]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/bio.c
block/bio: remove duplicate append pages code
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
be4d234d
JA
28struct bio_alloc_cache {
29 struct bio_list free_list;
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 if (!bslab->slab)
92 goto fail_alloc_slab;
bb799ca0 93
49d1ec85
ML
94 bslab->slab_ref = 1;
95 bslab->slab_size = size;
bb799ca0 96
49d1ec85
ML
97 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 return bslab;
bb799ca0 99
49d1ec85 100 kmem_cache_destroy(bslab->slab);
bb799ca0 101
49d1ec85
ML
102fail_alloc_slab:
103 kfree(bslab);
104 return NULL;
105}
bb799ca0 106
49d1ec85
ML
107static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108{
9f180e31 109 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 110}
bb799ca0 111
49d1ec85
ML
112static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113{
114 unsigned int size = bs_bio_slab_size(bs);
115 struct bio_slab *bslab;
bb799ca0 116
49d1ec85
ML
117 mutex_lock(&bio_slab_lock);
118 bslab = xa_load(&bio_slabs, size);
119 if (bslab)
120 bslab->slab_ref++;
121 else
122 bslab = create_bio_slab(size);
bb799ca0 123 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
124
125 if (bslab)
126 return bslab->slab;
127 return NULL;
bb799ca0
JA
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
49d1ec85 133 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
134
135 mutex_lock(&bio_slab_lock);
136
49d1ec85 137 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
138 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 goto out;
140
49d1ec85
ML
141 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142
bb799ca0
JA
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
49d1ec85
ML
148 xa_erase(&bio_slabs, slab_size);
149
bb799ca0 150 kmem_cache_destroy(bslab->slab);
49d1ec85 151 kfree(bslab);
bb799ca0
JA
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7a800a20 157void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 158{
a8affc03 159 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 160
a8affc03 161 if (nr_vecs == BIO_MAX_VECS)
9f060e22 162 mempool_free(bv, pool);
7a800a20
CH
163 else if (nr_vecs > BIO_INLINE_VECS)
164 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 165}
bb799ca0 166
f2c3eb9b
CH
167/*
168 * Make the first allocation restricted and don't dump info on allocation
169 * failures, since we'll fall back to the mempool in case of failure.
170 */
171static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172{
173 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
175}
176
7a800a20
CH
177struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 gfp_t gfp_mask)
1da177e4 179{
7a800a20 180 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 181
7a800a20 182 if (WARN_ON_ONCE(!bvs))
7ff9345f 183 return NULL;
7ff9345f
JA
184
185 /*
7a800a20
CH
186 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 * We also rely on this in the bvec_free path.
7ff9345f 188 */
7a800a20 189 *nr_vecs = bvs->nr_vecs;
7ff9345f 190
7ff9345f 191 /*
f007a3d6
CH
192 * Try a slab allocation first for all smaller allocations. If that
193 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 194 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 195 */
a8affc03 196 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 197 struct bio_vec *bvl;
1da177e4 198
f2c3eb9b 199 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 200 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 201 return bvl;
a8affc03 202 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
203 }
204
f007a3d6 205 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
206}
207
9ae3b3f5 208void bio_uninit(struct bio *bio)
1da177e4 209{
db9819c7
CH
210#ifdef CONFIG_BLK_CGROUP
211 if (bio->bi_blkg) {
212 blkg_put(bio->bi_blkg);
213 bio->bi_blkg = NULL;
214 }
215#endif
ece841ab
JT
216 if (bio_integrity(bio))
217 bio_integrity_free(bio);
a892c8d5
ST
218
219 bio_crypt_free_ctx(bio);
4254bba1 220}
9ae3b3f5 221EXPORT_SYMBOL(bio_uninit);
7ba1ba12 222
4254bba1
KO
223static void bio_free(struct bio *bio)
224{
225 struct bio_set *bs = bio->bi_pool;
226 void *p;
227
9ae3b3f5 228 bio_uninit(bio);
4254bba1
KO
229
230 if (bs) {
7a800a20 231 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
232
233 /*
234 * If we have front padding, adjust the bio pointer before freeing
235 */
236 p = bio;
bb799ca0
JA
237 p -= bs->front_pad;
238
8aa6ba2f 239 mempool_free(p, &bs->bio_pool);
4254bba1
KO
240 } else {
241 /* Bio was allocated by bio_kmalloc() */
242 kfree(bio);
243 }
3676347a
PO
244}
245
9ae3b3f5
JA
246/*
247 * Users of this function have their own bio allocation. Subsequently,
248 * they must remember to pair any call to bio_init() with bio_uninit()
249 * when IO has completed, or when the bio is released.
250 */
3a83f467
ML
251void bio_init(struct bio *bio, struct bio_vec *table,
252 unsigned short max_vecs)
1da177e4 253{
da521626
JA
254 bio->bi_next = NULL;
255 bio->bi_bdev = NULL;
256 bio->bi_opf = 0;
257 bio->bi_flags = 0;
258 bio->bi_ioprio = 0;
259 bio->bi_write_hint = 0;
260 bio->bi_status = 0;
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267#ifdef CONFIG_BLK_CGROUP
268 bio->bi_blkg = NULL;
269 bio->bi_issue.value = 0;
270#ifdef CONFIG_BLK_CGROUP_IOCOST
271 bio->bi_iocost_cost = 0;
272#endif
273#endif
274#ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 bio->bi_crypt_context = NULL;
276#endif
277#ifdef CONFIG_BLK_DEV_INTEGRITY
278 bio->bi_integrity = NULL;
279#endif
280 bio->bi_vcnt = 0;
281
c4cf5261 282 atomic_set(&bio->__bi_remaining, 1);
dac56212 283 atomic_set(&bio->__bi_cnt, 1);
3a83f467 284
3a83f467 285 bio->bi_max_vecs = max_vecs;
da521626
JA
286 bio->bi_io_vec = table;
287 bio->bi_pool = NULL;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
9ae3b3f5 303 bio_uninit(bio);
f44b48c7 304 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 305 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
306}
307EXPORT_SYMBOL(bio_reset);
308
38f8baae 309static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 310{
4246a0b6
CH
311 struct bio *parent = bio->bi_private;
312
3edf5346 313 if (bio->bi_status && !parent->bi_status)
4e4cbee9 314 parent->bi_status = bio->bi_status;
196d38bc 315 bio_put(bio);
38f8baae
CH
316 return parent;
317}
318
319static void bio_chain_endio(struct bio *bio)
320{
321 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
322}
323
324/**
325 * bio_chain - chain bio completions
1051a902 326 * @bio: the target bio
5b874af6 327 * @parent: the parent bio of @bio
196d38bc
KO
328 *
329 * The caller won't have a bi_end_io called when @bio completes - instead,
330 * @parent's bi_end_io won't be called until both @parent and @bio have
331 * completed; the chained bio will also be freed when it completes.
