]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - block/bio.c
block: don't allow multiple bio_iov_iter_get_pages calls per bio
[mirror_ubuntu-hirsute-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
d6c02a9b 161 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
6f70fb66 247 bio_disassociate_blkg(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
6c210aa5 574int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
581
59d276fe
KO
582/**
583 * __bio_clone_fast - clone a bio that shares the original bio's biovec
584 * @bio: destination bio
585 * @bio_src: bio to clone
586 *
587 * Clone a &bio. Caller will own the returned bio, but not
588 * the actual data it points to. Reference count of returned
589 * bio will be one.
590 *
591 * Caller must ensure that @bio_src is not freed before @bio.
592 */
593void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594{
ed996a52 595 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
596
597 /*
74d46992 598 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
599 * so we don't set nor calculate new physical/hw segment counts here
600 */
74d46992 601 bio->bi_disk = bio_src->bi_disk;
62530ed8 602 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 603 bio_set_flag(bio, BIO_CLONED);
111be883
SL
604 if (bio_flagged(bio_src, BIO_THROTTLED))
605 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 606 bio->bi_opf = bio_src->bi_opf;
ca474b73 607 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 611
db6638d7 612 bio_clone_blkg_association(bio, bio_src);
e439bedf 613 blkcg_bio_issue_init(bio);
59d276fe
KO
614}
615EXPORT_SYMBOL(__bio_clone_fast);
616
617/**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626{
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647}
648EXPORT_SYMBOL(bio_clone_fast);
649
5919482e
ML
650static inline bool page_is_mergeable(const struct bio_vec *bv,
651 struct page *page, unsigned int len, unsigned int off,
652 bool same_page)
653{
654 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
655 bv->bv_offset + bv->bv_len - 1;
656 phys_addr_t page_addr = page_to_phys(page);
657
658 if (vec_end_addr + 1 != page_addr + off)
659 return false;
660 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
661 return false;
662 if (same_page && (vec_end_addr & PAGE_MASK) != page_addr)
663 return false;
664
665 return true;
666}
667
489fbbcb
ML
668/*
669 * Check if the @page can be added to the current segment(@bv), and make
670 * sure to call it only if page_is_mergeable(@bv, @page) is true
671 */
672static bool can_add_page_to_seg(struct request_queue *q,
673 struct bio_vec *bv, struct page *page, unsigned len,
674 unsigned offset)
675{
676 unsigned long mask = queue_segment_boundary(q);
677 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
678 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
679
680 if ((addr1 | mask) != (addr2 | mask))
681 return false;
682
683 if (bv->bv_len + len > queue_max_segment_size(q))
684 return false;
685
686 return true;
687}
688
1da177e4 689/**
19047087 690 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
691 * @q: the target queue
692 * @bio: destination bio
693 * @page: page to add
694 * @len: vec entry length
695 * @offset: vec entry offset
19047087 696 * @put_same_page: put the page if it is same with last added page
1da177e4 697 *
c66a14d0
KO
698 * Attempt to add a page to the bio_vec maplist. This can fail for a
699 * number of reasons, such as the bio being full or target block device
700 * limitations. The target block device must allow bio's up to PAGE_SIZE,
701 * so it is always possible to add a single page to an empty bio.
702 *
5a8ce240 703 * This should only be used by passthrough bios.
1da177e4 704 */
19047087
ML
705int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
706 struct page *page, unsigned int len, unsigned int offset,
707 bool put_same_page)
1da177e4 708{
1da177e4
LT
709 struct bio_vec *bvec;
710
711 /*
712 * cloned bio must not modify vec list
713 */
714 if (unlikely(bio_flagged(bio, BIO_CLONED)))
715 return 0;
716
c66a14d0 717 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
718 return 0;
719
80cfd548
JA
720 /*
721 * For filesystems with a blocksize smaller than the pagesize
722 * we will often be called with the same page as last time and
723 * a consecutive offset. Optimize this special case.
724 */
725 if (bio->bi_vcnt > 0) {
5a8ce240 726 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
80cfd548 727
5a8ce240
ML
728 if (page == bvec->bv_page &&
729 offset == bvec->bv_offset + bvec->bv_len) {
19047087
ML
730 if (put_same_page)
731 put_page(page);
489fbbcb 732 bvec_merge:
5a8ce240 733 bvec->bv_len += len;
fcbf6a08 734 bio->bi_iter.bi_size += len;
80cfd548
JA
735 goto done;
736 }
66cb45aa
JA
737
738 /*
739 * If the queue doesn't support SG gaps and adding this
740 * offset would create a gap, disallow it.
741 */
5a8ce240 742 if (bvec_gap_to_prev(q, bvec, offset))
66cb45aa 743 return 0;
489fbbcb
ML
744
745 if (page_is_mergeable(bvec, page, len, offset, false) &&
746 can_add_page_to_seg(q, bvec, page, len, offset))
747 goto bvec_merge;
80cfd548
JA
748 }
749
0aa69fd3 750 if (bio_full(bio))
1da177e4
LT
751 return 0;
752
489fbbcb
ML
753 if (bio->bi_phys_segments >= queue_max_segments(q))
754 return 0;
755
1da177e4 756 /*
fcbf6a08
ML
757 * setup the new entry, we might clear it again later if we
758 * cannot add the page
759 */
760 bvec = &bio->bi_io_vec[bio->bi_vcnt];
761 bvec->bv_page = page;
762 bvec->bv_len = len;
763 bvec->bv_offset = offset;
764 bio->bi_vcnt++;
fcbf6a08
ML
765 bio->bi_iter.bi_size += len;
766
80cfd548 767 done:
489fbbcb
ML
768 bio->bi_phys_segments = bio->bi_vcnt;
769 bio_set_flag(bio, BIO_SEG_VALID);
1da177e4
LT
770 return len;
771}
19047087
ML
772EXPORT_SYMBOL(__bio_add_pc_page);
773
774int bio_add_pc_page(struct request_queue *q, struct bio *bio,
775 struct page *page, unsigned int len, unsigned int offset)
776{
777 return __bio_add_pc_page(q, bio, page, len, offset, false);
778}
a112a71d 779EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 780
1da177e4 781/**
0aa69fd3
CH
782 * __bio_try_merge_page - try appending data to an existing bvec.
783 * @bio: destination bio
784 * @page: page to add
785 * @len: length of the data to add
786 * @off: offset of the data in @page
07173c3e
ML
787 * @same_page: if %true only merge if the new data is in the same physical
788 * page as the last segment of the bio.
1da177e4 789 *
0aa69fd3
CH
790 * Try to add the data at @page + @off to the last bvec of @bio. This is a
791 * a useful optimisation for file systems with a block size smaller than the
792 * page size.
793 *
794 * Return %true on success or %false on failure.
