]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - block/bio.c
block: remove the i argument to bio_for_each_segment_all
[mirror_ubuntu-hirsute-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
d6c02a9b 161 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
6f70fb66 247 bio_disassociate_blkg(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
6c210aa5 574int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
581
59d276fe
KO
582/**
583 * __bio_clone_fast - clone a bio that shares the original bio's biovec
584 * @bio: destination bio
585 * @bio_src: bio to clone
586 *
587 * Clone a &bio. Caller will own the returned bio, but not
588 * the actual data it points to. Reference count of returned
589 * bio will be one.
590 *
591 * Caller must ensure that @bio_src is not freed before @bio.
592 */
593void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594{
ed996a52 595 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
596
597 /*
74d46992 598 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
599 * so we don't set nor calculate new physical/hw segment counts here
600 */
74d46992 601 bio->bi_disk = bio_src->bi_disk;
62530ed8 602 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 603 bio_set_flag(bio, BIO_CLONED);
111be883
SL
604 if (bio_flagged(bio_src, BIO_THROTTLED))
605 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 606 bio->bi_opf = bio_src->bi_opf;
ca474b73 607 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 611
db6638d7 612 bio_clone_blkg_association(bio, bio_src);
e439bedf 613 blkcg_bio_issue_init(bio);
59d276fe
KO
614}
615EXPORT_SYMBOL(__bio_clone_fast);
616
617/**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626{
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647}
648EXPORT_SYMBOL(bio_clone_fast);
649
5919482e
ML
650static inline bool page_is_mergeable(const struct bio_vec *bv,
651 struct page *page, unsigned int len, unsigned int off,
652 bool same_page)
653{
654 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
655 bv->bv_offset + bv->bv_len - 1;
656 phys_addr_t page_addr = page_to_phys(page);
657
658 if (vec_end_addr + 1 != page_addr + off)
659 return false;
660 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
661 return false;
52d52d1c
CH
662
663 if ((vec_end_addr & PAGE_MASK) != page_addr) {
664 if (same_page)
665 return false;
666 if (pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
667 return false;
668 }
5919482e 669
551879a4
ML
670 WARN_ON_ONCE(same_page && (len + off) > PAGE_SIZE);
671
5919482e
ML
672 return true;
673}
674
489fbbcb
ML
675/*
676 * Check if the @page can be added to the current segment(@bv), and make
677 * sure to call it only if page_is_mergeable(@bv, @page) is true
678 */
679static bool can_add_page_to_seg(struct request_queue *q,
680 struct bio_vec *bv, struct page *page, unsigned len,
681 unsigned offset)
682{
683 unsigned long mask = queue_segment_boundary(q);
684 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
685 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
686
687 if ((addr1 | mask) != (addr2 | mask))
688 return false;
689
690 if (bv->bv_len + len > queue_max_segment_size(q))
691 return false;
692
693 return true;
694}
695
1da177e4 696/**
19047087 697 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
698 * @q: the target queue
699 * @bio: destination bio
700 * @page: page to add
701 * @len: vec entry length
702 * @offset: vec entry offset
19047087 703 * @put_same_page: put the page if it is same with last added page
1da177e4 704 *
c66a14d0
KO
705 * Attempt to add a page to the bio_vec maplist. This can fail for a
706 * number of reasons, such as the bio being full or target block device
707 * limitations. The target block device must allow bio's up to PAGE_SIZE,
708 * so it is always possible to add a single page to an empty bio.
709 *
5a8ce240 710 * This should only be used by passthrough bios.
1da177e4 711 */
19047087
ML
712int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
713 struct page *page, unsigned int len, unsigned int offset,
714 bool put_same_page)
1da177e4 715{
1da177e4
LT
716 struct bio_vec *bvec;
717
718 /*
719 * cloned bio must not modify vec list
720 */
721 if (unlikely(bio_flagged(bio, BIO_CLONED)))
722 return 0;
723
c66a14d0 724 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
725 return 0;
726
80cfd548
JA
727 /*
728 * For filesystems with a blocksize smaller than the pagesize
729 * we will often be called with the same page as last time and
730 * a consecutive offset. Optimize this special case.
731 */
732 if (bio->bi_vcnt > 0) {
5a8ce240 733 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
80cfd548 734
5a8ce240
ML
735 if (page == bvec->bv_page &&
736 offset == bvec->bv_offset + bvec->bv_len) {
19047087
ML
737 if (put_same_page)
738 put_page(page);
489fbbcb 739 bvec_merge:
5a8ce240 740 bvec->bv_len += len;
fcbf6a08 741 bio->bi_iter.bi_size += len;
80cfd548
JA
742 goto done;
743 }
66cb45aa
JA
744
745 /*
746 * If the queue doesn't support SG gaps and adding this
747 * offset would create a gap, disallow it.
748 */
5a8ce240 749 if (bvec_gap_to_prev(q, bvec, offset))
66cb45aa 750 return 0;
489fbbcb
ML
751
752 if (page_is_mergeable(bvec, page, len, offset, false) &&
753 can_add_page_to_seg(q, bvec, page, len, offset))
754 goto bvec_merge;
80cfd548
JA
755 }
756
0aa69fd3 757 if (bio_full(bio))
1da177e4
LT
758 return 0;
759
489fbbcb
ML
760 if (bio->bi_phys_segments >= queue_max_segments(q))
761 return 0;
762
1da177e4 763 /*
fcbf6a08
ML
764 * setup the new entry, we might clear it again later if we
765 * cannot add the page
766 */
767 bvec = &bio->bi_io_vec[bio->bi_vcnt];
768 bvec->bv_page = page;
769 bvec->bv_len = len;
770 bvec->bv_offset = offset;
771 bio->bi_vcnt++;
fcbf6a08
ML
772 bio->bi_iter.bi_size += len;
773
80cfd548 774 done:
489fbbcb
ML
775 bio->bi_phys_segments = bio->bi_vcnt;
776 bio_set_flag(bio, BIO_SEG_VALID);
1da177e4
LT
777 return len;
778}
19047087
ML
779EXPORT_SYMBOL(__bio_add_pc_page);
780
781int bio_add_pc_page(struct request_queue *q, struct bio *bio,
782 struct page *page, unsigned int len, unsigned int offset)
783{
784 return __bio_add_pc_page(q, bio, page, len, offset, false);
785}
a112a71d 786EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 787
1da177e4 788/**
0aa69fd3
CH
789 * __bio_try_merge_page - try appending data to an existing bvec.
790 * @bio: destination bio
551879a4 791 * @page: start page to add
0aa69fd3 792 * @len: length of the data to add
551879a4 793 * @off: offset of the data relative to @page
07173c3e
ML
794 * @same_page: if %true only merge if the new data is in the same physical
795 * page as the last segment of the bio.