332 *
333 * The caller must not set bi_private or bi_end_io in @bio.
334 */
335void bio_chain(struct bio *bio, struct bio *parent)
336{
337 BUG_ON(bio->bi_private || bio->bi_end_io);
338
339 bio->bi_private = parent;
340 bio->bi_end_io = bio_chain_endio;
c4cf5261 341 bio_inc_remaining(parent);
196d38bc
KO
342}
343EXPORT_SYMBOL(bio_chain);
344
df2cb6da
KO
345static void bio_alloc_rescue(struct work_struct *work)
346{
347 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 struct bio *bio;
349
350 while (1) {
351 spin_lock(&bs->rescue_lock);
352 bio = bio_list_pop(&bs->rescue_list);
353 spin_unlock(&bs->rescue_lock);
354
355 if (!bio)
356 break;
357
ed00aabd 358 submit_bio_noacct(bio);
df2cb6da
KO
359 }
360}
361
362static void punt_bios_to_rescuer(struct bio_set *bs)
363{
364 struct bio_list punt, nopunt;
365 struct bio *bio;
366
47e0fb46
N
367 if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 return;
df2cb6da
KO
369 /*
370 * In order to guarantee forward progress we must punt only bios that
371 * were allocated from this bio_set; otherwise, if there was a bio on
372 * there for a stacking driver higher up in the stack, processing it
373 * could require allocating bios from this bio_set, and doing that from
374 * our own rescuer would be bad.
375 *
376 * Since bio lists are singly linked, pop them all instead of trying to
377 * remove from the middle of the list:
378 */
379
380 bio_list_init(&punt);
381 bio_list_init(&nopunt);
382
f5fe1b51 383 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 385 current->bio_list[0] = nopunt;
df2cb6da 386
f5fe1b51
N
387 bio_list_init(&nopunt);
388 while ((bio = bio_list_pop(&current->bio_list[1])))
389 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 current->bio_list[1] = nopunt;
df2cb6da
KO
391
392 spin_lock(&bs->rescue_lock);
393 bio_list_merge(&bs->rescue_list, &punt);
394 spin_unlock(&bs->rescue_lock);
395
396 queue_work(bs->rescue_workqueue, &bs->rescue_work);
397}
398
1da177e4
LT
399/**
400 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 401 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 402 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 403 * @bs: the bio_set to allocate from.
1da177e4 404 *
3175199a 405 * Allocate a bio from the mempools in @bs.
3f86a82a 406 *
3175199a
CH
407 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408 * allocate a bio. This is due to the mempool guarantees. To make this work,
409 * callers must never allocate more than 1 bio at a time from the general pool.
410 * Callers that need to allocate more than 1 bio must always submit the
411 * previously allocated bio for IO before attempting to allocate a new one.
412 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 413 *
3175199a
CH
414 * Note that when running under submit_bio_noacct() (i.e. any block driver),
415 * bios are not submitted until after you return - see the code in
416 * submit_bio_noacct() that converts recursion into iteration, to prevent
417 * stack overflows.
df2cb6da 418 *
3175199a
CH
419 * This would normally mean allocating multiple bios under submit_bio_noacct()
420 * would be susceptible to deadlocks, but we have
421 * deadlock avoidance code that resubmits any blocked bios from a rescuer
422 * thread.
df2cb6da 423 *
3175199a
CH
424 * However, we do not guarantee forward progress for allocations from other
425 * mempools. Doing multiple allocations from the same mempool under
426 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427 * for per bio allocations.
df2cb6da 428 *
3175199a 429 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 430 */
0f2e6ab8 431struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 432 struct bio_set *bs)
1da177e4 433{
df2cb6da 434 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
435 struct bio *bio;
436 void *p;
437
3175199a
CH
438 /* should not use nobvec bioset for nr_iovecs > 0 */
439 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 return NULL;
df2cb6da 441
3175199a
CH
442 /*
443 * submit_bio_noacct() converts recursion to iteration; this means if
444 * we're running beneath it, any bios we allocate and submit will not be
445 * submitted (and thus freed) until after we return.
446 *
447 * This exposes us to a potential deadlock if we allocate multiple bios
448 * from the same bio_set() while running underneath submit_bio_noacct().
449 * If we were to allocate multiple bios (say a stacking block driver
450 * that was splitting bios), we would deadlock if we exhausted the
451 * mempool's reserve.
452 *
453 * We solve this, and guarantee forward progress, with a rescuer
454 * workqueue per bio_set. If we go to allocate and there are bios on
455 * current->bio_list, we first try the allocation without
456 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 * blocking to the rescuer workqueue before we retry with the original
458 * gfp_flags.
459 */
460 if (current->bio_list &&
461 (!bio_list_empty(&current->bio_list[0]) ||
462 !bio_list_empty(&current->bio_list[1])) &&
463 bs->rescue_workqueue)
464 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465
466 p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 if (!p && gfp_mask != saved_gfp) {
468 punt_bios_to_rescuer(bs);
469 gfp_mask = saved_gfp;
8aa6ba2f 470 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 471 }
451a9ebf
TH
472 if (unlikely(!p))
473 return NULL;
1da177e4 474
3175199a
CH
475 bio = p + bs->front_pad;
476 if (nr_iovecs > BIO_INLINE_VECS) {
3175199a 477 struct bio_vec *bvl = NULL;
34053979 478
7a800a20 479 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da
KO
480 if (!bvl && gfp_mask != saved_gfp) {
481 punt_bios_to_rescuer(bs);
482 gfp_mask = saved_gfp;
7a800a20 483 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da 484 }
34053979
IM
485 if (unlikely(!bvl))
486 goto err_free;
a38352e0 487
7a800a20 488 bio_init(bio, bvl, nr_iovecs);
3f86a82a 489 } else if (nr_iovecs) {
3175199a
CH
490 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 } else {
492 bio_init(bio, NULL, 0);
1da177e4 493 }
3f86a82a
KO
494
495 bio->bi_pool = bs;
1da177e4 496 return bio;
34053979
IM
497
498err_free:
8aa6ba2f 499 mempool_free(p, &bs->bio_pool);
34053979 500 return NULL;
1da177e4 501}
a112a71d 502EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 503
3175199a
CH
504/**
505 * bio_kmalloc - kmalloc a bio for I/O
506 * @gfp_mask: the GFP_* mask given to the slab allocator
507 * @nr_iovecs: number of iovecs to pre-allocate
508 *
509 * Use kmalloc to allocate and initialize a bio.
