addition, for each of these queues BFQ performs or does not perform
4476 * idling depending on which choice boosts the throughput more. The
4477 * exact choice depends on the device and request pattern at
4478 * hand.
4479 *
4480 * Unfortunately, false positives may occur while an interactive task
4481 * is starting (e.g., an application is being started). The
4482 * consequence is that the queues associated with the task do not
4483 * enjoy weight raising as expected. Fortunately these false positives
4484 * are very rare. They typically occur if some service happens to
4485 * start doing I/O exactly when the interactive task starts.
4486 *
4487 * Turning back to the next function, it implements all the steps
4488 * needed to detect the occurrence of a large burst and to properly
4489 * mark all the queues belonging to it (so that they can then be
4490 * treated in a different way). This goal is achieved by maintaining a
4491 * "burst list" that holds, temporarily, the queues that belong to the
4492 * burst in progress. The list is then used to mark these queues as
4493 * belonging to a large burst if the burst does become large. The main
4494 * steps are the following.
4495 *
4496 * . when the very first queue is created, the queue is inserted into the
4497 * list (as it could be the first queue in a possible burst)
4498 *
4499 * . if the current burst has not yet become large, and a queue Q that does
4500 * not yet belong to the burst is activated shortly after the last time
4501 * at which a new queue entered the burst list, then the function appends
4502 * Q to the burst list
4503 *
4504 * . if, as a consequence of the previous step, the burst size reaches
4505 * the large-burst threshold, then
4506 *
4507 * . all the queues in the burst list are marked as belonging to a
4508 * large burst
4509 *
4510 * . the burst list is deleted; in fact, the burst list already served
4511 * its purpose (keeping temporarily track of the queues in a burst,
4512 * so as to be able to mark them as belonging to a large burst in the
4513 * previous sub-step), and now is not needed any more
4514 *
4515 * . the device enters a large-burst mode
4516 *
4517 * . if a queue Q that does not belong to the burst is created while
4518 * the device is in large-burst mode and shortly after the last time
4519 * at which a queue either entered the burst list or was marked as
4520 * belonging to the current large burst, then Q is immediately marked
4521 * as belonging to a large burst.
4522 *
4523 * . if a queue Q that does not belong to the burst is created a while
4524 * later, i.e., not shortly after, than the last time at which a queue
4525 * either entered the burst list or was marked as belonging to the
4526 * current large burst, then the current burst is deemed as finished and:
4527 *
4528 * . the large-burst mode is reset if set
4529 *
4530 * . the burst list is emptied
4531 *
4532 * . Q is inserted in the burst list, as Q may be the first queue
4533 * in a possible new burst (then the burst list contains just Q
4534 * after this step).
4535 */
4536static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4537{
4538 /*
4539 * If bfqq is already in the burst list or is part of a large
4540 * burst, or finally has just been split, then there is
4541 * nothing else to do.
4542 */
4543 if (!hlist_unhashed(&bfqq->burst_list_node) ||
4544 bfq_bfqq_in_large_burst(bfqq) ||
4545 time_is_after_eq_jiffies(bfqq->split_time +
4546 msecs_to_jiffies(10)))
4547 return;
4548
4549 /*
4550 * If bfqq's creation happens late enough, or bfqq belongs to
4551 * a different group than the burst group, then the current
4552 * burst is finished, and related data structures must be
4553 * reset.
4554 *
4555 * In this respect, consider the special case where bfqq is
4556 * the very first queue created after BFQ is selected for this
4557 * device. In this case, last_ins_in_burst and
4558 * burst_parent_entity are not yet significant when we get
4559 * here. But it is easy to verify that, whether or not the
4560 * following condition is true, bfqq will end up being
4561 * inserted into the burst list. In particular the list will
4562 * happen to contain only bfqq. And this is exactly what has
4563 * to happen, as bfqq may be the first queue of the first
4564 * burst.
4565 */
4566 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
4567 bfqd->bfq_burst_interval) ||
4568 bfqq->entity.parent != bfqd->burst_parent_entity) {
4569 bfqd->large_burst = false;
4570 bfq_reset_burst_list(bfqd, bfqq);
4571 goto end;
4572 }
4573
4574 /*
4575 * If we get here, then bfqq is being activated shortly after the
4576 * last queue. So, if the current burst is also large, we can mark
4577 * bfqq as belonging to this large burst immediately.
4578 */
4579 if (bfqd->large_burst) {
4580 bfq_mark_bfqq_in_large_burst(bfqq);
4581 goto end;
4582 }
4583
4584 /*
4585 * If we get here, then a large-burst state has not yet been
4586 * reached, but bfqq is being activated shortly after the last
4587 * queue. Then we add bfqq to the burst.
4588 */
4589 bfq_add_to_burst(bfqd, bfqq);
4590end:
4591 /*
4592 * At this point, bfqq either has been added to the current
4593 * burst or has caused the current burst to terminate and a
4594 * possible new burst to start. In particular, in the second
4595 * case, bfqq has become the first queue in the possible new
4596 * burst. In both cases last_ins_in_burst needs to be moved
4597 * forward.
4598 */
4599 bfqd->last_ins_in_burst = jiffies;
4600}
4601
aee69d78
PV
4602static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
4603{
4604 struct bfq_entity *entity = &bfqq->entity;
4605
4606 return entity->budget - entity->service;
4607}
4608
4609/*
4610 * If enough samples have been computed, return the current max budget
4611 * stored in bfqd, which is dynamically updated according to the
4612 * estimated disk peak rate; otherwise return the default max budget
4613 */
4614static int bfq_max_budget(struct bfq_data *bfqd)
4615{
4616 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
4617 return bfq_default_max_budget;
4618 else
4619 return bfqd->bfq_max_budget;
4620}
4621
4622/*
4623 * Return min budget, which is a fraction of the current or default
4624 * max budget (trying with 1/32)
4625 */
4626static int bfq_min_budget(struct bfq_data *bfqd)
4627{
4628 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
4629 return bfq_default_max_budget / 32;
4630 else
4631 return bfqd->bfq_max_budget / 32;
4632}
4633
4634static void bfq_bfqq_expire(struct bfq_data *bfqd,
4635 struct bfq_queue *bfqq,
4636 bool compensate,
4637 enum bfqq_expiration reason);
4638
4639/*
4640 * The next function, invoked after the input queue bfqq switches from
4641 * idle to busy, updates the budget of bfqq. The function also tells
4642 * whether the in-service queue should be expired, by returning
4643 * true. The purpose of expiring the in-service queue is to give bfqq
4644 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
4645 * for preempting the in-service queue is to achieve one of the two
4646 * goals below.
aee69d78 4647 *
44e44a1b
PV
4648 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
4649 * expired because it has remained idle. In particular, bfqq may have
4650 * expired for one of the following two reasons:
aee69d78
PV
4651 *
4652 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
4653 * and did not make it to issue a new request before its last
4654 * request was served;
4655 *
4656 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
4657 * a new request before the expiration of the idling-time.
4658 *
4659 * Even if bfqq has expired for one of the above reasons, the process
4660 * associated with the queue may be however issuing requests greedily,
4661 * and thus be sensitive to the bandwidth it receives (bfqq may have
4662 * remained idle for other reasons: CPU high load, bfqq not enjoying
4663 * idling, I/O throttling somewhere in the path from the process to
4664 * the I/O scheduler, ...). But if, after every expiration for one of
4665 * the above two reasons, bfqq has to wait for the service of at least
4666 * one full budget of another queue before being served again, then
4667 * bfqq is likely to get a much lower bandwidth or resource time than
4668 * its reserved ones. To address this issue, two countermeasures need
4669 * to be taken.
4670 *
4671 * First, the budget and the timestamps of bfqq need to be updated in
4672 * a special way on bfqq reactivation: they need to be updated as if
4673 * bfqq did not remain idle and did not expire. In fact, if they are
4674 * computed as if bfqq expired and remained idle until reactivation,
4675 * then the process associated with bfqq is treated as if, instead of
4676 * being greedy, it stopped issuing requests when bfqq remained idle,
4677 * and restarts issuing requests only on this reactivation. In other
4678 * words, the scheduler does not help the process recover the "service
4679 * hole" between bfqq expiration and reactivation. As a consequence,
4680 * the process receives a lower bandwidth than its reserved one. In
4681 * contrast, to recover this hole, the budget must be updated as if
4682 * bfqq was not expired at all before this reactivation, i.e., it must
4683 * be set to the value of the remaining budget when bfqq was
4684 * expired. Along the same line, timestamps need to be assigned the
4685 * value they had the last time bfqq was selected for service, i.e.,
4686 * before last expiration. Thus timestamps need to be back-shifted
4687 * with respect to their normal computation (see [1] for more details
4688 * on this tricky aspect).
4689 *
4690 * Secondly, to allow the process to recover the hole, the in-service
4691 * queue must be expired too, to give bfqq the chance to preempt it
4692 * immediately. In fact, if bfqq has to wait for a full budget of the
4693 * in-service queue to be completed, then it may become impossible to
4694 * let the process recover the hole, even if the back-shifted
4695 * timestamps of bfqq are lower than those of the in-service queue. If
4696 * this happens for most or all of the holes, then the process may not
4697 * receive its reserved bandwidth. In this respect, it is worth noting
4698 * that, being the service of outstanding requests unpreemptible, a
4699 * little fraction of the holes may however be unrecoverable, thereby
4700 * causing a little loss of bandwidth.
4701 *
4702 * The last important point is detecting whether bfqq does need this
4703 * bandwidth recovery. In this respect, the next function deems the
4704 * process associated with bfqq greedy, and thus allows it to recover
4705 * the hole, if: 1) the process is waiting for the arrival of a new
4706 * request (which implies that bfqq expired for one of the above two
4707 * reasons), and 2) such a request has arrived soon. The first
4708 * condition is controlled through the flag non_blocking_wait_rq,
4709 * while the second through the flag arrived_in_time. If both
4710 * conditions hold, then the function computes the budget in the
4711 * above-described special way, and signals that the in-service queue
4712 * should be expired. Timestamp back-shifting is done later in
4713 * __bfq_activate_entity.
44e44a1b
PV
4714 *
4715 * 2. Reduce latency. Even if timestamps are not backshifted to let
4716 * the process associated with bfqq recover a service hole, bfqq may
4717 * however happen to have, after being (re)activated, a lower finish
4718 * timestamp than the in-service queue. That is, the next budget of
4719 * bfqq may have to be completed before the one of the in-service
4720 * queue. If this is the case, then preempting the in-service queue
4721 * allows this goal to be achieved, apart from the unpreemptible,
4722 * outstanding requests mentioned above.
4723 *
4724 * Unfortunately, regardless of which of the above two goals one wants
4725 * to achieve, service trees need first to be updated to know whether
4726 * the in-service queue must be preempted. To have service trees
4727 * correctly updated, the in-service queue must be expired and
4728 * rescheduled, and bfqq must be scheduled too. This is one of the
4729 * most costly operations (in future versions, the scheduling
4730 * mechanism may be re-designed in such a way to make it possible to
4731 * know whether preemption is needed without needing to update service
4732 * trees). In addition, queue preemptions almost always cause random
4733 * I/O, and thus loss of throughput. Because of these facts, the next
4734 * function adopts the following simple scheme to avoid both costly
4735 * operations and too frequent preemptions: it requests the expiration
4736 * of the in-service queue (unconditionally) only for queues that need
4737 * to recover a hole, or that either are weight-raised or deserve to
4738 * be weight-raised.
aee69d78
PV
4739 */
4740static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
4741 struct bfq_queue *bfqq,
44e44a1b
PV
4742 bool arrived_in_time,
4743 bool wr_or_deserves_wr)
aee69d78
PV
4744{
4745 struct bfq_entity *entity = &bfqq->entity;
4746
4747 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
4748 /*
4749 * We do not clear the flag non_blocking_wait_rq here, as
4750 * the latter is used in bfq_activate_bfqq to signal
4751 * that timestamps need to be back-shifted (and is
4752 * cleared right after).
4753 */
4754
4755 /*
4756 * In next assignment we rely on that either
4757 * entity->service or entity->budget are not updated
4758 * on expiration if bfqq is empty (see
4759 * __bfq_bfqq_recalc_budget). Thus both quantities
4760 * remain unchanged after such an expiration, and the
4761 * following statement therefore assigns to
4762 * entity->budget the remaining budget on such an
4763 * expiration. For clarity, entity->service is not
4764 * updated on expiration in any case, and, in normal
4765 * operation, is reset only when bfqq is selected for
4766 * service (see bfq_get_next_queue).
4767 */
4768 entity->budget = min_t(unsigned long,
4769 bfq_bfqq_budget_left(bfqq),
4770 bfqq->max_budget);
4771
4772 return true;
4773 }
4774
4775 entity->budget = max_t(unsigned long, bfqq->max_budget,
4776 bfq_serv_to_charge(bfqq->next_rq, bfqq));
4777 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
4778 return wr_or_deserves_wr;
4779}
4780
4781static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
4782{
4783 u64 dur;
4784
4785 if (bfqd->bfq_wr_max_time > 0)
4786 return bfqd->bfq_wr_max_time;
4787
4788 dur = bfqd->RT_prod;
4789 do_div(dur, bfqd->peak_rate);
4790
4791 /*
4792 * Limit duration between 3 and 13 seconds. Tests show that
4793 * higher values than 13 seconds often yield the opposite of
4794 * the desired result, i.e., worsen responsiveness by letting
4795 * non-interactive and non-soft-real-time applications
4796 * preserve weight raising for a too long time interval.
4797 *
4798 * On the other end, lower values than 3 seconds make it
4799 * difficult for most interactive tasks to complete their jobs
4800 * before weight-raising finishes.
4801 */
4802 if (dur > msecs_to_jiffies(13000))
4803 dur = msecs_to_jiffies(13000);
4804 else if (dur < msecs_to_jiffies(3000))
4805 dur = msecs_to_jiffies(3000);
4806
4807 return dur;
4808}
4809
4810static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
4811 struct bfq_queue *bfqq,
4812 unsigned int old_wr_coeff,
4813 bool wr_or_deserves_wr,
77b7dcea 4814 bool interactive,
e1b2324d 4815 bool in_burst,
77b7dcea 4816 bool soft_rt)
44e44a1b
PV
4817{
4818 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
4819 /* start a weight-raising period */
77b7dcea
PV
4820 if (interactive) {
4821 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
4822 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
4823 } else {
4824 bfqq->wr_start_at_switch_to_srt = jiffies;
4825 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
4826 BFQ_SOFTRT_WEIGHT_FACTOR;
4827 bfqq->wr_cur_max_time =
4828 bfqd->bfq_wr_rt_max_time;
4829 }
44e44a1b
PV
4830
4831 /*
4832 * If needed, further reduce budget to make sure it is
4833 * close to bfqq's backlog, so as to reduce the
4834 * scheduling-error component due to a too large
4835 * budget. Do not care about throughput consequences,
4836 * but only about latency. Finally, do not assign a
4837 * too small budget either, to avoid increasing
4838 * latency by causing too frequent expirations.
4839 */
4840 bfqq->entity.budget = min_t(unsigned long,
4841 bfqq->entity.budget,
4842 2 * bfq_min_budget(bfqd));
4843 } else if (old_wr_coeff > 1) {
77b7dcea
PV
4844 if (interactive) { /* update wr coeff and duration */
4845 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
4846 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
4847 } else if (in_burst)
4848 bfqq->wr_coeff = 1;
4849 else if (soft_rt) {
77b7dcea
PV
4850 /*
4851 * The application is now or still meeting the
4852 * requirements for being deemed soft rt. We
4853 * can then correctly and safely (re)charge
4854 * the weight-raising duration for the
4855 * application with the weight-raising
4856 * duration for soft rt applications.
4857 *
4858 * In particular, doing this recharge now, i.e.,
4859 * before the weight-raising period for the
4860 * application finishes, reduces the probability
4861 * of the following negative scenario:
4862 * 1) the weight of a soft rt application is
4863 * raised at startup (as for any newly
4864 * created application),
4865 * 2) since the application is not interactive,
4866 * at a certain time weight-raising is
4867 * stopped for the application,
4868 * 3) at that time the application happens to
4869 * still have pending requests, and hence
4870 * is destined to not have a chance to be
4871 * deemed soft rt before these requests are
4872 * completed (see the comments to the
4873 * function bfq_bfqq_softrt_next_start()
4874 * for details on soft rt detection),
4875 * 4) these pending requests experience a high
4876 * latency because the application is not
4877 * weight-raised while they are pending.
4878 */
4879 if (bfqq->wr_cur_max_time !=
4880 bfqd->bfq_wr_rt_max_time) {
4881 bfqq->wr_start_at_switch_to_srt =
4882 bfqq->last_wr_start_finish;
4883
4884 bfqq->wr_cur_max_time =
4885 bfqd->bfq_wr_rt_max_time;
4886 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
4887 BFQ_SOFTRT_WEIGHT_FACTOR;
4888 }
4889 bfqq->last_wr_start_finish = jiffies;
4890 }
44e44a1b
PV
4891 }
4892}
4893
4894static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
4895 struct bfq_queue *bfqq)
4896{
4897 return bfqq->dispatched == 0 &&
4898 time_is_before_jiffies(
4899 bfqq->budget_timeout +
4900 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
4901}
4902
4903static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
4904 struct bfq_queue *bfqq,
44e44a1b
PV
4905 int old_wr_coeff,
4906 struct request *rq,
4907 bool *interactive)
aee69d78 4908{
e1b2324d
AA
4909 bool soft_rt, in_burst, wr_or_deserves_wr,
4910 bfqq_wants_to_preempt,
44e44a1b 4911 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
4912 /*
4913 * See the comments on
4914 * bfq_bfqq_update_budg_for_activation for
4915 * details on the usage of the next variable.
4916 */
4917 arrived_in_time = ktime_get_ns() <=
4918 bfqq->ttime.last_end_request +
4919 bfqd->bfq_slice_idle * 3;
4920
e21b7a0b
AA
4921 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
4922
aee69d78 4923 /*
44e44a1b
PV
4924 * bfqq deserves to be weight-raised if:
4925 * - it is sync,
e1b2324d 4926 * - it does not belong to a large burst,
36eca894
AA
4927 * - it has been idle for enough time or is soft real-time,
4928 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 4929 */
e1b2324d 4930 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 4931 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 4932 !in_burst &&
77b7dcea 4933 time_is_before_jiffies(bfqq->soft_rt_next_start);
e1b2324d 4934 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
4935 wr_or_deserves_wr = bfqd->low_latency &&
4936 (bfqq->wr_coeff > 1 ||
36eca894
AA
4937 (bfq_bfqq_sync(bfqq) &&
4938 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
4939
4940 /*
4941 * Using the last flag, update budget and check whether bfqq
4942 * may want to preempt the in-service queue.
aee69d78
PV
4943 */
4944 bfqq_wants_to_preempt =
4945 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
4946 arrived_in_time,
4947 wr_or_deserves_wr);
aee69d78 4948
e1b2324d
AA
4949 /*
4950 * If bfqq happened to be activated in a burst, but has been
4951 * idle for much more than an interactive queue, then we
4952 * assume that, in the overall I/O initiated in the burst, the
4953 * I/O associated with bfqq is finished. So bfqq does not need
4954 * to be treated as a queue belonging to a burst
4955 * anymore. Accordingly, we reset bfqq's in_large_burst flag
4956 * if set, and remove bfqq from the burst list if it's
4957 * there. We do not decrement burst_size, because the fact
4958 * that bfqq does not need to belong to the burst list any
4959 * more does not invalidate the fact that bfqq was created in
4960 * a burst.
