]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/bio.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
be4d234d
JA
28struct bio_alloc_cache {
29 struct bio_list free_list;
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 if (!bslab->slab)
92 goto fail_alloc_slab;
bb799ca0 93
49d1ec85
ML
94 bslab->slab_ref = 1;
95 bslab->slab_size = size;
bb799ca0 96
49d1ec85
ML
97 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 return bslab;
bb799ca0 99
49d1ec85 100 kmem_cache_destroy(bslab->slab);
bb799ca0 101
49d1ec85
ML
102fail_alloc_slab:
103 kfree(bslab);
104 return NULL;
105}
bb799ca0 106
49d1ec85
ML
107static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108{
9f180e31 109 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 110}
bb799ca0 111
49d1ec85
ML
112static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113{
114 unsigned int size = bs_bio_slab_size(bs);
115 struct bio_slab *bslab;
bb799ca0 116
49d1ec85
ML
117 mutex_lock(&bio_slab_lock);
118 bslab = xa_load(&bio_slabs, size);
119 if (bslab)
120 bslab->slab_ref++;
121 else
122 bslab = create_bio_slab(size);
bb799ca0 123 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
124
125 if (bslab)
126 return bslab->slab;
127 return NULL;
bb799ca0
JA
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
49d1ec85 133 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
134
135 mutex_lock(&bio_slab_lock);
136
49d1ec85 137 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
138 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 goto out;
140
49d1ec85
ML
141 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142
bb799ca0
JA
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
49d1ec85
ML
148 xa_erase(&bio_slabs, slab_size);
149
bb799ca0 150 kmem_cache_destroy(bslab->slab);
49d1ec85 151 kfree(bslab);
bb799ca0
JA
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7a800a20 157void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 158{
a8affc03 159 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 160
a8affc03 161 if (nr_vecs == BIO_MAX_VECS)
9f060e22 162 mempool_free(bv, pool);
7a800a20
CH
163 else if (nr_vecs > BIO_INLINE_VECS)
164 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 165}
bb799ca0 166
f2c3eb9b
CH
167/*
168 * Make the first allocation restricted and don't dump info on allocation
169 * failures, since we'll fall back to the mempool in case of failure.
170 */
171static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172{
173 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
175}
176
7a800a20
CH
177struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 gfp_t gfp_mask)
1da177e4 179{
7a800a20 180 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 181
7a800a20 182 if (WARN_ON_ONCE(!bvs))
7ff9345f 183 return NULL;
7ff9345f
JA
184
185 /*
7a800a20
CH
186 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 * We also rely on this in the bvec_free path.
7ff9345f 188 */
7a800a20 189 *nr_vecs = bvs->nr_vecs;
7ff9345f 190
7ff9345f 191 /*
f007a3d6
CH
192 * Try a slab allocation first for all smaller allocations. If that
193 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 194 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 195 */
a8affc03 196 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 197 struct bio_vec *bvl;
1da177e4 198
f2c3eb9b 199 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 200 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 201 return bvl;
a8affc03 202 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
203 }
204
f007a3d6 205 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
206}
207
9ae3b3f5 208void bio_uninit(struct bio *bio)
1da177e4 209{
db9819c7
CH
210#ifdef CONFIG_BLK_CGROUP
211 if (bio->bi_blkg) {
212 blkg_put(bio->bi_blkg);
213 bio->bi_blkg = NULL;
214 }
215#endif
ece841ab
JT
216 if (bio_integrity(bio))
217 bio_integrity_free(bio);
a892c8d5
ST
218
219 bio_crypt_free_ctx(bio);
4254bba1 220}
9ae3b3f5 221EXPORT_SYMBOL(bio_uninit);
7ba1ba12 222
4254bba1
KO
223static void bio_free(struct bio *bio)
224{
225 struct bio_set *bs = bio->bi_pool;
226 void *p;
227
9ae3b3f5 228 bio_uninit(bio);
4254bba1
KO
229
230 if (bs) {
7a800a20 231 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
232
233 /*
234 * If we have front padding, adjust the bio pointer before freeing
235 */
236 p = bio;
bb799ca0
JA
237 p -= bs->front_pad;
238
8aa6ba2f 239 mempool_free(p, &bs->bio_pool);
4254bba1
KO
240 } else {
241 /* Bio was allocated by bio_kmalloc() */
242 kfree(bio);
243 }
3676347a
PO
244}
245
9ae3b3f5
JA
246/*
247 * Users of this function have their own bio allocation. Subsequently,
248 * they must remember to pair any call to bio_init() with bio_uninit()
249 * when IO has completed, or when the bio is released.
250 */
3a83f467
ML
251void bio_init(struct bio *bio, struct bio_vec *table,
252 unsigned short max_vecs)
1da177e4 253{
da521626
JA
254 bio->bi_next = NULL;
255 bio->bi_bdev = NULL;
256 bio->bi_opf = 0;
257 bio->bi_flags = 0;
258 bio->bi_ioprio = 0;
259 bio->bi_write_hint = 0;
260 bio->bi_status = 0;
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267#ifdef CONFIG_BLK_CGROUP
268 bio->bi_blkg = NULL;
269 bio->bi_issue.value = 0;
270#ifdef CONFIG_BLK_CGROUP_IOCOST
271 bio->bi_iocost_cost = 0;
272#endif
273#endif
274#ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 bio->bi_crypt_context = NULL;
276#endif
277#ifdef CONFIG_BLK_DEV_INTEGRITY
278 bio->bi_integrity = NULL;
279#endif
280 bio->bi_vcnt = 0;
281
c4cf5261 282 atomic_set(&bio->__bi_remaining, 1);
dac56212 283 atomic_set(&bio->__bi_cnt, 1);
3a83f467 284
3a83f467 285 bio->bi_max_vecs = max_vecs;
da521626
JA
286 bio->bi_io_vec = table;
287 bio->bi_pool = NULL;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
9ae3b3f5 303 bio_uninit(bio);
f44b48c7 304 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 305 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
306}
307EXPORT_SYMBOL(bio_reset);
308
38f8baae 309static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 310{
4246a0b6
CH
311 struct bio *parent = bio->bi_private;
312
3edf5346 313 if (bio->bi_status && !parent->bi_status)
4e4cbee9 314 parent->bi_status = bio->bi_status;
196d38bc 315 bio_put(bio);
38f8baae
CH
316 return parent;
317}
318
319static void bio_chain_endio(struct bio *bio)
320{
321 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
322}
323
324/**
325 * bio_chain - chain bio completions
1051a902 326 * @bio: the target bio
5b874af6 327 * @parent: the parent bio of @bio
196d38bc
KO
328 *
329 * The caller won't have a bi_end_io called when @bio completes - instead,
330 * @parent's bi_end_io won't be called until both @parent and @bio have
331 * completed; the chained bio will also be freed when it completes.