510 *
511 * Returns: Pointer to new bio on success, NULL on failure.
512 */
0f2e6ab8 513struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
514{
515 struct bio *bio;
516
517 if (nr_iovecs > UIO_MAXIOV)
518 return NULL;
519
520 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 if (unlikely(!bio))
522 return NULL;
523 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 bio->bi_pool = NULL;
525 return bio;
526}
527EXPORT_SYMBOL(bio_kmalloc);
528
6f822e1b 529void zero_fill_bio(struct bio *bio)
1da177e4 530{
7988613b
KO
531 struct bio_vec bv;
532 struct bvec_iter iter;
1da177e4 533
ab6c340e
CH
534 bio_for_each_segment(bv, bio, iter)
535 memzero_bvec(&bv);
1da177e4 536}
6f822e1b 537EXPORT_SYMBOL(zero_fill_bio);
1da177e4 538
83c9c547
ML
539/**
540 * bio_truncate - truncate the bio to small size of @new_size
541 * @bio: the bio to be truncated
542 * @new_size: new size for truncating the bio
543 *
544 * Description:
545 * Truncate the bio to new size of @new_size. If bio_op(bio) is
546 * REQ_OP_READ, zero the truncated part. This function should only
547 * be used for handling corner cases, such as bio eod.
548 */
85a8ce62
ML
549void bio_truncate(struct bio *bio, unsigned new_size)
550{
551 struct bio_vec bv;
552 struct bvec_iter iter;
553 unsigned int done = 0;
554 bool truncated = false;
555
556 if (new_size >= bio->bi_iter.bi_size)
557 return;
558
83c9c547 559 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
560 goto exit;
561
562 bio_for_each_segment(bv, bio, iter) {
563 if (done + bv.bv_len > new_size) {
564 unsigned offset;
565
566 if (!truncated)
567 offset = new_size - done;
568 else
569 offset = 0;
d0464604
OH
570 zero_user(bv.bv_page, bv.bv_offset + offset,
571 bv.bv_len - offset);
85a8ce62
ML
572 truncated = true;
573 }
574 done += bv.bv_len;
575 }
576
577 exit:
578 /*
579 * Don't touch bvec table here and make it really immutable, since
580 * fs bio user has to retrieve all pages via bio_for_each_segment_all
581 * in its .end_bio() callback.
582 *
583 * It is enough to truncate bio by updating .bi_size since we can make
584 * correct bvec with the updated .bi_size for drivers.
585 */
586 bio->bi_iter.bi_size = new_size;
587}
588
29125ed6
CH
589/**
590 * guard_bio_eod - truncate a BIO to fit the block device
591 * @bio: bio to truncate
592 *
593 * This allows us to do IO even on the odd last sectors of a device, even if the
594 * block size is some multiple of the physical sector size.
595 *
596 * We'll just truncate the bio to the size of the device, and clear the end of
597 * the buffer head manually. Truly out-of-range accesses will turn into actual
598 * I/O errors, this only handles the "we need to be able to do I/O at the final
599 * sector" case.
600 */
601void guard_bio_eod(struct bio *bio)
602{
309dca30 603 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
604
605 if (!maxsector)
606 return;
607
608 /*
609 * If the *whole* IO is past the end of the device,
610 * let it through, and the IO layer will turn it into
611 * an EIO.
612 */
613 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
614 return;
615
616 maxsector -= bio->bi_iter.bi_sector;
617 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
618 return;
619
620 bio_truncate(bio, maxsector << 9);
621}
622
be4d234d
JA
623#define ALLOC_CACHE_MAX 512
624#define ALLOC_CACHE_SLACK 64
625
626static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
627 unsigned int nr)
628{
629 unsigned int i = 0;
630 struct bio *bio;
631
632 while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
633 cache->nr--;
634 bio_free(bio);
635 if (++i == nr)
636 break;
637 }
638}
639
640static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
641{
642 struct bio_set *bs;
643
644 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
645 if (bs->cache) {
646 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
647
648 bio_alloc_cache_prune(cache, -1U);
649 }
650 return 0;
651}
652
653static void bio_alloc_cache_destroy(struct bio_set *bs)
654{
655 int cpu;
656
657 if (!bs->cache)
658 return;
659
660 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
661 for_each_possible_cpu(cpu) {
662 struct bio_alloc_cache *cache;
663
664 cache = per_cpu_ptr(bs->cache, cpu);
665 bio_alloc_cache_prune(cache, -1U);
666 }
667 free_percpu(bs->cache);
c0f9b20b 668 bs->cache = NULL;
be4d234d
JA
669}
670
1da177e4
LT
671/**
672 * bio_put - release a reference to a bio
673 * @bio: bio to release reference to
674 *
675 * Description:
676 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 677 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
678 **/
679void bio_put(struct bio *bio)
680{
be4d234d 681 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
dac56212 682 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
683 if (!atomic_dec_and_test(&bio->__bi_cnt))
684 return;
685 }
dac56212 686
be4d234d
JA
687 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
688 struct bio_alloc_cache *cache;
689
690 bio_uninit(bio);
691 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
692 bio_list_add_head(&cache->free_list, bio);
693 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
694 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
695 put_cpu();
696 } else {
697 bio_free(bio);
dac56212 698 }
1da177e4 699}
a112a71d 700EXPORT_SYMBOL(bio_put);
1da177e4 701
59d276fe
KO
702/**
703 * __bio_clone_fast - clone a bio that shares the original bio's biovec
704 * @bio: destination bio
705 * @bio_src: bio to clone
706 *
707 * Clone a &bio. Caller will own the returned bio, but not
708 * the actual data it points to. Reference count of returned
709 * bio will be one.
710 *
711 * Caller must ensure that @bio_src is not freed before @bio.