1da177e4 796 *
0aa69fd3
CH
797 * Try to add the data at @page + @off to the last bvec of @bio. This is a
798 * a useful optimisation for file systems with a block size smaller than the
799 * page size.
800 *
551879a4
ML
801 * Warn if (@len, @off) crosses pages in case that @same_page is true.
802 *
0aa69fd3 803 * Return %true on success or %false on failure.
1da177e4 804 */
0aa69fd3 805bool __bio_try_merge_page(struct bio *bio, struct page *page,
07173c3e 806 unsigned int len, unsigned int off, bool same_page)
1da177e4 807{
c66a14d0 808 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 809 return false;
762380ad 810
c66a14d0 811 if (bio->bi_vcnt > 0) {
0aa69fd3 812 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
813
814 if (page_is_mergeable(bv, page, len, off, same_page)) {
815 bv->bv_len += len;
816 bio->bi_iter.bi_size += len;
817 return true;
818 }
c66a14d0 819 }
0aa69fd3
CH
820 return false;
821}
822EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 823
0aa69fd3 824/**
551879a4 825 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 826 * @bio: destination bio
551879a4
ML
827 * @page: start page to add
828 * @len: length of the data to add, may cross pages
829 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
830 *
831 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
832 * that @bio has space for another bvec.
833 */
834void __bio_add_page(struct bio *bio, struct page *page,
835 unsigned int len, unsigned int off)
836{
837 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 838
0aa69fd3
CH
839 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
840 WARN_ON_ONCE(bio_full(bio));
841
842 bv->bv_page = page;
843 bv->bv_offset = off;
844 bv->bv_len = len;
c66a14d0 845
c66a14d0 846 bio->bi_iter.bi_size += len;
0aa69fd3
CH
847 bio->bi_vcnt++;
848}
849EXPORT_SYMBOL_GPL(__bio_add_page);
850
851/**
551879a4 852 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 853 * @bio: destination bio
551879a4
ML
854 * @page: start page to add
855 * @len: vec entry length, may cross pages
856 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 857 *
551879a4 858 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
859 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
860 */
861int bio_add_page(struct bio *bio, struct page *page,
862 unsigned int len, unsigned int offset)
863{
07173c3e 864 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
0aa69fd3
CH
865 if (bio_full(bio))
866 return 0;
867 __bio_add_page(bio, page, len, offset);
868 }
c66a14d0 869 return len;
1da177e4 870}
a112a71d 871EXPORT_SYMBOL(bio_add_page);
1da177e4 872
7321ecbf
CH
873static void bio_get_pages(struct bio *bio)
874{
875 struct bvec_iter_all iter_all;
876 struct bio_vec *bvec;
7321ecbf 877
2b070cfe 878 bio_for_each_segment_all(bvec, bio, iter_all)
7321ecbf
CH
879 get_page(bvec->bv_page);
880}
881
882static void bio_release_pages(struct bio *bio)
883{
884 struct bvec_iter_all iter_all;
885 struct bio_vec *bvec;
7321ecbf 886
2b070cfe 887 bio_for_each_segment_all(bvec, bio, iter_all)
7321ecbf
CH
888 put_page(bvec->bv_page);
889}
890
6d0c48ae
JA
891static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
892{
893 const struct bio_vec *bv = iter->bvec;
894 unsigned int len;
895 size_t size;
896
897 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
898 return -EINVAL;
899
900 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
901 size = bio_add_page(bio, bv->bv_page, len,
902 bv->bv_offset + iter->iov_offset);
a10584c3
CH
903 if (unlikely(size != len))
904 return -EINVAL;
a10584c3
CH
905 iov_iter_advance(iter, size);
906 return 0;
6d0c48ae
JA
907}
908
576ed913
CH
909#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
910
2cefe4db 911/**
17d51b10 912 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
913 * @bio: bio to add pages to
914 * @iter: iov iterator describing the region to be mapped
915 *
17d51b10 916 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 917 * pages will have to be released using put_page() when done.
17d51b10
MW
918 * For multi-segment *iter, this function only adds pages from the
919 * the next non-empty segment of the iov iterator.
2cefe4db 920 */
17d51b10 921static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 922{
576ed913
CH
923 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
924 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
925 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
926 struct page **pages = (struct page **)bv;
576ed913
CH
927 ssize_t size, left;
928 unsigned len, i;
b403ea24 929 size_t offset;
576ed913
CH
930
931 /*
932 * Move page array up in the allocated memory for the bio vecs as far as
933 * possible so that we can start filling biovecs from the beginning
934 * without overwriting the temporary page array.
935 */
936 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
937 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
938
939 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
940 if (unlikely(size <= 0))
941 return size ? size : -EFAULT;
2cefe4db 942
576ed913
CH
943 for (left = size, i = 0; left > 0; left -= len, i++) {
944 struct page *page = pages[i];
2cefe4db 945
576ed913
CH
946 len = min_t(size_t, PAGE_SIZE - offset, left);
947 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
948 return -EINVAL;
949 offset = 0;
2cefe4db
KO
950 }
951
2cefe4db
KO
952 iov_iter_advance(iter, size);
953 return 0;
954}
17d51b10
MW
955
956/**
6d0c48ae 957 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 958 * @bio: bio to add pages to
6d0c48ae
JA
959 * @iter: iov iterator describing the region to be added
960 *
961 * This takes either an iterator pointing to user memory, or one pointing to
962 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
963 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
964 * pages. If we're adding kernel pages, and the caller told us it's safe to
965 * do so, we just have to add the pages to the bio directly. We don't grab an
966 * extra reference to those pages (the user should already have that), and we
967 * don't put the page on IO completion. The caller needs to check if the bio is
968 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
969 * released.
17d51b10 970 *
17d51b10 971 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
972 * fit into the bio, or are requested in *iter, whatever is smaller. If
973 * MM encounters an error pinning the requested pages, it stops. Error
974 * is returned only if 0 pages could be pinned.
17d51b10
MW
975 */
976int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
977{
6d0c48ae 978 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
979 int ret;
980
981 if (WARN_ON_ONCE(bio->bi_vcnt))
982 return -EINVAL;
17d51b10
MW
983
984 do {
6d0c48ae
JA
985 if (is_bvec)
986 ret = __bio_iov_bvec_add_pages(bio, iter);
987 else
988 ret = __bio_iov_iter_get_pages(bio, iter);
14eacf12 989 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
17d51b10 990
7321ecbf
CH
991 if (iov_iter_bvec_no_ref(iter))
992 bio_set_flag(bio, BIO_NO_PAGE_REF);
0257c0ed 993 else if (is_bvec)
7321ecbf
CH
994 bio_get_pages(bio);
995
14eacf12 996 return bio->bi_vcnt ? 0 : ret;
17d51b10 997}
2cefe4db 998
4246a0b6 999static void submit_bio_wait_endio(struct bio *bio)
9e882242 1000{
65e53aab 1001 complete(bio->bi_private);
9e882242
KO
1002}
1003
1004/**
1005 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1006 * @bio: The &struct bio which describes the I/O
1007 *
1008 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1009 * bio_endio() on failure.