4961 */
4962 if (likely(!bfq_bfqq_just_created(bfqq)) &&
4963 idle_for_long_time &&
4964 time_is_before_jiffies(
4965 bfqq->budget_timeout +
4966 msecs_to_jiffies(10000))) {
4967 hlist_del_init(&bfqq->burst_list_node);
4968 bfq_clear_bfqq_in_large_burst(bfqq);
4969 }
4970
4971 bfq_clear_bfqq_just_created(bfqq);
4972
4973
aee69d78
PV
4974 if (!bfq_bfqq_IO_bound(bfqq)) {
4975 if (arrived_in_time) {
4976 bfqq->requests_within_timer++;
4977 if (bfqq->requests_within_timer >=
4978 bfqd->bfq_requests_within_timer)
4979 bfq_mark_bfqq_IO_bound(bfqq);
4980 } else
4981 bfqq->requests_within_timer = 0;
4982 }
4983
44e44a1b 4984 if (bfqd->low_latency) {
36eca894
AA
4985 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
4986 /* wraparound */
4987 bfqq->split_time =
4988 jiffies - bfqd->bfq_wr_min_idle_time - 1;
4989
4990 if (time_is_before_jiffies(bfqq->split_time +
4991 bfqd->bfq_wr_min_idle_time)) {
4992 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
4993 old_wr_coeff,
4994 wr_or_deserves_wr,
4995 *interactive,
e1b2324d 4996 in_burst,
36eca894
AA
4997 soft_rt);
4998
4999 if (old_wr_coeff != bfqq->wr_coeff)
5000 bfqq->entity.prio_changed = 1;
5001 }
44e44a1b
PV
5002 }
5003
77b7dcea
PV
5004 bfqq->last_idle_bklogged = jiffies;
5005 bfqq->service_from_backlogged = 0;
5006 bfq_clear_bfqq_softrt_update(bfqq);
5007
aee69d78
PV
5008 bfq_add_bfqq_busy(bfqd, bfqq);
5009
5010 /*
5011 * Expire in-service queue only if preemption may be needed
5012 * for guarantees. In this respect, the function
5013 * next_queue_may_preempt just checks a simple, necessary
5014 * condition, and not a sufficient condition based on
5015 * timestamps. In fact, for the latter condition to be
5016 * evaluated, timestamps would need first to be updated, and
5017 * this operation is quite costly (see the comments on the
5018 * function bfq_bfqq_update_budg_for_activation).
5019 */
5020 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 5021 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
5022 next_queue_may_preempt(bfqd))
5023 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
5024 false, BFQQE_PREEMPTED);
5025}
5026
5027static void bfq_add_request(struct request *rq)
5028{
5029 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5030 struct bfq_data *bfqd = bfqq->bfqd;
5031 struct request *next_rq, *prev;
44e44a1b
PV
5032 unsigned int old_wr_coeff = bfqq->wr_coeff;
5033 bool interactive = false;
aee69d78
PV
5034
5035 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
5036 bfqq->queued[rq_is_sync(rq)]++;
5037 bfqd->queued++;
5038
5039 elv_rb_add(&bfqq->sort_list, rq);
5040
5041 /*
5042 * Check if this request is a better next-serve candidate.
5043 */
5044 prev = bfqq->next_rq;
5045 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
5046 bfqq->next_rq = next_rq;
5047
36eca894
AA
5048 /*
5049 * Adjust priority tree position, if next_rq changes.
5050 */
5051 if (prev != bfqq->next_rq)
5052 bfq_pos_tree_add_move(bfqd, bfqq);
5053
aee69d78 5054 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
5055 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
5056 rq, &interactive);
5057 else {
5058 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
5059 time_is_before_jiffies(
5060 bfqq->last_wr_start_finish +
5061 bfqd->bfq_wr_min_inter_arr_async)) {
5062 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
5063 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
5064
cfd69712 5065 bfqd->wr_busy_queues++;
44e44a1b
PV
5066 bfqq->entity.prio_changed = 1;
5067 }
5068 if (prev != bfqq->next_rq)
5069 bfq_updated_next_req(bfqd, bfqq);
5070 }
5071
5072 /*
5073 * Assign jiffies to last_wr_start_finish in the following
5074 * cases:
5075 *
5076 * . if bfqq is not going to be weight-raised, because, for
5077 * non weight-raised queues, last_wr_start_finish stores the
5078 * arrival time of the last request; as of now, this piece
5079 * of information is used only for deciding whether to
5080 * weight-raise async queues
5081 *
5082 * . if bfqq is not weight-raised, because, if bfqq is now
5083 * switching to weight-raised, then last_wr_start_finish
5084 * stores the time when weight-raising starts
5085 *
5086 * . if bfqq is interactive, because, regardless of whether
5087 * bfqq is currently weight-raised, the weight-raising
5088 * period must start or restart (this case is considered
5089 * separately because it is not detected by the above
5090 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
5091 *
5092 * last_wr_start_finish has to be updated also if bfqq is soft
5093 * real-time, because the weight-raising period is constantly
5094 * restarted on idle-to-busy transitions for these queues, but
5095 * this is already done in bfq_bfqq_handle_idle_busy_switch if
5096 * needed.
44e44a1b
PV
5097 */
5098 if (bfqd->low_latency &&
5099 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
5100 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
5101}
5102
5103static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
5104 struct bio *bio,
5105 struct request_queue *q)
5106{
5107 struct bfq_queue *bfqq = bfqd->bio_bfqq;
5108
5109
5110 if (bfqq)
5111 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
5112
5113 return NULL;
5114}
5115
ab0e43e9
PV
5116static sector_t get_sdist(sector_t last_pos, struct request *rq)
5117{
5118 if (last_pos)
5119 return abs(blk_rq_pos(rq) - last_pos);
5120
5121 return 0;
5122}
5123
aee69d78
PV
5124#if 0 /* Still not clear if we can do without next two functions */
5125static void bfq_activate_request(struct request_queue *q, struct request *rq)
5126{
5127 struct bfq_data *bfqd = q->elevator->elevator_data;
5128
5129 bfqd->rq_in_driver++;
aee69d78
PV
5130}
5131
5132static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
5133{
5134 struct bfq_data *bfqd = q->elevator->elevator_data;
5135
5136 bfqd->rq_in_driver--;
5137}
5138#endif
5139
5140static void bfq_remove_request(struct request_queue *q,
5141 struct request *rq)
5142{
5143 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5144 struct bfq_data *bfqd = bfqq->bfqd;
5145 const int sync = rq_is_sync(rq);
5146
5147 if (bfqq->next_rq == rq) {
5148 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
5149 bfq_updated_next_req(bfqd, bfqq);
5150 }
5151
5152 if (rq->queuelist.prev != &rq->queuelist)
5153 list_del_init(&rq->queuelist);
5154 bfqq->queued[sync]--;
5155 bfqd->queued--;
5156 elv_rb_del(&bfqq->sort_list, rq);
5157
5158 elv_rqhash_del(q, rq);
5159 if (q->last_merge == rq)
5160 q->last_merge = NULL;
5161
5162 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
5163 bfqq->next_rq = NULL;
5164
5165 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 5166 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
5167 /*
5168 * bfqq emptied. In normal operation, when
5169 * bfqq is empty, bfqq->entity.service and
5170 * bfqq->entity.budget must contain,
5171 * respectively, the service received and the
5172 * budget used last time bfqq emptied. These
5173 * facts do not hold in this case, as at least
5174 * this last removal occurred while bfqq is
5175 * not in service. To avoid inconsistencies,
5176 * reset both bfqq->entity.service and
5177 * bfqq->entity.budget, if bfqq has still a
5178 * process that may issue I/O requests to it.
5179 */
5180 bfqq->entity.budget = bfqq->entity.service = 0;
5181 }
36eca894
AA
5182
5183 /*
5184 * Remove queue from request-position tree as it is empty.
5185 */
5186 if (bfqq->pos_root) {
5187 rb_erase(&bfqq->pos_node, bfqq->pos_root);
5188 bfqq->pos_root = NULL;
5189 }
aee69d78
PV
5190 }
5191
5192 if (rq->cmd_flags & REQ_META)
5193 bfqq->meta_pending--;
e21b7a0b
AA
5194
5195 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
aee69d78
PV
5196}
5197
5198static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
5199{
5200 struct request_queue *q = hctx->queue;
5201 struct bfq_data *bfqd = q->elevator->elevator_data;
5202 struct request *free = NULL;
5203 /*
5204 * bfq_bic_lookup grabs the queue_lock: invoke it now and
5205 * store its return value for later use, to avoid nesting
5206 * queue_lock inside the bfqd->lock. We assume that the bic
5207 * returned by bfq_bic_lookup does not go away before
5208 * bfqd->lock is taken.
5209 */
5210 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
5211 bool ret;
5212
5213 spin_lock_irq(&bfqd->lock);
5214
5215 if (bic)
5216 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
5217 else
5218 bfqd->bio_bfqq = NULL;
5219 bfqd->bio_bic = bic;
5220
5221 ret = blk_mq_sched_try_merge(q, bio, &free);
5222
5223 if (free)
5224 blk_mq_free_request(free);
5225 spin_unlock_irq(&bfqd->lock);
5226
5227 return ret;
5228}
5229
5230static int bfq_request_merge(struct request_queue *q, struct request **req,
5231 struct bio *bio)
5232{
5233 struct bfq_data *bfqd = q->elevator->elevator_data;
5234 struct request *__rq;
5235
5236 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
5237 if (__rq && elv_bio_merge_ok(__rq, bio)) {
5238 *req = __rq;
5239 return ELEVATOR_FRONT_MERGE;
5240 }
5241
5242 return ELEVATOR_NO_MERGE;
5243}
5244
5245static void bfq_request_merged(struct request_queue *q, struct request *req,
5246 enum elv_merge type)
5247{
5248 if (type == ELEVATOR_FRONT_MERGE &&
5249 rb_prev(&req->rb_node) &&
5250 blk_rq_pos(req) <
5251 blk_rq_pos(container_of(rb_prev(&req->rb_node),
5252 struct request, rb_node))) {
5253 struct bfq_queue *bfqq = RQ_BFQQ(req);
5254 struct bfq_data *bfqd = bfqq->bfqd;
5255 struct request *prev, *next_rq;
5256
5257 /* Reposition request in its sort_list */
5258 elv_rb_del(&bfqq->sort_list, req);
5259 elv_rb_add(&bfqq->sort_list, req);
5260
5261 /* Choose next request to be served for bfqq */
5262 prev = bfqq->next_rq;
5263 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
5264 bfqd->last_position);
5265 bfqq->next_rq = next_rq;
5266 /*
36eca894
AA
5267 * If next_rq changes, update both the queue's budget to
5268 * fit the new request and the queue's position in its
5269 * rq_pos_tree.
aee69d78 5270 */
36eca894 5271 if (prev != bfqq->next_rq) {
aee69d78 5272 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
5273 bfq_pos_tree_add_move(bfqd, bfqq);
5274 }
aee69d78
PV
5275 }
5276}
5277
5278static void bfq_requests_merged(struct request_queue *q, struct request *rq,
5279 struct request *next)
5280{
5281 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
5282
5283 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 5284 goto end;
aee69d78
PV
5285 spin_lock_irq(&bfqq->bfqd->lock);
5286
5287 /*
5288 * If next and rq belong to the same bfq_queue and next is older
5289 * than rq, then reposition rq in the fifo (by substituting next
5290 * with rq). Otherwise, if next and rq belong to different
5291 * bfq_queues, never reposition rq: in fact, we would have to
5292 * reposition it with respect to next's position in its own fifo,
5293 * which would most certainly be too expensive with respect to
5294 * the benefits.
5295 */
5296 if (bfqq == next_bfqq &&
5297 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
5298 next->fifo_time < rq->fifo_time) {
5299 list_del_init(&rq->queuelist);
5300 list_replace_init(&next->queuelist, &rq->queuelist);
5301 rq->fifo_time = next->fifo_time;
5302 }
5303
5304 if (bfqq->next_rq == next)
5305 bfqq->next_rq = rq;
5306
5307 bfq_remove_request(q, next);
5308
5309 spin_unlock_irq(&bfqq->bfqd->lock);
e21b7a0b
AA
5310end:
5311 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
5312}
5313
44e44a1b
PV
5314/* Must be called with bfqq != NULL */
5315static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
5316{
cfd69712
PV
5317 if (bfq_bfqq_busy(bfqq))
5318 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
5319 bfqq->wr_coeff = 1;
5320 bfqq->wr_cur_max_time = 0;
77b7dcea 5321 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
5322 /*
5323 * Trigger a weight change on the next invocation of
5324 * __bfq_entity_update_weight_prio.
5325 */
5326 bfqq->entity.prio_changed = 1;
5327}
5328
5329static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
5330 struct bfq_group *bfqg)
5331{
5332 int i, j;
5333
5334 for (i = 0; i < 2; i++)
5335 for (j = 0; j < IOPRIO_BE_NR; j++)
5336 if (bfqg->async_bfqq[i][j])
5337 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
5338 if (bfqg->async_idle_bfqq)
5339 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
5340}
5341
5342static void bfq_end_wr(struct bfq_data *bfqd)
5343{
5344 struct bfq_queue *bfqq;
5345
5346 spin_lock_irq(&bfqd->lock);
5347
5348 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
5349 bfq_bfqq_end_wr(bfqq);
5350 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
5351 bfq_bfqq_end_wr(bfqq);
5352 bfq_end_wr_async(bfqd);
5353
5354 spin_unlock_irq(&bfqd->lock);
5355}
5356
36eca894
AA
5357static sector_t bfq_io_struct_pos(void *io_struct, bool request)
5358{
5359 if (request)
5360 return blk_rq_pos(io_struct);
5361 else
5362 return ((struct bio *)io_struct)->bi_iter.bi_sector;
5363}
5364
5365static int bfq_rq_close_to_sector(void *io_struct, bool request,
5366 sector_t sector)
5367{
5368 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
5369 BFQQ_CLOSE_THR;
5370}
5371
5372static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
5373 struct bfq_queue *bfqq,
5374 sector_t sector)
5375{
5376 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
5377 struct rb_node *parent, *node;
5378 struct bfq_queue *__bfqq;
5379
5380 if (RB_EMPTY_ROOT(root))
5381 return NULL;
5382
5383 /*
5384 * First, if we find a request starting at the end of the last
5385 * request, choose it.
5386 */
5387 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
5388 if (__bfqq)
5389 return __bfqq;
5390
5391 /*
5392 * If the exact sector wasn't found, the parent of the NULL leaf
5393 * will contain the closest sector (rq_pos_tree sorted by
5394 * next_request position).
5395 */
5396 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
5397 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
5398 return __bfqq;
5399
5400 if (blk_rq_pos(__bfqq->next_rq) < sector)
5401 node = rb_next(&__bfqq->pos_node);
5402 else
5403 node = rb_prev(&__bfqq->pos_node);
5404 if (!node)
5405 return NULL;
5406
5407 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
5408 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
5409 return __bfqq;
5410
5411 return NULL;
5412}
5413
5414static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
5415 struct bfq_queue *cur_bfqq,
5416 sector_t sector)
5417{
5418 struct bfq_queue *bfqq;
5419
5420 /*
5421 * We shall notice if some of the queues are cooperating,
5422 * e.g., working closely on the same area of the device. In
5423 * that case, we can group them together and: 1) don't waste
5424 * time idling, and 2) serve the union of their requests in
5425 * the best possible order for throughput.
5426 */
5427 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
5428 if (!bfqq || bfqq == cur_bfqq)
5429 return NULL;
5430
5431 return bfqq;
5432}
5433
5434static struct bfq_queue *
5435bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
5436{
5437 int process_refs, new_process_refs;
5438 struct bfq_queue *__bfqq;
5439
5440 /*
5441 * If there are no process references on the new_bfqq, then it is
5442 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
5443 * may have dropped their last reference (not just their last process
5444 * reference).
5445 */
5446 if (!bfqq_process_refs(new_bfqq))
5447 return NULL;
5448
5449 /* Avoid a circular list and skip interim queue merges. */
5450 while ((__bfqq = new_bfqq->new_bfqq)) {
5451 if (__bfqq == bfqq)
5452 return NULL;
5453 new_bfqq = __bfqq;
5454 }
5455
5456 process_refs = bfqq_process_refs(bfqq);
5457 new_process_refs = bfqq_process_refs(new_bfqq);
5458 /*
5459 * If the process for the bfqq has gone away, there is no
5460 * sense in merging the queues.
5461 */
5462 if (process_refs == 0 || new_process_refs == 0)
5463 return NULL;
5464
5465 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
5466 new_bfqq->pid);
5467
5468 /*
5469 * Merging is just a redirection: the requests of the process
5470 * owning one of the two queues are redirected to the other queue.
5471 * The latter queue, in its turn, is set as shared if this is the
5472 * first time that the requests of some process are redirected to
5473 * it.
5474 *
5475 * We redirect bfqq to new_bfqq and not the opposite, because we
5476 * are in the context of the process owning bfqq, hence we have
5477 * the io_cq of this process. So we can immediately configure this
5478 * io_cq to redirect the requests of the process to new_bfqq.
5479 *
5480 * NOTE, even if new_bfqq coincides with the in-service queue, the
5481 * io_cq of new_bfqq is not available, because, if the in-service
5482 * queue is shared, bfqd->in_service_bic may not point to the
5483 * io_cq of the in-service queue.
5484 * Redirecting the requests of the process owning bfqq to the
5485 * currently in-service queue is in any case the best option, as
5486 * we feed the in-service queue with new requests close to the
5487 * last request served and, by doing so, hopefully increase the
5488 * throughput.
5489 */
5490 bfqq->new_bfqq = new_bfqq;
5491 new_bfqq->ref += process_refs;
5492 return new_bfqq;
5493}
5494
5495static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
5496 struct bfq_queue *new_bfqq)
5497{
5498 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
5499 (bfqq->ioprio_class != new_bfqq->ioprio_class))
5500 return false;
5501
5502 /*
5503 * If either of the queues has already been detected as seeky,
5504 * then merging it with the other queue is unlikely to lead to
5505 * sequential I/O.