1da177e4 795 */
0aa69fd3 796bool __bio_try_merge_page(struct bio *bio, struct page *page,
07173c3e 797 unsigned int len, unsigned int off, bool same_page)
1da177e4 798{
c66a14d0 799 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 800 return false;
762380ad 801
c66a14d0 802 if (bio->bi_vcnt > 0) {
0aa69fd3 803 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
804
805 if (page_is_mergeable(bv, page, len, off, same_page)) {
806 bv->bv_len += len;
807 bio->bi_iter.bi_size += len;
808 return true;
809 }
c66a14d0 810 }
0aa69fd3
CH
811 return false;
812}
813EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 814
0aa69fd3
CH
815/**
816 * __bio_add_page - add page to a bio in a new segment
817 * @bio: destination bio
818 * @page: page to add
819 * @len: length of the data to add
820 * @off: offset of the data in @page
821 *
822 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
823 * that @bio has space for another bvec.
824 */
825void __bio_add_page(struct bio *bio, struct page *page,
826 unsigned int len, unsigned int off)
827{
828 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 829
0aa69fd3
CH
830 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
831 WARN_ON_ONCE(bio_full(bio));
832
833 bv->bv_page = page;
834 bv->bv_offset = off;
835 bv->bv_len = len;
c66a14d0 836
c66a14d0 837 bio->bi_iter.bi_size += len;
0aa69fd3
CH
838 bio->bi_vcnt++;
839}
840EXPORT_SYMBOL_GPL(__bio_add_page);
841
842/**
843 * bio_add_page - attempt to add page to bio
844 * @bio: destination bio
845 * @page: page to add
846 * @len: vec entry length
847 * @offset: vec entry offset
848 *
849 * Attempt to add a page to the bio_vec maplist. This will only fail
850 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
851 */
852int bio_add_page(struct bio *bio, struct page *page,
853 unsigned int len, unsigned int offset)
854{
07173c3e 855 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
0aa69fd3
CH
856 if (bio_full(bio))
857 return 0;
858 __bio_add_page(bio, page, len, offset);
859 }
c66a14d0 860 return len;
1da177e4 861}
a112a71d 862EXPORT_SYMBOL(bio_add_page);
1da177e4 863
6d0c48ae
JA
864static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
865{
866 const struct bio_vec *bv = iter->bvec;
867 unsigned int len;
868 size_t size;
869
870 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
871 return -EINVAL;
872
873 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
874 size = bio_add_page(bio, bv->bv_page, len,
875 bv->bv_offset + iter->iov_offset);
a10584c3
CH
876 if (unlikely(size != len))
877 return -EINVAL;
399254aa 878
a10584c3
CH
879 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) {
880 struct page *page;
881 int i;
6d0c48ae 882
a10584c3
CH
883 mp_bvec_for_each_page(page, bv, i)
884 get_page(page);
6d0c48ae
JA
885 }
886
a10584c3
CH
887 iov_iter_advance(iter, size);
888 return 0;
6d0c48ae
JA
889}
890
576ed913
CH
891#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
892
2cefe4db 893/**
17d51b10 894 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
895 * @bio: bio to add pages to
896 * @iter: iov iterator describing the region to be mapped
897 *
17d51b10 898 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 899 * pages will have to be released using put_page() when done.
17d51b10
MW
900 * For multi-segment *iter, this function only adds pages from the
901 * the next non-empty segment of the iov iterator.
2cefe4db 902 */
17d51b10 903static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 904{
576ed913
CH
905 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
906 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
907 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
908 struct page **pages = (struct page **)bv;
576ed913
CH
909 ssize_t size, left;
910 unsigned len, i;
b403ea24 911 size_t offset;
576ed913
CH
912
913 /*
914 * Move page array up in the allocated memory for the bio vecs as far as
915 * possible so that we can start filling biovecs from the beginning
916 * without overwriting the temporary page array.
917 */
918 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
919 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
920
921 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
922 if (unlikely(size <= 0))
923 return size ? size : -EFAULT;
2cefe4db 924
576ed913
CH
925 for (left = size, i = 0; left > 0; left -= len, i++) {
926 struct page *page = pages[i];
2cefe4db 927
576ed913
CH
928 len = min_t(size_t, PAGE_SIZE - offset, left);
929 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
930 return -EINVAL;
931 offset = 0;
2cefe4db
KO
932 }
933
2cefe4db
KO
934 iov_iter_advance(iter, size);
935 return 0;
936}
17d51b10
MW
937
938/**
6d0c48ae 939 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 940 * @bio: bio to add pages to
6d0c48ae
JA
941 * @iter: iov iterator describing the region to be added
942 *
943 * This takes either an iterator pointing to user memory, or one pointing to
944 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
945 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
946 * pages. If we're adding kernel pages, and the caller told us it's safe to
947 * do so, we just have to add the pages to the bio directly. We don't grab an
948 * extra reference to those pages (the user should already have that), and we
949 * don't put the page on IO completion. The caller needs to check if the bio is
950 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
951 * released.
17d51b10 952 *
17d51b10 953 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
954 * fit into the bio, or are requested in *iter, whatever is smaller. If
955 * MM encounters an error pinning the requested pages, it stops. Error
956 * is returned only if 0 pages could be pinned.
17d51b10
MW
957 */
958int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
959{
6d0c48ae 960 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
961 int ret;
962
963 if (WARN_ON_ONCE(bio->bi_vcnt))
964 return -EINVAL;
17d51b10 965
399254aa
JA
966 /*
967 * If this is a BVEC iter, then the pages are kernel pages. Don't
968 * release them on IO completion, if the caller asked us to.
969 */
970 if (is_bvec && iov_iter_bvec_no_ref(iter))
971 bio_set_flag(bio, BIO_NO_PAGE_REF);
972
17d51b10 973 do {
6d0c48ae
JA
974 if (is_bvec)
975 ret = __bio_iov_bvec_add_pages(bio, iter);
976 else
977 ret = __bio_iov_iter_get_pages(bio, iter);
14eacf12 978 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
17d51b10 979
14eacf12 980 return bio->bi_vcnt ? 0 : ret;
17d51b10 981}
2cefe4db 982
4246a0b6 983static void submit_bio_wait_endio(struct bio *bio)
9e882242 984{
65e53aab 985 complete(bio->bi_private);
9e882242
KO
986}
987
988/**
989 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
990 * @bio: The &struct bio which describes the I/O
991 *
992 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
993 * bio_endio() on failure.
3d289d68
JK
994 *
995 * WARNING: Unlike to how submit_bio() is usually used, this function does not
996 * result in bio reference to be consumed. The caller must drop the reference
997 * on his own.