332 *
333 * The caller must not set bi_private or bi_end_io in @bio.
334 */
335void bio_chain(struct bio *bio, struct bio *parent)
336{
337 BUG_ON(bio->bi_private || bio->bi_end_io);
338
339 bio->bi_private = parent;
340 bio->bi_end_io = bio_chain_endio;
c4cf5261 341 bio_inc_remaining(parent);
196d38bc
KO
342}
343EXPORT_SYMBOL(bio_chain);
344
df2cb6da
KO
345static void bio_alloc_rescue(struct work_struct *work)
346{
347 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 struct bio *bio;
349
350 while (1) {
351 spin_lock(&bs->rescue_lock);
352 bio = bio_list_pop(&bs->rescue_list);
353 spin_unlock(&bs->rescue_lock);
354
355 if (!bio)
356 break;
357
ed00aabd 358 submit_bio_noacct(bio);
df2cb6da
KO
359 }
360}
361
362static void punt_bios_to_rescuer(struct bio_set *bs)
363{
364 struct bio_list punt, nopunt;
365 struct bio *bio;
366
47e0fb46
N
367 if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 return;
df2cb6da
KO
369 /*
370 * In order to guarantee forward progress we must punt only bios that
371 * were allocated from this bio_set; otherwise, if there was a bio on
372 * there for a stacking driver higher up in the stack, processing it
373 * could require allocating bios from this bio_set, and doing that from
374 * our own rescuer would be bad.
375 *
376 * Since bio lists are singly linked, pop them all instead of trying to
377 * remove from the middle of the list:
378 */
379
380 bio_list_init(&punt);
381 bio_list_init(&nopunt);
382
f5fe1b51 383 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 385 current->bio_list[0] = nopunt;
df2cb6da 386
f5fe1b51
N
387 bio_list_init(&nopunt);
388 while ((bio = bio_list_pop(&current->bio_list[1])))
389 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 current->bio_list[1] = nopunt;
df2cb6da
KO
391
392 spin_lock(&bs->rescue_lock);
393 bio_list_merge(&bs->rescue_list, &punt);
394 spin_unlock(&bs->rescue_lock);
395
396 queue_work(bs->rescue_workqueue, &bs->rescue_work);
397}
398
1da177e4
LT
399/**
400 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 401 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 402 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 403 * @bs: the bio_set to allocate from.
1da177e4 404 *
3175199a 405 * Allocate a bio from the mempools in @bs.
3f86a82a 406 *
3175199a
CH
407 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408 * allocate a bio. This is due to the mempool guarantees. To make this work,
409 * callers must never allocate more than 1 bio at a time from the general pool.
410 * Callers that need to allocate more than 1 bio must always submit the
411 * previously allocated bio for IO before attempting to allocate a new one.
412 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 413 *
3175199a
CH
414 * Note that when running under submit_bio_noacct() (i.e. any block driver),
415 * bios are not submitted until after you return - see the code in
416 * submit_bio_noacct() that converts recursion into iteration, to prevent
417 * stack overflows.
df2cb6da 418 *
3175199a
CH
419 * This would normally mean allocating multiple bios under submit_bio_noacct()
420 * would be susceptible to deadlocks, but we have
421 * deadlock avoidance code that resubmits any blocked bios from a rescuer
422 * thread.
df2cb6da 423 *
3175199a
CH
424 * However, we do not guarantee forward progress for allocations from other
425 * mempools. Doing multiple allocations from the same mempool under
426 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427 * for per bio allocations.
df2cb6da 428 *
3175199a 429 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 430 */
0f2e6ab8 431struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 432 struct bio_set *bs)
1da177e4 433{
df2cb6da 434 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
435 struct bio *bio;
436 void *p;
437
3175199a
CH
438 /* should not use nobvec bioset for nr_iovecs > 0 */
439 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 return NULL;
df2cb6da 441
3175199a
CH
442 /*
443 * submit_bio_noacct() converts recursion to iteration; this means if
444 * we're running beneath it, any bios we allocate and submit will not be
445 * submitted (and thus freed) until after we return.
446 *
447 * This exposes us to a potential deadlock if we allocate multiple bios
448 * from the same bio_set() while running underneath submit_bio_noacct().
449 * If we were to allocate multiple bios (say a stacking block driver
450 * that was splitting bios), we would deadlock if we exhausted the
451 * mempool's reserve.
452 *
453 * We solve this, and guarantee forward progress, with a rescuer
454 * workqueue per bio_set. If we go to allocate and there are bios on
455 * current->bio_list, we first try the allocation without
456 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 * blocking to the rescuer workqueue before we retry with the original
458 * gfp_flags.
459 */
460 if (current->bio_list &&
461 (!bio_list_empty(&current->bio_list[0]) ||
462 !bio_list_empty(&current->bio_list[1])) &&
463 bs->rescue_workqueue)
464 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465
466 p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 if (!p && gfp_mask != saved_gfp) {
468 punt_bios_to_rescuer(bs);
469 gfp_mask = saved_gfp;
8aa6ba2f 470 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 471 }
451a9ebf
TH
472 if (unlikely(!p))
473 return NULL;
1da177e4 474
3175199a
CH
475 bio = p + bs->front_pad;
476 if (nr_iovecs > BIO_INLINE_VECS) {
3175199a 477 struct bio_vec *bvl = NULL;
34053979 478
7a800a20 479 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da
KO
480 if (!bvl && gfp_mask != saved_gfp) {
481 punt_bios_to_rescuer(bs);
482 gfp_mask = saved_gfp;
7a800a20 483 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da 484 }
34053979
IM
485 if (unlikely(!bvl))
486 goto err_free;
a38352e0 487
7a800a20 488 bio_init(bio, bvl, nr_iovecs);
3f86a82a 489 } else if (nr_iovecs) {
3175199a
CH
490 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 } else {
492 bio_init(bio, NULL, 0);
1da177e4 493 }
3f86a82a
KO
494
495 bio->bi_pool = bs;
1da177e4 496 return bio;
34053979
IM
497
498err_free:
8aa6ba2f 499 mempool_free(p, &bs->bio_pool);
34053979 500 return NULL;
1da177e4 501}
a112a71d 502EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 503
3175199a
CH
504/**
505 * bio_kmalloc - kmalloc a bio for I/O
506 * @gfp_mask: the GFP_* mask given to the slab allocator
507 * @nr_iovecs: number of iovecs to pre-allocate
508 *
509 * Use kmalloc to allocate and initialize a bio.