5506 */
5507 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
5508 return false;
5509
5510 /*
5511 * Interleaved I/O is known to be done by (some) applications
5512 * only for reads, so it does not make sense to merge async
5513 * queues.
5514 */
5515 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
5516 return false;
5517
5518 return true;
5519}
5520
5521/*
5522 * If this function returns true, then bfqq cannot be merged. The idea
5523 * is that true cooperation happens very early after processes start
5524 * to do I/O. Usually, late cooperations are just accidental false
5525 * positives. In case bfqq is weight-raised, such false positives
5526 * would evidently degrade latency guarantees for bfqq.
5527 */
5528static bool wr_from_too_long(struct bfq_queue *bfqq)
5529{
5530 return bfqq->wr_coeff > 1 &&
5531 time_is_before_jiffies(bfqq->last_wr_start_finish +
5532 msecs_to_jiffies(100));
5533}
5534
5535/*
5536 * Attempt to schedule a merge of bfqq with the currently in-service
5537 * queue or with a close queue among the scheduled queues. Return
5538 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
5539 * structure otherwise.
5540 *
5541 * The OOM queue is not allowed to participate to cooperation: in fact, since
5542 * the requests temporarily redirected to the OOM queue could be redirected
5543 * again to dedicated queues at any time, the state needed to correctly
5544 * handle merging with the OOM queue would be quite complex and expensive
5545 * to maintain. Besides, in such a critical condition as an out of memory,
5546 * the benefits of queue merging may be little relevant, or even negligible.
5547 *
5548 * Weight-raised queues can be merged only if their weight-raising
5549 * period has just started. In fact cooperating processes are usually
5550 * started together. Thus, with this filter we avoid false positives
5551 * that would jeopardize low-latency guarantees.
5552 *
5553 * WARNING: queue merging may impair fairness among non-weight raised
5554 * queues, for at least two reasons: 1) the original weight of a
5555 * merged queue may change during the merged state, 2) even being the
5556 * weight the same, a merged queue may be bloated with many more
5557 * requests than the ones produced by its originally-associated
5558 * process.
5559 */
5560static struct bfq_queue *
5561bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5562 void *io_struct, bool request)
5563{
5564 struct bfq_queue *in_service_bfqq, *new_bfqq;
5565
5566 if (bfqq->new_bfqq)
5567 return bfqq->new_bfqq;
5568
5569 if (!io_struct ||
5570 wr_from_too_long(bfqq) ||
5571 unlikely(bfqq == &bfqd->oom_bfqq))
5572 return NULL;
5573
5574 /* If there is only one backlogged queue, don't search. */
5575 if (bfqd->busy_queues == 1)
5576 return NULL;
5577
5578 in_service_bfqq = bfqd->in_service_queue;
5579
5580 if (!in_service_bfqq || in_service_bfqq == bfqq ||
5581 !bfqd->in_service_bic || wr_from_too_long(in_service_bfqq) ||
5582 unlikely(in_service_bfqq == &bfqd->oom_bfqq))
5583 goto check_scheduled;
5584
5585 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
5586 bfqq->entity.parent == in_service_bfqq->entity.parent &&
5587 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
5588 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
5589 if (new_bfqq)
5590 return new_bfqq;
5591 }
5592 /*
5593 * Check whether there is a cooperator among currently scheduled
5594 * queues. The only thing we need is that the bio/request is not
5595 * NULL, as we need it to establish whether a cooperator exists.
5596 */
5597check_scheduled:
5598 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
5599 bfq_io_struct_pos(io_struct, request));
5600
5601 if (new_bfqq && !wr_from_too_long(new_bfqq) &&
5602 likely(new_bfqq != &bfqd->oom_bfqq) &&
5603 bfq_may_be_close_cooperator(bfqq, new_bfqq))
5604 return bfq_setup_merge(bfqq, new_bfqq);
5605
5606 return NULL;
5607}
5608
5609static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
5610{
5611 struct bfq_io_cq *bic = bfqq->bic;
5612
5613 /*
5614 * If !bfqq->bic, the queue is already shared or its requests
5615 * have already been redirected to a shared queue; both idle window
5616 * and weight raising state have already been saved. Do nothing.
5617 */
5618 if (!bic)
5619 return;
5620
5621 bic->saved_ttime = bfqq->ttime;
5622 bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
5623 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
5624 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
5625 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
36eca894
AA
5626 bic->saved_wr_coeff = bfqq->wr_coeff;
5627 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
5628 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
5629 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
5630}
5631
5632static void bfq_get_bic_reference(struct bfq_queue *bfqq)
5633{
5634 /*
5635 * If bfqq->bic has a non-NULL value, the bic to which it belongs
5636 * is about to begin using a shared bfq_queue.
5637 */
5638 if (bfqq->bic)
5639 atomic_long_inc(&bfqq->bic->icq.ioc->refcount);
5640}
5641
5642static void
5643bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
5644 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
5645{
5646 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
5647 (unsigned long)new_bfqq->pid);
5648 /* Save weight raising and idle window of the merged queues */
5649 bfq_bfqq_save_state(bfqq);
5650 bfq_bfqq_save_state(new_bfqq);
5651 if (bfq_bfqq_IO_bound(bfqq))
5652 bfq_mark_bfqq_IO_bound(new_bfqq);
5653 bfq_clear_bfqq_IO_bound(bfqq);
5654
5655 /*
5656 * If bfqq is weight-raised, then let new_bfqq inherit
5657 * weight-raising. To reduce false positives, neglect the case
5658 * where bfqq has just been created, but has not yet made it
5659 * to be weight-raised (which may happen because EQM may merge
5660 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
5661 * time for bfqq). Handling this case would however be very
5662 * easy, thanks to the flag just_created.
36eca894
AA
5663 */
5664 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
5665 new_bfqq->wr_coeff = bfqq->wr_coeff;
5666 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
5667 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
5668 new_bfqq->wr_start_at_switch_to_srt =
5669 bfqq->wr_start_at_switch_to_srt;
5670 if (bfq_bfqq_busy(new_bfqq))
5671 bfqd->wr_busy_queues++;
5672 new_bfqq->entity.prio_changed = 1;
5673 }
5674
5675 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
5676 bfqq->wr_coeff = 1;
5677 bfqq->entity.prio_changed = 1;
5678 if (bfq_bfqq_busy(bfqq))
5679 bfqd->wr_busy_queues--;
5680 }
5681
5682 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
5683 bfqd->wr_busy_queues);
5684
5685 /*
5686 * Grab a reference to the bic, to prevent it from being destroyed
5687 * before being possibly touched by a bfq_split_bfqq().
5688 */
5689 bfq_get_bic_reference(bfqq);
5690 bfq_get_bic_reference(new_bfqq);
5691 /*
5692 * Merge queues (that is, let bic redirect its requests to new_bfqq)
5693 */
5694 bic_set_bfqq(bic, new_bfqq, 1);
5695 bfq_mark_bfqq_coop(new_bfqq);
5696 /*
5697 * new_bfqq now belongs to at least two bics (it is a shared queue):
5698 * set new_bfqq->bic to NULL. bfqq either:
5699 * - does not belong to any bic any more, and hence bfqq->bic must
5700 * be set to NULL, or
5701 * - is a queue whose owning bics have already been redirected to a
5702 * different queue, hence the queue is destined to not belong to
5703 * any bic soon and bfqq->bic is already NULL (therefore the next
5704 * assignment causes no harm).
5705 */
5706 new_bfqq->bic = NULL;
5707 bfqq->bic = NULL;
5708 /* release process reference to bfqq */
5709 bfq_put_queue(bfqq);
5710}
5711
aee69d78
PV
5712static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
5713 struct bio *bio)
5714{
5715 struct bfq_data *bfqd = q->elevator->elevator_data;
5716 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 5717 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
5718
5719 /*
5720 * Disallow merge of a sync bio into an async request.
5721 */
5722 if (is_sync && !rq_is_sync(rq))
5723 return false;
5724
5725 /*
5726 * Lookup the bfqq that this bio will be queued with. Allow
5727 * merge only if rq is queued there.
5728 */
5729 if (!bfqq)
5730 return false;
5731
36eca894
AA
5732 /*
5733 * We take advantage of this function to perform an early merge
5734 * of the queues of possible cooperating processes.
5735 */
5736 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
5737 if (new_bfqq) {
5738 /*
5739 * bic still points to bfqq, then it has not yet been
5740 * redirected to some other bfq_queue, and a queue
5741 * merge beween bfqq and new_bfqq can be safely
5742 * fulfillled, i.e., bic can be redirected to new_bfqq
5743 * and bfqq can be put.
5744 */
5745 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
5746 new_bfqq);
5747 /*
5748 * If we get here, bio will be queued into new_queue,
5749 * so use new_bfqq to decide whether bio and rq can be
5750 * merged.
5751 */
5752 bfqq = new_bfqq;
5753
5754 /*
5755 * Change also bqfd->bio_bfqq, as
5756 * bfqd->bio_bic now points to new_bfqq, and
5757 * this function may be invoked again (and then may
5758 * use again bqfd->bio_bfqq).
5759 */
5760 bfqd->bio_bfqq = bfqq;
5761 }
5762
aee69d78
PV
5763 return bfqq == RQ_BFQQ(rq);
5764}
5765
44e44a1b
PV
5766/*
5767 * Set the maximum time for the in-service queue to consume its
5768 * budget. This prevents seeky processes from lowering the throughput.
5769 * In practice, a time-slice service scheme is used with seeky
5770 * processes.
5771 */
5772static void bfq_set_budget_timeout(struct bfq_data *bfqd,
5773 struct bfq_queue *bfqq)
5774{
77b7dcea
PV
5775 unsigned int timeout_coeff;
5776
5777 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
5778 timeout_coeff = 1;
5779 else
5780 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
5781
44e44a1b
PV
5782 bfqd->last_budget_start = ktime_get();
5783
5784 bfqq->budget_timeout = jiffies +
77b7dcea 5785 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
5786}
5787
aee69d78
PV
5788static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
5789 struct bfq_queue *bfqq)
5790{
5791 if (bfqq) {
e21b7a0b 5792 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
aee69d78
PV
5793 bfq_clear_bfqq_fifo_expire(bfqq);
5794
5795 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
5796
77b7dcea
PV
5797 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
5798 bfqq->wr_coeff > 1 &&
5799 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5800 time_is_before_jiffies(bfqq->budget_timeout)) {
5801 /*
5802 * For soft real-time queues, move the start
5803 * of the weight-raising period forward by the
5804 * time the queue has not received any
5805 * service. Otherwise, a relatively long
5806 * service delay is likely to cause the
5807 * weight-raising period of the queue to end,
5808 * because of the short duration of the
5809 * weight-raising period of a soft real-time
5810 * queue. It is worth noting that this move
5811 * is not so dangerous for the other queues,
5812 * because soft real-time queues are not
5813 * greedy.
5814 *
5815 * To not add a further variable, we use the
5816 * overloaded field budget_timeout to
5817 * determine for how long the queue has not
5818 * received service, i.e., how much time has
5819 * elapsed since the queue expired. However,
5820 * this is a little imprecise, because
5821 * budget_timeout is set to jiffies if bfqq
5822 * not only expires, but also remains with no
5823 * request.
5824 */
5825 if (time_after(bfqq->budget_timeout,
5826 bfqq->last_wr_start_finish))
5827 bfqq->last_wr_start_finish +=
5828 jiffies - bfqq->budget_timeout;
5829 else
5830 bfqq->last_wr_start_finish = jiffies;
5831 }
5832
44e44a1b 5833 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
5834 bfq_log_bfqq(bfqd, bfqq,
5835 "set_in_service_queue, cur-budget = %d",
5836 bfqq->entity.budget);
5837 }
5838
5839 bfqd->in_service_queue = bfqq;
5840}
5841
5842/*
5843 * Get and set a new queue for service.
5844 */
5845static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
5846{
5847 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
5848
5849 __bfq_set_in_service_queue(bfqd, bfqq);
5850 return bfqq;
5851}
5852
aee69d78
PV
5853static void bfq_arm_slice_timer(struct bfq_data *bfqd)
5854{
5855 struct bfq_queue *bfqq = bfqd->in_service_queue;
5856 struct bfq_io_cq *bic;
5857 u32 sl;
5858
5859 /* Processes have exited, don't wait. */
5860 bic = bfqd->in_service_bic;
5861 if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
5862 return;
5863
5864 bfq_mark_bfqq_wait_request(bfqq);
5865
5866 /*
5867 * We don't want to idle for seeks, but we do want to allow
5868 * fair distribution of slice time for a process doing back-to-back
5869 * seeks. So allow a little bit of time for him to submit a new rq.
5870 */
5871 sl = bfqd->bfq_slice_idle;
5872 /*
1de0c4cd
AA
5873 * Unless the queue is being weight-raised or the scenario is
5874 * asymmetric, grant only minimum idle time if the queue
5875 * is seeky. A long idling is preserved for a weight-raised
5876 * queue, or, more in general, in an asymmetric scenario,
5877 * because a long idling is needed for guaranteeing to a queue
5878 * its reserved share of the throughput (in particular, it is
5879 * needed if the queue has a higher weight than some other
5880 * queue).
aee69d78 5881 */
1de0c4cd
AA
5882 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
5883 bfq_symmetric_scenario(bfqd))
aee69d78
PV
5884 sl = min_t(u64, sl, BFQ_MIN_TT);
5885
5886 bfqd->last_idling_start = ktime_get();
5887 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
5888 HRTIMER_MODE_REL);
e21b7a0b 5889 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
5890}
5891
ab0e43e9
PV
5892/*
5893 * In autotuning mode, max_budget is dynamically recomputed as the
5894 * amount of sectors transferred in timeout at the estimated peak
5895 * rate. This enables BFQ to utilize a full timeslice with a full
5896 * budget, even if the in-service queue is served at peak rate. And
5897 * this maximises throughput with sequential workloads.
5898 */
5899static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
5900{
5901 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
5902 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
5903}
5904
44e44a1b
PV
5905/*
5906 * Update parameters related to throughput and responsiveness, as a
5907 * function of the estimated peak rate. See comments on
5908 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
5909 */
5910static void update_thr_responsiveness_params(struct bfq_data *bfqd)
5911{
5912 int dev_type = blk_queue_nonrot(bfqd->queue);
5913
5914 if (bfqd->bfq_user_max_budget == 0)
5915 bfqd->bfq_max_budget =
5916 bfq_calc_max_budget(bfqd);
5917
5918 if (bfqd->device_speed == BFQ_BFQD_FAST &&
5919 bfqd->peak_rate < device_speed_thresh[dev_type]) {
5920 bfqd->device_speed = BFQ_BFQD_SLOW;
5921 bfqd->RT_prod = R_slow[dev_type] *
5922 T_slow[dev_type];
5923 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
5924 bfqd->peak_rate > device_speed_thresh[dev_type]) {
5925 bfqd->device_speed = BFQ_BFQD_FAST;
5926 bfqd->RT_prod = R_fast[dev_type] *
5927 T_fast[dev_type];
5928 }
5929
5930 bfq_log(bfqd,
5931"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
5932 dev_type == 0 ? "ROT" : "NONROT",
5933 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
5934 bfqd->device_speed == BFQ_BFQD_FAST ?
5935 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
5936 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
5937 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
5938 BFQ_RATE_SHIFT);
5939}
5940
ab0e43e9
PV
5941static void bfq_reset_rate_computation(struct bfq_data *bfqd,
5942 struct request *rq)
5943{
5944 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
5945 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
5946 bfqd->peak_rate_samples = 1;
5947 bfqd->sequential_samples = 0;
5948 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
5949 blk_rq_sectors(rq);
5950 } else /* no new rq dispatched, just reset the number of samples */
5951 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
5952
5953 bfq_log(bfqd,
5954 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
5955 bfqd->peak_rate_samples, bfqd->sequential_samples,
5956 bfqd->tot_sectors_dispatched);
5957}
5958
5959static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
5960{
5961 u32 rate, weight, divisor;
5962
5963 /*
5964 * For the convergence property to hold (see comments on
5965 * bfq_update_peak_rate()) and for the assessment to be
5966 * reliable, a minimum number of samples must be present, and
5967 * a minimum amount of time must have elapsed. If not so, do
5968 * not compute new rate. Just reset parameters, to get ready
5969 * for a new evaluation attempt.
5970 */
5971 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
5972 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
5973 goto reset_computation;
5974
5975 /*
5976 * If a new request completion has occurred after last
5977 * dispatch, then, to approximate the rate at which requests
5978 * have been served by the device, it is more precise to
5979 * extend the observation interval to the last completion.
5980 */
5981 bfqd->delta_from_first =
5982 max_t(u64, bfqd->delta_from_first,
5983 bfqd->last_completion - bfqd->first_dispatch);
5984
5985 /*
5986 * Rate computed in sects/usec, and not sects/nsec, for
5987 * precision issues.
5988 */
5989 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
5990 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
5991
5992 /*
5993 * Peak rate not updated if:
5994 * - the percentage of sequential dispatches is below 3/4 of the
5995 * total, and rate is below the current estimated peak rate
5996 * - rate is unreasonably high (> 20M sectors/sec)
5997 */
5998 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
5999 rate <= bfqd->peak_rate) ||
6000 rate > 20<<BFQ_RATE_SHIFT)
6001 goto reset_computation;
6002
6003 /*
6004 * We have to update the peak rate, at last! To this purpose,
6005 * we use a low-pass filter. We compute the smoothing constant
6006 * of the filter as a function of the 'weight' of the new
6007 * measured rate.
6008 *
6009 * As can be seen in next formulas, we define this weight as a
6010 * quantity proportional to how sequential the workload is,
6011 * and to how long the observation time interval is.
6012 *
6013 * The weight runs from 0 to 8. The maximum value of the
6014 * weight, 8, yields the minimum value for the smoothing
6015 * constant. At this minimum value for the smoothing constant,
6016 * the measured rate contributes for half of the next value of
6017 * the estimated peak rate.
6018 *
6019 * So, the first step is to compute the weight as a function
6020 * of how sequential the workload is. Note that the weight
6021 * cannot reach 9, because bfqd->sequential_samples cannot
6022 * become equal to bfqd->peak_rate_samples, which, in its
6023 * turn, holds true because bfqd->sequential_samples is not
6024 * incremented for the first sample.
6025 */
6026 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
6027
6028 /*
6029 * Second step: further refine the weight as a function of the
6030 * duration of the observation interval.
6031 */
6032 weight = min_t(u32, 8,
6033 div_u64(weight * bfqd->delta_from_first,
6034 BFQ_RATE_REF_INTERVAL));
6035
6036 /*
6037 * Divisor ranging from 10, for minimum weight, to 2, for
6038 * maximum weight.