9e882242 998 */
4e49ea4a 999int submit_bio_wait(struct bio *bio)
9e882242 1000{
e319e1fb 1001 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 1002
65e53aab 1003 bio->bi_private = &done;
9e882242 1004 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1005 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1006 submit_bio(bio);
65e53aab 1007 wait_for_completion_io(&done);
9e882242 1008
65e53aab 1009 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1010}
1011EXPORT_SYMBOL(submit_bio_wait);
1012
054bdf64
KO
1013/**
1014 * bio_advance - increment/complete a bio by some number of bytes
1015 * @bio: bio to advance
1016 * @bytes: number of bytes to complete
1017 *
1018 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1019 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1020 * be updated on the last bvec as well.
1021 *
1022 * @bio will then represent the remaining, uncompleted portion of the io.
1023 */
1024void bio_advance(struct bio *bio, unsigned bytes)
1025{
1026 if (bio_integrity(bio))
1027 bio_integrity_advance(bio, bytes);
1028
4550dd6c 1029 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1030}
1031EXPORT_SYMBOL(bio_advance);
1032
45db54d5
KO
1033void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1034 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1035{
1cb9dda4 1036 struct bio_vec src_bv, dst_bv;
16ac3d63 1037 void *src_p, *dst_p;
1cb9dda4 1038 unsigned bytes;
16ac3d63 1039
45db54d5
KO
1040 while (src_iter->bi_size && dst_iter->bi_size) {
1041 src_bv = bio_iter_iovec(src, *src_iter);
1042 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1043
1044 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1045
1cb9dda4
KO
1046 src_p = kmap_atomic(src_bv.bv_page);
1047 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1048
1cb9dda4
KO
1049 memcpy(dst_p + dst_bv.bv_offset,
1050 src_p + src_bv.bv_offset,
16ac3d63
KO
1051 bytes);
1052
1053 kunmap_atomic(dst_p);
1054 kunmap_atomic(src_p);
1055
6e6e811d
KO
1056 flush_dcache_page(dst_bv.bv_page);
1057
45db54d5
KO
1058 bio_advance_iter(src, src_iter, bytes);
1059 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1060 }
1061}
38a72dac
KO
1062EXPORT_SYMBOL(bio_copy_data_iter);
1063
1064/**
45db54d5
KO
1065 * bio_copy_data - copy contents of data buffers from one bio to another
1066 * @src: source bio
1067 * @dst: destination bio
38a72dac
KO
1068 *
1069 * Stops when it reaches the end of either @src or @dst - that is, copies
1070 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1071 */
1072void bio_copy_data(struct bio *dst, struct bio *src)
1073{
45db54d5
KO
1074 struct bvec_iter src_iter = src->bi_iter;
1075 struct bvec_iter dst_iter = dst->bi_iter;
1076
1077 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1078}
16ac3d63
KO
1079EXPORT_SYMBOL(bio_copy_data);
1080
45db54d5
KO
1081/**
1082 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1083 * another
1084 * @src: source bio list
1085 * @dst: destination bio list
1086 *
1087 * Stops when it reaches the end of either the @src list or @dst list - that is,
1088 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1089 * bios).
1090 */
1091void bio_list_copy_data(struct bio *dst, struct bio *src)
1092{
1093 struct bvec_iter src_iter = src->bi_iter;
1094 struct bvec_iter dst_iter = dst->bi_iter;
1095
1096 while (1) {
1097 if (!src_iter.bi_size) {
1098 src = src->bi_next;
1099 if (!src)
1100 break;
1101
1102 src_iter = src->bi_iter;
1103 }
1104
1105 if (!dst_iter.bi_size) {
1106 dst = dst->bi_next;
1107 if (!dst)
1108 break;
1109
1110 dst_iter = dst->bi_iter;
1111 }
1112
1113 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1114 }
1115}
1116EXPORT_SYMBOL(bio_list_copy_data);
1117
1da177e4 1118struct bio_map_data {
152e283f 1119 int is_our_pages;
26e49cfc
KO
1120 struct iov_iter iter;
1121 struct iovec iov[];
1da177e4
LT
1122};
1123
0e5b935d 1124static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1125 gfp_t gfp_mask)
1da177e4 1126{
0e5b935d
AV
1127 struct bio_map_data *bmd;
1128 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1129 return NULL;
1da177e4 1130
0e5b935d
AV
1131 bmd = kmalloc(sizeof(struct bio_map_data) +
1132 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1133 if (!bmd)
1134 return NULL;
1135 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1136 bmd->iter = *data;
1137 bmd->iter.iov = bmd->iov;
1138 return bmd;
1da177e4
LT
1139}
1140
9124d3fe
DP
1141/**
1142 * bio_copy_from_iter - copy all pages from iov_iter to bio
1143 * @bio: The &struct bio which describes the I/O as destination
1144 * @iter: iov_iter as source
1145 *
1146 * Copy all pages from iov_iter to bio.
1147 * Returns 0 on success, or error on failure.
1148 */
98a09d61 1149static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1150{
9124d3fe 1151 int i;
c5dec1c3 1152 struct bio_vec *bvec;
6dc4f100 1153 struct bvec_iter_all iter_all;
c5dec1c3 1154
6dc4f100 1155 bio_for_each_segment_all(bvec, bio, i, iter_all) {
9124d3fe 1156 ssize_t ret;
c5dec1c3 1157
9124d3fe
DP
1158 ret = copy_page_from_iter(bvec->bv_page,
1159 bvec->bv_offset,
1160 bvec->bv_len,
98a09d61 1161 iter);
9124d3fe 1162
98a09d61 1163 if (!iov_iter_count(iter))
9124d3fe
DP
1164 break;
1165
1166 if (ret < bvec->bv_len)
1167 return -EFAULT;
c5dec1c3
FT
1168 }
1169
9124d3fe
DP
1170 return 0;
1171}
1172
1173/**
1174 * bio_copy_to_iter - copy all pages from bio to iov_iter
1175 * @bio: The &struct bio which describes the I/O as source
1176 * @iter: iov_iter as destination
1177 *
1178 * Copy all pages from bio to iov_iter.
1179 * Returns 0 on success, or error on failure.
1180 */
1181static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1182{
1183 int i;
1184 struct bio_vec *bvec;
6dc4f100 1185 struct bvec_iter_all iter_all;
9124d3fe 1186
6dc4f100 1187 bio_for_each_segment_all(bvec, bio, i, iter_all) {
9124d3fe
DP
1188 ssize_t ret;
1189
1190 ret = copy_page_to_iter(bvec->bv_page,
1191 bvec->bv_offset,
1192 bvec->bv_len,
1193 &iter);
1194
1195 if (!iov_iter_count(&iter))
1196 break;
1197
1198 if (ret < bvec->bv_len)
1199 return -EFAULT;
1200 }
1201
1202 return 0;
c5dec1c3
FT
1203}
1204
491221f8 1205void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1206{
1207 struct bio_vec *bvec;
1208 int i;
6dc4f100 1209 struct bvec_iter_all iter_all;
1dfa0f68 1210
6dc4f100 1211 bio_for_each_segment_all(bvec, bio, i, iter_all)
1dfa0f68
CH
1212 __free_page(bvec->bv_page);
1213}
491221f8 1214EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1215
1da177e4
LT
1216/**
1217 * bio_uncopy_user - finish previously mapped bio
1218 * @bio: bio being terminated
1219 *
ddad8dd0 1220 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1221 * to user space in case of a read.