712 */
713void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
714{
7a800a20 715 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
716
717 /*
309dca30 718 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
719 * so we don't set nor calculate new physical/hw segment counts here
720 */
309dca30 721 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 722 bio_set_flag(bio, BIO_CLONED);
111be883
SL
723 if (bio_flagged(bio_src, BIO_THROTTLED))
724 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
725 if (bio_flagged(bio_src, BIO_REMAPPED))
726 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 727 bio->bi_opf = bio_src->bi_opf;
ca474b73 728 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 729 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
730 bio->bi_iter = bio_src->bi_iter;
731 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 732
db6638d7 733 bio_clone_blkg_association(bio, bio_src);
e439bedf 734 blkcg_bio_issue_init(bio);
59d276fe
KO
735}
736EXPORT_SYMBOL(__bio_clone_fast);
737
738/**
739 * bio_clone_fast - clone a bio that shares the original bio's biovec
740 * @bio: bio to clone
741 * @gfp_mask: allocation priority
742 * @bs: bio_set to allocate from
743 *
744 * Like __bio_clone_fast, only also allocates the returned bio
745 */
746struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
747{
748 struct bio *b;
749
750 b = bio_alloc_bioset(gfp_mask, 0, bs);
751 if (!b)
752 return NULL;
753
754 __bio_clone_fast(b, bio);
755
07560151
EB
756 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
757 goto err_put;
a892c8d5 758
07560151
EB
759 if (bio_integrity(bio) &&
760 bio_integrity_clone(b, bio, gfp_mask) < 0)
761 goto err_put;
59d276fe
KO
762
763 return b;
07560151
EB
764
765err_put:
766 bio_put(b);
767 return NULL;
59d276fe
KO
768}
769EXPORT_SYMBOL(bio_clone_fast);
770
5cbd28e3
CH
771const char *bio_devname(struct bio *bio, char *buf)
772{
309dca30 773 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
774}
775EXPORT_SYMBOL(bio_devname);
776
5919482e
ML
777static inline bool page_is_mergeable(const struct bio_vec *bv,
778 struct page *page, unsigned int len, unsigned int off,
ff896738 779 bool *same_page)
5919482e 780{
d8166519
MWO
781 size_t bv_end = bv->bv_offset + bv->bv_len;
782 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
783 phys_addr_t page_addr = page_to_phys(page);
784
785 if (vec_end_addr + 1 != page_addr + off)
786 return false;
787 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
788 return false;
52d52d1c 789
ff896738 790 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
791 if (*same_page)
792 return true;
793 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
794}
795
e4581105
CH
796/*
797 * Try to merge a page into a segment, while obeying the hardware segment
798 * size limit. This is not for normal read/write bios, but for passthrough
799 * or Zone Append operations that we can't split.
800 */
801static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
802 struct page *page, unsigned len,
803 unsigned offset, bool *same_page)
489fbbcb 804{
384209cd 805 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
806 unsigned long mask = queue_segment_boundary(q);
807 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
808 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
809
810 if ((addr1 | mask) != (addr2 | mask))
811 return false;
489fbbcb
ML
812 if (bv->bv_len + len > queue_max_segment_size(q))
813 return false;
384209cd 814 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
815}
816
1da177e4 817/**
e4581105
CH
818 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
819 * @q: the target queue
820 * @bio: destination bio
821 * @page: page to add
822 * @len: vec entry length
823 * @offset: vec entry offset
824 * @max_sectors: maximum number of sectors that can be added
825 * @same_page: return if the segment has been merged inside the same page
c66a14d0 826 *
e4581105
CH
827 * Add a page to a bio while respecting the hardware max_sectors, max_segment
828 * and gap limitations.
1da177e4 829 */
e4581105 830int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 831 struct page *page, unsigned int len, unsigned int offset,
e4581105 832 unsigned int max_sectors, bool *same_page)
1da177e4 833{
1da177e4
LT
834 struct bio_vec *bvec;
835
e4581105 836 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
837 return 0;
838
e4581105 839 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
840 return 0;
841
80cfd548 842 if (bio->bi_vcnt > 0) {
e4581105 843 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 844 return len;
320ea869
CH
845
846 /*
847 * If the queue doesn't support SG gaps and adding this segment
848 * would create a gap, disallow it.
849 */
384209cd 850 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
851 if (bvec_gap_to_prev(q, bvec, offset))
852 return 0;
80cfd548
JA
853 }
854
79d08f89 855 if (bio_full(bio, len))
1da177e4
LT
856 return 0;
857
14ccb66b 858 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
859 return 0;
860
fcbf6a08
ML
861 bvec = &bio->bi_io_vec[bio->bi_vcnt];
862 bvec->bv_page = page;
863 bvec->bv_len = len;
864 bvec->bv_offset = offset;
865 bio->bi_vcnt++;
dcdca753 866 bio->bi_iter.bi_size += len;
1da177e4
LT
867 return len;
868}
19047087 869
e4581105
CH
870/**
871 * bio_add_pc_page - attempt to add page to passthrough bio
872 * @q: the target queue
873 * @bio: destination bio
874 * @page: page to add
875 * @len: vec entry length
876 * @offset: vec entry offset
877 *
878 * Attempt to add a page to the bio_vec maplist. This can fail for a
879 * number of reasons, such as the bio being full or target block device
880 * limitations. The target block device must allow bio's up to PAGE_SIZE,
881 * so it is always possible to add a single page to an empty bio.
882 *
883 * This should only be used by passthrough bios.
884 */
19047087
ML
885int bio_add_pc_page(struct request_queue *q, struct bio *bio,
886 struct page *page, unsigned int len, unsigned int offset)
887{
d1916c86 888 bool same_page = false;
e4581105
CH
889 return bio_add_hw_page(q, bio, page, len, offset,
890 queue_max_hw_sectors(q), &same_page);
19047087 891}
a112a71d 892EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 893
ae29333f
JT
894/**
895 * bio_add_zone_append_page - attempt to add page to zone-append bio
896 * @bio: destination bio
897 * @page: page to add
898 * @len: vec entry length
899 * @offset: vec entry offset
900 *
901 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
902 * for a zone-append request. This can fail for a number of reasons, such as the
903 * bio being full or the target block device is not a zoned block device or
904 * other limitations of the target block device. The target block device must
905 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
906 * to an empty bio.
907 *
908 * Returns: number of bytes added to the bio, or 0 in case of a failure.
909 */
910int bio_add_zone_append_page(struct bio *bio, struct page *page,
911 unsigned int len, unsigned int offset)
912{
67e45183 913 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
914 bool same_page = false;
915
916 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
917 return 0;
918
919 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
920 return 0;
921
922 return bio_add_hw_page(q, bio, page, len, offset,
923 queue_max_zone_append_sectors(q), &same_page);
924}
925EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
926
1da177e4 927/**
0aa69fd3
CH
928 * __bio_try_merge_page - try appending data to an existing bvec.