6039 */
6040 divisor = 10 - weight;
6041
6042 /*
6043 * Finally, update peak rate:
6044 *
6045 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
6046 */
6047 bfqd->peak_rate *= divisor-1;
6048 bfqd->peak_rate /= divisor;
6049 rate /= divisor; /* smoothing constant alpha = 1/divisor */
6050
6051 bfqd->peak_rate += rate;
44e44a1b 6052 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
6053
6054reset_computation:
6055 bfq_reset_rate_computation(bfqd, rq);
6056}
6057
6058/*
6059 * Update the read/write peak rate (the main quantity used for
6060 * auto-tuning, see update_thr_responsiveness_params()).
6061 *
6062 * It is not trivial to estimate the peak rate (correctly): because of
6063 * the presence of sw and hw queues between the scheduler and the
6064 * device components that finally serve I/O requests, it is hard to
6065 * say exactly when a given dispatched request is served inside the
6066 * device, and for how long. As a consequence, it is hard to know
6067 * precisely at what rate a given set of requests is actually served
6068 * by the device.
6069 *
6070 * On the opposite end, the dispatch time of any request is trivially
6071 * available, and, from this piece of information, the "dispatch rate"
6072 * of requests can be immediately computed. So, the idea in the next
6073 * function is to use what is known, namely request dispatch times
6074 * (plus, when useful, request completion times), to estimate what is
6075 * unknown, namely in-device request service rate.
6076 *
6077 * The main issue is that, because of the above facts, the rate at
6078 * which a certain set of requests is dispatched over a certain time
6079 * interval can vary greatly with respect to the rate at which the
6080 * same requests are then served. But, since the size of any
6081 * intermediate queue is limited, and the service scheme is lossless
6082 * (no request is silently dropped), the following obvious convergence
6083 * property holds: the number of requests dispatched MUST become
6084 * closer and closer to the number of requests completed as the
6085 * observation interval grows. This is the key property used in
6086 * the next function to estimate the peak service rate as a function
6087 * of the observed dispatch rate. The function assumes to be invoked
6088 * on every request dispatch.
6089 */
6090static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
6091{
6092 u64 now_ns = ktime_get_ns();
6093
6094 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
6095 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
6096 bfqd->peak_rate_samples);
6097 bfq_reset_rate_computation(bfqd, rq);
6098 goto update_last_values; /* will add one sample */
6099 }
6100
6101 /*
6102 * Device idle for very long: the observation interval lasting
6103 * up to this dispatch cannot be a valid observation interval
6104 * for computing a new peak rate (similarly to the late-
6105 * completion event in bfq_completed_request()). Go to
6106 * update_rate_and_reset to have the following three steps
6107 * taken:
6108 * - close the observation interval at the last (previous)
6109 * request dispatch or completion
6110 * - compute rate, if possible, for that observation interval
6111 * - start a new observation interval with this dispatch
6112 */
6113 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
6114 bfqd->rq_in_driver == 0)
6115 goto update_rate_and_reset;
6116
6117 /* Update sampling information */
6118 bfqd->peak_rate_samples++;
6119
6120 if ((bfqd->rq_in_driver > 0 ||
6121 now_ns - bfqd->last_completion < BFQ_MIN_TT)
6122 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
6123 bfqd->sequential_samples++;
6124
6125 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
6126
6127 /* Reset max observed rq size every 32 dispatches */
6128 if (likely(bfqd->peak_rate_samples % 32))
6129 bfqd->last_rq_max_size =
6130 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
6131 else
6132 bfqd->last_rq_max_size = blk_rq_sectors(rq);
6133
6134 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
6135
6136 /* Target observation interval not yet reached, go on sampling */
6137 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
6138 goto update_last_values;
6139
6140update_rate_and_reset:
6141 bfq_update_rate_reset(bfqd, rq);
6142update_last_values:
6143 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
6144 bfqd->last_dispatch = now_ns;
6145}
6146
aee69d78
PV
6147/*
6148 * Remove request from internal lists.
6149 */
6150static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
6151{
6152 struct bfq_queue *bfqq = RQ_BFQQ(rq);
6153
6154 /*
6155 * For consistency, the next instruction should have been
6156 * executed after removing the request from the queue and
6157 * dispatching it. We execute instead this instruction before
6158 * bfq_remove_request() (and hence introduce a temporary
6159 * inconsistency), for efficiency. In fact, should this
6160 * dispatch occur for a non in-service bfqq, this anticipated
6161 * increment prevents two counters related to bfqq->dispatched
6162 * from risking to be, first, uselessly decremented, and then
6163 * incremented again when the (new) value of bfqq->dispatched
6164 * happens to be taken into account.
6165 */
6166 bfqq->dispatched++;
ab0e43e9 6167 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
6168
6169 bfq_remove_request(q, rq);
6170}
6171
6172static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6173{
36eca894
AA
6174 /*
6175 * If this bfqq is shared between multiple processes, check
6176 * to make sure that those processes are still issuing I/Os
6177 * within the mean seek distance. If not, it may be time to
6178 * break the queues apart again.
6179 */
6180 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
6181 bfq_mark_bfqq_split_coop(bfqq);
6182
44e44a1b
PV
6183 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
6184 if (bfqq->dispatched == 0)
6185 /*
6186 * Overloading budget_timeout field to store
6187 * the time at which the queue remains with no
6188 * backlog and no outstanding request; used by
6189 * the weight-raising mechanism.
6190 */
6191 bfqq->budget_timeout = jiffies;
6192
e21b7a0b 6193 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 6194 } else {
e21b7a0b 6195 bfq_requeue_bfqq(bfqd, bfqq);
36eca894
AA
6196 /*
6197 * Resort priority tree of potential close cooperators.
6198 */
6199 bfq_pos_tree_add_move(bfqd, bfqq);
6200 }
e21b7a0b
AA
6201
6202 /*
6203 * All in-service entities must have been properly deactivated
6204 * or requeued before executing the next function, which
6205 * resets all in-service entites as no more in service.
6206 */
6207 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
6208}
6209
6210/**
6211 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
6212 * @bfqd: device data.
6213 * @bfqq: queue to update.
6214 * @reason: reason for expiration.
6215 *
6216 * Handle the feedback on @bfqq budget at queue expiration.
6217 * See the body for detailed comments.
6218 */
6219static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
6220 struct bfq_queue *bfqq,
6221 enum bfqq_expiration reason)
6222{
6223 struct request *next_rq;
6224 int budget, min_budget;
6225
aee69d78
PV
6226 min_budget = bfq_min_budget(bfqd);
6227
44e44a1b
PV
6228 if (bfqq->wr_coeff == 1)
6229 budget = bfqq->max_budget;
6230 else /*
6231 * Use a constant, low budget for weight-raised queues,
6232 * to help achieve a low latency. Keep it slightly higher
6233 * than the minimum possible budget, to cause a little
6234 * bit fewer expirations.
6235 */
6236 budget = 2 * min_budget;
6237
aee69d78
PV
6238 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
6239 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
6240 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
6241 budget, bfq_min_budget(bfqd));
6242 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
6243 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
6244
44e44a1b 6245 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
6246 switch (reason) {
6247 /*
6248 * Caveat: in all the following cases we trade latency
6249 * for throughput.
6250 */
6251 case BFQQE_TOO_IDLE:
54b60456
PV
6252 /*
6253 * This is the only case where we may reduce
6254 * the budget: if there is no request of the
6255 * process still waiting for completion, then
6256 * we assume (tentatively) that the timer has
6257 * expired because the batch of requests of
6258 * the process could have been served with a
6259 * smaller budget. Hence, betting that
6260 * process will behave in the same way when it
6261 * becomes backlogged again, we reduce its
6262 * next budget. As long as we guess right,
6263 * this budget cut reduces the latency
6264 * experienced by the process.
6265 *
6266 * However, if there are still outstanding
6267 * requests, then the process may have not yet
6268 * issued its next request just because it is
6269 * still waiting for the completion of some of
6270 * the still outstanding ones. So in this
6271 * subcase we do not reduce its budget, on the
6272 * contrary we increase it to possibly boost
6273 * the throughput, as discussed in the
6274 * comments to the BUDGET_TIMEOUT case.
6275 */
6276 if (bfqq->dispatched > 0) /* still outstanding reqs */
6277 budget = min(budget * 2, bfqd->bfq_max_budget);
6278 else {
6279 if (budget > 5 * min_budget)
6280 budget -= 4 * min_budget;
6281 else
6282 budget = min_budget;
6283 }
aee69d78
PV
6284 break;
6285 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
6286 /*
6287 * We double the budget here because it gives
6288 * the chance to boost the throughput if this
6289 * is not a seeky process (and has bumped into
6290 * this timeout because of, e.g., ZBR).
6291 */
6292 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
6293 break;
6294 case BFQQE_BUDGET_EXHAUSTED:
6295 /*
6296 * The process still has backlog, and did not
6297 * let either the budget timeout or the disk
6298 * idling timeout expire. Hence it is not
6299 * seeky, has a short thinktime and may be
6300 * happy with a higher budget too. So
6301 * definitely increase the budget of this good
6302 * candidate to boost the disk throughput.
6303 */
54b60456 6304 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
6305 break;
6306 case BFQQE_NO_MORE_REQUESTS:
6307 /*
6308 * For queues that expire for this reason, it
6309 * is particularly important to keep the
6310 * budget close to the actual service they
6311 * need. Doing so reduces the timestamp
6312 * misalignment problem described in the
6313 * comments in the body of
6314 * __bfq_activate_entity. In fact, suppose
6315 * that a queue systematically expires for
6316 * BFQQE_NO_MORE_REQUESTS and presents a
6317 * new request in time to enjoy timestamp
6318 * back-shifting. The larger the budget of the
6319 * queue is with respect to the service the
6320 * queue actually requests in each service
6321 * slot, the more times the queue can be
6322 * reactivated with the same virtual finish
6323 * time. It follows that, even if this finish
6324 * time is pushed to the system virtual time
6325 * to reduce the consequent timestamp
6326 * misalignment, the queue unjustly enjoys for
6327 * many re-activations a lower finish time
6328 * than all newly activated queues.
6329 *
6330 * The service needed by bfqq is measured
6331 * quite precisely by bfqq->entity.service.
6332 * Since bfqq does not enjoy device idling,
6333 * bfqq->entity.service is equal to the number
6334 * of sectors that the process associated with
6335 * bfqq requested to read/write before waiting
6336 * for request completions, or blocking for
6337 * other reasons.
6338 */
6339 budget = max_t(int, bfqq->entity.service, min_budget);
6340 break;
6341 default:
6342 return;
6343 }
44e44a1b 6344 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
6345 /*
6346 * Async queues get always the maximum possible
6347 * budget, as for them we do not care about latency
6348 * (in addition, their ability to dispatch is limited
6349 * by the charging factor).
6350 */
6351 budget = bfqd->bfq_max_budget;
6352 }
6353
6354 bfqq->max_budget = budget;
6355
6356 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
6357 !bfqd->bfq_user_max_budget)
6358 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
6359
6360 /*
6361 * If there is still backlog, then assign a new budget, making
6362 * sure that it is large enough for the next request. Since
6363 * the finish time of bfqq must be kept in sync with the
6364 * budget, be sure to call __bfq_bfqq_expire() *after* this
6365 * update.
6366 *
6367 * If there is no backlog, then no need to update the budget;
6368 * it will be updated on the arrival of a new request.
6369 */
6370 next_rq = bfqq->next_rq;
6371 if (next_rq)
6372 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
6373 bfq_serv_to_charge(next_rq, bfqq));
6374
6375 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
6376 next_rq ? blk_rq_sectors(next_rq) : 0,
6377 bfqq->entity.budget);
6378}
6379
aee69d78 6380/*
ab0e43e9
PV
6381 * Return true if the process associated with bfqq is "slow". The slow
6382 * flag is used, in addition to the budget timeout, to reduce the
6383 * amount of service provided to seeky processes, and thus reduce
6384 * their chances to lower the throughput. More details in the comments
6385 * on the function bfq_bfqq_expire().
6386 *
6387 * An important observation is in order: as discussed in the comments
6388 * on the function bfq_update_peak_rate(), with devices with internal
6389 * queues, it is hard if ever possible to know when and for how long
6390 * an I/O request is processed by the device (apart from the trivial
6391 * I/O pattern where a new request is dispatched only after the
6392 * previous one has been completed). This makes it hard to evaluate
6393 * the real rate at which the I/O requests of each bfq_queue are
6394 * served. In fact, for an I/O scheduler like BFQ, serving a
6395 * bfq_queue means just dispatching its requests during its service
6396 * slot (i.e., until the budget of the queue is exhausted, or the
6397 * queue remains idle, or, finally, a timeout fires). But, during the
6398 * service slot of a bfq_queue, around 100 ms at most, the device may
6399 * be even still processing requests of bfq_queues served in previous
6400 * service slots. On the opposite end, the requests of the in-service
6401 * bfq_queue may be completed after the service slot of the queue
6402 * finishes.
6403 *
6404 * Anyway, unless more sophisticated solutions are used
6405 * (where possible), the sum of the sizes of the requests dispatched
6406 * during the service slot of a bfq_queue is probably the only
6407 * approximation available for the service received by the bfq_queue
6408 * during its service slot. And this sum is the quantity used in this
6409 * function to evaluate the I/O speed of a process.
aee69d78 6410 */
ab0e43e9
PV
6411static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
6412 bool compensate, enum bfqq_expiration reason,
6413 unsigned long *delta_ms)
aee69d78 6414{
ab0e43e9
PV
6415 ktime_t delta_ktime;
6416 u32 delta_usecs;
6417 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 6418
ab0e43e9 6419 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
6420 return false;
6421
6422 if (compensate)
ab0e43e9 6423 delta_ktime = bfqd->last_idling_start;
aee69d78 6424 else
ab0e43e9
PV
6425 delta_ktime = ktime_get();
6426 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
6427 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
6428
6429 /* don't use too short time intervals */
ab0e43e9
PV
6430 if (delta_usecs < 1000) {
6431 if (blk_queue_nonrot(bfqd->queue))
6432 /*
6433 * give same worst-case guarantees as idling
6434 * for seeky
6435 */
6436 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
6437 else /* charge at least one seek */
6438 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
6439
6440 return slow;
6441 }
aee69d78 6442
ab0e43e9 6443 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
6444
6445 /*
ab0e43e9
PV
6446 * Use only long (> 20ms) intervals to filter out excessive
6447 * spikes in service rate estimation.
aee69d78 6448 */
ab0e43e9
PV
6449 if (delta_usecs > 20000) {
6450 /*
6451 * Caveat for rotational devices: processes doing I/O
6452 * in the slower disk zones tend to be slow(er) even
6453 * if not seeky. In this respect, the estimated peak
6454 * rate is likely to be an average over the disk
6455 * surface. Accordingly, to not be too harsh with
6456 * unlucky processes, a process is deemed slow only if
6457 * its rate has been lower than half of the estimated
6458 * peak rate.
6459 */
6460 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
6461 }
6462
ab0e43e9 6463 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 6464
ab0e43e9 6465 return slow;
aee69d78
PV
6466}
6467
77b7dcea
PV
6468/*
6469 * To be deemed as soft real-time, an application must meet two
6470 * requirements. First, the application must not require an average
6471 * bandwidth higher than the approximate bandwidth required to playback or
6472 * record a compressed high-definition video.
6473 * The next function is invoked on the completion of the last request of a
6474 * batch, to compute the next-start time instant, soft_rt_next_start, such
6475 * that, if the next request of the application does not arrive before
6476 * soft_rt_next_start, then the above requirement on the bandwidth is met.
6477 *
6478 * The second requirement is that the request pattern of the application is
6479 * isochronous, i.e., that, after issuing a request or a batch of requests,
6480 * the application stops issuing new requests until all its pending requests
6481 * have been completed. After that, the application may issue a new batch,
6482 * and so on.
6483 * For this reason the next function is invoked to compute
6484 * soft_rt_next_start only for applications that meet this requirement,
6485 * whereas soft_rt_next_start is set to infinity for applications that do
6486 * not.
6487 *
6488 * Unfortunately, even a greedy application may happen to behave in an
6489 * isochronous way if the CPU load is high. In fact, the application may
6490 * stop issuing requests while the CPUs are busy serving other processes,
6491 * then restart, then stop again for a while, and so on. In addition, if
6492 * the disk achieves a low enough throughput with the request pattern
6493 * issued by the application (e.g., because the request pattern is random
6494 * and/or the device is slow), then the application may meet the above
6495 * bandwidth requirement too. To prevent such a greedy application to be
6496 * deemed as soft real-time, a further rule is used in the computation of
6497 * soft_rt_next_start: soft_rt_next_start must be higher than the current
6498 * time plus the maximum time for which the arrival of a request is waited
6499 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
6500 * This filters out greedy applications, as the latter issue instead their
6501 * next request as soon as possible after the last one has been completed
6502 * (in contrast, when a batch of requests is completed, a soft real-time
6503 * application spends some time processing data).
6504 *
6505 * Unfortunately, the last filter may easily generate false positives if
6506 * only bfqd->bfq_slice_idle is used as a reference time interval and one
6507 * or both the following cases occur:
6508 * 1) HZ is so low that the duration of a jiffy is comparable to or higher
6509 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
6510 * HZ=100.
6511 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
6512 * for a while, then suddenly 'jump' by several units to recover the lost
6513 * increments. This seems to happen, e.g., inside virtual machines.
6514 * To address this issue, we do not use as a reference time interval just
6515 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
6516 * particular we add the minimum number of jiffies for which the filter
6517 * seems to be quite precise also in embedded systems and KVM/QEMU virtual
6518 * machines.
6519 */
6520static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
6521 struct bfq_queue *bfqq)
6522{
6523 return max(bfqq->last_idle_bklogged +
6524 HZ * bfqq->service_from_backlogged /
6525 bfqd->bfq_wr_max_softrt_rate,
6526 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
6527}
6528
6529/*
6530 * Return the farthest future time instant according to jiffies
6531 * macros.
6532 */
6533static unsigned long bfq_greatest_from_now(void)
6534{
6535 return jiffies + MAX_JIFFY_OFFSET;
6536}
6537
aee69d78
PV
6538/*
6539 * Return the farthest past time instant according to jiffies
6540 * macros.
6541 */
6542static unsigned long bfq_smallest_from_now(void)
6543{
6544 return jiffies - MAX_JIFFY_OFFSET;
6545}
6546
6547/**
6548 * bfq_bfqq_expire - expire a queue.
6549 * @bfqd: device owning the queue.
6550 * @bfqq: the queue to expire.
6551 * @compensate: if true, compensate for the time spent idling.
6552 * @reason: the reason causing the expiration.