1222 */
1223int bio_uncopy_user(struct bio *bio)
1224{
1225 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1226 int ret = 0;
1da177e4 1227
35dc2483
RD
1228 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1229 /*
1230 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1231 * don't copy into a random user address space, just free
1232 * and return -EINTR so user space doesn't expect any data.
35dc2483 1233 */
2d99b55d
HR
1234 if (!current->mm)
1235 ret = -EINTR;
1236 else if (bio_data_dir(bio) == READ)
9124d3fe 1237 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1238 if (bmd->is_our_pages)
1239 bio_free_pages(bio);
35dc2483 1240 }
c8db4448 1241 kfree(bmd);
1da177e4
LT
1242 bio_put(bio);
1243 return ret;
1244}
1245
1246/**
c5dec1c3 1247 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1248 * @q: destination block queue
1249 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1250 * @iter: iovec iterator
1251 * @gfp_mask: memory allocation flags
1da177e4
LT
1252 *
1253 * Prepares and returns a bio for indirect user io, bouncing data
1254 * to/from kernel pages as necessary. Must be paired with
1255 * call bio_uncopy_user() on io completion.
1256 */
152e283f
FT
1257struct bio *bio_copy_user_iov(struct request_queue *q,
1258 struct rq_map_data *map_data,
e81cef5d 1259 struct iov_iter *iter,
26e49cfc 1260 gfp_t gfp_mask)
1da177e4 1261{
1da177e4 1262 struct bio_map_data *bmd;
1da177e4
LT
1263 struct page *page;
1264 struct bio *bio;
d16d44eb
AV
1265 int i = 0, ret;
1266 int nr_pages;
26e49cfc 1267 unsigned int len = iter->count;
bd5cecea 1268 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1269
0e5b935d 1270 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1271 if (!bmd)
1272 return ERR_PTR(-ENOMEM);
1273
26e49cfc
KO
1274 /*
1275 * We need to do a deep copy of the iov_iter including the iovecs.
1276 * The caller provided iov might point to an on-stack or otherwise
1277 * shortlived one.
1278 */
1279 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1280
d16d44eb
AV
1281 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1282 if (nr_pages > BIO_MAX_PAGES)
1283 nr_pages = BIO_MAX_PAGES;
26e49cfc 1284
1da177e4 1285 ret = -ENOMEM;
a9e9dc24 1286 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1287 if (!bio)
1288 goto out_bmd;
1289
1da177e4 1290 ret = 0;
56c451f4
FT
1291
1292 if (map_data) {
e623ddb4 1293 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1294 i = map_data->offset / PAGE_SIZE;
1295 }
1da177e4 1296 while (len) {
e623ddb4 1297 unsigned int bytes = PAGE_SIZE;
1da177e4 1298
56c451f4
FT
1299 bytes -= offset;
1300
1da177e4
LT
1301 if (bytes > len)
1302 bytes = len;
1303
152e283f 1304 if (map_data) {
e623ddb4 1305 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1306 ret = -ENOMEM;
1307 break;
1308 }
e623ddb4
FT
1309
1310 page = map_data->pages[i / nr_pages];
1311 page += (i % nr_pages);
1312
1313 i++;
1314 } else {
152e283f 1315 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1316 if (!page) {
1317 ret = -ENOMEM;
1318 break;
1319 }
1da177e4
LT
1320 }
1321
56c451f4 1322 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1323 break;
1da177e4
LT
1324
1325 len -= bytes;
56c451f4 1326 offset = 0;
1da177e4
LT
1327 }
1328
1329 if (ret)
1330 goto cleanup;
1331
2884d0be
AV
1332 if (map_data)
1333 map_data->offset += bio->bi_iter.bi_size;
1334
1da177e4
LT
1335 /*
1336 * success
1337 */
00e23707 1338 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1339 (map_data && map_data->from_user)) {
98a09d61 1340 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1341 if (ret)
1342 goto cleanup;
98a09d61 1343 } else {
f55adad6
KB
1344 if (bmd->is_our_pages)
1345 zero_fill_bio(bio);
98a09d61 1346 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1347 }
1348
26e49cfc 1349 bio->bi_private = bmd;
2884d0be
AV
1350 if (map_data && map_data->null_mapped)
1351 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1352 return bio;
1353cleanup:
152e283f 1354 if (!map_data)
1dfa0f68 1355 bio_free_pages(bio);
1da177e4
LT
1356 bio_put(bio);
1357out_bmd:
c8db4448 1358 kfree(bmd);
1da177e4
LT
1359 return ERR_PTR(ret);
1360}
1361
37f19e57
CH
1362/**
1363 * bio_map_user_iov - map user iovec into bio
1364 * @q: the struct request_queue for the bio
1365 * @iter: iovec iterator
1366 * @gfp_mask: memory allocation flags
1367 *
1368 * Map the user space address into a bio suitable for io to a block
1369 * device. Returns an error pointer in case of error.
1370 */
1371struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1372 struct iov_iter *iter,
37f19e57 1373 gfp_t gfp_mask)
1da177e4 1374{
26e49cfc 1375 int j;
1da177e4 1376 struct bio *bio;
076098e5 1377 int ret;
2b04e8f6 1378 struct bio_vec *bvec;
6dc4f100 1379 struct bvec_iter_all iter_all;
1da177e4 1380
b282cc76 1381 if (!iov_iter_count(iter))
1da177e4
LT
1382 return ERR_PTR(-EINVAL);
1383
b282cc76 1384 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1385 if (!bio)
1386 return ERR_PTR(-ENOMEM);
1387
0a0f1513 1388 while (iov_iter_count(iter)) {
629e42bc 1389 struct page **pages;
076098e5
AV
1390 ssize_t bytes;
1391 size_t offs, added = 0;
1392 int npages;
1da177e4 1393
0a0f1513 1394 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1395 if (unlikely(bytes <= 0)) {
1396 ret = bytes ? bytes : -EFAULT;
f1970baf 1397 goto out_unmap;
99172157 1398 }
f1970baf 1399
076098e5 1400 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1401
98f0bc99
AV
1402 if (unlikely(offs & queue_dma_alignment(q))) {
1403 ret = -EINVAL;
1404 j = 0;
1405 } else {
1406 for (j = 0; j < npages; j++) {
1407 struct page *page = pages[j];
1408 unsigned int n = PAGE_SIZE - offs;
f1970baf 1409
98f0bc99
AV
1410 if (n > bytes)
1411 n = bytes;
95d78c28 1412
19047087
ML
1413 if (!__bio_add_pc_page(q, bio, page, n, offs,
1414 true))
98f0bc99 1415 break;
1da177e4 1416
98f0bc99
AV
1417 added += n;
1418 bytes -= n;
1419 offs = 0;
1420 }
0a0f1513 1421 iov_iter_advance(iter, added);
f1970baf 1422 }
1da177e4 1423 /*
f1970baf 1424 * release the pages we didn't map into the bio, if any
1da177e4 1425 */
629e42bc 1426 while (j < npages)
09cbfeaf 1427 put_page(pages[j++]);
629e42bc 1428 kvfree(pages);
e2e115d1
AV
1429 /* couldn't stuff something into bio? */
1430 if (bytes)
1431 break;
1da177e4
LT
1432 }
1433
b7c44ed9 1434 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1435
1436 /*
5fad1b64 1437 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1438 * it would normally disappear when its bi_end_io is run.