510 *
511 * Returns: Pointer to new bio on success, NULL on failure.
512 */
0f2e6ab8 513struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
514{
515 struct bio *bio;
516
517 if (nr_iovecs > UIO_MAXIOV)
518 return NULL;
519
520 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 if (unlikely(!bio))
522 return NULL;
523 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 bio->bi_pool = NULL;
525 return bio;
526}
527EXPORT_SYMBOL(bio_kmalloc);
528
6f822e1b 529void zero_fill_bio(struct bio *bio)
1da177e4 530{
7988613b
KO
531 struct bio_vec bv;
532 struct bvec_iter iter;
1da177e4 533
ab6c340e
CH
534 bio_for_each_segment(bv, bio, iter)
535 memzero_bvec(&bv);
1da177e4 536}
6f822e1b 537EXPORT_SYMBOL(zero_fill_bio);
1da177e4 538
83c9c547
ML
539/**
540 * bio_truncate - truncate the bio to small size of @new_size
541 * @bio: the bio to be truncated
542 * @new_size: new size for truncating the bio
543 *
544 * Description:
545 * Truncate the bio to new size of @new_size. If bio_op(bio) is
546 * REQ_OP_READ, zero the truncated part. This function should only
547 * be used for handling corner cases, such as bio eod.
548 */
85a8ce62
ML
549void bio_truncate(struct bio *bio, unsigned new_size)
550{
551 struct bio_vec bv;
552 struct bvec_iter iter;
553 unsigned int done = 0;
554 bool truncated = false;
555
556 if (new_size >= bio->bi_iter.bi_size)
557 return;
558
83c9c547 559 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
560 goto exit;
561
562 bio_for_each_segment(bv, bio, iter) {
563 if (done + bv.bv_len > new_size) {
564 unsigned offset;
565
566 if (!truncated)
567 offset = new_size - done;
568 else
569 offset = 0;
d0464604
OH
570 zero_user(bv.bv_page, bv.bv_offset + offset,
571 bv.bv_len - offset);
85a8ce62
ML
572 truncated = true;
573 }
574 done += bv.bv_len;
575 }
576
577 exit:
578 /*
579 * Don't touch bvec table here and make it really immutable, since
580 * fs bio user has to retrieve all pages via bio_for_each_segment_all
581 * in its .end_bio() callback.
582 *
583 * It is enough to truncate bio by updating .bi_size since we can make
584 * correct bvec with the updated .bi_size for drivers.
585 */
586 bio->bi_iter.bi_size = new_size;
587}
588
29125ed6
CH
589/**
590 * guard_bio_eod - truncate a BIO to fit the block device
591 * @bio: bio to truncate
592 *
593 * This allows us to do IO even on the odd last sectors of a device, even if the
594 * block size is some multiple of the physical sector size.
595 *
596 * We'll just truncate the bio to the size of the device, and clear the end of
597 * the buffer head manually. Truly out-of-range accesses will turn into actual
598 * I/O errors, this only handles the "we need to be able to do I/O at the final
599 * sector" case.
600 */
601void guard_bio_eod(struct bio *bio)
602{
309dca30 603 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
604
605 if (!maxsector)
606 return;
607
608 /*
609 * If the *whole* IO is past the end of the device,
610 * let it through, and the IO layer will turn it into
611 * an EIO.
612 */
613 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
614 return;
615
616 maxsector -= bio->bi_iter.bi_sector;
617 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
618 return;
619
620 bio_truncate(bio, maxsector << 9);
621}
622
be4d234d
JA
623#define ALLOC_CACHE_MAX 512
624#define ALLOC_CACHE_SLACK 64
625
626static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
627 unsigned int nr)
628{
629 unsigned int i = 0;
630 struct bio *bio;
631
632 while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
633 cache->nr--;
634 bio_free(bio);
635 if (++i == nr)
636 break;
637 }
638}
639
640static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
641{
642 struct bio_set *bs;
643
644 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
645 if (bs->cache) {
646 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
647
648 bio_alloc_cache_prune(cache, -1U);
649 }
650 return 0;
651}
652
653static void bio_alloc_cache_destroy(struct bio_set *bs)
654{
655 int cpu;
656
657 if (!bs->cache)
658 return;
659
660 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
661 for_each_possible_cpu(cpu) {
662 struct bio_alloc_cache *cache;
663
664 cache = per_cpu_ptr(bs->cache, cpu);
665 bio_alloc_cache_prune(cache, -1U);
666 }
667 free_percpu(bs->cache);
668}
669
1da177e4
LT
670/**
671 * bio_put - release a reference to a bio
672 * @bio: bio to release reference to
673 *
674 * Description:
675 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 676 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
677 **/
678void bio_put(struct bio *bio)
679{
be4d234d 680 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
dac56212 681 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
682 if (!atomic_dec_and_test(&bio->__bi_cnt))
683 return;
684 }
dac56212 685
be4d234d
JA
686 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
687 struct bio_alloc_cache *cache;
688
689 bio_uninit(bio);
690 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
691 bio_list_add_head(&cache->free_list, bio);
692 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
693 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
694 put_cpu();
695 } else {
696 bio_free(bio);
dac56212 697 }
1da177e4 698}
a112a71d 699EXPORT_SYMBOL(bio_put);
1da177e4 700
59d276fe
KO
701/**
702 * __bio_clone_fast - clone a bio that shares the original bio's biovec
703 * @bio: destination bio
704 * @bio_src: bio to clone
705 *
706 * Clone a &bio. Caller will own the returned bio, but not
707 * the actual data it points to. Reference count of returned
708 * bio will be one.
709 *
710 * Caller must ensure that @bio_src is not freed before @bio.