6553 *
c074170e
PV
6554 * If the process associated with bfqq does slow I/O (e.g., because it
6555 * issues random requests), we charge bfqq with the time it has been
6556 * in service instead of the service it has received (see
6557 * bfq_bfqq_charge_time for details on how this goal is achieved). As
6558 * a consequence, bfqq will typically get higher timestamps upon
6559 * reactivation, and hence it will be rescheduled as if it had
6560 * received more service than what it has actually received. In the
6561 * end, bfqq receives less service in proportion to how slowly its
6562 * associated process consumes its budgets (and hence how seriously it
6563 * tends to lower the throughput). In addition, this time-charging
6564 * strategy guarantees time fairness among slow processes. In
6565 * contrast, if the process associated with bfqq is not slow, we
6566 * charge bfqq exactly with the service it has received.
aee69d78 6567 *
c074170e
PV
6568 * Charging time to the first type of queues and the exact service to
6569 * the other has the effect of using the WF2Q+ policy to schedule the
6570 * former on a timeslice basis, without violating service domain
6571 * guarantees among the latter.
aee69d78
PV
6572 */
6573static void bfq_bfqq_expire(struct bfq_data *bfqd,
6574 struct bfq_queue *bfqq,
6575 bool compensate,
6576 enum bfqq_expiration reason)
6577{
6578 bool slow;
ab0e43e9
PV
6579 unsigned long delta = 0;
6580 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
6581 int ref;
6582
6583 /*
ab0e43e9 6584 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 6585 */
ab0e43e9 6586 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78 6587
77b7dcea
PV
6588 /*
6589 * Increase service_from_backlogged before next statement,
6590 * because the possible next invocation of
6591 * bfq_bfqq_charge_time would likely inflate
6592 * entity->service. In contrast, service_from_backlogged must
6593 * contain real service, to enable the soft real-time
6594 * heuristic to correctly compute the bandwidth consumed by
6595 * bfqq.
6596 */
6597 bfqq->service_from_backlogged += entity->service;
6598
aee69d78 6599 /*
c074170e
PV
6600 * As above explained, charge slow (typically seeky) and
6601 * timed-out queues with the time and not the service
6602 * received, to favor sequential workloads.
6603 *
6604 * Processes doing I/O in the slower disk zones will tend to
6605 * be slow(er) even if not seeky. Therefore, since the
6606 * estimated peak rate is actually an average over the disk
6607 * surface, these processes may timeout just for bad luck. To
6608 * avoid punishing them, do not charge time to processes that
6609 * succeeded in consuming at least 2/3 of their budget. This
6610 * allows BFQ to preserve enough elasticity to still perform
6611 * bandwidth, and not time, distribution with little unlucky
6612 * or quasi-sequential processes.
aee69d78 6613 */
44e44a1b
PV
6614 if (bfqq->wr_coeff == 1 &&
6615 (slow ||
6616 (reason == BFQQE_BUDGET_TIMEOUT &&
6617 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 6618 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
6619
6620 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 6621 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
6622 bfq_clear_bfqq_IO_bound(bfqq);
6623
44e44a1b
PV
6624 if (bfqd->low_latency && bfqq->wr_coeff == 1)
6625 bfqq->last_wr_start_finish = jiffies;
6626
77b7dcea
PV
6627 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
6628 RB_EMPTY_ROOT(&bfqq->sort_list)) {
6629 /*
6630 * If we get here, and there are no outstanding
6631 * requests, then the request pattern is isochronous
6632 * (see the comments on the function
6633 * bfq_bfqq_softrt_next_start()). Thus we can compute
6634 * soft_rt_next_start. If, instead, the queue still
6635 * has outstanding requests, then we have to wait for
6636 * the completion of all the outstanding requests to
6637 * discover whether the request pattern is actually
6638 * isochronous.
6639 */
6640 if (bfqq->dispatched == 0)
6641 bfqq->soft_rt_next_start =
6642 bfq_bfqq_softrt_next_start(bfqd, bfqq);
6643 else {
6644 /*
6645 * The application is still waiting for the
6646 * completion of one or more requests:
6647 * prevent it from possibly being incorrectly
6648 * deemed as soft real-time by setting its
6649 * soft_rt_next_start to infinity. In fact,
6650 * without this assignment, the application
6651 * would be incorrectly deemed as soft
6652 * real-time if:
6653 * 1) it issued a new request before the
6654 * completion of all its in-flight
6655 * requests, and
6656 * 2) at that time, its soft_rt_next_start
6657 * happened to be in the past.
6658 */
6659 bfqq->soft_rt_next_start =
6660 bfq_greatest_from_now();
6661 /*
6662 * Schedule an update of soft_rt_next_start to when
6663 * the task may be discovered to be isochronous.
6664 */
6665 bfq_mark_bfqq_softrt_update(bfqq);
6666 }
6667 }
6668
aee69d78
PV
6669 bfq_log_bfqq(bfqd, bfqq,
6670 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
6671 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
6672
6673 /*
6674 * Increase, decrease or leave budget unchanged according to
6675 * reason.
6676 */
6677 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
6678 ref = bfqq->ref;
6679 __bfq_bfqq_expire(bfqd, bfqq);
6680
6681 /* mark bfqq as waiting a request only if a bic still points to it */
6682 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
6683 reason != BFQQE_BUDGET_TIMEOUT &&
6684 reason != BFQQE_BUDGET_EXHAUSTED)
6685 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
6686}
6687
6688/*
6689 * Budget timeout is not implemented through a dedicated timer, but
6690 * just checked on request arrivals and completions, as well as on
6691 * idle timer expirations.
6692 */
6693static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
6694{
44e44a1b 6695 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
6696}
6697
6698/*
6699 * If we expire a queue that is actively waiting (i.e., with the
6700 * device idled) for the arrival of a new request, then we may incur
6701 * the timestamp misalignment problem described in the body of the
6702 * function __bfq_activate_entity. Hence we return true only if this
6703 * condition does not hold, or if the queue is slow enough to deserve
6704 * only to be kicked off for preserving a high throughput.
6705 */
6706static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
6707{
6708 bfq_log_bfqq(bfqq->bfqd, bfqq,
6709 "may_budget_timeout: wait_request %d left %d timeout %d",
6710 bfq_bfqq_wait_request(bfqq),
6711 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
6712 bfq_bfqq_budget_timeout(bfqq));
6713
6714 return (!bfq_bfqq_wait_request(bfqq) ||
6715 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
6716 &&
6717 bfq_bfqq_budget_timeout(bfqq);
6718}
6719
6720/*
6721 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
6722 * this function returns true for the queue. As a consequence, since
6723 * device idling plays a critical role in both throughput boosting and
6724 * service guarantees, the return value of this function plays a
6725 * critical role in both these aspects as well.
6726 *
6727 * In a nutshell, this function returns true only if idling is
6728 * beneficial for throughput or, even if detrimental for throughput,
6729 * idling is however necessary to preserve service guarantees (low
6730 * latency, desired throughput distribution, ...). In particular, on
6731 * NCQ-capable devices, this function tries to return false, so as to
6732 * help keep the drives' internal queues full, whenever this helps the
6733 * device boost the throughput without causing any service-guarantee
6734 * issue.
6735 *
6736 * In more detail, the return value of this function is obtained by,
6737 * first, computing a number of boolean variables that take into
6738 * account throughput and service-guarantee issues, and, then,
6739 * combining these variables in a logical expression. Most of the
6740 * issues taken into account are not trivial. We discuss these issues
6741 * individually while introducing the variables.
aee69d78
PV
6742 */
6743static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
6744{
6745 struct bfq_data *bfqd = bfqq->bfqd;
cfd69712 6746 bool idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 6747 idling_needed_for_service_guarantees,
cfd69712 6748 asymmetric_scenario;
aee69d78
PV
6749
6750 if (bfqd->strict_guarantees)
6751 return true;
6752
6753 /*
44e44a1b
PV
6754 * The next variable takes into account the cases where idling
6755 * boosts the throughput.
6756 *
e01eff01
PV
6757 * The value of the variable is computed considering, first, that
6758 * idling is virtually always beneficial for the throughput if:
aee69d78 6759 * (a) the device is not NCQ-capable, or
bf2b79e7 6760 * (b) regardless of the presence of NCQ, the device is rotational
e01eff01 6761 * and the request pattern for bfqq is I/O-bound and sequential.
bf2b79e7
PV
6762 *
6763 * Secondly, and in contrast to the above item (b), idling an
6764 * NCQ-capable flash-based device would not boost the
e01eff01 6765 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
6766 * the throughput in proportion to how fast the device
6767 * is. Accordingly, the next variable is true if any of the
6768 * above conditions (a) and (b) is true, and, in particular,
6769 * happens to be false if bfqd is an NCQ-capable flash-based
6770 * device.
aee69d78 6771 */
bf2b79e7 6772 idling_boosts_thr = !bfqd->hw_tag ||
e01eff01
PV
6773 (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
6774 bfq_bfqq_idle_window(bfqq));
aee69d78 6775
cfd69712
PV
6776 /*
6777 * The value of the next variable,
6778 * idling_boosts_thr_without_issues, is equal to that of
6779 * idling_boosts_thr, unless a special case holds. In this
6780 * special case, described below, idling may cause problems to
6781 * weight-raised queues.
6782 *
6783 * When the request pool is saturated (e.g., in the presence
6784 * of write hogs), if the processes associated with
6785 * non-weight-raised queues ask for requests at a lower rate,
6786 * then processes associated with weight-raised queues have a
6787 * higher probability to get a request from the pool
6788 * immediately (or at least soon) when they need one. Thus
6789 * they have a higher probability to actually get a fraction
6790 * of the device throughput proportional to their high
6791 * weight. This is especially true with NCQ-capable drives,
6792 * which enqueue several requests in advance, and further
6793 * reorder internally-queued requests.
6794 *
6795 * For this reason, we force to false the value of
6796 * idling_boosts_thr_without_issues if there are weight-raised
6797 * busy queues. In this case, and if bfqq is not weight-raised,
6798 * this guarantees that the device is not idled for bfqq (if,
6799 * instead, bfqq is weight-raised, then idling will be
6800 * guaranteed by another variable, see below). Combined with
6801 * the timestamping rules of BFQ (see [1] for details), this
6802 * behavior causes bfqq, and hence any sync non-weight-raised
6803 * queue, to get a lower number of requests served, and thus
6804 * to ask for a lower number of requests from the request
6805 * pool, before the busy weight-raised queues get served
6806 * again. This often mitigates starvation problems in the
6807 * presence of heavy write workloads and NCQ, thereby
6808 * guaranteeing a higher application and system responsiveness
6809 * in these hostile scenarios.
6810 */
6811 idling_boosts_thr_without_issues = idling_boosts_thr &&
6812 bfqd->wr_busy_queues == 0;
6813
aee69d78 6814 /*
bf2b79e7
PV
6815 * There is then a case where idling must be performed not
6816 * for throughput concerns, but to preserve service
6817 * guarantees.
6818 *
6819 * To introduce this case, we can note that allowing the drive
6820 * to enqueue more than one request at a time, and hence
44e44a1b 6821 * delegating de facto final scheduling decisions to the
bf2b79e7 6822 * drive's internal scheduler, entails loss of control on the
44e44a1b 6823 * actual request service order. In particular, the critical
bf2b79e7 6824 * situation is when requests from different processes happen
44e44a1b
PV
6825 * to be present, at the same time, in the internal queue(s)
6826 * of the drive. In such a situation, the drive, by deciding
6827 * the service order of the internally-queued requests, does
6828 * determine also the actual throughput distribution among
6829 * these processes. But the drive typically has no notion or
6830 * concern about per-process throughput distribution, and
6831 * makes its decisions only on a per-request basis. Therefore,
6832 * the service distribution enforced by the drive's internal
6833 * scheduler is likely to coincide with the desired
6834 * device-throughput distribution only in a completely
bf2b79e7
PV
6835 * symmetric scenario where:
6836 * (i) each of these processes must get the same throughput as
6837 * the others;
6838 * (ii) all these processes have the same I/O pattern
6839 (either sequential or random).
6840 * In fact, in such a scenario, the drive will tend to treat
6841 * the requests of each of these processes in about the same
6842 * way as the requests of the others, and thus to provide
6843 * each of these processes with about the same throughput
6844 * (which is exactly the desired throughput distribution). In
6845 * contrast, in any asymmetric scenario, device idling is
6846 * certainly needed to guarantee that bfqq receives its
6847 * assigned fraction of the device throughput (see [1] for
6848 * details).
6849 *
6850 * We address this issue by controlling, actually, only the
6851 * symmetry sub-condition (i), i.e., provided that
6852 * sub-condition (i) holds, idling is not performed,
6853 * regardless of whether sub-condition (ii) holds. In other
6854 * words, only if sub-condition (i) holds, then idling is
6855 * allowed, and the device tends to be prevented from queueing
6856 * many requests, possibly of several processes. The reason
6857 * for not controlling also sub-condition (ii) is that we
6858 * exploit preemption to preserve guarantees in case of
6859 * symmetric scenarios, even if (ii) does not hold, as
6860 * explained in the next two paragraphs.
6861 *
6862 * Even if a queue, say Q, is expired when it remains idle, Q
6863 * can still preempt the new in-service queue if the next
6864 * request of Q arrives soon (see the comments on
6865 * bfq_bfqq_update_budg_for_activation). If all queues and
6866 * groups have the same weight, this form of preemption,
6867 * combined with the hole-recovery heuristic described in the
6868 * comments on function bfq_bfqq_update_budg_for_activation,
6869 * are enough to preserve a correct bandwidth distribution in
6870 * the mid term, even without idling. In fact, even if not
6871 * idling allows the internal queues of the device to contain
6872 * many requests, and thus to reorder requests, we can rather
6873 * safely assume that the internal scheduler still preserves a
6874 * minimum of mid-term fairness. The motivation for using
6875 * preemption instead of idling is that, by not idling,
6876 * service guarantees are preserved without minimally
6877 * sacrificing throughput. In other words, both a high
6878 * throughput and its desired distribution are obtained.
6879 *
6880 * More precisely, this preemption-based, idleless approach
6881 * provides fairness in terms of IOPS, and not sectors per
6882 * second. This can be seen with a simple example. Suppose
6883 * that there are two queues with the same weight, but that
6884 * the first queue receives requests of 8 sectors, while the
6885 * second queue receives requests of 1024 sectors. In
6886 * addition, suppose that each of the two queues contains at
6887 * most one request at a time, which implies that each queue
6888 * always remains idle after it is served. Finally, after
6889 * remaining idle, each queue receives very quickly a new
6890 * request. It follows that the two queues are served
6891 * alternatively, preempting each other if needed. This
6892 * implies that, although both queues have the same weight,
6893 * the queue with large requests receives a service that is
6894 * 1024/8 times as high as the service received by the other
6895 * queue.
44e44a1b 6896 *
bf2b79e7
PV
6897 * On the other hand, device idling is performed, and thus
6898 * pure sector-domain guarantees are provided, for the
6899 * following queues, which are likely to need stronger
6900 * throughput guarantees: weight-raised queues, and queues
6901 * with a higher weight than other queues. When such queues
6902 * are active, sub-condition (i) is false, which triggers
6903 * device idling.
44e44a1b 6904 *
bf2b79e7
PV
6905 * According to the above considerations, the next variable is
6906 * true (only) if sub-condition (i) holds. To compute the
6907 * value of this variable, we not only use the return value of
6908 * the function bfq_symmetric_scenario(), but also check
6909 * whether bfqq is being weight-raised, because
6910 * bfq_symmetric_scenario() does not take into account also
6911 * weight-raised queues (see comments on
6912 * bfq_weights_tree_add()).
44e44a1b
PV
6913 *
6914 * As a side note, it is worth considering that the above
6915 * device-idling countermeasures may however fail in the
6916 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
6917 * disabled in a time period during which all symmetry
6918 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
6919 * enqueue many requests, but at some later point in time some
6920 * sub-condition stops to hold, then it may become impossible
6921 * to let requests be served in the desired order until all
6922 * the requests already queued in the device have been served.
6923 */
bf2b79e7
PV
6924 asymmetric_scenario = bfqq->wr_coeff > 1 ||
6925 !bfq_symmetric_scenario(bfqd);
44e44a1b 6926
e1b2324d
AA
6927 /*
6928 * Finally, there is a case where maximizing throughput is the
6929 * best choice even if it may cause unfairness toward
6930 * bfqq. Such a case is when bfqq became active in a burst of
6931 * queue activations. Queues that became active during a large
6932 * burst benefit only from throughput, as discussed in the
6933 * comments on bfq_handle_burst. Thus, if bfqq became active
6934 * in a burst and not idling the device maximizes throughput,
6935 * then the device must no be idled, because not idling the
6936 * device provides bfqq and all other queues in the burst with
6937 * maximum benefit. Combining this and the above case, we can
6938 * now establish when idling is actually needed to preserve
6939 * service guarantees.
6940 */
6941 idling_needed_for_service_guarantees =
6942 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
6943
44e44a1b
PV
6944 /*
6945 * We have now all the components we need to compute the return
6946 * value of the function, which is true only if both the following
6947 * conditions hold:
aee69d78 6948 * 1) bfqq is sync, because idling make sense only for sync queues;
44e44a1b
PV
6949 * 2) idling either boosts the throughput (without issues), or
6950 * is necessary to preserve service guarantees.
aee69d78 6951 */
44e44a1b 6952 return bfq_bfqq_sync(bfqq) &&
e1b2324d
AA
6953 (idling_boosts_thr_without_issues ||
6954 idling_needed_for_service_guarantees);
aee69d78
PV
6955}
6956
6957/*
6958 * If the in-service queue is empty but the function bfq_bfqq_may_idle
6959 * returns true, then:
6960 * 1) the queue must remain in service and cannot be expired, and
6961 * 2) the device must be idled to wait for the possible arrival of a new
6962 * request for the queue.
6963 * See the comments on the function bfq_bfqq_may_idle for the reasons
6964 * why performing device idling is the best choice to boost the throughput
6965 * and preserve service guarantees when bfq_bfqq_may_idle itself
6966 * returns true.
6967 */
6968static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
6969{
6970 struct bfq_data *bfqd = bfqq->bfqd;
6971
6972 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
6973 bfq_bfqq_may_idle(bfqq);
6974}
6975
6976/*
6977 * Select a queue for service. If we have a current queue in service,
6978 * check whether to continue servicing it, or retrieve and set a new one.
6979 */
6980static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
6981{
6982 struct bfq_queue *bfqq;
6983 struct request *next_rq;
6984 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
6985
6986 bfqq = bfqd->in_service_queue;
6987 if (!bfqq)
6988 goto new_queue;
6989
6990 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
6991
6992 if (bfq_may_expire_for_budg_timeout(bfqq) &&
6993 !bfq_bfqq_wait_request(bfqq) &&
6994 !bfq_bfqq_must_idle(bfqq))
6995 goto expire;
6996
6997check_queue:
6998 /*
6999 * This loop is rarely executed more than once. Even when it
7000 * happens, it is much more convenient to re-execute this loop
7001 * than to return NULL and trigger a new dispatch to get a
7002 * request served.