1439 * however, we need it for the unmap, so grab an extra
1440 * reference to it
1441 */
1442 bio_get(bio);
1da177e4 1443 return bio;
f1970baf
JB
1444
1445 out_unmap:
6dc4f100 1446 bio_for_each_segment_all(bvec, bio, j, iter_all) {
2b04e8f6 1447 put_page(bvec->bv_page);
f1970baf 1448 }
1da177e4
LT
1449 bio_put(bio);
1450 return ERR_PTR(ret);
1451}
1452
1da177e4
LT
1453static void __bio_unmap_user(struct bio *bio)
1454{
1455 struct bio_vec *bvec;
1456 int i;
6dc4f100 1457 struct bvec_iter_all iter_all;
1da177e4
LT
1458
1459 /*
1460 * make sure we dirty pages we wrote to
1461 */
6dc4f100 1462 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1da177e4
LT
1463 if (bio_data_dir(bio) == READ)
1464 set_page_dirty_lock(bvec->bv_page);
1465
09cbfeaf 1466 put_page(bvec->bv_page);
1da177e4
LT
1467 }
1468
1469 bio_put(bio);
1470}
1471
1472/**
1473 * bio_unmap_user - unmap a bio
1474 * @bio: the bio being unmapped
1475 *
5fad1b64
BVA
1476 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1477 * process context.
1da177e4
LT
1478 *
1479 * bio_unmap_user() may sleep.
1480 */
1481void bio_unmap_user(struct bio *bio)
1482{
1483 __bio_unmap_user(bio);
1484 bio_put(bio);
1485}
1486
4246a0b6 1487static void bio_map_kern_endio(struct bio *bio)
b823825e 1488{
b823825e 1489 bio_put(bio);
b823825e
JA
1490}
1491
75c72b83
CH
1492/**
1493 * bio_map_kern - map kernel address into bio
1494 * @q: the struct request_queue for the bio
1495 * @data: pointer to buffer to map
1496 * @len: length in bytes
1497 * @gfp_mask: allocation flags for bio allocation
1498 *
1499 * Map the kernel address into a bio suitable for io to a block
1500 * device. Returns an error pointer in case of error.
1501 */
1502struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1503 gfp_t gfp_mask)
df46b9a4
MC
1504{
1505 unsigned long kaddr = (unsigned long)data;
1506 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1507 unsigned long start = kaddr >> PAGE_SHIFT;
1508 const int nr_pages = end - start;
1509 int offset, i;
1510 struct bio *bio;
1511
a9e9dc24 1512 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1513 if (!bio)
1514 return ERR_PTR(-ENOMEM);
1515
1516 offset = offset_in_page(kaddr);
1517 for (i = 0; i < nr_pages; i++) {
1518 unsigned int bytes = PAGE_SIZE - offset;
1519
1520 if (len <= 0)
1521 break;
1522
1523 if (bytes > len)
1524 bytes = len;
1525
defd94b7 1526 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1527 offset) < bytes) {
1528 /* we don't support partial mappings */
1529 bio_put(bio);
1530 return ERR_PTR(-EINVAL);
1531 }
df46b9a4
MC
1532
1533 data += bytes;
1534 len -= bytes;
1535 offset = 0;
1536 }
1537
b823825e 1538 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1539 return bio;
1540}
a112a71d 1541EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1542
4246a0b6 1543static void bio_copy_kern_endio(struct bio *bio)
68154e90 1544{
1dfa0f68
CH
1545 bio_free_pages(bio);
1546 bio_put(bio);
1547}
1548
4246a0b6 1549static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1550{
42d2683a 1551 char *p = bio->bi_private;
1dfa0f68 1552 struct bio_vec *bvec;
68154e90 1553 int i;
6dc4f100 1554 struct bvec_iter_all iter_all;
68154e90 1555
6dc4f100 1556 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1dfa0f68 1557 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1558 p += bvec->bv_len;
68154e90
FT
1559 }
1560
4246a0b6 1561 bio_copy_kern_endio(bio);
68154e90
FT
1562}
1563
1564/**
1565 * bio_copy_kern - copy kernel address into bio
1566 * @q: the struct request_queue for the bio
1567 * @data: pointer to buffer to copy
1568 * @len: length in bytes
1569 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1570 * @reading: data direction is READ
68154e90
FT
1571 *
1572 * copy the kernel address into a bio suitable for io to a block
1573 * device. Returns an error pointer in case of error.
1574 */
1575struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1576 gfp_t gfp_mask, int reading)
1577{
42d2683a
CH
1578 unsigned long kaddr = (unsigned long)data;
1579 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1580 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1581 struct bio *bio;
1582 void *p = data;
1dfa0f68 1583 int nr_pages = 0;
68154e90 1584
42d2683a
CH
1585 /*
1586 * Overflow, abort
1587 */
1588 if (end < start)
1589 return ERR_PTR(-EINVAL);
68154e90 1590
42d2683a
CH
1591 nr_pages = end - start;
1592 bio = bio_kmalloc(gfp_mask, nr_pages);
1593 if (!bio)
1594 return ERR_PTR(-ENOMEM);
68154e90 1595
42d2683a
CH
1596 while (len) {
1597 struct page *page;
1598 unsigned int bytes = PAGE_SIZE;
68154e90 1599
42d2683a
CH
1600 if (bytes > len)
1601 bytes = len;
1602
1603 page = alloc_page(q->bounce_gfp | gfp_mask);
1604 if (!page)
1605 goto cleanup;
1606
1607 if (!reading)
1608 memcpy(page_address(page), p, bytes);
1609
1610 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1611 break;
1612
1613 len -= bytes;
1614 p += bytes;
68154e90
FT
1615 }
1616
1dfa0f68
CH
1617 if (reading) {
1618 bio->bi_end_io = bio_copy_kern_endio_read;
1619 bio->bi_private = data;
1620 } else {
1621 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1622 }
76029ff3 1623
68154e90 1624 return bio;
42d2683a
CH
1625
1626cleanup:
1dfa0f68 1627 bio_free_pages(bio);
42d2683a
CH
1628 bio_put(bio);
1629 return ERR_PTR(-ENOMEM);
68154e90
FT
1630}
1631
1da177e4
LT
1632/*
1633 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1634 * for performing direct-IO in BIOs.