711 */
712void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
713{
7a800a20 714 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
715
716 /*
309dca30 717 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
718 * so we don't set nor calculate new physical/hw segment counts here
719 */
309dca30 720 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 721 bio_set_flag(bio, BIO_CLONED);
111be883
SL
722 if (bio_flagged(bio_src, BIO_THROTTLED))
723 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
724 if (bio_flagged(bio_src, BIO_REMAPPED))
725 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 726 bio->bi_opf = bio_src->bi_opf;
ca474b73 727 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 728 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
729 bio->bi_iter = bio_src->bi_iter;
730 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 731
db6638d7 732 bio_clone_blkg_association(bio, bio_src);
e439bedf 733 blkcg_bio_issue_init(bio);
59d276fe
KO
734}
735EXPORT_SYMBOL(__bio_clone_fast);
736
737/**
738 * bio_clone_fast - clone a bio that shares the original bio's biovec
739 * @bio: bio to clone
740 * @gfp_mask: allocation priority
741 * @bs: bio_set to allocate from
742 *
743 * Like __bio_clone_fast, only also allocates the returned bio
744 */
745struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
746{
747 struct bio *b;
748
749 b = bio_alloc_bioset(gfp_mask, 0, bs);
750 if (!b)
751 return NULL;
752
753 __bio_clone_fast(b, bio);
754
07560151
EB
755 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
756 goto err_put;
a892c8d5 757
07560151
EB
758 if (bio_integrity(bio) &&
759 bio_integrity_clone(b, bio, gfp_mask) < 0)
760 goto err_put;
59d276fe
KO
761
762 return b;
07560151
EB
763
764err_put:
765 bio_put(b);
766 return NULL;
59d276fe
KO
767}
768EXPORT_SYMBOL(bio_clone_fast);
769
5cbd28e3
CH
770const char *bio_devname(struct bio *bio, char *buf)
771{
309dca30 772 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
773}
774EXPORT_SYMBOL(bio_devname);
775
5919482e
ML
776static inline bool page_is_mergeable(const struct bio_vec *bv,
777 struct page *page, unsigned int len, unsigned int off,
ff896738 778 bool *same_page)
5919482e 779{
d8166519
MWO
780 size_t bv_end = bv->bv_offset + bv->bv_len;
781 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
782 phys_addr_t page_addr = page_to_phys(page);
783
784 if (vec_end_addr + 1 != page_addr + off)
785 return false;
786 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
787 return false;
52d52d1c 788
ff896738 789 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
790 if (*same_page)
791 return true;
792 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
793}
794
e4581105
CH
795/*
796 * Try to merge a page into a segment, while obeying the hardware segment
797 * size limit. This is not for normal read/write bios, but for passthrough
798 * or Zone Append operations that we can't split.
799 */
800static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
801 struct page *page, unsigned len,
802 unsigned offset, bool *same_page)
489fbbcb 803{
384209cd 804 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
805 unsigned long mask = queue_segment_boundary(q);
806 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
807 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
808
809 if ((addr1 | mask) != (addr2 | mask))
810 return false;
489fbbcb
ML
811 if (bv->bv_len + len > queue_max_segment_size(q))
812 return false;
384209cd 813 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
814}
815
1da177e4 816/**
e4581105
CH
817 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
818 * @q: the target queue
819 * @bio: destination bio
820 * @page: page to add
821 * @len: vec entry length
822 * @offset: vec entry offset
823 * @max_sectors: maximum number of sectors that can be added
824 * @same_page: return if the segment has been merged inside the same page
c66a14d0 825 *
e4581105
CH
826 * Add a page to a bio while respecting the hardware max_sectors, max_segment
827 * and gap limitations.
1da177e4 828 */
e4581105 829int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 830 struct page *page, unsigned int len, unsigned int offset,
e4581105 831 unsigned int max_sectors, bool *same_page)
1da177e4 832{
1da177e4
LT
833 struct bio_vec *bvec;
834
e4581105 835 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
836 return 0;
837
e4581105 838 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
839 return 0;
840
80cfd548 841 if (bio->bi_vcnt > 0) {
e4581105 842 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 843 return len;
320ea869
CH
844
845 /*
846 * If the queue doesn't support SG gaps and adding this segment
847 * would create a gap, disallow it.
848 */
384209cd 849 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
850 if (bvec_gap_to_prev(q, bvec, offset))
851 return 0;
80cfd548
JA
852 }
853
79d08f89 854 if (bio_full(bio, len))
1da177e4
LT
855 return 0;
856
14ccb66b 857 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
858 return 0;
859
fcbf6a08
ML
860 bvec = &bio->bi_io_vec[bio->bi_vcnt];
861 bvec->bv_page = page;
862 bvec->bv_len = len;
863 bvec->bv_offset = offset;
864 bio->bi_vcnt++;
dcdca753 865 bio->bi_iter.bi_size += len;
1da177e4
LT
866 return len;
867}
19047087 868
e4581105
CH
869/**
870 * bio_add_pc_page - attempt to add page to passthrough bio
871 * @q: the target queue
872 * @bio: destination bio
873 * @page: page to add
874 * @len: vec entry length
875 * @offset: vec entry offset
876 *
877 * Attempt to add a page to the bio_vec maplist. This can fail for a
878 * number of reasons, such as the bio being full or target block device
879 * limitations. The target block device must allow bio's up to PAGE_SIZE,
880 * so it is always possible to add a single page to an empty bio.
881 *
882 * This should only be used by passthrough bios.
883 */
19047087
ML
884int bio_add_pc_page(struct request_queue *q, struct bio *bio,
885 struct page *page, unsigned int len, unsigned int offset)
886{
d1916c86 887 bool same_page = false;
e4581105
CH
888 return bio_add_hw_page(q, bio, page, len, offset,
889 queue_max_hw_sectors(q), &same_page);
19047087 890}
a112a71d 891EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 892
ae29333f
JT
893/**
894 * bio_add_zone_append_page - attempt to add page to zone-append bio
895 * @bio: destination bio
896 * @page: page to add
897 * @len: vec entry length
898 * @offset: vec entry offset
899 *
900 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
901 * for a zone-append request. This can fail for a number of reasons, such as the
902 * bio being full or the target block device is not a zoned block device or
903 * other limitations of the target block device. The target block device must
904 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
905 * to an empty bio.
906 *
907 * Returns: number of bytes added to the bio, or 0 in case of a failure.
908 */
909int bio_add_zone_append_page(struct bio *bio, struct page *page,
910 unsigned int len, unsigned int offset)
911{
582cd91f 912 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
ae29333f
JT
913 bool same_page = false;
914
915 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
916 return 0;
917
918 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
919 return 0;
920
921 return bio_add_hw_page(q, bio, page, len, offset,
922 queue_max_zone_append_sectors(q), &same_page);
923}
924EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
925
1da177e4 926/**
0aa69fd3
CH
927 * __bio_try_merge_page - try appending data to an existing bvec.
928 * @bio: destination bio
551879a4 929 * @page: start page to add
0aa69fd3 930 * @len: length of the data to add
551879a4 931 * @off: offset of the data relative to @page
ff896738 932 * @same_page: return if the segment has been merged inside the same page
1da177e4 933 *
0aa69fd3 934 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 935 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
936 * page size.