929 * @bio: destination bio
551879a4 930 * @page: start page to add
0aa69fd3 931 * @len: length of the data to add
551879a4 932 * @off: offset of the data relative to @page
ff896738 933 * @same_page: return if the segment has been merged inside the same page
1da177e4 934 *
0aa69fd3 935 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 936 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
937 * page size.
938 *
551879a4
ML
939 * Warn if (@len, @off) crosses pages in case that @same_page is true.
940 *
0aa69fd3 941 * Return %true on success or %false on failure.
1da177e4 942 */
0aa69fd3 943bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 944 unsigned int len, unsigned int off, bool *same_page)
1da177e4 945{
c66a14d0 946 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 947 return false;
762380ad 948
cc90bc68 949 if (bio->bi_vcnt > 0) {
0aa69fd3 950 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
951
952 if (page_is_mergeable(bv, page, len, off, same_page)) {
35c820e7 953 if (bio->bi_iter.bi_size > UINT_MAX - len) {
2cd896a5 954 *same_page = false;
cc90bc68 955 return false;
2cd896a5 956 }
5919482e
ML
957 bv->bv_len += len;
958 bio->bi_iter.bi_size += len;
959 return true;
960 }
c66a14d0 961 }
0aa69fd3
CH
962 return false;
963}
964EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 965
0aa69fd3 966/**
551879a4 967 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 968 * @bio: destination bio
551879a4
ML
969 * @page: start page to add
970 * @len: length of the data to add, may cross pages
971 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
972 *
973 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
974 * that @bio has space for another bvec.
975 */
976void __bio_add_page(struct bio *bio, struct page *page,
977 unsigned int len, unsigned int off)
978{
979 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 980
0aa69fd3 981 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 982 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
983
984 bv->bv_page = page;
985 bv->bv_offset = off;
986 bv->bv_len = len;
c66a14d0 987
c66a14d0 988 bio->bi_iter.bi_size += len;
0aa69fd3 989 bio->bi_vcnt++;
b8e24a93
JW
990
991 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
992 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
993}
994EXPORT_SYMBOL_GPL(__bio_add_page);
995
996/**
551879a4 997 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 998 * @bio: destination bio
551879a4
ML
999 * @page: start page to add
1000 * @len: vec entry length, may cross pages
1001 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1002 *
551879a4 1003 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1004 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1005 */
1006int bio_add_page(struct bio *bio, struct page *page,
1007 unsigned int len, unsigned int offset)
1008{
ff896738
CH
1009 bool same_page = false;
1010
1011 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1012 if (bio_full(bio, len))
0aa69fd3
CH
1013 return 0;
1014 __bio_add_page(bio, page, len, offset);
1015 }
c66a14d0 1016 return len;
1da177e4 1017}
a112a71d 1018EXPORT_SYMBOL(bio_add_page);
1da177e4 1019
d241a95f 1020void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1021{
1022 struct bvec_iter_all iter_all;
1023 struct bio_vec *bvec;
7321ecbf 1024
b2d0d991
CH
1025 if (bio_flagged(bio, BIO_NO_PAGE_REF))
1026 return;
1027
d241a95f
CH
1028 bio_for_each_segment_all(bvec, bio, iter_all) {
1029 if (mark_dirty && !PageCompound(bvec->bv_page))
1030 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1031 put_page(bvec->bv_page);
d241a95f 1032 }
7321ecbf 1033}
29b2a3aa 1034EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 1035
7de55b7d 1036static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1037{
7a800a20 1038 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92
PB
1039
1040 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1041 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1042 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1043 bio->bi_iter.bi_size = iter->count;
ed97ce5e 1044 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1045 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1046}
c42bca92 1047
7de55b7d
JT
1048static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1049{
1050 __bio_iov_bvec_set(bio, iter);
c42bca92 1051 iov_iter_advance(iter, iter->count);
a10584c3 1052 return 0;
6d0c48ae
JA
1053}
1054
7de55b7d
JT
1055static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1056{
67e45183 1057 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
7de55b7d
JT
1058 struct iov_iter i = *iter;
1059
1060 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1061 __bio_iov_bvec_set(bio, &i);
1062 iov_iter_advance(iter, i.count);
1063 return 0;
1064}
1065
d9cf3bd5
PB
1066static void bio_put_pages(struct page **pages, size_t size, size_t off)
1067{
1068 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1069
1070 for (i = 0; i < nr; i++)
1071 put_page(pages[i]);
1072}
1073
0e9c2ece
KB
1074static int bio_iov_add_page(struct bio *bio, struct page *page,
1075 unsigned int len, unsigned int offset)
1076{
1077 bool same_page = false;
1078
1079 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1080 if (WARN_ON_ONCE(bio_full(bio, len)))
1081 return -EINVAL;
1082 __bio_add_page(bio, page, len, offset);
1083 return 0;
1084 }
1085
1086 if (same_page)
1087 put_page(page);
1088 return 0;
1089}
1090
1091static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1092 unsigned int len, unsigned int offset)
1093{
1094 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1095 bool same_page = false;
1096
1097 if (bio_add_hw_page(q, bio, page, len, offset,
1098 queue_max_zone_append_sectors(q), &same_page) != len)
1099 return -EINVAL;
1100 if (same_page)
1101 put_page(page);
1102 return 0;
1103}
1104
576ed913
CH
1105#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1106
2cefe4db 1107/**
17d51b10 1108 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1109 * @bio: bio to add pages to
1110 * @iter: iov iterator describing the region to be mapped
1111 *
17d51b10 1112 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1113 * pages will have to be released using put_page() when done.
17d51b10 1114 * For multi-segment *iter, this function only adds pages from the
3cf14889 1115 * next non-empty segment of the iov iterator.
2cefe4db 1116 */
17d51b10 1117static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1118{
576ed913
CH
1119 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1120 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1121 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1122 struct page **pages = (struct page **)bv;
576ed913
CH
1123 ssize_t size, left;
1124 unsigned len, i;
b403ea24 1125 size_t offset;
576ed913
CH
1126
1127 /*
1128 * Move page array up in the allocated memory for the bio vecs as far as
1129 * possible so that we can start filling biovecs from the beginning
1130 * without overwriting the temporary page array.