1635 *
1636 * The problem is that we cannot run set_page_dirty() from interrupt context
1637 * because the required locks are not interrupt-safe. So what we can do is to
1638 * mark the pages dirty _before_ performing IO. And in interrupt context,
1639 * check that the pages are still dirty. If so, fine. If not, redirty them
1640 * in process context.
1641 *
1642 * We special-case compound pages here: normally this means reads into hugetlb
1643 * pages. The logic in here doesn't really work right for compound pages
1644 * because the VM does not uniformly chase down the head page in all cases.
1645 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1646 * handle them at all. So we skip compound pages here at an early stage.
1647 *
1648 * Note that this code is very hard to test under normal circumstances because
1649 * direct-io pins the pages with get_user_pages(). This makes
1650 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1651 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1652 * pagecache.
1653 *
1654 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1655 * deferred bio dirtying paths.
1656 */
1657
1658/*
1659 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1660 */
1661void bio_set_pages_dirty(struct bio *bio)
1662{
cb34e057 1663 struct bio_vec *bvec;
1da177e4 1664 int i;
6dc4f100 1665 struct bvec_iter_all iter_all;
1da177e4 1666
6dc4f100 1667 bio_for_each_segment_all(bvec, bio, i, iter_all) {
3bb50983
CH
1668 if (!PageCompound(bvec->bv_page))
1669 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1670 }
1671}
1672
86b6c7a7 1673static void bio_release_pages(struct bio *bio)
1da177e4 1674{
cb34e057 1675 struct bio_vec *bvec;
1da177e4 1676 int i;
6dc4f100 1677 struct bvec_iter_all iter_all;
1da177e4 1678
6dc4f100 1679 bio_for_each_segment_all(bvec, bio, i, iter_all)
24d5493f 1680 put_page(bvec->bv_page);
1da177e4
LT
1681}
1682
1683/*
1684 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1685 * If they are, then fine. If, however, some pages are clean then they must
1686 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1687 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1688 *
1689 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1690 * here on. It will run one put_page() against each page and will run one
1691 * bio_put() against the BIO.
1da177e4
LT
1692 */
1693
65f27f38 1694static void bio_dirty_fn(struct work_struct *work);
1da177e4 1695
65f27f38 1696static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1697static DEFINE_SPINLOCK(bio_dirty_lock);
1698static struct bio *bio_dirty_list;
1699
1700/*
1701 * This runs in process context
1702 */
65f27f38 1703static void bio_dirty_fn(struct work_struct *work)
1da177e4 1704{
24d5493f 1705 struct bio *bio, *next;
1da177e4 1706
24d5493f
CH
1707 spin_lock_irq(&bio_dirty_lock);
1708 next = bio_dirty_list;
1da177e4 1709 bio_dirty_list = NULL;
24d5493f 1710 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1711
24d5493f
CH
1712 while ((bio = next) != NULL) {
1713 next = bio->bi_private;
1da177e4
LT
1714
1715 bio_set_pages_dirty(bio);
399254aa
JA
1716 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1717 bio_release_pages(bio);
1da177e4 1718 bio_put(bio);
1da177e4
LT
1719 }
1720}
1721
1722void bio_check_pages_dirty(struct bio *bio)
1723{
cb34e057 1724 struct bio_vec *bvec;
24d5493f 1725 unsigned long flags;
1da177e4 1726 int i;
6dc4f100 1727 struct bvec_iter_all iter_all;
1da177e4 1728
6dc4f100 1729 bio_for_each_segment_all(bvec, bio, i, iter_all) {
24d5493f
CH
1730 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1731 goto defer;
1da177e4
LT
1732 }
1733
399254aa
JA
1734 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1735 bio_release_pages(bio);
24d5493f
CH
1736 bio_put(bio);
1737 return;
1738defer:
1739 spin_lock_irqsave(&bio_dirty_lock, flags);
1740 bio->bi_private = bio_dirty_list;
1741 bio_dirty_list = bio;
1742 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1743 schedule_work(&bio_dirty_work);
1da177e4
LT
1744}
1745
5b18b5a7
MP
1746void update_io_ticks(struct hd_struct *part, unsigned long now)
1747{
1748 unsigned long stamp;
1749again:
1750 stamp = READ_ONCE(part->stamp);
1751 if (unlikely(stamp != now)) {
1752 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1753 __part_stat_add(part, io_ticks, 1);
1754 }
1755 }
1756 if (part->partno) {
1757 part = &part_to_disk(part)->part0;
1758 goto again;
1759 }
1760}
1da177e4 1761
ddcf35d3 1762void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1763 unsigned long sectors, struct hd_struct *part)
394ffa50 1764{
ddcf35d3 1765 const int sgrp = op_stat_group(op);
394ffa50 1766
112f158f
MS
1767 part_stat_lock();
1768
5b18b5a7 1769 update_io_ticks(part, jiffies);
112f158f
MS
1770 part_stat_inc(part, ios[sgrp]);
1771 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1772 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1773
1774 part_stat_unlock();
1775}
1776EXPORT_SYMBOL(generic_start_io_acct);
1777
ddcf35d3 1778void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1779 struct hd_struct *part, unsigned long start_time)
394ffa50 1780{
5b18b5a7
MP
1781 unsigned long now = jiffies;
1782 unsigned long duration = now - start_time;
ddcf35d3 1783 const int sgrp = op_stat_group(req_op);
394ffa50 1784
112f158f
MS
1785 part_stat_lock();
1786
5b18b5a7 1787 update_io_ticks(part, now);
112f158f 1788 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1789 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1790 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1791
1792 part_stat_unlock();
1793}
1794EXPORT_SYMBOL(generic_end_io_acct);
1795
2d4dc890
IL
1796#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1797void bio_flush_dcache_pages(struct bio *bi)
1798{
7988613b
KO
1799 struct bio_vec bvec;
1800 struct bvec_iter iter;
2d4dc890 1801
7988613b
KO
1802 bio_for_each_segment(bvec, bi, iter)
1803 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1804}
1805EXPORT_SYMBOL(bio_flush_dcache_pages);
1806#endif
1807
c4cf5261
JA
1808static inline bool bio_remaining_done(struct bio *bio)
1809{
1810 /*
1811 * If we're not chaining, then ->__bi_remaining is always 1 and
1812 * we always end io on the first invocation.
