]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/bio.c
kyber: fix wrong strlcpy() size in trace_kyber_latency()
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
d6c02a9b 161 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
4254bba1 247 bio_disassociate_task(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
165125e1 574inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
a112a71d 581EXPORT_SYMBOL(bio_phys_segments);
1da177e4 582
59d276fe
KO
583/**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595{
ed996a52 596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
597
598 /*
74d46992 599 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
74d46992 602 bio->bi_disk = bio_src->bi_disk;
62530ed8 603 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 604 bio_set_flag(bio, BIO_CLONED);
111be883
SL
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 607 bio->bi_opf = bio_src->bi_opf;
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 611
b5f2954d 612 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
613}
614EXPORT_SYMBOL(__bio_clone_fast);
615
616/**
617 * bio_clone_fast - clone a bio that shares the original bio's biovec
618 * @bio: bio to clone
619 * @gfp_mask: allocation priority
620 * @bs: bio_set to allocate from
621 *
622 * Like __bio_clone_fast, only also allocates the returned bio
623 */
624struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
625{
626 struct bio *b;
627
628 b = bio_alloc_bioset(gfp_mask, 0, bs);
629 if (!b)
630 return NULL;
631
632 __bio_clone_fast(b, bio);
633
634 if (bio_integrity(bio)) {
635 int ret;
636
637 ret = bio_integrity_clone(b, bio, gfp_mask);
638
639 if (ret < 0) {
640 bio_put(b);
641 return NULL;
642 }
643 }
644
645 return b;
646}
647EXPORT_SYMBOL(bio_clone_fast);
648
1da177e4 649/**
c66a14d0
KO
650 * bio_add_pc_page - attempt to add page to bio
651 * @q: the target queue
652 * @bio: destination bio
653 * @page: page to add
654 * @len: vec entry length
655 * @offset: vec entry offset
1da177e4 656 *
c66a14d0
KO
657 * Attempt to add a page to the bio_vec maplist. This can fail for a
658 * number of reasons, such as the bio being full or target block device
659 * limitations. The target block device must allow bio's up to PAGE_SIZE,
660 * so it is always possible to add a single page to an empty bio.
661 *
662 * This should only be used by REQ_PC bios.
1da177e4 663 */
c66a14d0
KO
664int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
665 *page, unsigned int len, unsigned int offset)
1da177e4
LT
666{
667 int retried_segments = 0;
668 struct bio_vec *bvec;
669
670 /*
671 * cloned bio must not modify vec list
672 */
673 if (unlikely(bio_flagged(bio, BIO_CLONED)))
674 return 0;
675
c66a14d0 676 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
677 return 0;
678
80cfd548
JA
679 /*
680 * For filesystems with a blocksize smaller than the pagesize
681 * we will often be called with the same page as last time and
682 * a consecutive offset. Optimize this special case.
683 */
684 if (bio->bi_vcnt > 0) {
685 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
686
687 if (page == prev->bv_page &&
688 offset == prev->bv_offset + prev->bv_len) {
689 prev->bv_len += len;
fcbf6a08 690 bio->bi_iter.bi_size += len;
80cfd548
JA
691 goto done;
692 }
66cb45aa
JA
693
694 /*
695 * If the queue doesn't support SG gaps and adding this
696 * offset would create a gap, disallow it.
697 */
03100aad 698 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 699 return 0;
80cfd548
JA
700 }
701
0aa69fd3 702 if (bio_full(bio))
1da177e4
LT
703 return 0;
704
705 /*
fcbf6a08
ML
706 * setup the new entry, we might clear it again later if we
707 * cannot add the page
708 */
709 bvec = &bio->bi_io_vec[bio->bi_vcnt];
710 bvec->bv_page = page;
711 bvec->bv_len = len;
712 bvec->bv_offset = offset;
713 bio->bi_vcnt++;
714 bio->bi_phys_segments++;
715 bio->bi_iter.bi_size += len;
716
717 /*
718 * Perform a recount if the number of segments is greater
719 * than queue_max_segments(q).
1da177e4
LT
720 */
721
fcbf6a08 722 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
723
724 if (retried_segments)
fcbf6a08 725 goto failed;
1da177e4
LT
726
727 retried_segments = 1;
728 blk_recount_segments(q, bio);
729 }
730
1da177e4 731 /* If we may be able to merge these biovecs, force a recount */
3dccdae5 732 if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
b7c44ed9 733 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 734
80cfd548 735 done:
1da177e4 736 return len;
fcbf6a08
ML
737
738 failed:
739 bvec->bv_page = NULL;
740 bvec->bv_len = 0;
741 bvec->bv_offset = 0;
742 bio->bi_vcnt--;
743 bio->bi_iter.bi_size -= len;
744 blk_recount_segments(q, bio);
745 return 0;
1da177e4 746}
a112a71d 747EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 748
1da177e4 749/**
0aa69fd3
CH
750 * __bio_try_merge_page - try appending data to an existing bvec.
751 * @bio: destination bio
752 * @page: page to add
753 * @len: length of the data to add
754 * @off: offset of the data in @page
1da177e4 755 *
0aa69fd3
CH
756 * Try to add the data at @page + @off to the last bvec of @bio. This is a
757 * a useful optimisation for file systems with a block size smaller than the
758 * page size.
759 *
760 * Return %true on success or %false on failure.
1da177e4 761 */
0aa69fd3
CH
762bool __bio_try_merge_page(struct bio *bio, struct page *page,
763 unsigned int len, unsigned int off)
1da177e4 764{
c66a14d0 765 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 766 return false;
762380ad 767
c66a14d0 768 if (bio->bi_vcnt > 0) {
0aa69fd3 769 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 770
0aa69fd3 771 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
c66a14d0 772 bv->bv_len += len;
0aa69fd3
CH
773 bio->bi_iter.bi_size += len;
774 return true;
c66a14d0
KO
775 }
776 }
0aa69fd3
CH
777 return false;
778}
779EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 780
0aa69fd3
CH
781/**
782 * __bio_add_page - add page to a bio in a new segment
783 * @bio: destination bio
784 * @page: page to add
785 * @len: length of the data to add
786 * @off: offset of the data in @page
787 *
788 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
789 * that @bio has space for another bvec.