3d289d68
JK
1010 *
1011 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1012 * result in bio reference to be consumed. The caller must drop the reference
1013 * on his own.
9e882242 1014 */
4e49ea4a 1015int submit_bio_wait(struct bio *bio)
9e882242 1016{
e319e1fb 1017 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 1018
65e53aab 1019 bio->bi_private = &done;
9e882242 1020 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1021 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1022 submit_bio(bio);
65e53aab 1023 wait_for_completion_io(&done);
9e882242 1024
65e53aab 1025 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1026}
1027EXPORT_SYMBOL(submit_bio_wait);
1028
054bdf64
KO
1029/**
1030 * bio_advance - increment/complete a bio by some number of bytes
1031 * @bio: bio to advance
1032 * @bytes: number of bytes to complete
1033 *
1034 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1035 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1036 * be updated on the last bvec as well.
1037 *
1038 * @bio will then represent the remaining, uncompleted portion of the io.
1039 */
1040void bio_advance(struct bio *bio, unsigned bytes)
1041{
1042 if (bio_integrity(bio))
1043 bio_integrity_advance(bio, bytes);
1044
4550dd6c 1045 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1046}
1047EXPORT_SYMBOL(bio_advance);
1048
45db54d5
KO
1049void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1050 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1051{
1cb9dda4 1052 struct bio_vec src_bv, dst_bv;
16ac3d63 1053 void *src_p, *dst_p;
1cb9dda4 1054 unsigned bytes;
16ac3d63 1055
45db54d5
KO
1056 while (src_iter->bi_size && dst_iter->bi_size) {
1057 src_bv = bio_iter_iovec(src, *src_iter);
1058 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1059
1060 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1061
1cb9dda4
KO
1062 src_p = kmap_atomic(src_bv.bv_page);
1063 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1064
1cb9dda4
KO
1065 memcpy(dst_p + dst_bv.bv_offset,
1066 src_p + src_bv.bv_offset,
16ac3d63
KO
1067 bytes);
1068
1069 kunmap_atomic(dst_p);
1070 kunmap_atomic(src_p);
1071
6e6e811d
KO
1072 flush_dcache_page(dst_bv.bv_page);
1073
45db54d5
KO
1074 bio_advance_iter(src, src_iter, bytes);
1075 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1076 }
1077}
38a72dac
KO
1078EXPORT_SYMBOL(bio_copy_data_iter);
1079
1080/**
45db54d5
KO
1081 * bio_copy_data - copy contents of data buffers from one bio to another
1082 * @src: source bio
1083 * @dst: destination bio
38a72dac
KO
1084 *
1085 * Stops when it reaches the end of either @src or @dst - that is, copies
1086 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1087 */
1088void bio_copy_data(struct bio *dst, struct bio *src)
1089{
45db54d5
KO
1090 struct bvec_iter src_iter = src->bi_iter;
1091 struct bvec_iter dst_iter = dst->bi_iter;
1092
1093 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1094}
16ac3d63
KO
1095EXPORT_SYMBOL(bio_copy_data);
1096
45db54d5
KO
1097/**
1098 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1099 * another
1100 * @src: source bio list
1101 * @dst: destination bio list
1102 *
1103 * Stops when it reaches the end of either the @src list or @dst list - that is,
1104 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1105 * bios).
1106 */
1107void bio_list_copy_data(struct bio *dst, struct bio *src)
1108{
1109 struct bvec_iter src_iter = src->bi_iter;
1110 struct bvec_iter dst_iter = dst->bi_iter;
1111
1112 while (1) {
1113 if (!src_iter.bi_size) {
1114 src = src->bi_next;
1115 if (!src)
1116 break;
1117
1118 src_iter = src->bi_iter;
1119 }
1120
1121 if (!dst_iter.bi_size) {
1122 dst = dst->bi_next;
1123 if (!dst)
1124 break;
1125
1126 dst_iter = dst->bi_iter;
1127 }
1128
1129 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1130 }
1131}
1132EXPORT_SYMBOL(bio_list_copy_data);
1133
1da177e4 1134struct bio_map_data {
152e283f 1135 int is_our_pages;
26e49cfc
KO
1136 struct iov_iter iter;
1137 struct iovec iov[];
1da177e4
LT
1138};
1139
0e5b935d 1140static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1141 gfp_t gfp_mask)
1da177e4 1142{
0e5b935d
AV
1143 struct bio_map_data *bmd;
1144 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1145 return NULL;
1da177e4 1146
0e5b935d
AV
1147 bmd = kmalloc(sizeof(struct bio_map_data) +
1148 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1149 if (!bmd)
1150 return NULL;
1151 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1152 bmd->iter = *data;
1153 bmd->iter.iov = bmd->iov;
1154 return bmd;
1da177e4
LT
1155}
1156
9124d3fe
DP
1157/**
1158 * bio_copy_from_iter - copy all pages from iov_iter to bio
1159 * @bio: The &struct bio which describes the I/O as destination
1160 * @iter: iov_iter as source
1161 *
1162 * Copy all pages from iov_iter to bio.
1163 * Returns 0 on success, or error on failure.
1164 */
98a09d61 1165static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1166{
c5dec1c3 1167 struct bio_vec *bvec;
6dc4f100 1168 struct bvec_iter_all iter_all;
c5dec1c3 1169
2b070cfe 1170 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1171 ssize_t ret;
c5dec1c3 1172
9124d3fe
DP
1173 ret = copy_page_from_iter(bvec->bv_page,
1174 bvec->bv_offset,
1175 bvec->bv_len,
98a09d61 1176 iter);
9124d3fe 1177
98a09d61 1178 if (!iov_iter_count(iter))
9124d3fe
DP
1179 break;
1180
1181 if (ret < bvec->bv_len)
1182 return -EFAULT;
c5dec1c3
FT
1183 }
1184
9124d3fe
DP
1185 return 0;
1186}
1187
1188/**
1189 * bio_copy_to_iter - copy all pages from bio to iov_iter
1190 * @bio: The &struct bio which describes the I/O as source
1191 * @iter: iov_iter as destination
1192 *
1193 * Copy all pages from bio to iov_iter.