937 *
551879a4
ML
938 * Warn if (@len, @off) crosses pages in case that @same_page is true.
939 *
0aa69fd3 940 * Return %true on success or %false on failure.
1da177e4 941 */
0aa69fd3 942bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 943 unsigned int len, unsigned int off, bool *same_page)
1da177e4 944{
c66a14d0 945 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 946 return false;
762380ad 947
cc90bc68 948 if (bio->bi_vcnt > 0) {
0aa69fd3 949 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
950
951 if (page_is_mergeable(bv, page, len, off, same_page)) {
35c820e7 952 if (bio->bi_iter.bi_size > UINT_MAX - len) {
2cd896a5 953 *same_page = false;
cc90bc68 954 return false;
2cd896a5 955 }
5919482e
ML
956 bv->bv_len += len;
957 bio->bi_iter.bi_size += len;
958 return true;
959 }
c66a14d0 960 }
0aa69fd3
CH
961 return false;
962}
963EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 964
0aa69fd3 965/**
551879a4 966 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 967 * @bio: destination bio
551879a4
ML
968 * @page: start page to add
969 * @len: length of the data to add, may cross pages
970 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
971 *
972 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
973 * that @bio has space for another bvec.
974 */
975void __bio_add_page(struct bio *bio, struct page *page,
976 unsigned int len, unsigned int off)
977{
978 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 979
0aa69fd3 980 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 981 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
982
983 bv->bv_page = page;
984 bv->bv_offset = off;
985 bv->bv_len = len;
c66a14d0 986
c66a14d0 987 bio->bi_iter.bi_size += len;
0aa69fd3 988 bio->bi_vcnt++;
b8e24a93
JW
989
990 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
991 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
992}
993EXPORT_SYMBOL_GPL(__bio_add_page);
994
995/**
551879a4 996 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 997 * @bio: destination bio
551879a4
ML
998 * @page: start page to add
999 * @len: vec entry length, may cross pages
1000 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1001 *
551879a4 1002 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1003 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1004 */
1005int bio_add_page(struct bio *bio, struct page *page,
1006 unsigned int len, unsigned int offset)
1007{
ff896738
CH
1008 bool same_page = false;
1009
1010 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1011 if (bio_full(bio, len))
0aa69fd3
CH
1012 return 0;
1013 __bio_add_page(bio, page, len, offset);
1014 }
c66a14d0 1015 return len;
1da177e4 1016}
a112a71d 1017EXPORT_SYMBOL(bio_add_page);
1da177e4 1018
d241a95f 1019void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1020{
1021 struct bvec_iter_all iter_all;
1022 struct bio_vec *bvec;
7321ecbf 1023
b2d0d991
CH
1024 if (bio_flagged(bio, BIO_NO_PAGE_REF))
1025 return;
1026
d241a95f
CH
1027 bio_for_each_segment_all(bvec, bio, iter_all) {
1028 if (mark_dirty && !PageCompound(bvec->bv_page))
1029 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1030 put_page(bvec->bv_page);
d241a95f 1031 }
7321ecbf 1032}
29b2a3aa 1033EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 1034
7de55b7d 1035static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1036{
7a800a20 1037 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92
PB
1038
1039 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1040 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1041 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1042 bio->bi_iter.bi_size = iter->count;
ed97ce5e 1043 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1044 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1045}
c42bca92 1046
7de55b7d
JT
1047static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1048{
1049 __bio_iov_bvec_set(bio, iter);
c42bca92 1050 iov_iter_advance(iter, iter->count);
a10584c3 1051 return 0;
6d0c48ae
JA
1052}
1053
7de55b7d
JT
1054static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1055{
1056 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1057 struct iov_iter i = *iter;
1058
1059 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1060 __bio_iov_bvec_set(bio, &i);
1061 iov_iter_advance(iter, i.count);
1062 return 0;
1063}
1064
d9cf3bd5
PB
1065static void bio_put_pages(struct page **pages, size_t size, size_t off)
1066{
1067 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1068
1069 for (i = 0; i < nr; i++)
1070 put_page(pages[i]);
1071}
1072
576ed913
CH
1073#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1074
2cefe4db 1075/**
17d51b10 1076 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1077 * @bio: bio to add pages to
1078 * @iter: iov iterator describing the region to be mapped
1079 *
17d51b10 1080 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1081 * pages will have to be released using put_page() when done.
17d51b10 1082 * For multi-segment *iter, this function only adds pages from the
3cf14889 1083 * next non-empty segment of the iov iterator.
2cefe4db 1084 */
17d51b10 1085static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1086{
576ed913
CH
1087 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1088 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1089 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1090 struct page **pages = (struct page **)bv;
45691804 1091 bool same_page = false;
576ed913
CH
1092 ssize_t size, left;
1093 unsigned len, i;
b403ea24 1094 size_t offset;
576ed913
CH
1095
1096 /*
1097 * Move page array up in the allocated memory for the bio vecs as far as
1098 * possible so that we can start filling biovecs from the beginning
1099 * without overwriting the temporary page array.
1100 */
1101 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1102 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1103
35c820e7 1104 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1105 if (unlikely(size <= 0))
1106 return size ? size : -EFAULT;
2cefe4db 1107
576ed913
CH
1108 for (left = size, i = 0; left > 0; left -= len, i++) {
1109 struct page *page = pages[i];
2cefe4db 1110
576ed913 1111 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1112
1113 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1114 if (same_page)
1115 put_page(page);
1116 } else {
d9cf3bd5
PB
1117 if (WARN_ON_ONCE(bio_full(bio, len))) {
1118 bio_put_pages(pages + i, left, offset);
1119 return -EINVAL;
1120 }
45691804
CH
1121 __bio_add_page(bio, page, len, offset);
1122 }
576ed913 1123 offset = 0;
2cefe4db
KO
1124 }
1125
2cefe4db
KO
1126 iov_iter_advance(iter, size);
1127 return 0;
1128}
17d51b10 1129
0512a75b
KB
1130static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1131{
1132 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1133 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1134 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1135 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1136 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1137 struct page **pages = (struct page **)bv;
1138 ssize_t size, left;
1139 unsigned len, i;
1140 size_t offset;
4977d121 1141 int ret = 0;
0512a75b
KB
1142
1143 if (WARN_ON_ONCE(!max_append_sectors))
1144 return 0;
1145
1146 /*
1147 * Move page array up in the allocated memory for the bio vecs as far as
1148 * possible so that we can start filling biovecs from the beginning
1149 * without overwriting the temporary page array.