790 */
791void __bio_add_page(struct bio *bio, struct page *page,
792 unsigned int len, unsigned int off)
793{
794 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 795
0aa69fd3
CH
796 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
797 WARN_ON_ONCE(bio_full(bio));
798
799 bv->bv_page = page;
800 bv->bv_offset = off;
801 bv->bv_len = len;
c66a14d0 802
c66a14d0 803 bio->bi_iter.bi_size += len;
0aa69fd3
CH
804 bio->bi_vcnt++;
805}
806EXPORT_SYMBOL_GPL(__bio_add_page);
807
808/**
809 * bio_add_page - attempt to add page to bio
810 * @bio: destination bio
811 * @page: page to add
812 * @len: vec entry length
813 * @offset: vec entry offset
814 *
815 * Attempt to add a page to the bio_vec maplist. This will only fail
816 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
817 */
818int bio_add_page(struct bio *bio, struct page *page,
819 unsigned int len, unsigned int offset)
820{
821 if (!__bio_try_merge_page(bio, page, len, offset)) {
822 if (bio_full(bio))
823 return 0;
824 __bio_add_page(bio, page, len, offset);
825 }
c66a14d0 826 return len;
1da177e4 827}
a112a71d 828EXPORT_SYMBOL(bio_add_page);
1da177e4 829
576ed913
CH
830#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
831
2cefe4db 832/**
17d51b10 833 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
834 * @bio: bio to add pages to
835 * @iter: iov iterator describing the region to be mapped
836 *
17d51b10 837 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 838 * pages will have to be released using put_page() when done.
17d51b10
MW
839 * For multi-segment *iter, this function only adds pages from the
840 * the next non-empty segment of the iov iterator.
2cefe4db 841 */
17d51b10 842static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 843{
576ed913
CH
844 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
845 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
846 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
847 struct page **pages = (struct page **)bv;
576ed913
CH
848 ssize_t size, left;
849 unsigned len, i;
b403ea24 850 size_t offset;
576ed913
CH
851
852 /*
853 * Move page array up in the allocated memory for the bio vecs as far as
854 * possible so that we can start filling biovecs from the beginning
855 * without overwriting the temporary page array.
856 */
857 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
858 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
859
860 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
861 if (unlikely(size <= 0))
862 return size ? size : -EFAULT;
2cefe4db 863
576ed913
CH
864 for (left = size, i = 0; left > 0; left -= len, i++) {
865 struct page *page = pages[i];
2cefe4db 866
576ed913
CH
867 len = min_t(size_t, PAGE_SIZE - offset, left);
868 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
869 return -EINVAL;
870 offset = 0;
2cefe4db
KO
871 }
872
2cefe4db
KO
873 iov_iter_advance(iter, size);
874 return 0;
875}
17d51b10
MW
876
877/**
878 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
879 * @bio: bio to add pages to
880 * @iter: iov iterator describing the region to be mapped
881 *
882 * Pins pages from *iter and appends them to @bio's bvec array. The
883 * pages will have to be released using put_page() when done.
884 * The function tries, but does not guarantee, to pin as many pages as
885 * fit into the bio, or are requested in *iter, whatever is smaller.
886 * If MM encounters an error pinning the requested pages, it stops.
887 * Error is returned only if 0 pages could be pinned.
888 */
889int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
890{
891 unsigned short orig_vcnt = bio->bi_vcnt;
892
893 do {
894 int ret = __bio_iov_iter_get_pages(bio, iter);
895
896 if (unlikely(ret))
897 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
898
899 } while (iov_iter_count(iter) && !bio_full(bio));
900
901 return 0;
902}
2cefe4db
KO
903EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
904
4246a0b6 905static void submit_bio_wait_endio(struct bio *bio)
9e882242 906{
65e53aab 907 complete(bio->bi_private);
9e882242
KO
908}
909
910/**
911 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
912 * @bio: The &struct bio which describes the I/O
913 *
914 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
915 * bio_endio() on failure.
3d289d68
JK
916 *
917 * WARNING: Unlike to how submit_bio() is usually used, this function does not
918 * result in bio reference to be consumed. The caller must drop the reference
919 * on his own.
9e882242 920 */
4e49ea4a 921int submit_bio_wait(struct bio *bio)
9e882242 922{
e319e1fb 923 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 924
65e53aab 925 bio->bi_private = &done;
9e882242 926 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 927 bio->bi_opf |= REQ_SYNC;
4e49ea4a 928 submit_bio(bio);
65e53aab 929 wait_for_completion_io(&done);
9e882242 930
65e53aab 931 return blk_status_to_errno(bio->bi_status);
9e882242
KO
932}
933EXPORT_SYMBOL(submit_bio_wait);
934
054bdf64
KO
935/**
936 * bio_advance - increment/complete a bio by some number of bytes
937 * @bio: bio to advance
938 * @bytes: number of bytes to complete
939 *
940 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
941 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
942 * be updated on the last bvec as well.
943 *
944 * @bio will then represent the remaining, uncompleted portion of the io.
945 */
946void bio_advance(struct bio *bio, unsigned bytes)
947{
948 if (bio_integrity(bio))
949 bio_integrity_advance(bio, bytes);
950
4550dd6c 951 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
952}
953EXPORT_SYMBOL(bio_advance);
954
45db54d5
KO
955void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
956 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 957{
1cb9dda4 958 struct bio_vec src_bv, dst_bv;
16ac3d63 959 void *src_p, *dst_p;
1cb9dda4 960 unsigned bytes;
16ac3d63 961
45db54d5
KO
962 while (src_iter->bi_size && dst_iter->bi_size) {
963 src_bv = bio_iter_iovec(src, *src_iter);
964 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
965
966 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 967
1cb9dda4
KO
968 src_p = kmap_atomic(src_bv.bv_page);
969 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 970
1cb9dda4
KO
971 memcpy(dst_p + dst_bv.bv_offset,
972 src_p + src_bv.bv_offset,
16ac3d63
KO
973 bytes);
974
975 kunmap_atomic(dst_p);
976 kunmap_atomic(src_p);
977
6e6e811d
KO
978 flush_dcache_page(dst_bv.bv_page);
979
45db54d5
KO
980 bio_advance_iter(src, src_iter, bytes);
981 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
982 }
983}
38a72dac
KO
984EXPORT_SYMBOL(bio_copy_data_iter);
985
986/**
45db54d5
KO
987 * bio_copy_data - copy contents of data buffers from one bio to another
988 * @src: source bio
989 * @dst: destination bio
38a72dac
KO
990 *
991 * Stops when it reaches the end of either @src or @dst - that is, copies
992 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
993 */
994void bio_copy_data(struct bio *dst, struct bio *src)
995{
45db54d5
KO
996 struct bvec_iter src_iter = src->bi_iter;
997 struct bvec_iter dst_iter = dst->bi_iter;
998
999 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1000}
16ac3d63
KO
1001EXPORT_SYMBOL(bio_copy_data);
1002
45db54d5
KO
1003/**
1004 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1005 * another
1006 * @src: source bio list
1007 * @dst: destination bio list
1008 *
1009 * Stops when it reaches the end of either the @src list or @dst list - that is,
1010 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1011 * bios).