7003 */
7004 next_rq = bfqq->next_rq;
7005 /*
7006 * If bfqq has requests queued and it has enough budget left to
7007 * serve them, keep the queue, otherwise expire it.
7008 */
7009 if (next_rq) {
7010 if (bfq_serv_to_charge(next_rq, bfqq) >
7011 bfq_bfqq_budget_left(bfqq)) {
7012 /*
7013 * Expire the queue for budget exhaustion,
7014 * which makes sure that the next budget is
7015 * enough to serve the next request, even if
7016 * it comes from the fifo expired path.
7017 */
7018 reason = BFQQE_BUDGET_EXHAUSTED;
7019 goto expire;
7020 } else {
7021 /*
7022 * The idle timer may be pending because we may
7023 * not disable disk idling even when a new request
7024 * arrives.
7025 */
7026 if (bfq_bfqq_wait_request(bfqq)) {
7027 /*
7028 * If we get here: 1) at least a new request
7029 * has arrived but we have not disabled the
7030 * timer because the request was too small,
7031 * 2) then the block layer has unplugged
7032 * the device, causing the dispatch to be
7033 * invoked.
7034 *
7035 * Since the device is unplugged, now the
7036 * requests are probably large enough to
7037 * provide a reasonable throughput.
7038 * So we disable idling.
7039 */
7040 bfq_clear_bfqq_wait_request(bfqq);
7041 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 7042 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
7043 }
7044 goto keep_queue;
7045 }
7046 }
7047
7048 /*
7049 * No requests pending. However, if the in-service queue is idling
7050 * for a new request, or has requests waiting for a completion and
7051 * may idle after their completion, then keep it anyway.
7052 */
7053 if (bfq_bfqq_wait_request(bfqq) ||
7054 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
7055 bfqq = NULL;
7056 goto keep_queue;
7057 }
7058
7059 reason = BFQQE_NO_MORE_REQUESTS;
7060expire:
7061 bfq_bfqq_expire(bfqd, bfqq, false, reason);
7062new_queue:
7063 bfqq = bfq_set_in_service_queue(bfqd);
7064 if (bfqq) {
7065 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
7066 goto check_queue;
7067 }
7068keep_queue:
7069 if (bfqq)
7070 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
7071 else
7072 bfq_log(bfqd, "select_queue: no queue returned");
7073
7074 return bfqq;
7075}
7076
44e44a1b
PV
7077static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
7078{
7079 struct bfq_entity *entity = &bfqq->entity;
7080
7081 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
7082 bfq_log_bfqq(bfqd, bfqq,
7083 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
7084 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
7085 jiffies_to_msecs(bfqq->wr_cur_max_time),
7086 bfqq->wr_coeff,
7087 bfqq->entity.weight, bfqq->entity.orig_weight);
7088
7089 if (entity->prio_changed)
7090 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
7091
7092 /*
e1b2324d
AA
7093 * If the queue was activated in a burst, or too much
7094 * time has elapsed from the beginning of this
7095 * weight-raising period, then end weight raising.
44e44a1b 7096 */
e1b2324d
AA
7097 if (bfq_bfqq_in_large_burst(bfqq))
7098 bfq_bfqq_end_wr(bfqq);
7099 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
7100 bfqq->wr_cur_max_time)) {
77b7dcea
PV
7101 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
7102 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 7103 bfq_wr_duration(bfqd)))
77b7dcea
PV
7104 bfq_bfqq_end_wr(bfqq);
7105 else {
7106 /* switch back to interactive wr */
7107 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
7108 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
7109 bfqq->last_wr_start_finish =
7110 bfqq->wr_start_at_switch_to_srt;
7111 bfqq->entity.prio_changed = 1;
7112 }
44e44a1b
PV
7113 }
7114 }
7115 /* Update weight both if it must be raised and if it must be lowered */
7116 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
7117 __bfq_entity_update_weight_prio(
7118 bfq_entity_service_tree(entity),
7119 entity);
7120}
7121
aee69d78
PV
7122/*
7123 * Dispatch next request from bfqq.
7124 */
7125static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
7126 struct bfq_queue *bfqq)
7127{
7128 struct request *rq = bfqq->next_rq;
7129 unsigned long service_to_charge;
7130
7131 service_to_charge = bfq_serv_to_charge(rq, bfqq);
7132
7133 bfq_bfqq_served(bfqq, service_to_charge);
7134
7135 bfq_dispatch_remove(bfqd->queue, rq);
7136
44e44a1b
PV
7137 /*
7138 * If weight raising has to terminate for bfqq, then next
7139 * function causes an immediate update of bfqq's weight,
7140 * without waiting for next activation. As a consequence, on
7141 * expiration, bfqq will be timestamped as if has never been
7142 * weight-raised during this service slot, even if it has
7143 * received part or even most of the service as a
7144 * weight-raised queue. This inflates bfqq's timestamps, which
7145 * is beneficial, as bfqq is then more willing to leave the
7146 * device immediately to possible other weight-raised queues.
7147 */
7148 bfq_update_wr_data(bfqd, bfqq);
7149
aee69d78
PV
7150 if (!bfqd->in_service_bic) {
7151 atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
7152 bfqd->in_service_bic = RQ_BIC(rq);
7153 }
7154
7155 /*
7156 * Expire bfqq, pretending that its budget expired, if bfqq
7157 * belongs to CLASS_IDLE and other queues are waiting for
7158 * service.
7159 */
7160 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
7161 goto expire;
7162
7163 return rq;
7164
7165expire:
7166 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
7167 return rq;
7168}
7169
7170static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
7171{
7172 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7173
7174 /*
7175 * Avoiding lock: a race on bfqd->busy_queues should cause at
7176 * most a call to dispatch for nothing
7177 */
7178 return !list_empty_careful(&bfqd->dispatch) ||
7179 bfqd->busy_queues > 0;
7180}
7181
7182static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
7183{
7184 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7185 struct request *rq = NULL;
7186 struct bfq_queue *bfqq = NULL;
7187
7188 if (!list_empty(&bfqd->dispatch)) {
7189 rq = list_first_entry(&bfqd->dispatch, struct request,
7190 queuelist);
7191 list_del_init(&rq->queuelist);
7192
7193 bfqq = RQ_BFQQ(rq);
7194
7195 if (bfqq) {
7196 /*
7197 * Increment counters here, because this
7198 * dispatch does not follow the standard
7199 * dispatch flow (where counters are
7200 * incremented)
7201 */
7202 bfqq->dispatched++;
7203
7204 goto inc_in_driver_start_rq;
7205 }
7206
7207 /*
7208 * We exploit the put_rq_private hook to decrement
7209 * rq_in_driver, but put_rq_private will not be
7210 * invoked on this request. So, to avoid unbalance,
7211 * just start this request, without incrementing
7212 * rq_in_driver. As a negative consequence,
7213 * rq_in_driver is deceptively lower than it should be
7214 * while this request is in service. This may cause
7215 * bfq_schedule_dispatch to be invoked uselessly.
7216 *
7217 * As for implementing an exact solution, the
7218 * put_request hook, if defined, is probably invoked
7219 * also on this request. So, by exploiting this hook,
7220 * we could 1) increment rq_in_driver here, and 2)
7221 * decrement it in put_request. Such a solution would
7222 * let the value of the counter be always accurate,
7223 * but it would entail using an extra interface
7224 * function. This cost seems higher than the benefit,
7225 * being the frequency of non-elevator-private
7226 * requests very low.
7227 */
7228 goto start_rq;
7229 }
7230
7231 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
7232
7233 if (bfqd->busy_queues == 0)
7234 goto exit;
7235
7236 /*
7237 * Force device to serve one request at a time if
7238 * strict_guarantees is true. Forcing this service scheme is
7239 * currently the ONLY way to guarantee that the request
7240 * service order enforced by the scheduler is respected by a
7241 * queueing device. Otherwise the device is free even to make
7242 * some unlucky request wait for as long as the device
7243 * wishes.
7244 *
7245 * Of course, serving one request at at time may cause loss of
7246 * throughput.
7247 */
7248 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
7249 goto exit;
7250
7251 bfqq = bfq_select_queue(bfqd);
7252 if (!bfqq)
7253 goto exit;
7254
7255 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
7256
7257 if (rq) {
7258inc_in_driver_start_rq:
7259 bfqd->rq_in_driver++;
7260start_rq:
7261 rq->rq_flags |= RQF_STARTED;
7262 }
7263exit:
7264 return rq;
7265}
7266
7267static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
7268{
7269 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7270 struct request *rq;
7271
7272 spin_lock_irq(&bfqd->lock);
36eca894 7273
aee69d78 7274 rq = __bfq_dispatch_request(hctx);
36eca894 7275 bfq_unlock_put_ioc(bfqd);
aee69d78
PV
7276
7277 return rq;
7278}
7279
7280/*
7281 * Task holds one reference to the queue, dropped when task exits. Each rq
7282 * in-flight on this queue also holds a reference, dropped when rq is freed.
7283 *
7284 * Scheduler lock must be held here. Recall not to use bfqq after calling
7285 * this function on it.
7286 */
7287static void bfq_put_queue(struct bfq_queue *bfqq)
7288{
e21b7a0b
AA
7289#ifdef CONFIG_BFQ_GROUP_IOSCHED
7290 struct bfq_group *bfqg = bfqq_group(bfqq);
7291#endif
7292
aee69d78
PV
7293 if (bfqq->bfqd)
7294 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
7295 bfqq, bfqq->ref);
7296
7297 bfqq->ref--;
7298 if (bfqq->ref)
7299 return;
7300
e1b2324d
AA
7301 if (bfq_bfqq_sync(bfqq))
7302 /*
7303 * The fact that this queue is being destroyed does not
7304 * invalidate the fact that this queue may have been
7305 * activated during the current burst. As a consequence,
7306 * although the queue does not exist anymore, and hence
7307 * needs to be removed from the burst list if there,
7308 * the burst size has not to be decremented.
7309 */
7310 hlist_del_init(&bfqq->burst_list_node);
e21b7a0b 7311
aee69d78 7312 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b
AA
7313#ifdef CONFIG_BFQ_GROUP_IOSCHED
7314 bfqg_put(bfqg);
7315#endif
aee69d78
PV
7316}
7317
36eca894
AA
7318static void bfq_put_cooperator(struct bfq_queue *bfqq)
7319{
7320 struct bfq_queue *__bfqq, *next;
7321
7322 /*
7323 * If this queue was scheduled to merge with another queue, be
7324 * sure to drop the reference taken on that queue (and others in
7325 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
7326 */
7327 __bfqq = bfqq->new_bfqq;
7328 while (__bfqq) {
7329 if (__bfqq == bfqq)
7330 break;
7331 next = __bfqq->new_bfqq;
7332 bfq_put_queue(__bfqq);
7333 __bfqq = next;
7334 }
7335}
7336
aee69d78
PV
7337static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
7338{
7339 if (bfqq == bfqd->in_service_queue) {
7340 __bfq_bfqq_expire(bfqd, bfqq);
7341 bfq_schedule_dispatch(bfqd);
7342 }
7343
7344 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
7345
36eca894
AA
7346 bfq_put_cooperator(bfqq);
7347
aee69d78
PV
7348 bfq_put_queue(bfqq); /* release process reference */
7349}
7350
7351static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
7352{
7353 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
7354 struct bfq_data *bfqd;
7355
7356 if (bfqq)
7357 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
7358
7359 if (bfqq && bfqd) {
7360 unsigned long flags;
7361
7362 spin_lock_irqsave(&bfqd->lock, flags);
36eca894
AA
7363 /*
7364 * If the bic is using a shared queue, put the
7365 * reference taken on the io_context when the bic
7366 * started using a shared bfq_queue. This put cannot
7367 * make ioc->ref_count reach 0, then no ioc->lock
7368 * risks to be taken (leading to possible deadlock
7369 * scenarios).
7370 */
7371 if (is_sync && bfq_bfqq_coop(bfqq))
7372 put_io_context(bic->icq.ioc);
7373
aee69d78
PV
7374 bfq_exit_bfqq(bfqd, bfqq);
7375 bic_set_bfqq(bic, NULL, is_sync);
36eca894 7376 bfq_unlock_put_ioc_restore(bfqd, flags);
aee69d78
PV
7377 }
7378}
7379
7380static void bfq_exit_icq(struct io_cq *icq)
7381{
7382 struct bfq_io_cq *bic = icq_to_bic(icq);
7383
7384 bfq_exit_icq_bfqq(bic, true);
7385 bfq_exit_icq_bfqq(bic, false);
7386}
7387
7388/*
7389 * Update the entity prio values; note that the new values will not
7390 * be used until the next (re)activation.
7391 */
7392static void
7393bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
7394{
7395 struct task_struct *tsk = current;
7396 int ioprio_class;
7397 struct bfq_data *bfqd = bfqq->bfqd;
7398
7399 if (!bfqd)
7400 return;
7401
7402 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
7403 switch (ioprio_class) {
7404 default:
7405 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
7406 "bfq: bad prio class %d\n", ioprio_class);
7407 case IOPRIO_CLASS_NONE:
7408 /*
7409 * No prio set, inherit CPU scheduling settings.
7410 */
7411 bfqq->new_ioprio = task_nice_ioprio(tsk);
7412 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
7413 break;
7414 case IOPRIO_CLASS_RT:
7415 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
7416 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
7417 break;
7418 case IOPRIO_CLASS_BE:
7419 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
7420 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
7421 break;
7422 case IOPRIO_CLASS_IDLE:
7423 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
7424 bfqq->new_ioprio = 7;
7425 bfq_clear_bfqq_idle_window(bfqq);
7426 break;
7427 }
7428
7429 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
7430 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
7431 bfqq->new_ioprio);
7432 bfqq->new_ioprio = IOPRIO_BE_NR;
7433 }
7434
7435 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
7436 bfqq->entity.prio_changed = 1;
7437}
7438
7439static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
7440{
7441 struct bfq_data *bfqd = bic_to_bfqd(bic);
7442 struct bfq_queue *bfqq;
7443 int ioprio = bic->icq.ioc->ioprio;
7444
7445 /*
7446 * This condition may trigger on a newly created bic, be sure to
7447 * drop the lock before returning.
7448 */
7449 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
7450 return;
7451
7452 bic->ioprio = ioprio;
7453
7454 bfqq = bic_to_bfqq(bic, false);
7455 if (bfqq) {
7456 /* release process reference on this queue */
7457 bfq_put_queue(bfqq);
7458 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
7459 bic_set_bfqq(bic, bfqq, false);
7460 }
7461
7462 bfqq = bic_to_bfqq(bic, true);
7463 if (bfqq)
7464 bfq_set_next_ioprio_data(bfqq, bic);
7465}
7466
7467static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
7468 struct bfq_io_cq *bic, pid_t pid, int is_sync)
7469{
7470 RB_CLEAR_NODE(&bfqq->entity.rb_node);
7471 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 7472 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
7473
7474 bfqq->ref = 0;
7475 bfqq->bfqd = bfqd;
7476
7477 if (bic)
7478 bfq_set_next_ioprio_data(bfqq, bic);
7479
7480 if (is_sync) {
7481 if (!bfq_class_idle(bfqq))
7482 bfq_mark_bfqq_idle_window(bfqq);
7483 bfq_mark_bfqq_sync(bfqq);
e1b2324d 7484 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
7485 } else
7486 bfq_clear_bfqq_sync(bfqq);
7487
7488 /* set end request to minus infinity from now */
7489 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
7490
7491 bfq_mark_bfqq_IO_bound(bfqq);
7492
7493 bfqq->pid = pid;
7494
7495 /* Tentative initial value to trade off between thr and lat */
54b60456 7496 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 7497 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 7498
44e44a1b 7499 bfqq->wr_coeff = 1;
36eca894 7500 bfqq->last_wr_start_finish = jiffies;
77b7dcea 7501 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 7502 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
7503
7504 /*
7505 * Set to the value for which bfqq will not be deemed as
7506 * soft rt when it becomes backlogged.
7507 */
7508 bfqq->soft_rt_next_start = bfq_greatest_from_now();
44e44a1b 7509
aee69d78
PV
7510 /* first request is almost certainly seeky */
7511 bfqq->seek_history = 1;
7512}
7513
7514static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 7515 struct bfq_group *bfqg,
aee69d78
PV
7516 int ioprio_class, int ioprio)
7517{
7518 switch (ioprio_class) {
7519 case IOPRIO_CLASS_RT:
e21b7a0b 7520 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
7521 case IOPRIO_CLASS_NONE:
7522 ioprio = IOPRIO_NORM;
7523 /* fall through */
7524 case IOPRIO_CLASS_BE:
e21b7a0b 7525 return &bfqg->async_bfqq[1][ioprio];
aee69d78 7526 case IOPRIO_CLASS_IDLE:
e21b7a0b 7527 return &bfqg->async_idle_bfqq;
aee69d78
PV
7528 default:
7529 return NULL;
7530 }
7531}
7532
7533static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
7534 struct bio *bio, bool is_sync,
7535 struct bfq_io_cq *bic)
7536{
7537 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
7538 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
7539 struct bfq_queue **async_bfqq = NULL;
7540 struct bfq_queue *bfqq;
e21b7a0b 7541 struct bfq_group *bfqg;
aee69d78
PV
7542
7543 rcu_read_lock();
7544
e21b7a0b
AA
7545 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
7546 if (!bfqg) {
7547 bfqq = &bfqd->oom_bfqq;
7548 goto out;
7549 }
7550
aee69d78 7551 if (!is_sync) {
e21b7a0b 7552 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
7553 ioprio);
7554 bfqq = *async_bfqq;
7555 if (bfqq)
7556 goto out;
7557 }
7558
7559 bfqq = kmem_cache_alloc_node(bfq_pool,
7560 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
7561 bfqd->queue->node);
7562
7563 if (bfqq) {
7564 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
7565 is_sync);
e21b7a0b 7566 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
7567 bfq_log_bfqq(bfqd, bfqq, "allocated");
7568 } else {
7569 bfqq = &bfqd->oom_bfqq;
7570 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
7571 goto out;
7572 }
7573
7574 /*
7575 * Pin the queue now that it's allocated, scheduler exit will
7576 * prune it.
7577 */
7578 if (async_bfqq) {
e21b7a0b
AA
7579 bfqq->ref++; /*
7580 * Extra group reference, w.r.t. sync
7581 * queue. This extra reference is removed
7582 * only if bfqq->bfqg disappears, to
7583 * guarantee that this queue is not freed
7584 * until its group goes away.