1150 */
1151 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1152 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1153
1154 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1155 if (unlikely(size <= 0))
1156 return size ? size : -EFAULT;
1157
1158 for (left = size, i = 0; left > 0; left -= len, i++) {
1159 struct page *page = pages[i];
1160 bool same_page = false;
1161
1162 len = min_t(size_t, PAGE_SIZE - offset, left);
1163 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1164 max_append_sectors, &same_page) != len) {
d9cf3bd5 1165 bio_put_pages(pages + i, left, offset);
4977d121
NA
1166 ret = -EINVAL;
1167 break;
1168 }
0512a75b
KB
1169 if (same_page)
1170 put_page(page);
1171 offset = 0;
1172 }
1173
4977d121
NA
1174 iov_iter_advance(iter, size - left);
1175 return ret;
0512a75b
KB
1176}
1177
17d51b10 1178/**
6d0c48ae 1179 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1180 * @bio: bio to add pages to
6d0c48ae
JA
1181 * @iter: iov iterator describing the region to be added
1182 *
1183 * This takes either an iterator pointing to user memory, or one pointing to
1184 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1185 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1186 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1187 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1188 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1189 * completed by a call to ->ki_complete() or returns with an error other than
1190 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1191 * on IO completion. If it isn't, then pages should be released.
17d51b10 1192 *
17d51b10 1193 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1194 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1195 * MM encounters an error pinning the requested pages, it stops. Error
1196 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1197 *
1198 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1199 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1200 */
1201int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1202{
c42bca92 1203 int ret = 0;
14eacf12 1204
c42bca92 1205 if (iov_iter_is_bvec(iter)) {
7de55b7d
JT
1206 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1207 return bio_iov_bvec_set_append(bio, iter);
ed97ce5e 1208 return bio_iov_bvec_set(bio, iter);
c42bca92 1209 }
17d51b10
MW
1210
1211 do {
86004515 1212 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1213 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1214 else
1215 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1216 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1217
0cf41e5e
PB
1218 /* don't account direct I/O as memory stall */
1219 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1220 return bio->bi_vcnt ? 0 : ret;
17d51b10 1221}
29b2a3aa 1222EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1223
4246a0b6 1224static void submit_bio_wait_endio(struct bio *bio)
9e882242 1225{
65e53aab 1226 complete(bio->bi_private);
9e882242
KO
1227}
1228
1229/**
1230 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1231 * @bio: The &struct bio which describes the I/O
1232 *
1233 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1234 * bio_endio() on failure.
3d289d68
JK
1235 *
1236 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1237 * result in bio reference to be consumed. The caller must drop the reference
1238 * on his own.
9e882242 1239 */
4e49ea4a 1240int submit_bio_wait(struct bio *bio)
9e882242 1241{
309dca30
CH
1242 DECLARE_COMPLETION_ONSTACK_MAP(done,
1243 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1244 unsigned long hang_check;
9e882242 1245
65e53aab 1246 bio->bi_private = &done;
9e882242 1247 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1248 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1249 submit_bio(bio);
de6a78b6
ML
1250
1251 /* Prevent hang_check timer from firing at us during very long I/O */
1252 hang_check = sysctl_hung_task_timeout_secs;
1253 if (hang_check)
1254 while (!wait_for_completion_io_timeout(&done,
1255 hang_check * (HZ/2)))
1256 ;
1257 else
1258 wait_for_completion_io(&done);
9e882242 1259
65e53aab 1260 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1261}
1262EXPORT_SYMBOL(submit_bio_wait);
1263
054bdf64
KO
1264/**
1265 * bio_advance - increment/complete a bio by some number of bytes
1266 * @bio: bio to advance
1267 * @bytes: number of bytes to complete
1268 *
1269 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1270 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1271 * be updated on the last bvec as well.
1272 *
1273 * @bio will then represent the remaining, uncompleted portion of the io.
1274 */
1275void bio_advance(struct bio *bio, unsigned bytes)
1276{
1277 if (bio_integrity(bio))
1278 bio_integrity_advance(bio, bytes);
1279
a892c8d5 1280 bio_crypt_advance(bio, bytes);
4550dd6c 1281 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1282}
1283EXPORT_SYMBOL(bio_advance);
1284
45db54d5
KO
1285void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1286 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1287{
45db54d5 1288 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1289 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1290 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1291 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1292 void *src_buf;
1293
1294 src_buf = bvec_kmap_local(&src_bv);
1295 memcpy_to_bvec(&dst_bv, src_buf);
1296 kunmap_local(src_buf);
6e6e811d 1297
22b56c29
PB
1298 bio_advance_iter_single(src, src_iter, bytes);
1299 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1300 }
1301}
38a72dac
KO
1302EXPORT_SYMBOL(bio_copy_data_iter);
1303
1304/**
45db54d5
KO
1305 * bio_copy_data - copy contents of data buffers from one bio to another
1306 * @src: source bio
1307 * @dst: destination bio
38a72dac
KO
1308 *
1309 * Stops when it reaches the end of either @src or @dst - that is, copies
1310 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1311 */
1312void bio_copy_data(struct bio *dst, struct bio *src)
1313{
45db54d5
KO
1314 struct bvec_iter src_iter = src->bi_iter;
1315 struct bvec_iter dst_iter = dst->bi_iter;
1316
1317 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1318}
16ac3d63
KO
1319EXPORT_SYMBOL(bio_copy_data);
1320
491221f8 1321void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1322{
1323 struct bio_vec *bvec;
6dc4f100 1324 struct bvec_iter_all iter_all;
1dfa0f68 1325
2b070cfe 1326 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1327 __free_page(bvec->bv_page);
1328}
491221f8 1329EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1330
1da177e4
LT
1331/*
1332 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1333 * for performing direct-IO in BIOs.
1334 *
1335 * The problem is that we cannot run set_page_dirty() from interrupt context
1336 * because the required locks are not interrupt-safe. So what we can do is to
1337 * mark the pages dirty _before_ performing IO. And in interrupt context,
1338 * check that the pages are still dirty. If so, fine. If not, redirty them
1339 * in process context.
1340 *
1341 * We special-case compound pages here: normally this means reads into hugetlb
1342 * pages. The logic in here doesn't really work right for compound pages
1343 * because the VM does not uniformly chase down the head page in all cases.
1344 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1345 * handle them at all. So we skip compound pages here at an early stage.