1012 */
1013void bio_list_copy_data(struct bio *dst, struct bio *src)
1014{
1015 struct bvec_iter src_iter = src->bi_iter;
1016 struct bvec_iter dst_iter = dst->bi_iter;
1017
1018 while (1) {
1019 if (!src_iter.bi_size) {
1020 src = src->bi_next;
1021 if (!src)
1022 break;
1023
1024 src_iter = src->bi_iter;
1025 }
1026
1027 if (!dst_iter.bi_size) {
1028 dst = dst->bi_next;
1029 if (!dst)
1030 break;
1031
1032 dst_iter = dst->bi_iter;
1033 }
1034
1035 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1036 }
1037}
1038EXPORT_SYMBOL(bio_list_copy_data);
1039
1da177e4 1040struct bio_map_data {
152e283f 1041 int is_our_pages;
26e49cfc
KO
1042 struct iov_iter iter;
1043 struct iovec iov[];
1da177e4
LT
1044};
1045
0e5b935d 1046static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1047 gfp_t gfp_mask)
1da177e4 1048{
0e5b935d
AV
1049 struct bio_map_data *bmd;
1050 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1051 return NULL;
1da177e4 1052
0e5b935d
AV
1053 bmd = kmalloc(sizeof(struct bio_map_data) +
1054 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1055 if (!bmd)
1056 return NULL;
1057 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1058 bmd->iter = *data;
1059 bmd->iter.iov = bmd->iov;
1060 return bmd;
1da177e4
LT
1061}
1062
9124d3fe
DP
1063/**
1064 * bio_copy_from_iter - copy all pages from iov_iter to bio
1065 * @bio: The &struct bio which describes the I/O as destination
1066 * @iter: iov_iter as source
1067 *
1068 * Copy all pages from iov_iter to bio.
1069 * Returns 0 on success, or error on failure.
1070 */
98a09d61 1071static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1072{
9124d3fe 1073 int i;
c5dec1c3 1074 struct bio_vec *bvec;
c5dec1c3 1075
d74c6d51 1076 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1077 ssize_t ret;
c5dec1c3 1078
9124d3fe
DP
1079 ret = copy_page_from_iter(bvec->bv_page,
1080 bvec->bv_offset,
1081 bvec->bv_len,
98a09d61 1082 iter);
9124d3fe 1083
98a09d61 1084 if (!iov_iter_count(iter))
9124d3fe
DP
1085 break;
1086
1087 if (ret < bvec->bv_len)
1088 return -EFAULT;
c5dec1c3
FT
1089 }
1090
9124d3fe
DP
1091 return 0;
1092}
1093
1094/**
1095 * bio_copy_to_iter - copy all pages from bio to iov_iter
1096 * @bio: The &struct bio which describes the I/O as source
1097 * @iter: iov_iter as destination
1098 *
1099 * Copy all pages from bio to iov_iter.
1100 * Returns 0 on success, or error on failure.
1101 */
1102static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1103{
1104 int i;
1105 struct bio_vec *bvec;
1106
1107 bio_for_each_segment_all(bvec, bio, i) {
1108 ssize_t ret;
1109
1110 ret = copy_page_to_iter(bvec->bv_page,
1111 bvec->bv_offset,
1112 bvec->bv_len,
1113 &iter);
1114
1115 if (!iov_iter_count(&iter))
1116 break;
1117
1118 if (ret < bvec->bv_len)
1119 return -EFAULT;
1120 }
1121
1122 return 0;
c5dec1c3
FT
1123}
1124
491221f8 1125void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1126{
1127 struct bio_vec *bvec;
1128 int i;
1129
1130 bio_for_each_segment_all(bvec, bio, i)
1131 __free_page(bvec->bv_page);
1132}
491221f8 1133EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1134
1da177e4
LT
1135/**
1136 * bio_uncopy_user - finish previously mapped bio
1137 * @bio: bio being terminated
1138 *
ddad8dd0 1139 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1140 * to user space in case of a read.
1141 */
1142int bio_uncopy_user(struct bio *bio)
1143{
1144 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1145 int ret = 0;
1da177e4 1146
35dc2483
RD
1147 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1148 /*
1149 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1150 * don't copy into a random user address space, just free
1151 * and return -EINTR so user space doesn't expect any data.
35dc2483 1152 */
2d99b55d
HR
1153 if (!current->mm)
1154 ret = -EINTR;
1155 else if (bio_data_dir(bio) == READ)
9124d3fe 1156 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1157 if (bmd->is_our_pages)
1158 bio_free_pages(bio);
35dc2483 1159 }
c8db4448 1160 kfree(bmd);
1da177e4
LT
1161 bio_put(bio);
1162 return ret;
1163}
1164
1165/**
c5dec1c3 1166 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1167 * @q: destination block queue
1168 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1169 * @iter: iovec iterator
1170 * @gfp_mask: memory allocation flags
1da177e4
LT
1171 *
1172 * Prepares and returns a bio for indirect user io, bouncing data
1173 * to/from kernel pages as necessary. Must be paired with
1174 * call bio_uncopy_user() on io completion.