1813 */
1814 if (!bio_flagged(bio, BIO_CHAIN))
1815 return true;
1816
1817 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1818
326e1dbb 1819 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1820 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1821 return true;
326e1dbb 1822 }
c4cf5261
JA
1823
1824 return false;
1825}
1826
1da177e4
LT
1827/**
1828 * bio_endio - end I/O on a bio
1829 * @bio: bio
1da177e4
LT
1830 *
1831 * Description:
4246a0b6
CH
1832 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1833 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1834 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1835 *
1836 * bio_endio() can be called several times on a bio that has been chained
1837 * using bio_chain(). The ->bi_end_io() function will only be called the
1838 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1839 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1840 **/
4246a0b6 1841void bio_endio(struct bio *bio)
1da177e4 1842{
ba8c6967 1843again:
2b885517 1844 if (!bio_remaining_done(bio))
ba8c6967 1845 return;
7c20f116
CH
1846 if (!bio_integrity_endio(bio))
1847 return;
1da177e4 1848
67b42d0b
JB
1849 if (bio->bi_disk)
1850 rq_qos_done_bio(bio->bi_disk->queue, bio);
1851
ba8c6967
CH
1852 /*
1853 * Need to have a real endio function for chained bios, otherwise
1854 * various corner cases will break (like stacking block devices that
1855 * save/restore bi_end_io) - however, we want to avoid unbounded
1856 * recursion and blowing the stack. Tail call optimization would
1857 * handle this, but compiling with frame pointers also disables
1858 * gcc's sibling call optimization.
1859 */
1860 if (bio->bi_end_io == bio_chain_endio) {
1861 bio = __bio_chain_endio(bio);
1862 goto again;
196d38bc 1863 }
ba8c6967 1864
74d46992
CH
1865 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1866 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1867 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1868 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1869 }
1870
9e234eea 1871 blk_throtl_bio_endio(bio);
b222dd2f
SL
1872 /* release cgroup info */
1873 bio_uninit(bio);
ba8c6967
CH
1874 if (bio->bi_end_io)
1875 bio->bi_end_io(bio);
1da177e4 1876}
a112a71d 1877EXPORT_SYMBOL(bio_endio);
1da177e4 1878
20d0189b
KO
1879/**
1880 * bio_split - split a bio
1881 * @bio: bio to split
1882 * @sectors: number of sectors to split from the front of @bio
1883 * @gfp: gfp mask
1884 * @bs: bio set to allocate from
1885 *
1886 * Allocates and returns a new bio which represents @sectors from the start of
1887 * @bio, and updates @bio to represent the remaining sectors.
1888 *
f3f5da62
MP
1889 * Unless this is a discard request the newly allocated bio will point
1890 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1891 * @bio is not freed before the split.
20d0189b
KO
1892 */
1893struct bio *bio_split(struct bio *bio, int sectors,
1894 gfp_t gfp, struct bio_set *bs)
1895{
f341a4d3 1896 struct bio *split;
20d0189b
KO
1897
1898 BUG_ON(sectors <= 0);
1899 BUG_ON(sectors >= bio_sectors(bio));
1900
f9d03f96 1901 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1902 if (!split)
1903 return NULL;
1904
1905 split->bi_iter.bi_size = sectors << 9;
1906
1907 if (bio_integrity(split))
fbd08e76 1908 bio_integrity_trim(split);
20d0189b
KO
1909
1910 bio_advance(bio, split->bi_iter.bi_size);
1911
fbbaf700 1912 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1913 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1914
20d0189b
KO
1915 return split;
1916}
1917EXPORT_SYMBOL(bio_split);
1918
6678d83f
KO
1919/**
1920 * bio_trim - trim a bio
1921 * @bio: bio to trim
1922 * @offset: number of sectors to trim from the front of @bio
1923 * @size: size we want to trim @bio to, in sectors
1924 */
1925void bio_trim(struct bio *bio, int offset, int size)
1926{
1927 /* 'bio' is a cloned bio which we need to trim to match
1928 * the given offset and size.
6678d83f 1929 */
6678d83f
KO
1930
1931 size <<= 9;
4f024f37 1932 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1933 return;
1934
b7c44ed9 1935 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1936
1937 bio_advance(bio, offset << 9);
1938
4f024f37 1939 bio->bi_iter.bi_size = size;
376a78ab
DM
1940
1941 if (bio_integrity(bio))
fbd08e76 1942 bio_integrity_trim(bio);
376a78ab 1943
6678d83f
KO
1944}
1945EXPORT_SYMBOL_GPL(bio_trim);
1946
1da177e4
LT
1947/*
1948 * create memory pools for biovec's in a bio_set.
1949 * use the global biovec slabs created for general use.
1950 */
8aa6ba2f 1951int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1952{
ed996a52 1953 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1954
8aa6ba2f 1955 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1956}
1957
917a38c7
KO
1958/*
1959 * bioset_exit - exit a bioset initialized with bioset_init()
1960 *
1961 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1962 * kzalloc()).
1963 */
1964void bioset_exit(struct bio_set *bs)
1da177e4 1965{
df2cb6da
KO
1966 if (bs->rescue_workqueue)
1967 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1968 bs->rescue_workqueue = NULL;
df2cb6da 1969
8aa6ba2f
KO
1970 mempool_exit(&bs->bio_pool);
1971 mempool_exit(&bs->bvec_pool);
9f060e22 1972
7878cba9 1973 bioset_integrity_free(bs);
917a38c7
KO
1974 if (bs->bio_slab)
1975 bio_put_slab(bs);
1976 bs->bio_slab = NULL;
1977}
1978EXPORT_SYMBOL(bioset_exit);
1da177e4 1979
917a38c7
KO
1980/**
1981 * bioset_init - Initialize a bio_set
dad08527 1982 * @bs: pool to initialize
917a38c7
KO
1983 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1984 * @front_pad: Number of bytes to allocate in front of the returned bio
1985 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1986 * and %BIOSET_NEED_RESCUER
1987 *
dad08527
KO
1988 * Description:
1989 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1990 * to ask for a number of bytes to be allocated in front of the bio.
1991 * Front pad allocation is useful for embedding the bio inside
1992 * another structure, to avoid allocating extra data to go with the bio.
1993 * Note that the bio must be embedded at the END of that structure always,
1994 * or things will break badly.
1995 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1996 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1997 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1998 * dispatch queued requests when the mempool runs out of space.