7585 */
7586 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
7587 bfqq, bfqq->ref);
7588 *async_bfqq = bfqq;
7589 }
7590
7591out:
7592 bfqq->ref++; /* get a process reference to this queue */
7593 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
7594 rcu_read_unlock();
7595 return bfqq;
7596}
7597
7598static void bfq_update_io_thinktime(struct bfq_data *bfqd,
7599 struct bfq_queue *bfqq)
7600{
7601 struct bfq_ttime *ttime = &bfqq->ttime;
7602 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
7603
7604 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
7605
7606 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
7607 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
7608 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
7609 ttime->ttime_samples);
7610}
7611
7612static void
7613bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
7614 struct request *rq)
7615{
aee69d78 7616 bfqq->seek_history <<= 1;
ab0e43e9
PV
7617 bfqq->seek_history |=
7618 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
7619 (!blk_queue_nonrot(bfqd->queue) ||
7620 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
7621}
7622
7623/*
7624 * Disable idle window if the process thinks too long or seeks so much that
7625 * it doesn't matter.
7626 */
7627static void bfq_update_idle_window(struct bfq_data *bfqd,
7628 struct bfq_queue *bfqq,
7629 struct bfq_io_cq *bic)
7630{
7631 int enable_idle;
7632
7633 /* Don't idle for async or idle io prio class. */
7634 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
7635 return;
7636
36eca894
AA
7637 /* Idle window just restored, statistics are meaningless. */
7638 if (time_is_after_eq_jiffies(bfqq->split_time +
7639 bfqd->bfq_wr_min_idle_time))
7640 return;
7641
aee69d78
PV
7642 enable_idle = bfq_bfqq_idle_window(bfqq);
7643
7644 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
7645 bfqd->bfq_slice_idle == 0 ||
bcd56426
PV
7646 (bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
7647 bfqq->wr_coeff == 1))
aee69d78
PV
7648 enable_idle = 0;
7649 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) {
44e44a1b
PV
7650 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle &&
7651 bfqq->wr_coeff == 1)
aee69d78
PV
7652 enable_idle = 0;
7653 else
7654 enable_idle = 1;
7655 }
7656 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
7657 enable_idle);
7658
7659 if (enable_idle)
7660 bfq_mark_bfqq_idle_window(bfqq);
7661 else
7662 bfq_clear_bfqq_idle_window(bfqq);
7663}
7664
7665/*
7666 * Called when a new fs request (rq) is added to bfqq. Check if there's
7667 * something we should do about it.
7668 */
7669static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
7670 struct request *rq)
7671{
7672 struct bfq_io_cq *bic = RQ_BIC(rq);
7673
7674 if (rq->cmd_flags & REQ_META)
7675 bfqq->meta_pending++;
7676
7677 bfq_update_io_thinktime(bfqd, bfqq);
7678 bfq_update_io_seektime(bfqd, bfqq, rq);
7679 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
7680 !BFQQ_SEEKY(bfqq))
7681 bfq_update_idle_window(bfqd, bfqq, bic);
7682
7683 bfq_log_bfqq(bfqd, bfqq,
7684 "rq_enqueued: idle_window=%d (seeky %d)",
7685 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
7686
7687 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
7688
7689 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
7690 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
7691 blk_rq_sectors(rq) < 32;
7692 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
7693
7694 /*
7695 * There is just this request queued: if the request
7696 * is small and the queue is not to be expired, then
7697 * just exit.
7698 *
7699 * In this way, if the device is being idled to wait
7700 * for a new request from the in-service queue, we
7701 * avoid unplugging the device and committing the
7702 * device to serve just a small request. On the
7703 * contrary, we wait for the block layer to decide
7704 * when to unplug the device: hopefully, new requests
7705 * will be merged to this one quickly, then the device
7706 * will be unplugged and larger requests will be
7707 * dispatched.
7708 */
7709 if (small_req && !budget_timeout)
7710 return;
7711
7712 /*
7713 * A large enough request arrived, or the queue is to
7714 * be expired: in both cases disk idling is to be
7715 * stopped, so clear wait_request flag and reset
7716 * timer.
7717 */
7718 bfq_clear_bfqq_wait_request(bfqq);
7719 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 7720 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
7721
7722 /*
7723 * The queue is not empty, because a new request just
7724 * arrived. Hence we can safely expire the queue, in
7725 * case of budget timeout, without risking that the
7726 * timestamps of the queue are not updated correctly.
7727 * See [1] for more details.
7728 */
7729 if (budget_timeout)
7730 bfq_bfqq_expire(bfqd, bfqq, false,
7731 BFQQE_BUDGET_TIMEOUT);
7732 }
7733}
7734
7735static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
7736{
36eca894
AA
7737 struct bfq_queue *bfqq = RQ_BFQQ(rq),
7738 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
7739
7740 if (new_bfqq) {
7741 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
7742 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
7743 /*
7744 * Release the request's reference to the old bfqq
7745 * and make sure one is taken to the shared queue.
7746 */
7747 new_bfqq->allocated++;
7748 bfqq->allocated--;
7749 new_bfqq->ref++;
e1b2324d 7750 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
7751 /*
7752 * If the bic associated with the process
7753 * issuing this request still points to bfqq
7754 * (and thus has not been already redirected
7755 * to new_bfqq or even some other bfq_queue),
7756 * then complete the merge and redirect it to
7757 * new_bfqq.
7758 */
7759 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
7760 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
7761 bfqq, new_bfqq);
7762 /*
7763 * rq is about to be enqueued into new_bfqq,
7764 * release rq reference on bfqq
7765 */
7766 bfq_put_queue(bfqq);
7767 rq->elv.priv[1] = new_bfqq;
7768 bfqq = new_bfqq;
7769 }
aee69d78
PV
7770
7771 bfq_add_request(rq);
7772
7773 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
7774 list_add_tail(&rq->queuelist, &bfqq->fifo);
7775
7776 bfq_rq_enqueued(bfqd, bfqq, rq);
7777}
7778
7779static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
7780 bool at_head)
7781{
7782 struct request_queue *q = hctx->queue;
7783 struct bfq_data *bfqd = q->elevator->elevator_data;
7784
7785 spin_lock_irq(&bfqd->lock);
7786 if (blk_mq_sched_try_insert_merge(q, rq)) {
7787 spin_unlock_irq(&bfqd->lock);
7788 return;
7789 }
7790
7791 spin_unlock_irq(&bfqd->lock);
7792
7793 blk_mq_sched_request_inserted(rq);
7794
7795 spin_lock_irq(&bfqd->lock);
7796 if (at_head || blk_rq_is_passthrough(rq)) {
7797 if (at_head)
7798 list_add(&rq->queuelist, &bfqd->dispatch);
7799 else
7800 list_add_tail(&rq->queuelist, &bfqd->dispatch);
7801 } else {
7802 __bfq_insert_request(bfqd, rq);
7803
7804 if (rq_mergeable(rq)) {
7805 elv_rqhash_add(q, rq);
7806 if (!q->last_merge)
7807 q->last_merge = rq;
7808 }
7809 }
7810
36eca894 7811 bfq_unlock_put_ioc(bfqd);
aee69d78
PV
7812}
7813
7814static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
7815 struct list_head *list, bool at_head)
7816{
7817 while (!list_empty(list)) {
7818 struct request *rq;
7819
7820 rq = list_first_entry(list, struct request, queuelist);
7821 list_del_init(&rq->queuelist);
7822 bfq_insert_request(hctx, rq, at_head);
7823 }
7824}
7825
7826static void bfq_update_hw_tag(struct bfq_data *bfqd)
7827{
7828 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
7829 bfqd->rq_in_driver);
7830
7831 if (bfqd->hw_tag == 1)
7832 return;
7833
7834 /*
7835 * This sample is valid if the number of outstanding requests
7836 * is large enough to allow a queueing behavior. Note that the
7837 * sum is not exact, as it's not taking into account deactivated
7838 * requests.
7839 */
7840 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
7841 return;
7842
7843 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
7844 return;
7845
7846 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
7847 bfqd->max_rq_in_driver = 0;
7848 bfqd->hw_tag_samples = 0;
7849}
7850
7851static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
7852{
ab0e43e9
PV
7853 u64 now_ns;
7854 u32 delta_us;
7855
aee69d78
PV
7856 bfq_update_hw_tag(bfqd);
7857
7858 bfqd->rq_in_driver--;
7859 bfqq->dispatched--;
7860
44e44a1b
PV
7861 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
7862 /*
7863 * Set budget_timeout (which we overload to store the
7864 * time at which the queue remains with no backlog and
7865 * no outstanding request; used by the weight-raising
7866 * mechanism).
7867 */
7868 bfqq->budget_timeout = jiffies;
1de0c4cd
AA
7869
7870 bfq_weights_tree_remove(bfqd, &bfqq->entity,
7871 &bfqd->queue_weights_tree);
44e44a1b
PV
7872 }
7873
ab0e43e9
PV
7874 now_ns = ktime_get_ns();
7875
7876 bfqq->ttime.last_end_request = now_ns;
7877
7878 /*
7879 * Using us instead of ns, to get a reasonable precision in
7880 * computing rate in next check.
7881 */
7882 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
7883
7884 /*
7885 * If the request took rather long to complete, and, according
7886 * to the maximum request size recorded, this completion latency
7887 * implies that the request was certainly served at a very low
7888 * rate (less than 1M sectors/sec), then the whole observation
7889 * interval that lasts up to this time instant cannot be a
7890 * valid time interval for computing a new peak rate. Invoke
7891 * bfq_update_rate_reset to have the following three steps
7892 * taken:
7893 * - close the observation interval at the last (previous)
7894 * request dispatch or completion
7895 * - compute rate, if possible, for that observation interval
7896 * - reset to zero samples, which will trigger a proper
7897 * re-initialization of the observation interval on next
7898 * dispatch
7899 */
7900 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
7901 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
7902 1UL<<(BFQ_RATE_SHIFT - 10))
7903 bfq_update_rate_reset(bfqd, NULL);
7904 bfqd->last_completion = now_ns;
aee69d78 7905
77b7dcea
PV
7906 /*
7907 * If we are waiting to discover whether the request pattern
7908 * of the task associated with the queue is actually
7909 * isochronous, and both requisites for this condition to hold
7910 * are now satisfied, then compute soft_rt_next_start (see the
7911 * comments on the function bfq_bfqq_softrt_next_start()). We
7912 * schedule this delayed check when bfqq expires, if it still
7913 * has in-flight requests.
7914 */
7915 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
7916 RB_EMPTY_ROOT(&bfqq->sort_list))
7917 bfqq->soft_rt_next_start =
7918 bfq_bfqq_softrt_next_start(bfqd, bfqq);
7919
aee69d78
PV
7920 /*
7921 * If this is the in-service queue, check if it needs to be expired,
7922 * or if we want to idle in case it has no pending requests.
7923 */
7924 if (bfqd->in_service_queue == bfqq) {
44e44a1b 7925 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
7926 bfq_arm_slice_timer(bfqd);
7927 return;
7928 } else if (bfq_may_expire_for_budg_timeout(bfqq))
7929 bfq_bfqq_expire(bfqd, bfqq, false,
7930 BFQQE_BUDGET_TIMEOUT);
7931 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
7932 (bfqq->dispatched == 0 ||
7933 !bfq_bfqq_may_idle(bfqq)))
7934 bfq_bfqq_expire(bfqd, bfqq, false,
7935 BFQQE_NO_MORE_REQUESTS);
7936 }
7937}
7938
7939static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
7940{
7941 bfqq->allocated--;
7942
7943 bfq_put_queue(bfqq);
7944}
7945
7946static void bfq_put_rq_private(struct request_queue *q, struct request *rq)
7947{
7948 struct bfq_queue *bfqq = RQ_BFQQ(rq);
7949 struct bfq_data *bfqd = bfqq->bfqd;
7950
e21b7a0b
AA
7951 if (rq->rq_flags & RQF_STARTED)
7952 bfqg_stats_update_completion(bfqq_group(bfqq),
7953 rq_start_time_ns(rq),
7954 rq_io_start_time_ns(rq),
7955 rq->cmd_flags);
aee69d78
PV
7956
7957 if (likely(rq->rq_flags & RQF_STARTED)) {
7958 unsigned long flags;
7959
7960 spin_lock_irqsave(&bfqd->lock, flags);
7961
7962 bfq_completed_request(bfqq, bfqd);
7963 bfq_put_rq_priv_body(bfqq);
7964
36eca894 7965 bfq_unlock_put_ioc_restore(bfqd, flags);
aee69d78
PV
7966 } else {
7967 /*
7968 * Request rq may be still/already in the scheduler,
7969 * in which case we need to remove it. And we cannot
7970 * defer such a check and removal, to avoid
7971 * inconsistencies in the time interval from the end
7972 * of this function to the start of the deferred work.
7973 * This situation seems to occur only in process
7974 * context, as a consequence of a merge. In the
7975 * current version of the code, this implies that the
7976 * lock is held.
7977 */
7978
7979 if (!RB_EMPTY_NODE(&rq->rb_node))
7980 bfq_remove_request(q, rq);
7981 bfq_put_rq_priv_body(bfqq);
7982 }
7983
7984 rq->elv.priv[0] = NULL;
7985 rq->elv.priv[1] = NULL;
7986}
7987
36eca894
AA
7988/*
7989 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
7990 * was the last process referring to that bfqq.
7991 */
7992static struct bfq_queue *
7993bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
7994{
7995 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
7996
7997 if (bfqq_process_refs(bfqq) == 1) {
7998 bfqq->pid = current->pid;
7999 bfq_clear_bfqq_coop(bfqq);
8000 bfq_clear_bfqq_split_coop(bfqq);
8001 return bfqq;
8002 }
8003
8004 bic_set_bfqq(bic, NULL, 1);
8005
8006 bfq_put_cooperator(bfqq);
8007
8008 bfq_put_queue(bfqq);
8009 return NULL;
8010}
8011
8012static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
8013 struct bfq_io_cq *bic,
8014 struct bio *bio,
8015 bool split, bool is_sync,
8016 bool *new_queue)
8017{
8018 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
8019
8020 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
8021 return bfqq;
8022
8023 if (new_queue)
8024 *new_queue = true;
8025
8026 if (bfqq)
8027 bfq_put_queue(bfqq);
8028 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
8029
8030 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
8031 if (split && is_sync) {
8032 if ((bic->was_in_burst_list && bfqd->large_burst) ||
8033 bic->saved_in_large_burst)
8034 bfq_mark_bfqq_in_large_burst(bfqq);
8035 else {
8036 bfq_clear_bfqq_in_large_burst(bfqq);
8037 if (bic->was_in_burst_list)
8038 hlist_add_head(&bfqq->burst_list_node,
8039 &bfqd->burst_list);
8040 }
36eca894 8041 bfqq->split_time = jiffies;
e1b2324d 8042 }
36eca894
AA
8043
8044 return bfqq;
8045}
8046
aee69d78
PV
8047/*
8048 * Allocate bfq data structures associated with this request.
8049 */
8050static int bfq_get_rq_private(struct request_queue *q, struct request *rq,
8051 struct bio *bio)
8052{
8053 struct bfq_data *bfqd = q->elevator->elevator_data;
8054 struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
8055 const int is_sync = rq_is_sync(rq);
8056 struct bfq_queue *bfqq;
36eca894 8057 bool new_queue = false;
aee69d78
PV
8058
8059 spin_lock_irq(&bfqd->lock);
8060
8061 bfq_check_ioprio_change(bic, bio);
8062
8063 if (!bic)
8064 goto queue_fail;
8065
e21b7a0b
AA
8066 bfq_bic_update_cgroup(bic, bio);
8067
36eca894
AA
8068 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
8069 &new_queue);
8070
8071 if (likely(!new_queue)) {
8072 /* If the queue was seeky for too long, break it apart. */
8073 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
8074 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
8075
8076 /* Update bic before losing reference to bfqq */
8077 if (bfq_bfqq_in_large_burst(bfqq))
8078 bic->saved_in_large_burst = true;
8079
36eca894
AA
8080 bfqq = bfq_split_bfqq(bic, bfqq);
8081 /*
8082 * A reference to bic->icq.ioc needs to be
8083 * released after a queue split. Do not do it
8084 * immediately, to not risk to possibly take
8085 * an ioc->lock while holding the scheduler
8086 * lock.
8087 */
8088 bfqd->ioc_to_put = bic->icq.ioc;
8089
8090 if (!bfqq)
8091 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
8092 true, is_sync,
8093 NULL);
8094 }
aee69d78
PV
8095 }
8096
8097 bfqq->allocated++;
8098 bfqq->ref++;
8099 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
8100 rq, bfqq, bfqq->ref);
8101
8102 rq->elv.priv[0] = bic;
8103 rq->elv.priv[1] = bfqq;
8104
36eca894
AA
8105 /*
8106 * If a bfq_queue has only one process reference, it is owned
8107 * by only this bic: we can then set bfqq->bic = bic. in
8108 * addition, if the queue has also just been split, we have to
8109 * resume its state.
8110 */
8111 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
8112 bfqq->bic = bic;
8113 if (bfqd->ioc_to_put) { /* if true, there has been a split */
8114 /*
8115 * The queue has just been split from a shared
8116 * queue: restore the idle window and the
8117 * possible weight raising period.
8118 */
8119 bfq_bfqq_resume_state(bfqq, bic);
8120 }
8121 }
8122
e1b2324d
AA
8123 if (unlikely(bfq_bfqq_just_created(bfqq)))
8124 bfq_handle_burst(bfqd, bfqq);
8125
36eca894 8126 bfq_unlock_put_ioc(bfqd);
aee69d78
PV
8127
8128 return 0;
8129
8130queue_fail:
8131 spin_unlock_irq(&bfqd->lock);
8132
8133 return 1;
8134}
8135
8136static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
8137{
8138 struct bfq_data *bfqd = bfqq->bfqd;
8139 enum bfqq_expiration reason;
8140 unsigned long flags;
8141
8142 spin_lock_irqsave(&bfqd->lock, flags);
8143 bfq_clear_bfqq_wait_request(bfqq);
8144
8145 if (bfqq != bfqd->in_service_queue) {
8146 spin_unlock_irqrestore(&bfqd->lock, flags);
8147 return;
8148 }
8149
8150 if (bfq_bfqq_budget_timeout(bfqq))
8151 /*
8152 * Also here the queue can be safely expired
8153 * for budget timeout without wasting
8154 * guarantees
8155 */
8156 reason = BFQQE_BUDGET_TIMEOUT;
8157 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
8158 /*
8159 * The queue may not be empty upon timer expiration,
8160 * because we may not disable the timer when the
8161 * first request of the in-service queue arrives
8162 * during disk idling.