1175 */
152e283f
FT
1176struct bio *bio_copy_user_iov(struct request_queue *q,
1177 struct rq_map_data *map_data,
e81cef5d 1178 struct iov_iter *iter,
26e49cfc 1179 gfp_t gfp_mask)
1da177e4 1180{
1da177e4 1181 struct bio_map_data *bmd;
1da177e4
LT
1182 struct page *page;
1183 struct bio *bio;
d16d44eb
AV
1184 int i = 0, ret;
1185 int nr_pages;
26e49cfc 1186 unsigned int len = iter->count;
bd5cecea 1187 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1188
0e5b935d 1189 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1190 if (!bmd)
1191 return ERR_PTR(-ENOMEM);
1192
26e49cfc
KO
1193 /*
1194 * We need to do a deep copy of the iov_iter including the iovecs.
1195 * The caller provided iov might point to an on-stack or otherwise
1196 * shortlived one.
1197 */
1198 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1199
d16d44eb
AV
1200 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1201 if (nr_pages > BIO_MAX_PAGES)
1202 nr_pages = BIO_MAX_PAGES;
26e49cfc 1203
1da177e4 1204 ret = -ENOMEM;
a9e9dc24 1205 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1206 if (!bio)
1207 goto out_bmd;
1208
1da177e4 1209 ret = 0;
56c451f4
FT
1210
1211 if (map_data) {
e623ddb4 1212 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1213 i = map_data->offset / PAGE_SIZE;
1214 }
1da177e4 1215 while (len) {
e623ddb4 1216 unsigned int bytes = PAGE_SIZE;
1da177e4 1217
56c451f4
FT
1218 bytes -= offset;
1219
1da177e4
LT
1220 if (bytes > len)
1221 bytes = len;
1222
152e283f 1223 if (map_data) {
e623ddb4 1224 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1225 ret = -ENOMEM;
1226 break;
1227 }
e623ddb4
FT
1228
1229 page = map_data->pages[i / nr_pages];
1230 page += (i % nr_pages);
1231
1232 i++;
1233 } else {
152e283f 1234 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1235 if (!page) {
1236 ret = -ENOMEM;
1237 break;
1238 }
1da177e4
LT
1239 }
1240
56c451f4 1241 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1242 break;
1da177e4
LT
1243
1244 len -= bytes;
56c451f4 1245 offset = 0;
1da177e4
LT
1246 }
1247
1248 if (ret)
1249 goto cleanup;
1250
2884d0be
AV
1251 if (map_data)
1252 map_data->offset += bio->bi_iter.bi_size;
1253
1da177e4
LT
1254 /*
1255 * success
1256 */
00e23707 1257 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1258 (map_data && map_data->from_user)) {
98a09d61 1259 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1260 if (ret)
1261 goto cleanup;
98a09d61 1262 } else {
f3587d76 1263 zero_fill_bio(bio);
98a09d61 1264 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1265 }
1266
26e49cfc 1267 bio->bi_private = bmd;
2884d0be
AV
1268 if (map_data && map_data->null_mapped)
1269 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1270 return bio;
1271cleanup:
152e283f 1272 if (!map_data)
1dfa0f68 1273 bio_free_pages(bio);
1da177e4
LT
1274 bio_put(bio);
1275out_bmd:
c8db4448 1276 kfree(bmd);
1da177e4
LT
1277 return ERR_PTR(ret);
1278}
1279
37f19e57
CH
1280/**
1281 * bio_map_user_iov - map user iovec into bio
1282 * @q: the struct request_queue for the bio
1283 * @iter: iovec iterator
1284 * @gfp_mask: memory allocation flags
1285 *
1286 * Map the user space address into a bio suitable for io to a block
1287 * device. Returns an error pointer in case of error.
1288 */
1289struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1290 struct iov_iter *iter,
37f19e57 1291 gfp_t gfp_mask)
1da177e4 1292{
26e49cfc 1293 int j;
1da177e4 1294 struct bio *bio;
076098e5 1295 int ret;
2b04e8f6 1296 struct bio_vec *bvec;
1da177e4 1297
b282cc76 1298 if (!iov_iter_count(iter))
1da177e4
LT
1299 return ERR_PTR(-EINVAL);
1300
b282cc76 1301 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1302 if (!bio)
1303 return ERR_PTR(-ENOMEM);
1304
0a0f1513 1305 while (iov_iter_count(iter)) {
629e42bc 1306 struct page **pages;
076098e5
AV
1307 ssize_t bytes;
1308 size_t offs, added = 0;
1309 int npages;
1da177e4 1310
0a0f1513 1311 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1312 if (unlikely(bytes <= 0)) {
1313 ret = bytes ? bytes : -EFAULT;
f1970baf 1314 goto out_unmap;
99172157 1315 }
f1970baf 1316
076098e5 1317 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1318
98f0bc99
AV
1319 if (unlikely(offs & queue_dma_alignment(q))) {
1320 ret = -EINVAL;
1321 j = 0;
1322 } else {
1323 for (j = 0; j < npages; j++) {
1324 struct page *page = pages[j];
1325 unsigned int n = PAGE_SIZE - offs;
1326 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1327
98f0bc99
AV
1328 if (n > bytes)
1329 n = bytes;
95d78c28 1330
98f0bc99
AV
1331 if (!bio_add_pc_page(q, bio, page, n, offs))
1332 break;
1da177e4 1333
98f0bc99
AV
1334 /*
1335 * check if vector was merged with previous
1336 * drop page reference if needed
1337 */
1338 if (bio->bi_vcnt == prev_bi_vcnt)
1339 put_page(page);
1340
1341 added += n;
1342 bytes -= n;
1343 offs = 0;
1344 }
0a0f1513 1345 iov_iter_advance(iter, added);
f1970baf 1346 }
1da177e4 1347 /*
f1970baf 1348 * release the pages we didn't map into the bio, if any
1da177e4 1349 */
629e42bc 1350 while (j < npages)
09cbfeaf 1351 put_page(pages[j++]);
629e42bc 1352 kvfree(pages);
e2e115d1
AV
1353 /* couldn't stuff something into bio? */
1354 if (bytes)
1355 break;
1da177e4
LT
1356 }
1357
b7c44ed9 1358 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1359
1360 /*
5fad1b64 1361 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1362 * it would normally disappear when its bi_end_io is run.