1194 * Returns 0 on success, or error on failure.
1195 */
1196static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1197{
9124d3fe 1198 struct bio_vec *bvec;
6dc4f100 1199 struct bvec_iter_all iter_all;
9124d3fe 1200
2b070cfe 1201 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1202 ssize_t ret;
1203
1204 ret = copy_page_to_iter(bvec->bv_page,
1205 bvec->bv_offset,
1206 bvec->bv_len,
1207 &iter);
1208
1209 if (!iov_iter_count(&iter))
1210 break;
1211
1212 if (ret < bvec->bv_len)
1213 return -EFAULT;
1214 }
1215
1216 return 0;
c5dec1c3
FT
1217}
1218
491221f8 1219void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1220{
1221 struct bio_vec *bvec;
6dc4f100 1222 struct bvec_iter_all iter_all;
1dfa0f68 1223
2b070cfe 1224 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1225 __free_page(bvec->bv_page);
1226}
491221f8 1227EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1228
1da177e4
LT
1229/**
1230 * bio_uncopy_user - finish previously mapped bio
1231 * @bio: bio being terminated
1232 *
ddad8dd0 1233 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1234 * to user space in case of a read.
1235 */
1236int bio_uncopy_user(struct bio *bio)
1237{
1238 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1239 int ret = 0;
1da177e4 1240
35dc2483
RD
1241 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1242 /*
1243 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1244 * don't copy into a random user address space, just free
1245 * and return -EINTR so user space doesn't expect any data.
35dc2483 1246 */
2d99b55d
HR
1247 if (!current->mm)
1248 ret = -EINTR;
1249 else if (bio_data_dir(bio) == READ)
9124d3fe 1250 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1251 if (bmd->is_our_pages)
1252 bio_free_pages(bio);
35dc2483 1253 }
c8db4448 1254 kfree(bmd);
1da177e4
LT
1255 bio_put(bio);
1256 return ret;
1257}
1258
1259/**
c5dec1c3 1260 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1261 * @q: destination block queue
1262 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1263 * @iter: iovec iterator
1264 * @gfp_mask: memory allocation flags
1da177e4
LT
1265 *
1266 * Prepares and returns a bio for indirect user io, bouncing data
1267 * to/from kernel pages as necessary. Must be paired with
1268 * call bio_uncopy_user() on io completion.
1269 */
152e283f
FT
1270struct bio *bio_copy_user_iov(struct request_queue *q,
1271 struct rq_map_data *map_data,
e81cef5d 1272 struct iov_iter *iter,
26e49cfc 1273 gfp_t gfp_mask)
1da177e4 1274{
1da177e4 1275 struct bio_map_data *bmd;
1da177e4
LT
1276 struct page *page;
1277 struct bio *bio;
d16d44eb
AV
1278 int i = 0, ret;
1279 int nr_pages;
26e49cfc 1280 unsigned int len = iter->count;
bd5cecea 1281 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1282
0e5b935d 1283 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1284 if (!bmd)
1285 return ERR_PTR(-ENOMEM);
1286
26e49cfc
KO
1287 /*
1288 * We need to do a deep copy of the iov_iter including the iovecs.
1289 * The caller provided iov might point to an on-stack or otherwise
1290 * shortlived one.
1291 */
1292 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1293
d16d44eb
AV
1294 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1295 if (nr_pages > BIO_MAX_PAGES)
1296 nr_pages = BIO_MAX_PAGES;
26e49cfc 1297
1da177e4 1298 ret = -ENOMEM;
a9e9dc24 1299 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1300 if (!bio)
1301 goto out_bmd;
1302
1da177e4 1303 ret = 0;
56c451f4
FT
1304
1305 if (map_data) {
e623ddb4 1306 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1307 i = map_data->offset / PAGE_SIZE;
1308 }
1da177e4 1309 while (len) {
e623ddb4 1310 unsigned int bytes = PAGE_SIZE;
1da177e4 1311
56c451f4
FT
1312 bytes -= offset;
1313
1da177e4
LT
1314 if (bytes > len)
1315 bytes = len;
1316
152e283f 1317 if (map_data) {
e623ddb4 1318 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1319 ret = -ENOMEM;
1320 break;
1321 }
e623ddb4
FT
1322
1323 page = map_data->pages[i / nr_pages];
1324 page += (i % nr_pages);
1325
1326 i++;
1327 } else {
152e283f 1328 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1329 if (!page) {
1330 ret = -ENOMEM;
1331 break;
1332 }
1da177e4
LT
1333 }
1334
a3761c3c
JG
1335 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1336 if (!map_data)
1337 __free_page(page);
1da177e4 1338 break;
a3761c3c 1339 }
1da177e4
LT
1340
1341 len -= bytes;
56c451f4 1342 offset = 0;
1da177e4
LT
1343 }
1344
1345 if (ret)
1346 goto cleanup;
1347
2884d0be
AV
1348 if (map_data)
1349 map_data->offset += bio->bi_iter.bi_size;
1350
1da177e4
LT
1351 /*
1352 * success
1353 */
00e23707 1354 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1355 (map_data && map_data->from_user)) {
98a09d61 1356 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1357 if (ret)
1358 goto cleanup;
98a09d61 1359 } else {
f55adad6
KB
1360 if (bmd->is_our_pages)
1361 zero_fill_bio(bio);
98a09d61 1362 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1363 }
1364
26e49cfc 1365 bio->bi_private = bmd;
2884d0be
AV
1366 if (map_data && map_data->null_mapped)
1367 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1368 return bio;
1369cleanup:
152e283f 1370 if (!map_data)
1dfa0f68 1371 bio_free_pages(bio);
1da177e4
LT
1372 bio_put(bio);
1373out_bmd:
c8db4448 1374 kfree(bmd);
1da177e4
LT
1375 return ERR_PTR(ret);
1376}
1377
37f19e57
CH
1378/**
1379 * bio_map_user_iov - map user iovec into bio
1380 * @q: the struct request_queue for the bio
1381 * @iter: iovec iterator
1382 * @gfp_mask: memory allocation flags
1383 *
1384 * Map the user space address into a bio suitable for io to a block
1385 * device. Returns an error pointer in case of error.