1999 *
917a38c7
KO
2000 */
2001int bioset_init(struct bio_set *bs,
2002 unsigned int pool_size,
2003 unsigned int front_pad,
2004 int flags)
2005{
2006 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2007
2008 bs->front_pad = front_pad;
2009
2010 spin_lock_init(&bs->rescue_lock);
2011 bio_list_init(&bs->rescue_list);
2012 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2013
2014 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2015 if (!bs->bio_slab)
2016 return -ENOMEM;
2017
2018 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2019 goto bad;
2020
2021 if ((flags & BIOSET_NEED_BVECS) &&
2022 biovec_init_pool(&bs->bvec_pool, pool_size))
2023 goto bad;
2024
2025 if (!(flags & BIOSET_NEED_RESCUER))
2026 return 0;
2027
2028 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2029 if (!bs->rescue_workqueue)
2030 goto bad;
2031
2032 return 0;
2033bad:
2034 bioset_exit(bs);
2035 return -ENOMEM;
2036}
2037EXPORT_SYMBOL(bioset_init);
2038
28e89fd9
JA
2039/*
2040 * Initialize and setup a new bio_set, based on the settings from
2041 * another bio_set.
2042 */
2043int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2044{
2045 int flags;
2046
2047 flags = 0;
2048 if (src->bvec_pool.min_nr)
2049 flags |= BIOSET_NEED_BVECS;
2050 if (src->rescue_workqueue)
2051 flags |= BIOSET_NEED_RESCUER;
2052
2053 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2054}
2055EXPORT_SYMBOL(bioset_init_from_src);
2056
852c788f 2057#ifdef CONFIG_BLK_CGROUP
1d933cf0 2058
74b7c02a 2059/**
2268c0fe 2060 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2061 * @bio: target bio
74b7c02a 2062 *
2268c0fe 2063 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2064 */
2268c0fe 2065void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2066{
2268c0fe
DZ
2067 if (bio->bi_blkg) {
2068 blkg_put(bio->bi_blkg);
2069 bio->bi_blkg = NULL;
2070 }
74b7c02a 2071}
892ad71f 2072EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2073
a7b39b4e 2074/**
2268c0fe 2075 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2076 * @bio: target bio
b5f2954d 2077 * @blkg: the blkg to associate
b5f2954d 2078 *
beea9da0
DZ
2079 * This tries to associate @bio with the specified @blkg. Association failure
2080 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2081 * be anything between @blkg and the root_blkg. This situation only happens
2082 * when a cgroup is dying and then the remaining bios will spill to the closest
2083 * alive blkg.
a7b39b4e 2084 *
beea9da0
DZ
2085 * A reference will be taken on the @blkg and will be released when @bio is
2086 * freed.
a7b39b4e 2087 */
2268c0fe 2088static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2089{
2268c0fe
DZ
2090 bio_disassociate_blkg(bio);
2091
7754f669 2092 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2093}
2094
d459d853 2095/**
fd42df30 2096 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2097 * @bio: target bio
fd42df30 2098 * @css: target css
d459d853 2099 *
fd42df30 2100 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2101 * request_queue of the @bio. This falls back to the queue's root_blkg if
2102 * the association fails with the css.
d459d853 2103 */
fd42df30
DZ
2104void bio_associate_blkg_from_css(struct bio *bio,
2105 struct cgroup_subsys_state *css)
d459d853 2106{
fc5a828b
DZ
2107 struct request_queue *q = bio->bi_disk->queue;
2108 struct blkcg_gq *blkg;
2109
2110 rcu_read_lock();
2111
2112 if (!css || !css->parent)
2113 blkg = q->root_blkg;
2114 else
2115 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2116
2117 __bio_associate_blkg(bio, blkg);
2118
2119 rcu_read_unlock();
d459d853 2120}
fd42df30 2121EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2122
6a7f6d86 2123#ifdef CONFIG_MEMCG
852c788f 2124/**
6a7f6d86 2125 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2126 * @bio: target bio
6a7f6d86
DZ
2127 * @page: the page to lookup the blkcg from
2128 *
2129 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2130 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2131 * root_blkg.
852c788f 2132 */
6a7f6d86 2133void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2134{
6a7f6d86
DZ
2135 struct cgroup_subsys_state *css;
2136
6a7f6d86
DZ
2137 if (!page->mem_cgroup)
2138 return;
2139
fc5a828b
DZ
2140 rcu_read_lock();
2141
2142 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2143 bio_associate_blkg_from_css(bio, css);
2144
2145 rcu_read_unlock();
6a7f6d86
DZ
2146}
2147#endif /* CONFIG_MEMCG */
2148
2268c0fe
DZ
2149/**
2150 * bio_associate_blkg - associate a bio with a blkg
2151 * @bio: target bio
2152 *
2153 * Associate @bio with the blkg found from the bio's css and request_queue.
2154 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2155 * already associated, the css is reused and association redone as the
2156 * request_queue may have changed.
2157 */
2158void bio_associate_blkg(struct bio *bio)
2159{
fc5a828b 2160 struct cgroup_subsys_state *css;
2268c0fe
DZ
2161
2162 rcu_read_lock();
2163
db6638d7 2164 if (bio->bi_blkg)
fc5a828b 2165 css = &bio_blkcg(bio)->css;
db6638d7 2166 else
fc5a828b 2167 css = blkcg_css();
2268c0fe 2168
fc5a828b 2169 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2170
2171 rcu_read_unlock();
852c788f 2172}
5cdf2e3f 2173EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2174
20bd723e 2175/**
db6638d7 2176 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2177 * @dst: destination bio
2178 * @src: source bio
2179 */
db6638d7 2180void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2181{
6ab21879
DZ
2182 rcu_read_lock();
2183
fc5a828b 2184 if (src->bi_blkg)
2268c0fe 2185 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2186
2187 rcu_read_unlock();
20bd723e 2188}
db6638d7 2189EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2190#endif /* CONFIG_BLK_CGROUP */
2191
1da177e4
LT
2192static void __init biovec_init_slabs(void)
2193{
2194 int i;
2195
ed996a52 2196 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2197 int size;
2198 struct biovec_slab *bvs = bvec_slabs + i;
2199
a7fcd37c
JA
2200 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2201 bvs->slab = NULL;
2202 continue;
2203 }
a7fcd37c 2204
1da177e4
LT
2205 size = bvs->nr_vecs * sizeof(struct bio_vec);
2206 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2207 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2208 }
2209}
2210
2211static int __init init_bio(void)
2212{
bb799ca0
JA
2213 bio_slab_max = 2;
2214 bio_slab_nr = 0;
6396bb22
KC
2215 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2216 GFP_KERNEL);
2b24e6f6
JT
2217
2218 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2219
bb799ca0
JA
2220 if (!bio_slabs)
2221 panic("bio: can't allocate bios\n");
1da177e4 2222
7878cba9 2223 bio_integrity_init();
1da177e4
LT
2224 biovec_init_slabs();
2225
f4f8154a 2226 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2227 panic("bio: can't allocate bios\n");
2228
f4f8154a 2229 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2230 panic("bio: can't create integrity pool\n");
2231
1da177e4
LT
2232 return 0;
2233}
1da177e4 2234subsys_initcall(init_bio);