1363 * however, we need it for the unmap, so grab an extra
1364 * reference to it
1365 */
1366 bio_get(bio);
1da177e4 1367 return bio;
f1970baf
JB
1368
1369 out_unmap:
2b04e8f6
AV
1370 bio_for_each_segment_all(bvec, bio, j) {
1371 put_page(bvec->bv_page);
f1970baf 1372 }
1da177e4
LT
1373 bio_put(bio);
1374 return ERR_PTR(ret);
1375}
1376
1da177e4
LT
1377static void __bio_unmap_user(struct bio *bio)
1378{
1379 struct bio_vec *bvec;
1380 int i;
1381
1382 /*
1383 * make sure we dirty pages we wrote to
1384 */
d74c6d51 1385 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1386 if (bio_data_dir(bio) == READ)
1387 set_page_dirty_lock(bvec->bv_page);
1388
09cbfeaf 1389 put_page(bvec->bv_page);
1da177e4
LT
1390 }
1391
1392 bio_put(bio);
1393}
1394
1395/**
1396 * bio_unmap_user - unmap a bio
1397 * @bio: the bio being unmapped
1398 *
5fad1b64
BVA
1399 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1400 * process context.
1da177e4
LT
1401 *
1402 * bio_unmap_user() may sleep.
1403 */
1404void bio_unmap_user(struct bio *bio)
1405{
1406 __bio_unmap_user(bio);
1407 bio_put(bio);
1408}
1409
4246a0b6 1410static void bio_map_kern_endio(struct bio *bio)
b823825e 1411{
b823825e 1412 bio_put(bio);
b823825e
JA
1413}
1414
75c72b83
CH
1415/**
1416 * bio_map_kern - map kernel address into bio
1417 * @q: the struct request_queue for the bio
1418 * @data: pointer to buffer to map
1419 * @len: length in bytes
1420 * @gfp_mask: allocation flags for bio allocation
1421 *
1422 * Map the kernel address into a bio suitable for io to a block
1423 * device. Returns an error pointer in case of error.
1424 */
1425struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426 gfp_t gfp_mask)
df46b9a4
MC
1427{
1428 unsigned long kaddr = (unsigned long)data;
1429 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430 unsigned long start = kaddr >> PAGE_SHIFT;
1431 const int nr_pages = end - start;
1432 int offset, i;
1433 struct bio *bio;
1434
a9e9dc24 1435 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1436 if (!bio)
1437 return ERR_PTR(-ENOMEM);
1438
1439 offset = offset_in_page(kaddr);
1440 for (i = 0; i < nr_pages; i++) {
1441 unsigned int bytes = PAGE_SIZE - offset;
1442
1443 if (len <= 0)
1444 break;
1445
1446 if (bytes > len)
1447 bytes = len;
1448
defd94b7 1449 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1450 offset) < bytes) {
1451 /* we don't support partial mappings */
1452 bio_put(bio);
1453 return ERR_PTR(-EINVAL);
1454 }
df46b9a4
MC
1455
1456 data += bytes;
1457 len -= bytes;
1458 offset = 0;
1459 }
1460
b823825e 1461 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1462 return bio;
1463}
a112a71d 1464EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1465
4246a0b6 1466static void bio_copy_kern_endio(struct bio *bio)
68154e90 1467{
1dfa0f68
CH
1468 bio_free_pages(bio);
1469 bio_put(bio);
1470}
1471
4246a0b6 1472static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1473{
42d2683a 1474 char *p = bio->bi_private;
1dfa0f68 1475 struct bio_vec *bvec;
68154e90
FT
1476 int i;
1477
d74c6d51 1478 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1479 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1480 p += bvec->bv_len;
68154e90
FT
1481 }
1482
4246a0b6 1483 bio_copy_kern_endio(bio);
68154e90
FT
1484}
1485
1486/**
1487 * bio_copy_kern - copy kernel address into bio
1488 * @q: the struct request_queue for the bio
1489 * @data: pointer to buffer to copy
1490 * @len: length in bytes
1491 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1492 * @reading: data direction is READ
68154e90
FT
1493 *
1494 * copy the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498 gfp_t gfp_mask, int reading)
1499{
42d2683a
CH
1500 unsigned long kaddr = (unsigned long)data;
1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1503 struct bio *bio;
1504 void *p = data;
1dfa0f68 1505 int nr_pages = 0;
68154e90 1506
42d2683a
CH
1507 /*
1508 * Overflow, abort
1509 */
1510 if (end < start)
1511 return ERR_PTR(-EINVAL);
68154e90 1512
42d2683a
CH
1513 nr_pages = end - start;
1514 bio = bio_kmalloc(gfp_mask, nr_pages);
1515 if (!bio)
1516 return ERR_PTR(-ENOMEM);
68154e90 1517
42d2683a
CH
1518 while (len) {
1519 struct page *page;
1520 unsigned int bytes = PAGE_SIZE;
68154e90 1521
42d2683a
CH
1522 if (bytes > len)
1523 bytes = len;
1524
1525 page = alloc_page(q->bounce_gfp | gfp_mask);
1526 if (!page)
1527 goto cleanup;
1528
1529 if (!reading)
1530 memcpy(page_address(page), p, bytes);
1531
1532 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533 break;
1534
1535 len -= bytes;
1536 p += bytes;
68154e90
FT
1537 }
1538
1dfa0f68
CH
1539 if (reading) {
1540 bio->bi_end_io = bio_copy_kern_endio_read;
1541 bio->bi_private = data;
1542 } else {
1543 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1544 }
76029ff3 1545
68154e90 1546 return bio;
42d2683a
CH
1547
1548cleanup:
1dfa0f68 1549 bio_free_pages(bio);
42d2683a
CH
1550 bio_put(bio);
1551 return ERR_PTR(-ENOMEM);
68154e90
FT
1552}
1553
1da177e4
LT
1554/*
1555 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1556 * for performing direct-IO in BIOs.
1557 *
1558 * The problem is that we cannot run set_page_dirty() from interrupt context
1559 * because the required locks are not interrupt-safe. So what we can do is to
1560 * mark the pages dirty _before_ performing IO. And in interrupt context,
1561 * check that the pages are still dirty. If so, fine. If not, redirty them
1562 * in process context.