1386 */
1387struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1388 struct iov_iter *iter,
37f19e57 1389 gfp_t gfp_mask)
1da177e4 1390{
26e49cfc 1391 int j;
1da177e4 1392 struct bio *bio;
076098e5 1393 int ret;
2b04e8f6 1394 struct bio_vec *bvec;
6dc4f100 1395 struct bvec_iter_all iter_all;
1da177e4 1396
b282cc76 1397 if (!iov_iter_count(iter))
1da177e4
LT
1398 return ERR_PTR(-EINVAL);
1399
b282cc76 1400 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1401 if (!bio)
1402 return ERR_PTR(-ENOMEM);
1403
0a0f1513 1404 while (iov_iter_count(iter)) {
629e42bc 1405 struct page **pages;
076098e5
AV
1406 ssize_t bytes;
1407 size_t offs, added = 0;
1408 int npages;
1da177e4 1409
0a0f1513 1410 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1411 if (unlikely(bytes <= 0)) {
1412 ret = bytes ? bytes : -EFAULT;
f1970baf 1413 goto out_unmap;
99172157 1414 }
f1970baf 1415
076098e5 1416 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1417
98f0bc99
AV
1418 if (unlikely(offs & queue_dma_alignment(q))) {
1419 ret = -EINVAL;
1420 j = 0;
1421 } else {
1422 for (j = 0; j < npages; j++) {
1423 struct page *page = pages[j];
1424 unsigned int n = PAGE_SIZE - offs;
f1970baf 1425
98f0bc99
AV
1426 if (n > bytes)
1427 n = bytes;
95d78c28 1428
19047087
ML
1429 if (!__bio_add_pc_page(q, bio, page, n, offs,
1430 true))
98f0bc99 1431 break;
1da177e4 1432
98f0bc99
AV
1433 added += n;
1434 bytes -= n;
1435 offs = 0;
1436 }
0a0f1513 1437 iov_iter_advance(iter, added);
f1970baf 1438 }
1da177e4 1439 /*
f1970baf 1440 * release the pages we didn't map into the bio, if any
1da177e4 1441 */
629e42bc 1442 while (j < npages)
09cbfeaf 1443 put_page(pages[j++]);
629e42bc 1444 kvfree(pages);
e2e115d1
AV
1445 /* couldn't stuff something into bio? */
1446 if (bytes)
1447 break;
1da177e4
LT
1448 }
1449
b7c44ed9 1450 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1451
1452 /*
5fad1b64 1453 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1454 * it would normally disappear when its bi_end_io is run.
1455 * however, we need it for the unmap, so grab an extra
1456 * reference to it
1457 */
1458 bio_get(bio);
1da177e4 1459 return bio;
f1970baf
JB
1460
1461 out_unmap:
2b070cfe 1462 bio_for_each_segment_all(bvec, bio, iter_all) {
2b04e8f6 1463 put_page(bvec->bv_page);
f1970baf 1464 }
1da177e4
LT
1465 bio_put(bio);
1466 return ERR_PTR(ret);
1467}
1468
1da177e4
LT
1469static void __bio_unmap_user(struct bio *bio)
1470{
1471 struct bio_vec *bvec;
6dc4f100 1472 struct bvec_iter_all iter_all;
1da177e4
LT
1473
1474 /*
1475 * make sure we dirty pages we wrote to
1476 */
2b070cfe 1477 bio_for_each_segment_all(bvec, bio, iter_all) {
1da177e4
LT
1478 if (bio_data_dir(bio) == READ)
1479 set_page_dirty_lock(bvec->bv_page);
1480
09cbfeaf 1481 put_page(bvec->bv_page);
1da177e4
LT
1482 }
1483
1484 bio_put(bio);
1485}
1486
1487/**
1488 * bio_unmap_user - unmap a bio
1489 * @bio: the bio being unmapped
1490 *
5fad1b64
BVA
1491 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1492 * process context.
1da177e4
LT
1493 *
1494 * bio_unmap_user() may sleep.
1495 */
1496void bio_unmap_user(struct bio *bio)
1497{
1498 __bio_unmap_user(bio);
1499 bio_put(bio);
1500}
1501
4246a0b6 1502static void bio_map_kern_endio(struct bio *bio)
b823825e 1503{
b823825e 1504 bio_put(bio);
b823825e
JA
1505}
1506
75c72b83
CH
1507/**
1508 * bio_map_kern - map kernel address into bio
1509 * @q: the struct request_queue for the bio
1510 * @data: pointer to buffer to map
1511 * @len: length in bytes
1512 * @gfp_mask: allocation flags for bio allocation
1513 *
1514 * Map the kernel address into a bio suitable for io to a block
1515 * device. Returns an error pointer in case of error.
1516 */
1517struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1518 gfp_t gfp_mask)
df46b9a4
MC
1519{
1520 unsigned long kaddr = (unsigned long)data;
1521 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1522 unsigned long start = kaddr >> PAGE_SHIFT;
1523 const int nr_pages = end - start;
1524 int offset, i;
1525 struct bio *bio;
1526
a9e9dc24 1527 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1528 if (!bio)
1529 return ERR_PTR(-ENOMEM);
1530
1531 offset = offset_in_page(kaddr);
1532 for (i = 0; i < nr_pages; i++) {
1533 unsigned int bytes = PAGE_SIZE - offset;
1534
1535 if (len <= 0)
1536 break;
1537
1538 if (bytes > len)
1539 bytes = len;
1540
defd94b7 1541 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1542 offset) < bytes) {
1543 /* we don't support partial mappings */
1544 bio_put(bio);
1545 return ERR_PTR(-EINVAL);
1546 }
df46b9a4
MC
1547
1548 data += bytes;
1549 len -= bytes;
1550 offset = 0;
1551 }
1552
b823825e 1553 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1554 return bio;
1555}
a112a71d 1556EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1557
4246a0b6 1558static void bio_copy_kern_endio(struct bio *bio)
68154e90 1559{
1dfa0f68
CH
1560 bio_free_pages(bio);
1561 bio_put(bio);
1562}
1563
4246a0b6 1564static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1565{
42d2683a 1566 char *p = bio->bi_private;
1dfa0f68 1567 struct bio_vec *bvec;
6dc4f100 1568 struct bvec_iter_all iter_all;
68154e90 1569
2b070cfe 1570 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1571 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1572 p += bvec->bv_len;
68154e90
FT
1573 }
1574
4246a0b6 1575 bio_copy_kern_endio(bio);
68154e90
FT
1576}
1577
1578/**
1579 * bio_copy_kern - copy kernel address into bio
1580 * @q: the struct request_queue for the bio
1581 * @data: pointer to buffer to copy
1582 * @len: length in bytes
1583 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1584 * @reading: data direction is READ
68154e90
FT
1585 *
1586 * copy the kernel address into a bio suitable for io to a block
1587 * device. Returns an error pointer in case of error.