1346 *
1347 * Note that this code is very hard to test under normal circumstances because
1348 * direct-io pins the pages with get_user_pages(). This makes
1349 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1350 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1351 * pagecache.
1352 *
1353 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1354 * deferred bio dirtying paths.
1355 */
1356
1357/*
1358 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1359 */
1360void bio_set_pages_dirty(struct bio *bio)
1361{
cb34e057 1362 struct bio_vec *bvec;
6dc4f100 1363 struct bvec_iter_all iter_all;
1da177e4 1364
2b070cfe 1365 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1366 if (!PageCompound(bvec->bv_page))
1367 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1368 }
1369}
1370
1da177e4
LT
1371/*
1372 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1373 * If they are, then fine. If, however, some pages are clean then they must
1374 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1375 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1376 *
1377 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1378 * here on. It will run one put_page() against each page and will run one
1379 * bio_put() against the BIO.
1da177e4
LT
1380 */
1381
65f27f38 1382static void bio_dirty_fn(struct work_struct *work);
1da177e4 1383
65f27f38 1384static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1385static DEFINE_SPINLOCK(bio_dirty_lock);
1386static struct bio *bio_dirty_list;
1387
1388/*
1389 * This runs in process context
1390 */
65f27f38 1391static void bio_dirty_fn(struct work_struct *work)
1da177e4 1392{
24d5493f 1393 struct bio *bio, *next;
1da177e4 1394
24d5493f
CH
1395 spin_lock_irq(&bio_dirty_lock);
1396 next = bio_dirty_list;
1da177e4 1397 bio_dirty_list = NULL;
24d5493f 1398 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1399
24d5493f
CH
1400 while ((bio = next) != NULL) {
1401 next = bio->bi_private;
1da177e4 1402
d241a95f 1403 bio_release_pages(bio, true);
1da177e4 1404 bio_put(bio);
1da177e4
LT
1405 }
1406}
1407
1408void bio_check_pages_dirty(struct bio *bio)
1409{
cb34e057 1410 struct bio_vec *bvec;
24d5493f 1411 unsigned long flags;
6dc4f100 1412 struct bvec_iter_all iter_all;
1da177e4 1413
2b070cfe 1414 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1415 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1416 goto defer;
1da177e4
LT
1417 }
1418
d241a95f 1419 bio_release_pages(bio, false);
24d5493f
CH
1420 bio_put(bio);
1421 return;
1422defer:
1423 spin_lock_irqsave(&bio_dirty_lock, flags);
1424 bio->bi_private = bio_dirty_list;
1425 bio_dirty_list = bio;
1426 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1427 schedule_work(&bio_dirty_work);
1da177e4
LT
1428}
1429
c4cf5261
JA
1430static inline bool bio_remaining_done(struct bio *bio)
1431{
1432 /*
1433 * If we're not chaining, then ->__bi_remaining is always 1 and
1434 * we always end io on the first invocation.
1435 */
1436 if (!bio_flagged(bio, BIO_CHAIN))
1437 return true;
1438
1439 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1440
326e1dbb 1441 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1442 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1443 return true;
326e1dbb 1444 }
c4cf5261
JA
1445
1446 return false;
1447}
1448
1da177e4
LT
1449/**
1450 * bio_endio - end I/O on a bio
1451 * @bio: bio
1da177e4
LT
1452 *
1453 * Description:
4246a0b6
CH
1454 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1455 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1456 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1457 *
1458 * bio_endio() can be called several times on a bio that has been chained
1459 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1460 * last time.
1da177e4 1461 **/
4246a0b6 1462void bio_endio(struct bio *bio)
1da177e4 1463{
ba8c6967 1464again:
2b885517 1465 if (!bio_remaining_done(bio))
ba8c6967 1466 return;
7c20f116
CH
1467 if (!bio_integrity_endio(bio))
1468 return;
1da177e4 1469
a647a524 1470 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
309dca30 1471 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1472
60b6a7e6
EH
1473 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1474 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1475 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1476 }
1477
ba8c6967
CH
1478 /*
1479 * Need to have a real endio function for chained bios, otherwise
1480 * various corner cases will break (like stacking block devices that
1481 * save/restore bi_end_io) - however, we want to avoid unbounded
1482 * recursion and blowing the stack. Tail call optimization would
1483 * handle this, but compiling with frame pointers also disables
1484 * gcc's sibling call optimization.
1485 */
1486 if (bio->bi_end_io == bio_chain_endio) {
1487 bio = __bio_chain_endio(bio);
1488 goto again;
196d38bc 1489 }
ba8c6967 1490
9e234eea 1491 blk_throtl_bio_endio(bio);
b222dd2f
SL
1492 /* release cgroup info */
1493 bio_uninit(bio);
ba8c6967
CH
1494 if (bio->bi_end_io)
1495 bio->bi_end_io(bio);
1da177e4 1496}
a112a71d 1497EXPORT_SYMBOL(bio_endio);
1da177e4 1498
20d0189b
KO
1499/**
1500 * bio_split - split a bio
1501 * @bio: bio to split
1502 * @sectors: number of sectors to split from the front of @bio
1503 * @gfp: gfp mask
1504 * @bs: bio set to allocate from
1505 *
1506 * Allocates and returns a new bio which represents @sectors from the start of
1507 * @bio, and updates @bio to represent the remaining sectors.
1508 *
f3f5da62 1509 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1510 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1511 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1512 */
1513struct bio *bio_split(struct bio *bio, int sectors,
1514 gfp_t gfp, struct bio_set *bs)
1515{
f341a4d3 1516 struct bio *split;
20d0189b
KO
1517
1518 BUG_ON(sectors <= 0);
1519 BUG_ON(sectors >= bio_sectors(bio));
1520
0512a75b
KB
1521 /* Zone append commands cannot be split */
1522 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1523 return NULL;
1524
f9d03f96 1525 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1526 if (!split)
1527 return NULL;
1528
1529 split->bi_iter.bi_size = sectors << 9;
1530
1531 if (bio_integrity(split))
fbd08e76 1532 bio_integrity_trim(split);
20d0189b
KO
1533
1534 bio_advance(bio, split->bi_iter.bi_size);
1535
fbbaf700 1536 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1537 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1538
20d0189b
KO
1539 return split;
1540}
1541EXPORT_SYMBOL(bio_split);
1542
6678d83f
KO
1543/**
1544 * bio_trim - trim a bio
1545 * @bio: bio to trim
1546 * @offset: number of sectors to trim from the front of @bio
1547 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1548 *
1549 * This function is typically used for bios that are cloned and submitted
1550 * to the underlying device in parts.