1563 *
1564 * We special-case compound pages here: normally this means reads into hugetlb
1565 * pages. The logic in here doesn't really work right for compound pages
1566 * because the VM does not uniformly chase down the head page in all cases.
1567 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1568 * handle them at all. So we skip compound pages here at an early stage.
1569 *
1570 * Note that this code is very hard to test under normal circumstances because
1571 * direct-io pins the pages with get_user_pages(). This makes
1572 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1573 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1574 * pagecache.
1575 *
1576 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1577 * deferred bio dirtying paths.
1578 */
1579
1580/*
1581 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1582 */
1583void bio_set_pages_dirty(struct bio *bio)
1584{
cb34e057 1585 struct bio_vec *bvec;
1da177e4
LT
1586 int i;
1587
cb34e057 1588 bio_for_each_segment_all(bvec, bio, i) {
3bb50983
CH
1589 if (!PageCompound(bvec->bv_page))
1590 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1591 }
1592}
1900fcc4 1593EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1594
86b6c7a7 1595static void bio_release_pages(struct bio *bio)
1da177e4 1596{
cb34e057 1597 struct bio_vec *bvec;
1da177e4
LT
1598 int i;
1599
24d5493f
CH
1600 bio_for_each_segment_all(bvec, bio, i)
1601 put_page(bvec->bv_page);
1da177e4
LT
1602}
1603
1604/*
1605 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1606 * If they are, then fine. If, however, some pages are clean then they must
1607 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1608 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1609 *
1610 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1611 * here on. It will run one put_page() against each page and will run one
1612 * bio_put() against the BIO.
1da177e4
LT
1613 */
1614
65f27f38 1615static void bio_dirty_fn(struct work_struct *work);
1da177e4 1616
65f27f38 1617static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1618static DEFINE_SPINLOCK(bio_dirty_lock);
1619static struct bio *bio_dirty_list;
1620
1621/*
1622 * This runs in process context
1623 */
65f27f38 1624static void bio_dirty_fn(struct work_struct *work)
1da177e4 1625{
24d5493f 1626 struct bio *bio, *next;
1da177e4 1627
24d5493f
CH
1628 spin_lock_irq(&bio_dirty_lock);
1629 next = bio_dirty_list;
1da177e4 1630 bio_dirty_list = NULL;
24d5493f 1631 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1632
24d5493f
CH
1633 while ((bio = next) != NULL) {
1634 next = bio->bi_private;
1da177e4
LT
1635
1636 bio_set_pages_dirty(bio);
1637 bio_release_pages(bio);
1638 bio_put(bio);
1da177e4
LT
1639 }
1640}
1641
1642void bio_check_pages_dirty(struct bio *bio)
1643{
cb34e057 1644 struct bio_vec *bvec;
24d5493f 1645 unsigned long flags;
1da177e4
LT
1646 int i;
1647
cb34e057 1648 bio_for_each_segment_all(bvec, bio, i) {
24d5493f
CH
1649 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1650 goto defer;
1da177e4
LT
1651 }
1652
24d5493f
CH
1653 bio_release_pages(bio);
1654 bio_put(bio);
1655 return;
1656defer:
1657 spin_lock_irqsave(&bio_dirty_lock, flags);
1658 bio->bi_private = bio_dirty_list;
1659 bio_dirty_list = bio;
1660 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1661 schedule_work(&bio_dirty_work);
1da177e4 1662}
1900fcc4 1663EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1664
ddcf35d3 1665void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1666 unsigned long sectors, struct hd_struct *part)
394ffa50 1667{
ddcf35d3 1668 const int sgrp = op_stat_group(op);
394ffa50
GZ
1669 int cpu = part_stat_lock();
1670
d62e26b3 1671 part_round_stats(q, cpu, part);
ddcf35d3
MC
1672 part_stat_inc(cpu, part, ios[sgrp]);
1673 part_stat_add(cpu, part, sectors[sgrp], sectors);
1674 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1675
1676 part_stat_unlock();
1677}
1678EXPORT_SYMBOL(generic_start_io_acct);
1679
ddcf35d3 1680void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1681 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1682{
1683 unsigned long duration = jiffies - start_time;
ddcf35d3 1684 const int sgrp = op_stat_group(req_op);
394ffa50
GZ
1685 int cpu = part_stat_lock();
1686
b57e99b4 1687 part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
d62e26b3 1688 part_round_stats(q, cpu, part);
ddcf35d3 1689 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1690
1691 part_stat_unlock();
1692}
1693EXPORT_SYMBOL(generic_end_io_acct);
1694
2d4dc890
IL
1695#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1696void bio_flush_dcache_pages(struct bio *bi)
1697{
7988613b
KO
1698 struct bio_vec bvec;
1699 struct bvec_iter iter;
2d4dc890 1700
7988613b
KO
1701 bio_for_each_segment(bvec, bi, iter)
1702 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1703}
1704EXPORT_SYMBOL(bio_flush_dcache_pages);
1705#endif
1706
c4cf5261
JA
1707static inline bool bio_remaining_done(struct bio *bio)
1708{
1709 /*
1710 * If we're not chaining, then ->__bi_remaining is always 1 and
1711 * we always end io on the first invocation.
1712 */
1713 if (!bio_flagged(bio, BIO_CHAIN))
1714 return true;
1715
1716 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1717
326e1dbb 1718 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1719 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1720 return true;
326e1dbb 1721 }
c4cf5261
JA
1722
1723 return false;
1724}
1725
1da177e4
LT
1726/**
1727 * bio_endio - end I/O on a bio
1728 * @bio: bio
1da177e4
LT
1729 *
1730 * Description:
4246a0b6
CH
1731 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1732 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1733 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1734 *
1735 * bio_endio() can be called several times on a bio that has been chained
1736 * using bio_chain(). The ->bi_end_io() function will only be called the
1737 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1738 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1739 **/
4246a0b6 1740void bio_endio(struct bio *bio)
1da177e4 1741{
ba8c6967 1742again:
2b885517 1743 if (!bio_remaining_done(bio))
ba8c6967 1744 return;
7c20f116
CH
1745 if (!bio_integrity_endio(bio))
1746 return;
1da177e4 1747
67b42d0b
JB
1748 if (bio->bi_disk)
1749 rq_qos_done_bio(bio->bi_disk->queue, bio);
1750
ba8c6967
CH
1751 /*
1752 * Need to have a real endio function for chained bios, otherwise
1753 * various corner cases will break (like stacking block devices that
1754 * save/restore bi_end_io) - however, we want to avoid unbounded
1755 * recursion and blowing the stack. Tail call optimization would
1756 * handle this, but compiling with frame pointers also disables
1757 * gcc's sibling call optimization.