0e9c2ece 1131 */
576ed913
CH
1132 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1133 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1134
35c820e7 1135 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1136 if (unlikely(size <= 0))
1137 return size ? size : -EFAULT;
2cefe4db 1138
576ed913
CH
1139 for (left = size, i = 0; left > 0; left -= len, i++) {
1140 struct page *page = pages[i];
0e9c2ece 1141 int ret;
2cefe4db 1142
576ed913 1143 len = min_t(size_t, PAGE_SIZE - offset, left);
0e9c2ece
KB
1144 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1145 ret = bio_iov_add_zone_append_page(bio, page, len,
1146 offset);
1147 else
1148 ret = bio_iov_add_page(bio, page, len, offset);
45691804 1149
0e9c2ece
KB
1150 if (ret) {
1151 bio_put_pages(pages + i, left, offset);
1152 return ret;
45691804 1153 }
576ed913 1154 offset = 0;
2cefe4db
KO
1155 }
1156
2cefe4db
KO
1157 iov_iter_advance(iter, size);
1158 return 0;
1159}
17d51b10
MW
1160
1161/**
6d0c48ae 1162 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1163 * @bio: bio to add pages to
6d0c48ae
JA
1164 * @iter: iov iterator describing the region to be added
1165 *
1166 * This takes either an iterator pointing to user memory, or one pointing to
1167 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1168 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1169 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1170 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1171 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1172 * completed by a call to ->ki_complete() or returns with an error other than
1173 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1174 * on IO completion. If it isn't, then pages should be released.
17d51b10 1175 *
17d51b10 1176 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1177 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1178 * MM encounters an error pinning the requested pages, it stops. Error
1179 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1180 *
1181 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1182 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1183 */
1184int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1185{
c42bca92 1186 int ret = 0;
14eacf12 1187
c42bca92 1188 if (iov_iter_is_bvec(iter)) {
7de55b7d
JT
1189 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1190 return bio_iov_bvec_set_append(bio, iter);
ed97ce5e 1191 return bio_iov_bvec_set(bio, iter);
c42bca92 1192 }
17d51b10
MW
1193
1194 do {
0e9c2ece 1195 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1196 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1197
0cf41e5e
PB
1198 /* don't account direct I/O as memory stall */
1199 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1200 return bio->bi_vcnt ? 0 : ret;
17d51b10 1201}
29b2a3aa 1202EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1203
4246a0b6 1204static void submit_bio_wait_endio(struct bio *bio)
9e882242 1205{
65e53aab 1206 complete(bio->bi_private);
9e882242
KO
1207}
1208
1209/**
1210 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1211 * @bio: The &struct bio which describes the I/O
1212 *
1213 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1214 * bio_endio() on failure.
3d289d68
JK
1215 *
1216 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1217 * result in bio reference to be consumed. The caller must drop the reference
1218 * on his own.
9e882242 1219 */
4e49ea4a 1220int submit_bio_wait(struct bio *bio)
9e882242 1221{
309dca30
CH
1222 DECLARE_COMPLETION_ONSTACK_MAP(done,
1223 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1224 unsigned long hang_check;
9e882242 1225
65e53aab 1226 bio->bi_private = &done;
9e882242 1227 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1228 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1229 submit_bio(bio);
de6a78b6
ML
1230
1231 /* Prevent hang_check timer from firing at us during very long I/O */
1232 hang_check = sysctl_hung_task_timeout_secs;
1233 if (hang_check)
1234 while (!wait_for_completion_io_timeout(&done,
1235 hang_check * (HZ/2)))
1236 ;
1237 else
1238 wait_for_completion_io(&done);
9e882242 1239
65e53aab 1240 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1241}
1242EXPORT_SYMBOL(submit_bio_wait);
1243
054bdf64
KO
1244/**
1245 * bio_advance - increment/complete a bio by some number of bytes
1246 * @bio: bio to advance
1247 * @bytes: number of bytes to complete
1248 *
1249 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1250 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1251 * be updated on the last bvec as well.
1252 *
1253 * @bio will then represent the remaining, uncompleted portion of the io.
1254 */
1255void bio_advance(struct bio *bio, unsigned bytes)
1256{
1257 if (bio_integrity(bio))
1258 bio_integrity_advance(bio, bytes);
1259
a892c8d5 1260 bio_crypt_advance(bio, bytes);
4550dd6c 1261 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1262}
1263EXPORT_SYMBOL(bio_advance);
1264
45db54d5
KO
1265void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1266 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1267{
45db54d5 1268 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1269 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1270 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1271 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
6a7fadde
CH
1272 void *src_buf = bvec_kmap_local(&src_bv);
1273 void *dst_buf = bvec_kmap_local(&dst_bv);
f8b679a0 1274
6a7fadde
CH
1275 memcpy(dst_buf, src_buf, bytes);
1276
1277 kunmap_local(dst_buf);
f8b679a0 1278 kunmap_local(src_buf);
6e6e811d 1279
22b56c29
PB
1280 bio_advance_iter_single(src, src_iter, bytes);
1281 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1282 }
1283}
38a72dac
KO
1284EXPORT_SYMBOL(bio_copy_data_iter);
1285
1286/**
45db54d5
KO
1287 * bio_copy_data - copy contents of data buffers from one bio to another
1288 * @src: source bio
1289 * @dst: destination bio
38a72dac
KO
1290 *
1291 * Stops when it reaches the end of either @src or @dst - that is, copies
1292 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1293 */
1294void bio_copy_data(struct bio *dst, struct bio *src)
1295{
45db54d5
KO
1296 struct bvec_iter src_iter = src->bi_iter;
1297 struct bvec_iter dst_iter = dst->bi_iter;
1298
1299 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1300}
16ac3d63
KO
1301EXPORT_SYMBOL(bio_copy_data);
1302
491221f8 1303void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1304{
1305 struct bio_vec *bvec;
6dc4f100 1306 struct bvec_iter_all iter_all;
1dfa0f68 1307
2b070cfe 1308 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1309 __free_page(bvec->bv_page);
1310}
491221f8 1311EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1312
1da177e4
LT
1313/*
1314 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1315 * for performing direct-IO in BIOs.
1316 *
1317 * The problem is that we cannot run set_page_dirty() from interrupt context
1318 * because the required locks are not interrupt-safe. So what we can do is to
1319 * mark the pages dirty _before_ performing IO. And in interrupt context,
1320 * check that the pages are still dirty. If so, fine. If not, redirty them
1321 * in process context.
1322 *
1323 * We special-case compound pages here: normally this means reads into hugetlb
1324 * pages. The logic in here doesn't really work right for compound pages
1325 * because the VM does not uniformly chase down the head page in all cases.
1326 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1327 * handle them at all. So we skip compound pages here at an early stage.