6678d83f 1551 */
e83502ca 1552void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1553{
e83502ca 1554 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
59764caf 1555 offset + size > bio_sectors(bio)))
e83502ca 1556 return;
6678d83f
KO
1557
1558 size <<= 9;
4f024f37 1559 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1560 return;
1561
6678d83f 1562 bio_advance(bio, offset << 9);
4f024f37 1563 bio->bi_iter.bi_size = size;
376a78ab
DM
1564
1565 if (bio_integrity(bio))
fbd08e76 1566 bio_integrity_trim(bio);
6678d83f
KO
1567}
1568EXPORT_SYMBOL_GPL(bio_trim);
1569
1da177e4
LT
1570/*
1571 * create memory pools for biovec's in a bio_set.
1572 * use the global biovec slabs created for general use.
1573 */
8aa6ba2f 1574int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1575{
7a800a20 1576 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1577
8aa6ba2f 1578 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1579}
1580
917a38c7
KO
1581/*
1582 * bioset_exit - exit a bioset initialized with bioset_init()
1583 *
1584 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1585 * kzalloc()).
1586 */
1587void bioset_exit(struct bio_set *bs)
1da177e4 1588{
be4d234d 1589 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1590 if (bs->rescue_workqueue)
1591 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1592 bs->rescue_workqueue = NULL;
df2cb6da 1593
8aa6ba2f
KO
1594 mempool_exit(&bs->bio_pool);
1595 mempool_exit(&bs->bvec_pool);
9f060e22 1596
7878cba9 1597 bioset_integrity_free(bs);
917a38c7
KO
1598 if (bs->bio_slab)
1599 bio_put_slab(bs);
1600 bs->bio_slab = NULL;
1601}
1602EXPORT_SYMBOL(bioset_exit);
1da177e4 1603
917a38c7
KO
1604/**
1605 * bioset_init - Initialize a bio_set
dad08527 1606 * @bs: pool to initialize
917a38c7
KO
1607 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1608 * @front_pad: Number of bytes to allocate in front of the returned bio
1609 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1610 * and %BIOSET_NEED_RESCUER
1611 *
dad08527
KO
1612 * Description:
1613 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1614 * to ask for a number of bytes to be allocated in front of the bio.
1615 * Front pad allocation is useful for embedding the bio inside
1616 * another structure, to avoid allocating extra data to go with the bio.
1617 * Note that the bio must be embedded at the END of that structure always,
1618 * or things will break badly.
1619 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1620 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1621 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1622 * dispatch queued requests when the mempool runs out of space.
1623 *
917a38c7
KO
1624 */
1625int bioset_init(struct bio_set *bs,
1626 unsigned int pool_size,
1627 unsigned int front_pad,
1628 int flags)
1629{
917a38c7 1630 bs->front_pad = front_pad;
9f180e31
ML
1631 if (flags & BIOSET_NEED_BVECS)
1632 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1633 else
1634 bs->back_pad = 0;
917a38c7
KO
1635
1636 spin_lock_init(&bs->rescue_lock);
1637 bio_list_init(&bs->rescue_list);
1638 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1639
49d1ec85 1640 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1641 if (!bs->bio_slab)
1642 return -ENOMEM;
1643
1644 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1645 goto bad;
1646
1647 if ((flags & BIOSET_NEED_BVECS) &&
1648 biovec_init_pool(&bs->bvec_pool, pool_size))
1649 goto bad;
1650
be4d234d
JA
1651 if (flags & BIOSET_NEED_RESCUER) {
1652 bs->rescue_workqueue = alloc_workqueue("bioset",
1653 WQ_MEM_RECLAIM, 0);
1654 if (!bs->rescue_workqueue)
1655 goto bad;
1656 }
1657 if (flags & BIOSET_PERCPU_CACHE) {
1658 bs->cache = alloc_percpu(struct bio_alloc_cache);
1659 if (!bs->cache)
1660 goto bad;
1661 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1662 }
917a38c7
KO
1663
1664 return 0;
1665bad:
1666 bioset_exit(bs);
1667 return -ENOMEM;
1668}
1669EXPORT_SYMBOL(bioset_init);
1670
28e89fd9
JA
1671/*
1672 * Initialize and setup a new bio_set, based on the settings from
1673 * another bio_set.
1674 */
1675int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1676{
1677 int flags;
1678
1679 flags = 0;
1680 if (src->bvec_pool.min_nr)
1681 flags |= BIOSET_NEED_BVECS;
1682 if (src->rescue_workqueue)
1683 flags |= BIOSET_NEED_RESCUER;
1684
1685 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1686}
1687EXPORT_SYMBOL(bioset_init_from_src);
1688
be4d234d
JA
1689/**
1690 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1691 * @kiocb: kiocb describing the IO
0ef47db1 1692 * @nr_vecs: number of iovecs to pre-allocate
be4d234d
JA
1693 * @bs: bio_set to allocate from
1694 *
1695 * Description:
1696 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1697 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1698 * cache. The allocation uses GFP_KERNEL internally. On return, the
1699 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1700 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1701 *
1702 */
1703struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1704 struct bio_set *bs)
1705{
1706 struct bio_alloc_cache *cache;
1707 struct bio *bio;
1708
1709 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1710 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1711
1712 cache = per_cpu_ptr(bs->cache, get_cpu());
1713 bio = bio_list_pop(&cache->free_list);
1714 if (bio) {
1715 cache->nr--;
1716 put_cpu();
1717 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1718 bio->bi_pool = bs;
1719 bio_set_flag(bio, BIO_PERCPU_CACHE);
1720 return bio;
1721 }
1722 put_cpu();
1723 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1724 bio_set_flag(bio, BIO_PERCPU_CACHE);
1725 return bio;
1726}
1727EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1728
de76fd89 1729static int __init init_bio(void)
1da177e4
LT
1730{
1731 int i;
1732
7878cba9 1733 bio_integrity_init();
1da177e4 1734
de76fd89
CH
1735 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1736 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1737
de76fd89
CH
1738 bvs->slab = kmem_cache_create(bvs->name,
1739 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1740 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1741 }
1da177e4 1742
be4d234d
JA
1743 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1744 bio_cpu_dead);
1745
f4f8154a 1746 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1747 panic("bio: can't allocate bios\n");
1748
f4f8154a 1749 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1750 panic("bio: can't create integrity pool\n");
1751
1da177e4
LT
1752 return 0;
1753}
1da177e4 1754subsys_initcall(init_bio);