1758 */
1759 if (bio->bi_end_io == bio_chain_endio) {
1760 bio = __bio_chain_endio(bio);
1761 goto again;
196d38bc 1762 }
ba8c6967 1763
74d46992
CH
1764 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1765 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1766 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1767 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1768 }
1769
9e234eea 1770 blk_throtl_bio_endio(bio);
b222dd2f
SL
1771 /* release cgroup info */
1772 bio_uninit(bio);
ba8c6967
CH
1773 if (bio->bi_end_io)
1774 bio->bi_end_io(bio);
1da177e4 1775}
a112a71d 1776EXPORT_SYMBOL(bio_endio);
1da177e4 1777
20d0189b
KO
1778/**
1779 * bio_split - split a bio
1780 * @bio: bio to split
1781 * @sectors: number of sectors to split from the front of @bio
1782 * @gfp: gfp mask
1783 * @bs: bio set to allocate from
1784 *
1785 * Allocates and returns a new bio which represents @sectors from the start of
1786 * @bio, and updates @bio to represent the remaining sectors.
1787 *
f3f5da62
MP
1788 * Unless this is a discard request the newly allocated bio will point
1789 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1790 * @bio is not freed before the split.
20d0189b
KO
1791 */
1792struct bio *bio_split(struct bio *bio, int sectors,
1793 gfp_t gfp, struct bio_set *bs)
1794{
f341a4d3 1795 struct bio *split;
20d0189b
KO
1796
1797 BUG_ON(sectors <= 0);
1798 BUG_ON(sectors >= bio_sectors(bio));
1799
f9d03f96 1800 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1801 if (!split)
1802 return NULL;
1803
1804 split->bi_iter.bi_size = sectors << 9;
1805
1806 if (bio_integrity(split))
fbd08e76 1807 bio_integrity_trim(split);
20d0189b
KO
1808
1809 bio_advance(bio, split->bi_iter.bi_size);
1810
fbbaf700 1811 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1812 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1813
20d0189b
KO
1814 return split;
1815}
1816EXPORT_SYMBOL(bio_split);
1817
6678d83f
KO
1818/**
1819 * bio_trim - trim a bio
1820 * @bio: bio to trim
1821 * @offset: number of sectors to trim from the front of @bio
1822 * @size: size we want to trim @bio to, in sectors
1823 */
1824void bio_trim(struct bio *bio, int offset, int size)
1825{
1826 /* 'bio' is a cloned bio which we need to trim to match
1827 * the given offset and size.
6678d83f 1828 */
6678d83f
KO
1829
1830 size <<= 9;
4f024f37 1831 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1832 return;
1833
b7c44ed9 1834 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1835
1836 bio_advance(bio, offset << 9);
1837
4f024f37 1838 bio->bi_iter.bi_size = size;
376a78ab
DM
1839
1840 if (bio_integrity(bio))
fbd08e76 1841 bio_integrity_trim(bio);
376a78ab 1842
6678d83f
KO
1843}
1844EXPORT_SYMBOL_GPL(bio_trim);
1845
1da177e4
LT
1846/*
1847 * create memory pools for biovec's in a bio_set.
1848 * use the global biovec slabs created for general use.
1849 */
8aa6ba2f 1850int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1851{
ed996a52 1852 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1853
8aa6ba2f 1854 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1855}
1856
917a38c7
KO
1857/*
1858 * bioset_exit - exit a bioset initialized with bioset_init()
1859 *
1860 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1861 * kzalloc()).
1862 */
1863void bioset_exit(struct bio_set *bs)
1da177e4 1864{
df2cb6da
KO
1865 if (bs->rescue_workqueue)
1866 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1867 bs->rescue_workqueue = NULL;
df2cb6da 1868
8aa6ba2f
KO
1869 mempool_exit(&bs->bio_pool);
1870 mempool_exit(&bs->bvec_pool);
9f060e22 1871
7878cba9 1872 bioset_integrity_free(bs);
917a38c7
KO
1873 if (bs->bio_slab)
1874 bio_put_slab(bs);
1875 bs->bio_slab = NULL;
1876}
1877EXPORT_SYMBOL(bioset_exit);
1da177e4 1878
917a38c7
KO
1879/**
1880 * bioset_init - Initialize a bio_set
dad08527 1881 * @bs: pool to initialize
917a38c7
KO
1882 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1883 * @front_pad: Number of bytes to allocate in front of the returned bio
1884 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1885 * and %BIOSET_NEED_RESCUER
1886 *
dad08527
KO
1887 * Description:
1888 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1889 * to ask for a number of bytes to be allocated in front of the bio.
1890 * Front pad allocation is useful for embedding the bio inside
1891 * another structure, to avoid allocating extra data to go with the bio.
1892 * Note that the bio must be embedded at the END of that structure always,
1893 * or things will break badly.
1894 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1895 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1896 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1897 * dispatch queued requests when the mempool runs out of space.
1898 *
917a38c7
KO
1899 */
1900int bioset_init(struct bio_set *bs,
1901 unsigned int pool_size,
1902 unsigned int front_pad,
1903 int flags)
1904{
1905 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1906
1907 bs->front_pad = front_pad;
1908
1909 spin_lock_init(&bs->rescue_lock);
1910 bio_list_init(&bs->rescue_list);
1911 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1912
1913 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1914 if (!bs->bio_slab)
1915 return -ENOMEM;
1916
1917 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1918 goto bad;
1919
1920 if ((flags & BIOSET_NEED_BVECS) &&
1921 biovec_init_pool(&bs->bvec_pool, pool_size))
1922 goto bad;
1923
1924 if (!(flags & BIOSET_NEED_RESCUER))
1925 return 0;
1926
1927 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1928 if (!bs->rescue_workqueue)
1929 goto bad;
1930
1931 return 0;
1932bad:
1933 bioset_exit(bs);
1934 return -ENOMEM;
1935}
1936EXPORT_SYMBOL(bioset_init);
1937
28e89fd9
JA
1938/*
1939 * Initialize and setup a new bio_set, based on the settings from
1940 * another bio_set.