1588 */
1589struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1590 gfp_t gfp_mask, int reading)
1591{
42d2683a
CH
1592 unsigned long kaddr = (unsigned long)data;
1593 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1594 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1595 struct bio *bio;
1596 void *p = data;
1dfa0f68 1597 int nr_pages = 0;
68154e90 1598
42d2683a
CH
1599 /*
1600 * Overflow, abort
1601 */
1602 if (end < start)
1603 return ERR_PTR(-EINVAL);
68154e90 1604
42d2683a
CH
1605 nr_pages = end - start;
1606 bio = bio_kmalloc(gfp_mask, nr_pages);
1607 if (!bio)
1608 return ERR_PTR(-ENOMEM);
68154e90 1609
42d2683a
CH
1610 while (len) {
1611 struct page *page;
1612 unsigned int bytes = PAGE_SIZE;
68154e90 1613
42d2683a
CH
1614 if (bytes > len)
1615 bytes = len;
1616
1617 page = alloc_page(q->bounce_gfp | gfp_mask);
1618 if (!page)
1619 goto cleanup;
1620
1621 if (!reading)
1622 memcpy(page_address(page), p, bytes);
1623
1624 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1625 break;
1626
1627 len -= bytes;
1628 p += bytes;
68154e90
FT
1629 }
1630
1dfa0f68
CH
1631 if (reading) {
1632 bio->bi_end_io = bio_copy_kern_endio_read;
1633 bio->bi_private = data;
1634 } else {
1635 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1636 }
76029ff3 1637
68154e90 1638 return bio;
42d2683a
CH
1639
1640cleanup:
1dfa0f68 1641 bio_free_pages(bio);
42d2683a
CH
1642 bio_put(bio);
1643 return ERR_PTR(-ENOMEM);
68154e90
FT
1644}
1645
1da177e4
LT
1646/*
1647 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1648 * for performing direct-IO in BIOs.
1649 *
1650 * The problem is that we cannot run set_page_dirty() from interrupt context
1651 * because the required locks are not interrupt-safe. So what we can do is to
1652 * mark the pages dirty _before_ performing IO. And in interrupt context,
1653 * check that the pages are still dirty. If so, fine. If not, redirty them
1654 * in process context.
1655 *
1656 * We special-case compound pages here: normally this means reads into hugetlb
1657 * pages. The logic in here doesn't really work right for compound pages
1658 * because the VM does not uniformly chase down the head page in all cases.
1659 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1660 * handle them at all. So we skip compound pages here at an early stage.
1661 *
1662 * Note that this code is very hard to test under normal circumstances because
1663 * direct-io pins the pages with get_user_pages(). This makes
1664 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1665 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1666 * pagecache.
1667 *
1668 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1669 * deferred bio dirtying paths.
1670 */
1671
1672/*
1673 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1674 */
1675void bio_set_pages_dirty(struct bio *bio)
1676{
cb34e057 1677 struct bio_vec *bvec;
6dc4f100 1678 struct bvec_iter_all iter_all;
1da177e4 1679
2b070cfe 1680 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1681 if (!PageCompound(bvec->bv_page))
1682 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1683 }
1684}
1685
1da177e4
LT
1686/*
1687 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1688 * If they are, then fine. If, however, some pages are clean then they must
1689 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1690 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1691 *
1692 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1693 * here on. It will run one put_page() against each page and will run one
1694 * bio_put() against the BIO.
1da177e4
LT
1695 */
1696
65f27f38 1697static void bio_dirty_fn(struct work_struct *work);
1da177e4 1698
65f27f38 1699static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1700static DEFINE_SPINLOCK(bio_dirty_lock);
1701static struct bio *bio_dirty_list;
1702
1703/*
1704 * This runs in process context
1705 */
65f27f38 1706static void bio_dirty_fn(struct work_struct *work)
1da177e4 1707{
24d5493f 1708 struct bio *bio, *next;
1da177e4 1709
24d5493f
CH
1710 spin_lock_irq(&bio_dirty_lock);
1711 next = bio_dirty_list;
1da177e4 1712 bio_dirty_list = NULL;
24d5493f 1713 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1714
24d5493f
CH
1715 while ((bio = next) != NULL) {
1716 next = bio->bi_private;
1da177e4
LT
1717
1718 bio_set_pages_dirty(bio);
399254aa
JA
1719 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1720 bio_release_pages(bio);
1da177e4 1721 bio_put(bio);
1da177e4
LT
1722 }
1723}
1724
1725void bio_check_pages_dirty(struct bio *bio)
1726{
cb34e057 1727 struct bio_vec *bvec;
24d5493f 1728 unsigned long flags;
6dc4f100 1729 struct bvec_iter_all iter_all;
1da177e4 1730
2b070cfe 1731 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1732 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1733 goto defer;
1da177e4
LT
1734 }
1735
399254aa
JA
1736 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1737 bio_release_pages(bio);
24d5493f
CH
1738 bio_put(bio);
1739 return;
1740defer:
1741 spin_lock_irqsave(&bio_dirty_lock, flags);
1742 bio->bi_private = bio_dirty_list;
1743 bio_dirty_list = bio;
1744 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1745 schedule_work(&bio_dirty_work);
1da177e4
LT
1746}
1747
5b18b5a7
MP
1748void update_io_ticks(struct hd_struct *part, unsigned long now)
1749{
1750 unsigned long stamp;
1751again:
1752 stamp = READ_ONCE(part->stamp);
1753 if (unlikely(stamp != now)) {
1754 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1755 __part_stat_add(part, io_ticks, 1);
1756 }
1757 }
1758 if (part->partno) {
1759 part = &part_to_disk(part)->part0;
1760 goto again;
1761 }
1762}
1da177e4 1763
ddcf35d3 1764void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1765 unsigned long sectors, struct hd_struct *part)
394ffa50 1766{
ddcf35d3 1767 const int sgrp = op_stat_group(op);
394ffa50 1768
112f158f
MS
1769 part_stat_lock();
1770
5b18b5a7 1771 update_io_ticks(part, jiffies);
112f158f
MS
1772 part_stat_inc(part, ios[sgrp]);
1773 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1774 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1775
1776 part_stat_unlock();
1777}
1778EXPORT_SYMBOL(generic_start_io_acct);
1779
ddcf35d3 1780void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1781 struct hd_struct *part, unsigned long start_time)
394ffa50 1782{
5b18b5a7
MP
1783 unsigned long now = jiffies;
1784 unsigned long duration = now - start_time;
ddcf35d3 1785 const int sgrp = op_stat_group(req_op);
394ffa50 1786
112f158f
MS
1787 part_stat_lock();
1788
5b18b5a7 1789 update_io_ticks(part, now);
112f158f 1790 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1791 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1792 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1793
1794 part_stat_unlock();
1795}
1796EXPORT_SYMBOL(generic_end_io_acct);
1797
2d4dc890
IL
1798#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1799void bio_flush_dcache_pages(struct bio *bi)
1800{
7988613b
KO
1801 struct bio_vec bvec;
1802 struct bvec_iter iter;
2d4dc890 1803
7988613b
KO
1804 bio_for_each_segment(bvec, bi, iter)
1805 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1806}
1807EXPORT_SYMBOL(bio_flush_dcache_pages);
1808#endif
1809
c4cf5261
JA
1810static inline bool bio_remaining_done(struct bio *bio)
1811{
1812 /*
1813 * If we're not chaining, then ->__bi_remaining is always 1 and
1814 * we always end io on the first invocation.