1328 *
1329 * Note that this code is very hard to test under normal circumstances because
1330 * direct-io pins the pages with get_user_pages(). This makes
1331 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1332 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1333 * pagecache.
1334 *
1335 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1336 * deferred bio dirtying paths.
1337 */
1338
1339/*
1340 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1341 */
1342void bio_set_pages_dirty(struct bio *bio)
1343{
cb34e057 1344 struct bio_vec *bvec;
6dc4f100 1345 struct bvec_iter_all iter_all;
1da177e4 1346
2b070cfe 1347 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1348 if (!PageCompound(bvec->bv_page))
1349 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1350 }
1351}
1352
1da177e4
LT
1353/*
1354 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1355 * If they are, then fine. If, however, some pages are clean then they must
1356 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1357 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1358 *
1359 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1360 * here on. It will run one put_page() against each page and will run one
1361 * bio_put() against the BIO.
1da177e4
LT
1362 */
1363
65f27f38 1364static void bio_dirty_fn(struct work_struct *work);
1da177e4 1365
65f27f38 1366static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1367static DEFINE_SPINLOCK(bio_dirty_lock);
1368static struct bio *bio_dirty_list;
1369
1370/*
1371 * This runs in process context
1372 */
65f27f38 1373static void bio_dirty_fn(struct work_struct *work)
1da177e4 1374{
24d5493f 1375 struct bio *bio, *next;
1da177e4 1376
24d5493f
CH
1377 spin_lock_irq(&bio_dirty_lock);
1378 next = bio_dirty_list;
1da177e4 1379 bio_dirty_list = NULL;
24d5493f 1380 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1381
24d5493f
CH
1382 while ((bio = next) != NULL) {
1383 next = bio->bi_private;
1da177e4 1384
d241a95f 1385 bio_release_pages(bio, true);
1da177e4 1386 bio_put(bio);
1da177e4
LT
1387 }
1388}
1389
1390void bio_check_pages_dirty(struct bio *bio)
1391{
cb34e057 1392 struct bio_vec *bvec;
24d5493f 1393 unsigned long flags;
6dc4f100 1394 struct bvec_iter_all iter_all;
1da177e4 1395
2b070cfe 1396 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1397 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1398 goto defer;
1da177e4
LT
1399 }
1400
d241a95f 1401 bio_release_pages(bio, false);
24d5493f
CH
1402 bio_put(bio);
1403 return;
1404defer:
1405 spin_lock_irqsave(&bio_dirty_lock, flags);
1406 bio->bi_private = bio_dirty_list;
1407 bio_dirty_list = bio;
1408 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1409 schedule_work(&bio_dirty_work);
1da177e4
LT
1410}
1411
c4cf5261
JA
1412static inline bool bio_remaining_done(struct bio *bio)
1413{
1414 /*
1415 * If we're not chaining, then ->__bi_remaining is always 1 and
1416 * we always end io on the first invocation.
1417 */
1418 if (!bio_flagged(bio, BIO_CHAIN))
1419 return true;
1420
1421 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1422
326e1dbb 1423 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1424 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1425 return true;
326e1dbb 1426 }
c4cf5261
JA
1427
1428 return false;
1429}
1430
1da177e4
LT
1431/**
1432 * bio_endio - end I/O on a bio
1433 * @bio: bio
1da177e4
LT
1434 *
1435 * Description:
4246a0b6
CH
1436 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1437 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1438 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1439 *
1440 * bio_endio() can be called several times on a bio that has been chained
1441 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1442 * last time.
1da177e4 1443 **/
4246a0b6 1444void bio_endio(struct bio *bio)
1da177e4 1445{
ba8c6967 1446again:
2b885517 1447 if (!bio_remaining_done(bio))
ba8c6967 1448 return;
7c20f116
CH
1449 if (!bio_integrity_endio(bio))
1450 return;
1da177e4 1451
f82310de 1452 rq_qos_done_bio(bio);
67b42d0b 1453
60b6a7e6 1454 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
67e45183 1455 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1456 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1457 }
1458
ba8c6967
CH
1459 /*
1460 * Need to have a real endio function for chained bios, otherwise
1461 * various corner cases will break (like stacking block devices that
1462 * save/restore bi_end_io) - however, we want to avoid unbounded
1463 * recursion and blowing the stack. Tail call optimization would
1464 * handle this, but compiling with frame pointers also disables
1465 * gcc's sibling call optimization.
1466 */
1467 if (bio->bi_end_io == bio_chain_endio) {
1468 bio = __bio_chain_endio(bio);
1469 goto again;
196d38bc 1470 }
ba8c6967 1471
9e234eea 1472 blk_throtl_bio_endio(bio);
b222dd2f
SL
1473 /* release cgroup info */
1474 bio_uninit(bio);
ba8c6967
CH
1475 if (bio->bi_end_io)
1476 bio->bi_end_io(bio);
1da177e4 1477}
a112a71d 1478EXPORT_SYMBOL(bio_endio);
1da177e4 1479
20d0189b
KO
1480/**
1481 * bio_split - split a bio
1482 * @bio: bio to split
1483 * @sectors: number of sectors to split from the front of @bio
1484 * @gfp: gfp mask
1485 * @bs: bio set to allocate from
1486 *
1487 * Allocates and returns a new bio which represents @sectors from the start of
1488 * @bio, and updates @bio to represent the remaining sectors.
1489 *
f3f5da62 1490 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1491 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1492 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1493 */
1494struct bio *bio_split(struct bio *bio, int sectors,
1495 gfp_t gfp, struct bio_set *bs)
1496{
f341a4d3 1497 struct bio *split;
20d0189b
KO
1498
1499 BUG_ON(sectors <= 0);
1500 BUG_ON(sectors >= bio_sectors(bio));
1501
0512a75b
KB
1502 /* Zone append commands cannot be split */
1503 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1504 return NULL;
1505
f9d03f96 1506 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1507 if (!split)
1508 return NULL;
1509
1510 split->bi_iter.bi_size = sectors << 9;
1511
1512 if (bio_integrity(split))
fbd08e76 1513 bio_integrity_trim(split);
20d0189b
KO
1514
1515 bio_advance(bio, split->bi_iter.bi_size);
1516
fbbaf700 1517 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1518 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1519
20d0189b
KO
1520 return split;
1521}
1522EXPORT_SYMBOL(bio_split);
1523
6678d83f
KO
1524/**
1525 * bio_trim - trim a bio
1526 * @bio: bio to trim
1527 * @offset: number of sectors to trim from the front of @bio
1528 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1529 *
1530 * This function is typically used for bios that are cloned and submitted
1531 * to the underlying device in parts.