1941 */
1942int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1943{
1944 int flags;
1945
1946 flags = 0;
1947 if (src->bvec_pool.min_nr)
1948 flags |= BIOSET_NEED_BVECS;
1949 if (src->rescue_workqueue)
1950 flags |= BIOSET_NEED_RESCUER;
1951
1952 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1953}
1954EXPORT_SYMBOL(bioset_init_from_src);
1955
852c788f 1956#ifdef CONFIG_BLK_CGROUP
1d933cf0 1957
74b7c02a
DZF
1958#ifdef CONFIG_MEMCG
1959/**
b5f2954d 1960 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
74b7c02a
DZF
1961 * @bio: target bio
1962 * @page: the page to lookup the blkcg from
1963 *
b5f2954d
DZ
1964 * Associate @bio with the blkcg from @page's owning memcg. This works like
1965 * every other associate function wrt references.
74b7c02a 1966 */
b5f2954d 1967int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
74b7c02a 1968{
b5f2954d 1969 struct cgroup_subsys_state *blkcg_css;
74b7c02a 1970
b5f2954d 1971 if (unlikely(bio->bi_css))
74b7c02a
DZF
1972 return -EBUSY;
1973 if (!page->mem_cgroup)
1974 return 0;
b5f2954d
DZ
1975 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1976 &io_cgrp_subsys);
1977 bio->bi_css = blkcg_css;
1978 return 0;
74b7c02a
DZF
1979}
1980#endif /* CONFIG_MEMCG */
1981
a7b39b4e 1982/**
b5f2954d 1983 * bio_associate_blkcg - associate a bio with the specified blkcg
a7b39b4e 1984 * @bio: target bio
b5f2954d
DZ
1985 * @blkcg_css: css of the blkcg to associate
1986 *
1987 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1988 * treat @bio as if it were issued by a task which belongs to the blkcg.
a7b39b4e 1989 *
b5f2954d
DZ
1990 * This function takes an extra reference of @blkcg_css which will be put
1991 * when @bio is released. The caller must own @bio and is responsible for
1992 * synchronizing calls to this function.
a7b39b4e 1993 */
b5f2954d 1994int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
a7b39b4e 1995{
b5f2954d
DZ
1996 if (unlikely(bio->bi_css))
1997 return -EBUSY;
1998 css_get(blkcg_css);
1999 bio->bi_css = blkcg_css;
2000 return 0;
a7b39b4e 2001}
b5f2954d 2002EXPORT_SYMBOL_GPL(bio_associate_blkcg);
a7b39b4e 2003
d459d853 2004/**
b5f2954d 2005 * bio_associate_blkg - associate a bio with the specified blkg
d459d853 2006 * @bio: target bio
b5f2954d 2007 * @blkg: the blkg to associate
d459d853 2008 *
b5f2954d
DZ
2009 * Associate @bio with the blkg specified by @blkg. This is the queue specific
2010 * blkcg information associated with the @bio, a reference will be taken on the
2011 * @blkg and will be freed when the bio is freed.
d459d853 2012 */
b5f2954d 2013int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
d459d853 2014{
b5f2954d
DZ
2015 if (unlikely(bio->bi_blkg))
2016 return -EBUSY;
2017 if (!blkg_try_get(blkg))
2018 return -ENODEV;
2019 bio->bi_blkg = blkg;
2020 return 0;
d459d853
DZ
2021}
2022
852c788f
TH
2023/**
2024 * bio_disassociate_task - undo bio_associate_current()
2025 * @bio: target bio
2026 */
2027void bio_disassociate_task(struct bio *bio)
2028{
2029 if (bio->bi_ioc) {
2030 put_io_context(bio->bi_ioc);
2031 bio->bi_ioc = NULL;
2032 }
b5f2954d
DZ
2033 if (bio->bi_css) {
2034 css_put(bio->bi_css);
2035 bio->bi_css = NULL;
2036 }
08e18eab
JB
2037 if (bio->bi_blkg) {
2038 blkg_put(bio->bi_blkg);
2039 bio->bi_blkg = NULL;
2040 }
852c788f
TH
2041}
2042
20bd723e 2043/**
b5f2954d 2044 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
20bd723e
PV
2045 * @dst: destination bio
2046 * @src: source bio
2047 */
b5f2954d 2048void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
20bd723e 2049{
b5f2954d
DZ
2050 if (src->bi_css)
2051 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
20bd723e 2052}
b5f2954d 2053EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2054#endif /* CONFIG_BLK_CGROUP */
2055
1da177e4
LT
2056static void __init biovec_init_slabs(void)
2057{
2058 int i;
2059
ed996a52 2060 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2061 int size;
2062 struct biovec_slab *bvs = bvec_slabs + i;
2063
a7fcd37c
JA
2064 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2065 bvs->slab = NULL;
2066 continue;
2067 }
a7fcd37c 2068
1da177e4
LT
2069 size = bvs->nr_vecs * sizeof(struct bio_vec);
2070 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2071 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2072 }
2073}
2074
2075static int __init init_bio(void)
2076{
bb799ca0
JA
2077 bio_slab_max = 2;
2078 bio_slab_nr = 0;
6396bb22
KC
2079 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2080 GFP_KERNEL);
bb799ca0
JA
2081 if (!bio_slabs)
2082 panic("bio: can't allocate bios\n");
1da177e4 2083
7878cba9 2084 bio_integrity_init();
1da177e4
LT
2085 biovec_init_slabs();
2086
f4f8154a 2087 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2088 panic("bio: can't allocate bios\n");
2089
f4f8154a 2090 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2091 panic("bio: can't create integrity pool\n");
2092
1da177e4
LT
2093 return 0;
2094}
1da177e4 2095subsys_initcall(init_bio);