1815 */
1816 if (!bio_flagged(bio, BIO_CHAIN))
1817 return true;
1818
1819 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1820
326e1dbb 1821 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1822 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1823 return true;
326e1dbb 1824 }
c4cf5261
JA
1825
1826 return false;
1827}
1828
1da177e4
LT
1829/**
1830 * bio_endio - end I/O on a bio
1831 * @bio: bio
1da177e4
LT
1832 *
1833 * Description:
4246a0b6
CH
1834 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1835 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1836 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1837 *
1838 * bio_endio() can be called several times on a bio that has been chained
1839 * using bio_chain(). The ->bi_end_io() function will only be called the
1840 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1841 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1842 **/
4246a0b6 1843void bio_endio(struct bio *bio)
1da177e4 1844{
ba8c6967 1845again:
2b885517 1846 if (!bio_remaining_done(bio))
ba8c6967 1847 return;
7c20f116
CH
1848 if (!bio_integrity_endio(bio))
1849 return;
1da177e4 1850
67b42d0b
JB
1851 if (bio->bi_disk)
1852 rq_qos_done_bio(bio->bi_disk->queue, bio);
1853
ba8c6967
CH
1854 /*
1855 * Need to have a real endio function for chained bios, otherwise
1856 * various corner cases will break (like stacking block devices that
1857 * save/restore bi_end_io) - however, we want to avoid unbounded
1858 * recursion and blowing the stack. Tail call optimization would
1859 * handle this, but compiling with frame pointers also disables
1860 * gcc's sibling call optimization.
1861 */
1862 if (bio->bi_end_io == bio_chain_endio) {
1863 bio = __bio_chain_endio(bio);
1864 goto again;
196d38bc 1865 }
ba8c6967 1866
74d46992
CH
1867 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1868 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1869 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1870 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1871 }
1872
9e234eea 1873 blk_throtl_bio_endio(bio);
b222dd2f
SL
1874 /* release cgroup info */
1875 bio_uninit(bio);
ba8c6967
CH
1876 if (bio->bi_end_io)
1877 bio->bi_end_io(bio);
1da177e4 1878}
a112a71d 1879EXPORT_SYMBOL(bio_endio);
1da177e4 1880
20d0189b
KO
1881/**
1882 * bio_split - split a bio
1883 * @bio: bio to split
1884 * @sectors: number of sectors to split from the front of @bio
1885 * @gfp: gfp mask
1886 * @bs: bio set to allocate from
1887 *
1888 * Allocates and returns a new bio which represents @sectors from the start of
1889 * @bio, and updates @bio to represent the remaining sectors.
1890 *
f3f5da62
MP
1891 * Unless this is a discard request the newly allocated bio will point
1892 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1893 * @bio is not freed before the split.
20d0189b
KO
1894 */
1895struct bio *bio_split(struct bio *bio, int sectors,
1896 gfp_t gfp, struct bio_set *bs)
1897{
f341a4d3 1898 struct bio *split;
20d0189b
KO
1899
1900 BUG_ON(sectors <= 0);
1901 BUG_ON(sectors >= bio_sectors(bio));
1902
f9d03f96 1903 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1904 if (!split)
1905 return NULL;
1906
1907 split->bi_iter.bi_size = sectors << 9;
1908
1909 if (bio_integrity(split))
fbd08e76 1910 bio_integrity_trim(split);
20d0189b
KO
1911
1912 bio_advance(bio, split->bi_iter.bi_size);
1913
fbbaf700 1914 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1915 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1916
20d0189b
KO
1917 return split;
1918}
1919EXPORT_SYMBOL(bio_split);
1920
6678d83f
KO
1921/**
1922 * bio_trim - trim a bio
1923 * @bio: bio to trim
1924 * @offset: number of sectors to trim from the front of @bio
1925 * @size: size we want to trim @bio to, in sectors
1926 */
1927void bio_trim(struct bio *bio, int offset, int size)
1928{
1929 /* 'bio' is a cloned bio which we need to trim to match
1930 * the given offset and size.
6678d83f 1931 */
6678d83f
KO
1932
1933 size <<= 9;
4f024f37 1934 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1935 return;
1936
b7c44ed9 1937 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1938
1939 bio_advance(bio, offset << 9);
1940
4f024f37 1941 bio->bi_iter.bi_size = size;
376a78ab
DM
1942
1943 if (bio_integrity(bio))
fbd08e76 1944 bio_integrity_trim(bio);
376a78ab 1945
6678d83f
KO
1946}
1947EXPORT_SYMBOL_GPL(bio_trim);
1948
1da177e4
LT
1949/*
1950 * create memory pools for biovec's in a bio_set.
1951 * use the global biovec slabs created for general use.
1952 */
8aa6ba2f 1953int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1954{
ed996a52 1955 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1956
8aa6ba2f 1957 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1958}
1959
917a38c7
KO
1960/*
1961 * bioset_exit - exit a bioset initialized with bioset_init()
1962 *
1963 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1964 * kzalloc()).
1965 */
1966void bioset_exit(struct bio_set *bs)
1da177e4 1967{
df2cb6da
KO
1968 if (bs->rescue_workqueue)
1969 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1970 bs->rescue_workqueue = NULL;
df2cb6da 1971
8aa6ba2f
KO
1972 mempool_exit(&bs->bio_pool);
1973 mempool_exit(&bs->bvec_pool);
9f060e22 1974
7878cba9 1975 bioset_integrity_free(bs);
917a38c7
KO
1976 if (bs->bio_slab)
1977 bio_put_slab(bs);
1978 bs->bio_slab = NULL;
1979}
1980EXPORT_SYMBOL(bioset_exit);
1da177e4 1981
917a38c7
KO
1982/**
1983 * bioset_init - Initialize a bio_set
dad08527 1984 * @bs: pool to initialize
917a38c7
KO
1985 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1986 * @front_pad: Number of bytes to allocate in front of the returned bio
1987 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1988 * and %BIOSET_NEED_RESCUER
1989 *
dad08527
KO
1990 * Description:
1991 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1992 * to ask for a number of bytes to be allocated in front of the bio.