8163 */
8164 reason = BFQQE_TOO_IDLE;
8165 else
8166 goto schedule_dispatch;
8167
8168 bfq_bfqq_expire(bfqd, bfqq, true, reason);
8169
8170schedule_dispatch:
36eca894 8171 bfq_unlock_put_ioc_restore(bfqd, flags);
aee69d78
PV
8172 bfq_schedule_dispatch(bfqd);
8173}
8174
8175/*
8176 * Handler of the expiration of the timer running if the in-service queue
8177 * is idling inside its time slice.
8178 */
8179static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
8180{
8181 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
8182 idle_slice_timer);
8183 struct bfq_queue *bfqq = bfqd->in_service_queue;
8184
8185 /*
8186 * Theoretical race here: the in-service queue can be NULL or
8187 * different from the queue that was idling if a new request
8188 * arrives for the current queue and there is a full dispatch
8189 * cycle that changes the in-service queue. This can hardly
8190 * happen, but in the worst case we just expire a queue too
8191 * early.
8192 */
8193 if (bfqq)
8194 bfq_idle_slice_timer_body(bfqq);
8195
8196 return HRTIMER_NORESTART;
8197}
8198
8199static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
8200 struct bfq_queue **bfqq_ptr)
8201{
8202 struct bfq_queue *bfqq = *bfqq_ptr;
8203
8204 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
8205 if (bfqq) {
e21b7a0b
AA
8206 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
8207
aee69d78
PV
8208 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
8209 bfqq, bfqq->ref);
8210 bfq_put_queue(bfqq);
8211 *bfqq_ptr = NULL;
8212 }
8213}
8214
8215/*
e21b7a0b
AA
8216 * Release all the bfqg references to its async queues. If we are
8217 * deallocating the group these queues may still contain requests, so
8218 * we reparent them to the root cgroup (i.e., the only one that will
8219 * exist for sure until all the requests on a device are gone).
aee69d78 8220 */
e21b7a0b 8221static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
8222{
8223 int i, j;
8224
8225 for (i = 0; i < 2; i++)
8226 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 8227 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 8228
e21b7a0b 8229 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
8230}
8231
8232static void bfq_exit_queue(struct elevator_queue *e)
8233{
8234 struct bfq_data *bfqd = e->elevator_data;
8235 struct bfq_queue *bfqq, *n;
8236
8237 hrtimer_cancel(&bfqd->idle_slice_timer);
8238
8239 spin_lock_irq(&bfqd->lock);
8240 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 8241 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
8242 spin_unlock_irq(&bfqd->lock);
8243
8244 hrtimer_cancel(&bfqd->idle_slice_timer);
8245
e21b7a0b
AA
8246#ifdef CONFIG_BFQ_GROUP_IOSCHED
8247 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
8248#else
8249 spin_lock_irq(&bfqd->lock);
8250 bfq_put_async_queues(bfqd, bfqd->root_group);
8251 kfree(bfqd->root_group);
8252 spin_unlock_irq(&bfqd->lock);
8253#endif
8254
aee69d78
PV
8255 kfree(bfqd);
8256}
8257
e21b7a0b
AA
8258static void bfq_init_root_group(struct bfq_group *root_group,
8259 struct bfq_data *bfqd)
8260{
8261 int i;
8262
8263#ifdef CONFIG_BFQ_GROUP_IOSCHED
8264 root_group->entity.parent = NULL;
8265 root_group->my_entity = NULL;
8266 root_group->bfqd = bfqd;
8267#endif
36eca894 8268 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
8269 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
8270 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
8271 root_group->sched_data.bfq_class_idle_last_service = jiffies;
8272}
8273
aee69d78
PV
8274static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
8275{
8276 struct bfq_data *bfqd;
8277 struct elevator_queue *eq;
aee69d78
PV
8278
8279 eq = elevator_alloc(q, e);
8280 if (!eq)
8281 return -ENOMEM;
8282
8283 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
8284 if (!bfqd) {
8285 kobject_put(&eq->kobj);
8286 return -ENOMEM;
8287 }
8288 eq->elevator_data = bfqd;
8289
e21b7a0b
AA
8290 spin_lock_irq(q->queue_lock);
8291 q->elevator = eq;
8292 spin_unlock_irq(q->queue_lock);
8293
aee69d78
PV
8294 /*
8295 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
8296 * Grab a permanent reference to it, so that the normal code flow
8297 * will not attempt to free it.
8298 */
8299 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
8300 bfqd->oom_bfqq.ref++;
8301 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
8302 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
8303 bfqd->oom_bfqq.entity.new_weight =
8304 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
8305
8306 /* oom_bfqq does not participate to bursts */
8307 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
8308
aee69d78
PV
8309 /*
8310 * Trigger weight initialization, according to ioprio, at the
8311 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
8312 * class won't be changed any more.
8313 */
8314 bfqd->oom_bfqq.entity.prio_changed = 1;
8315
8316 bfqd->queue = q;
8317
e21b7a0b 8318 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
8319
8320 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
8321 HRTIMER_MODE_REL);
8322 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
8323
1de0c4cd
AA
8324 bfqd->queue_weights_tree = RB_ROOT;
8325 bfqd->group_weights_tree = RB_ROOT;
8326
aee69d78
PV
8327 INIT_LIST_HEAD(&bfqd->active_list);
8328 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 8329 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
8330
8331 bfqd->hw_tag = -1;
8332
8333 bfqd->bfq_max_budget = bfq_default_max_budget;
8334
8335 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
8336 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
8337 bfqd->bfq_back_max = bfq_back_max;
8338 bfqd->bfq_back_penalty = bfq_back_penalty;
8339 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
8340 bfqd->bfq_timeout = bfq_timeout;
8341
8342 bfqd->bfq_requests_within_timer = 120;
8343
e1b2324d
AA
8344 bfqd->bfq_large_burst_thresh = 8;
8345 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
8346
44e44a1b
PV
8347 bfqd->low_latency = true;
8348
8349 /*
8350 * Trade-off between responsiveness and fairness.
8351 */
8352 bfqd->bfq_wr_coeff = 30;
77b7dcea 8353 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
8354 bfqd->bfq_wr_max_time = 0;
8355 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
8356 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
8357 bfqd->bfq_wr_max_softrt_rate = 7000; /*
8358 * Approximate rate required
8359 * to playback or record a
8360 * high-definition compressed
8361 * video.
8362 */
cfd69712 8363 bfqd->wr_busy_queues = 0;
44e44a1b
PV
8364
8365 /*
8366 * Begin by assuming, optimistically, that the device is a
8367 * high-speed one, and that its peak rate is equal to 2/3 of
8368 * the highest reference rate.
8369 */
8370 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
8371 T_fast[blk_queue_nonrot(bfqd->queue)];
8372 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
8373 bfqd->device_speed = BFQ_BFQD_FAST;
8374
aee69d78 8375 spin_lock_init(&bfqd->lock);
aee69d78 8376
e21b7a0b
AA
8377 /*
8378 * The invocation of the next bfq_create_group_hierarchy
8379 * function is the head of a chain of function calls
8380 * (bfq_create_group_hierarchy->blkcg_activate_policy->
8381 * blk_mq_freeze_queue) that may lead to the invocation of the
8382 * has_work hook function. For this reason,
8383 * bfq_create_group_hierarchy is invoked only after all
8384 * scheduler data has been initialized, apart from the fields
8385 * that can be initialized only after invoking
8386 * bfq_create_group_hierarchy. This, in particular, enables
8387 * has_work to correctly return false. Of course, to avoid
8388 * other inconsistencies, the blk-mq stack must then refrain
8389 * from invoking further scheduler hooks before this init
8390 * function is finished.
8391 */
8392 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
8393 if (!bfqd->root_group)
8394 goto out_free;
8395 bfq_init_root_group(bfqd->root_group, bfqd);
8396 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
8397
aee69d78
PV
8398
8399 return 0;
e21b7a0b
AA
8400
8401out_free:
8402 kfree(bfqd);
8403 kobject_put(&eq->kobj);
8404 return -ENOMEM;
aee69d78
PV
8405}
8406
8407static void bfq_slab_kill(void)
8408{
8409 kmem_cache_destroy(bfq_pool);
8410}
8411
8412static int __init bfq_slab_setup(void)
8413{
8414 bfq_pool = KMEM_CACHE(bfq_queue, 0);
8415 if (!bfq_pool)
8416 return -ENOMEM;
8417 return 0;
8418}
8419
8420static ssize_t bfq_var_show(unsigned int var, char *page)
8421{
8422 return sprintf(page, "%u\n", var);
8423}
8424
8425static ssize_t bfq_var_store(unsigned long *var, const char *page,
8426 size_t count)
8427{
8428 unsigned long new_val;
8429 int ret = kstrtoul(page, 10, &new_val);
8430
8431 if (ret == 0)
8432 *var = new_val;
8433
8434 return count;
8435}
8436
8437#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
8438static ssize_t __FUNC(struct elevator_queue *e, char *page) \
8439{ \
8440 struct bfq_data *bfqd = e->elevator_data; \
8441 u64 __data = __VAR; \
8442 if (__CONV == 1) \
8443 __data = jiffies_to_msecs(__data); \
8444 else if (__CONV == 2) \
8445 __data = div_u64(__data, NSEC_PER_MSEC); \
8446 return bfq_var_show(__data, (page)); \
8447}
8448SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
8449SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
8450SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
8451SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
8452SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
8453SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
8454SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
8455SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 8456SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
8457#undef SHOW_FUNCTION
8458
8459#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
8460static ssize_t __FUNC(struct elevator_queue *e, char *page) \
8461{ \
8462 struct bfq_data *bfqd = e->elevator_data; \
8463 u64 __data = __VAR; \
8464 __data = div_u64(__data, NSEC_PER_USEC); \
8465 return bfq_var_show(__data, (page)); \
8466}
8467USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
8468#undef USEC_SHOW_FUNCTION
8469
8470#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
8471static ssize_t \
8472__FUNC(struct elevator_queue *e, const char *page, size_t count) \
8473{ \
8474 struct bfq_data *bfqd = e->elevator_data; \
8475 unsigned long uninitialized_var(__data); \
8476 int ret = bfq_var_store(&__data, (page), count); \
8477 if (__data < (MIN)) \
8478 __data = (MIN); \
8479 else if (__data > (MAX)) \
8480 __data = (MAX); \
8481 if (__CONV == 1) \
8482 *(__PTR) = msecs_to_jiffies(__data); \
8483 else if (__CONV == 2) \
8484 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
8485 else \
8486 *(__PTR) = __data; \
8487 return ret; \
8488}
8489STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
8490 INT_MAX, 2);
8491STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
8492 INT_MAX, 2);
8493STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
8494STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
8495 INT_MAX, 0);
8496STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
8497#undef STORE_FUNCTION
8498
8499#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
8500static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
8501{ \
8502 struct bfq_data *bfqd = e->elevator_data; \
8503 unsigned long uninitialized_var(__data); \
8504 int ret = bfq_var_store(&__data, (page), count); \
8505 if (__data < (MIN)) \
8506 __data = (MIN); \
8507 else if (__data > (MAX)) \
8508 __data = (MAX); \
8509 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
8510 return ret; \
8511}
8512USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
8513 UINT_MAX);
8514#undef USEC_STORE_FUNCTION
8515
aee69d78
PV
8516static ssize_t bfq_max_budget_store(struct elevator_queue *e,
8517 const char *page, size_t count)
8518{
8519 struct bfq_data *bfqd = e->elevator_data;
8520 unsigned long uninitialized_var(__data);
8521 int ret = bfq_var_store(&__data, (page), count);
8522
8523 if (__data == 0)
ab0e43e9 8524 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
8525 else {
8526 if (__data > INT_MAX)
8527 __data = INT_MAX;
8528 bfqd->bfq_max_budget = __data;
8529 }
8530
8531 bfqd->bfq_user_max_budget = __data;
8532
8533 return ret;
8534}
8535
8536/*
8537 * Leaving this name to preserve name compatibility with cfq
8538 * parameters, but this timeout is used for both sync and async.
8539 */
8540static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
8541 const char *page, size_t count)
8542{
8543 struct bfq_data *bfqd = e->elevator_data;
8544 unsigned long uninitialized_var(__data);
8545 int ret = bfq_var_store(&__data, (page), count);
8546
8547 if (__data < 1)
8548 __data = 1;
8549 else if (__data > INT_MAX)
8550 __data = INT_MAX;
8551
8552 bfqd->bfq_timeout = msecs_to_jiffies(__data);
8553 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 8554 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
8555
8556 return ret;
8557}
8558
8559static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
8560 const char *page, size_t count)
8561{
8562 struct bfq_data *bfqd = e->elevator_data;
8563 unsigned long uninitialized_var(__data);
8564 int ret = bfq_var_store(&__data, (page), count);
8565
8566 if (__data > 1)
8567 __data = 1;
8568 if (!bfqd->strict_guarantees && __data == 1
8569 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
8570 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
8571
8572 bfqd->strict_guarantees = __data;
8573
8574 return ret;
8575}
8576
44e44a1b
PV
8577static ssize_t bfq_low_latency_store(struct elevator_queue *e,
8578 const char *page, size_t count)
8579{
8580 struct bfq_data *bfqd = e->elevator_data;
8581 unsigned long uninitialized_var(__data);
8582 int ret = bfq_var_store(&__data, (page), count);
8583
8584 if (__data > 1)
8585 __data = 1;
8586 if (__data == 0 && bfqd->low_latency != 0)
8587 bfq_end_wr(bfqd);
8588 bfqd->low_latency = __data;
8589
8590 return ret;
8591}
8592
aee69d78
PV
8593#define BFQ_ATTR(name) \
8594 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
8595
8596static struct elv_fs_entry bfq_attrs[] = {
8597 BFQ_ATTR(fifo_expire_sync),
8598 BFQ_ATTR(fifo_expire_async),
8599 BFQ_ATTR(back_seek_max),
8600 BFQ_ATTR(back_seek_penalty),
8601 BFQ_ATTR(slice_idle),
8602 BFQ_ATTR(slice_idle_us),
8603 BFQ_ATTR(max_budget),
8604 BFQ_ATTR(timeout_sync),
8605 BFQ_ATTR(strict_guarantees),
44e44a1b 8606 BFQ_ATTR(low_latency),
aee69d78
PV
8607 __ATTR_NULL
8608};
8609
8610static struct elevator_type iosched_bfq_mq = {
8611 .ops.mq = {
8612 .get_rq_priv = bfq_get_rq_private,
8613 .put_rq_priv = bfq_put_rq_private,
8614 .exit_icq = bfq_exit_icq,
8615 .insert_requests = bfq_insert_requests,
8616 .dispatch_request = bfq_dispatch_request,
8617 .next_request = elv_rb_latter_request,
8618 .former_request = elv_rb_former_request,
8619 .allow_merge = bfq_allow_bio_merge,
8620 .bio_merge = bfq_bio_merge,
8621 .request_merge = bfq_request_merge,
8622 .requests_merged = bfq_requests_merged,
8623 .request_merged = bfq_request_merged,
8624 .has_work = bfq_has_work,
8625 .init_sched = bfq_init_queue,
8626 .exit_sched = bfq_exit_queue,
8627 },
8628
8629 .uses_mq = true,
8630 .icq_size = sizeof(struct bfq_io_cq),
8631 .icq_align = __alignof__(struct bfq_io_cq),
8632 .elevator_attrs = bfq_attrs,
8633 .elevator_name = "bfq",
8634 .elevator_owner = THIS_MODULE,
8635};
8636
e21b7a0b
AA
8637#ifdef CONFIG_BFQ_GROUP_IOSCHED
8638static struct blkcg_policy blkcg_policy_bfq = {
8639 .dfl_cftypes = bfq_blkg_files,
8640 .legacy_cftypes = bfq_blkcg_legacy_files,
8641
8642 .cpd_alloc_fn = bfq_cpd_alloc,
8643 .cpd_init_fn = bfq_cpd_init,
8644 .cpd_bind_fn = bfq_cpd_init,
8645 .cpd_free_fn = bfq_cpd_free,
8646
8647 .pd_alloc_fn = bfq_pd_alloc,
8648 .pd_init_fn = bfq_pd_init,
8649 .pd_offline_fn = bfq_pd_offline,
8650 .pd_free_fn = bfq_pd_free,
8651 .pd_reset_stats_fn = bfq_pd_reset_stats,
8652};
8653#endif
8654
aee69d78
PV
8655static int __init bfq_init(void)
8656{
8657 int ret;
8658
e21b7a0b
AA
8659#ifdef CONFIG_BFQ_GROUP_IOSCHED
8660 ret = blkcg_policy_register(&blkcg_policy_bfq);
8661 if (ret)
8662 return ret;
8663#endif
8664
aee69d78
PV
8665 ret = -ENOMEM;
8666 if (bfq_slab_setup())
8667 goto err_pol_unreg;
8668
44e44a1b
PV
8669 /*
8670 * Times to load large popular applications for the typical
8671 * systems installed on the reference devices (see the
8672 * comments before the definitions of the next two
8673 * arrays). Actually, we use slightly slower values, as the
8674 * estimated peak rate tends to be smaller than the actual
8675 * peak rate. The reason for this last fact is that estimates
8676 * are computed over much shorter time intervals than the long
8677 * intervals typically used for benchmarking. Why? First, to
8678 * adapt more quickly to variations. Second, because an I/O
8679 * scheduler cannot rely on a peak-rate-evaluation workload to
8680 * be run for a long time.
8681 */
8682 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
8683 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
8684 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
8685 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
8686
8687 /*
8688 * Thresholds that determine the switch between speed classes
8689 * (see the comments before the definition of the array
8690 * device_speed_thresh). These thresholds are biased towards
8691 * transitions to the fast class. This is safer than the
8692 * opposite bias. In fact, a wrong transition to the slow
8693 * class results in short weight-raising periods, because the
8694 * speed of the device then tends to be higher that the
8695 * reference peak rate. On the opposite end, a wrong
8696 * transition to the fast class tends to increase
8697 * weight-raising periods, because of the opposite reason.
8698 */
8699 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
8700 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
8701
aee69d78
PV
8702 ret = elv_register(&iosched_bfq_mq);
8703 if (ret)
8704 goto err_pol_unreg;
8705
8706 return 0;
8707
8708err_pol_unreg:
e21b7a0b
AA
8709#ifdef CONFIG_BFQ_GROUP_IOSCHED
8710 blkcg_policy_unregister(&blkcg_policy_bfq);
8711#endif
aee69d78
PV
8712 return ret;
8713}
8714
8715static void __exit bfq_exit(void)
8716{
8717 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
8718#ifdef CONFIG_BFQ_GROUP_IOSCHED
8719 blkcg_policy_unregister(&blkcg_policy_bfq);
8720#endif
aee69d78
PV
8721 bfq_slab_kill();
8722}
8723
8724module_init(bfq_init);
8725module_exit(bfq_exit);
8726
8727MODULE_AUTHOR("Paolo Valente");
8728MODULE_LICENSE("GPL");
8729MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");