6678d83f 1532 */
e83502ca 1533void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1534{
e83502ca 1535 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
59764caf 1536 offset + size > bio_sectors(bio)))
e83502ca 1537 return;
6678d83f
KO
1538
1539 size <<= 9;
4f024f37 1540 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1541 return;
1542
6678d83f 1543 bio_advance(bio, offset << 9);
4f024f37 1544 bio->bi_iter.bi_size = size;
376a78ab
DM
1545
1546 if (bio_integrity(bio))
fbd08e76 1547 bio_integrity_trim(bio);
6678d83f
KO
1548}
1549EXPORT_SYMBOL_GPL(bio_trim);
1550
1da177e4
LT
1551/*
1552 * create memory pools for biovec's in a bio_set.
1553 * use the global biovec slabs created for general use.
1554 */
8aa6ba2f 1555int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1556{
7a800a20 1557 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1558
8aa6ba2f 1559 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1560}
1561
917a38c7
KO
1562/*
1563 * bioset_exit - exit a bioset initialized with bioset_init()
1564 *
1565 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1566 * kzalloc()).
1567 */
1568void bioset_exit(struct bio_set *bs)
1da177e4 1569{
be4d234d 1570 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1571 if (bs->rescue_workqueue)
1572 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1573 bs->rescue_workqueue = NULL;
df2cb6da 1574
8aa6ba2f
KO
1575 mempool_exit(&bs->bio_pool);
1576 mempool_exit(&bs->bvec_pool);
9f060e22 1577
7878cba9 1578 bioset_integrity_free(bs);
917a38c7
KO
1579 if (bs->bio_slab)
1580 bio_put_slab(bs);
1581 bs->bio_slab = NULL;
1582}
1583EXPORT_SYMBOL(bioset_exit);
1da177e4 1584
917a38c7
KO
1585/**
1586 * bioset_init - Initialize a bio_set
dad08527 1587 * @bs: pool to initialize
917a38c7
KO
1588 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1589 * @front_pad: Number of bytes to allocate in front of the returned bio
1590 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1591 * and %BIOSET_NEED_RESCUER
1592 *
dad08527
KO
1593 * Description:
1594 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1595 * to ask for a number of bytes to be allocated in front of the bio.
1596 * Front pad allocation is useful for embedding the bio inside
1597 * another structure, to avoid allocating extra data to go with the bio.
1598 * Note that the bio must be embedded at the END of that structure always,
1599 * or things will break badly.
1600 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1601 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1602 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1603 * dispatch queued requests when the mempool runs out of space.
1604 *
917a38c7
KO
1605 */
1606int bioset_init(struct bio_set *bs,
1607 unsigned int pool_size,
1608 unsigned int front_pad,
1609 int flags)
1610{
917a38c7 1611 bs->front_pad = front_pad;
9f180e31
ML
1612 if (flags & BIOSET_NEED_BVECS)
1613 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1614 else
1615 bs->back_pad = 0;
917a38c7
KO
1616
1617 spin_lock_init(&bs->rescue_lock);
1618 bio_list_init(&bs->rescue_list);
1619 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1620
49d1ec85 1621 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1622 if (!bs->bio_slab)
1623 return -ENOMEM;
1624
1625 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1626 goto bad;
1627
1628 if ((flags & BIOSET_NEED_BVECS) &&
1629 biovec_init_pool(&bs->bvec_pool, pool_size))
1630 goto bad;
1631
be4d234d
JA
1632 if (flags & BIOSET_NEED_RESCUER) {
1633 bs->rescue_workqueue = alloc_workqueue("bioset",
1634 WQ_MEM_RECLAIM, 0);
1635 if (!bs->rescue_workqueue)
1636 goto bad;
1637 }
1638 if (flags & BIOSET_PERCPU_CACHE) {
1639 bs->cache = alloc_percpu(struct bio_alloc_cache);
1640 if (!bs->cache)
1641 goto bad;
1642 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1643 }
917a38c7
KO
1644
1645 return 0;
1646bad:
1647 bioset_exit(bs);
1648 return -ENOMEM;
1649}
1650EXPORT_SYMBOL(bioset_init);
1651
28e89fd9
JA
1652/*
1653 * Initialize and setup a new bio_set, based on the settings from
1654 * another bio_set.
1655 */
1656int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1657{
1658 int flags;
1659
1660 flags = 0;
1661 if (src->bvec_pool.min_nr)
1662 flags |= BIOSET_NEED_BVECS;
1663 if (src->rescue_workqueue)
1664 flags |= BIOSET_NEED_RESCUER;
1665
1666 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1667}
1668EXPORT_SYMBOL(bioset_init_from_src);
1669
be4d234d
JA
1670/**
1671 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1672 * @kiocb: kiocb describing the IO
0ef47db1 1673 * @nr_vecs: number of iovecs to pre-allocate
be4d234d
JA
1674 * @bs: bio_set to allocate from
1675 *
1676 * Description:
1677 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1678 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1679 * cache. The allocation uses GFP_KERNEL internally. On return, the
1680 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1681 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1682 *
1683 */
1684struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1685 struct bio_set *bs)
1686{
1687 struct bio_alloc_cache *cache;
1688 struct bio *bio;
1689
1690 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1691 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1692
1693 cache = per_cpu_ptr(bs->cache, get_cpu());
1694 bio = bio_list_pop(&cache->free_list);
1695 if (bio) {
1696 cache->nr--;
1697 put_cpu();
1698 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1699 bio->bi_pool = bs;
1700 bio_set_flag(bio, BIO_PERCPU_CACHE);
1701 return bio;
1702 }
1703 put_cpu();
1704 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1705 bio_set_flag(bio, BIO_PERCPU_CACHE);
1706 return bio;
1707}
1708EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1709
de76fd89 1710static int __init init_bio(void)
1da177e4
LT
1711{
1712 int i;
1713
7878cba9 1714 bio_integrity_init();
1da177e4 1715
de76fd89
CH
1716 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1717 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1718
de76fd89
CH
1719 bvs->slab = kmem_cache_create(bvs->name,
1720 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1721 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1722 }
1da177e4 1723
be4d234d
JA
1724 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1725 bio_cpu_dead);
1726
f4f8154a 1727 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1728 panic("bio: can't allocate bios\n");
1729
f4f8154a 1730 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1731 panic("bio: can't create integrity pool\n");
1732
1da177e4
LT
1733 return 0;
1734}
1da177e4 1735subsys_initcall(init_bio);