1993 * Front pad allocation is useful for embedding the bio inside
1994 * another structure, to avoid allocating extra data to go with the bio.
1995 * Note that the bio must be embedded at the END of that structure always,
1996 * or things will break badly.
1997 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1998 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1999 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
2000 * dispatch queued requests when the mempool runs out of space.
2001 *
917a38c7
KO
2002 */
2003int bioset_init(struct bio_set *bs,
2004 unsigned int pool_size,
2005 unsigned int front_pad,
2006 int flags)
2007{
2008 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2009
2010 bs->front_pad = front_pad;
2011
2012 spin_lock_init(&bs->rescue_lock);
2013 bio_list_init(&bs->rescue_list);
2014 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2015
2016 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2017 if (!bs->bio_slab)
2018 return -ENOMEM;
2019
2020 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2021 goto bad;
2022
2023 if ((flags & BIOSET_NEED_BVECS) &&
2024 biovec_init_pool(&bs->bvec_pool, pool_size))
2025 goto bad;
2026
2027 if (!(flags & BIOSET_NEED_RESCUER))
2028 return 0;
2029
2030 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2031 if (!bs->rescue_workqueue)
2032 goto bad;
2033
2034 return 0;
2035bad:
2036 bioset_exit(bs);
2037 return -ENOMEM;
2038}
2039EXPORT_SYMBOL(bioset_init);
2040
28e89fd9
JA
2041/*
2042 * Initialize and setup a new bio_set, based on the settings from
2043 * another bio_set.
2044 */
2045int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2046{
2047 int flags;
2048
2049 flags = 0;
2050 if (src->bvec_pool.min_nr)
2051 flags |= BIOSET_NEED_BVECS;
2052 if (src->rescue_workqueue)
2053 flags |= BIOSET_NEED_RESCUER;
2054
2055 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2056}
2057EXPORT_SYMBOL(bioset_init_from_src);
2058
852c788f 2059#ifdef CONFIG_BLK_CGROUP
1d933cf0 2060
74b7c02a 2061/**
2268c0fe 2062 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2063 * @bio: target bio
74b7c02a 2064 *
2268c0fe 2065 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2066 */
2268c0fe 2067void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2068{
2268c0fe
DZ
2069 if (bio->bi_blkg) {
2070 blkg_put(bio->bi_blkg);
2071 bio->bi_blkg = NULL;
2072 }
74b7c02a 2073}
892ad71f 2074EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2075
a7b39b4e 2076/**
2268c0fe 2077 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2078 * @bio: target bio
b5f2954d 2079 * @blkg: the blkg to associate
b5f2954d 2080 *
beea9da0
DZ
2081 * This tries to associate @bio with the specified @blkg. Association failure
2082 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2083 * be anything between @blkg and the root_blkg. This situation only happens
2084 * when a cgroup is dying and then the remaining bios will spill to the closest
2085 * alive blkg.
a7b39b4e 2086 *
beea9da0
DZ
2087 * A reference will be taken on the @blkg and will be released when @bio is
2088 * freed.
a7b39b4e 2089 */
2268c0fe 2090static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2091{
2268c0fe
DZ
2092 bio_disassociate_blkg(bio);
2093
7754f669 2094 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2095}
2096
d459d853 2097/**
fd42df30 2098 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2099 * @bio: target bio
fd42df30 2100 * @css: target css
d459d853 2101 *
fd42df30 2102 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2103 * request_queue of the @bio. This falls back to the queue's root_blkg if
2104 * the association fails with the css.
d459d853 2105 */
fd42df30
DZ
2106void bio_associate_blkg_from_css(struct bio *bio,
2107 struct cgroup_subsys_state *css)
d459d853 2108{
fc5a828b
DZ
2109 struct request_queue *q = bio->bi_disk->queue;
2110 struct blkcg_gq *blkg;
2111
2112 rcu_read_lock();
2113
2114 if (!css || !css->parent)
2115 blkg = q->root_blkg;
2116 else
2117 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2118
2119 __bio_associate_blkg(bio, blkg);
2120
2121 rcu_read_unlock();
d459d853 2122}
fd42df30 2123EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2124
6a7f6d86 2125#ifdef CONFIG_MEMCG
852c788f 2126/**
6a7f6d86 2127 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2128 * @bio: target bio
6a7f6d86
DZ
2129 * @page: the page to lookup the blkcg from
2130 *
2131 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2132 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2133 * root_blkg.
852c788f 2134 */
6a7f6d86 2135void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2136{
6a7f6d86
DZ
2137 struct cgroup_subsys_state *css;
2138
6a7f6d86
DZ
2139 if (!page->mem_cgroup)
2140 return;
2141
fc5a828b
DZ
2142 rcu_read_lock();
2143
2144 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2145 bio_associate_blkg_from_css(bio, css);
2146
2147 rcu_read_unlock();
6a7f6d86
DZ
2148}
2149#endif /* CONFIG_MEMCG */
2150
2268c0fe
DZ
2151/**
2152 * bio_associate_blkg - associate a bio with a blkg
2153 * @bio: target bio
2154 *
2155 * Associate @bio with the blkg found from the bio's css and request_queue.
2156 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2157 * already associated, the css is reused and association redone as the
2158 * request_queue may have changed.
2159 */
2160void bio_associate_blkg(struct bio *bio)
2161{
fc5a828b 2162 struct cgroup_subsys_state *css;
2268c0fe
DZ
2163
2164 rcu_read_lock();
2165
db6638d7 2166 if (bio->bi_blkg)
fc5a828b 2167 css = &bio_blkcg(bio)->css;
db6638d7 2168 else
fc5a828b 2169 css = blkcg_css();
2268c0fe 2170
fc5a828b 2171 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2172
2173 rcu_read_unlock();
852c788f 2174}
5cdf2e3f 2175EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2176
20bd723e 2177/**
db6638d7 2178 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2179 * @dst: destination bio
2180 * @src: source bio
2181 */
db6638d7 2182void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2183{
6ab21879
DZ
2184 rcu_read_lock();
2185
fc5a828b 2186 if (src->bi_blkg)
2268c0fe 2187 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2188
2189 rcu_read_unlock();
20bd723e 2190}
db6638d7 2191EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2192#endif /* CONFIG_BLK_CGROUP */
2193
1da177e4
LT
2194static void __init biovec_init_slabs(void)
2195{
2196 int i;
2197
ed996a52 2198 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2199 int size;
2200 struct biovec_slab *bvs = bvec_slabs + i;
2201
a7fcd37c
JA
2202 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2203 bvs->slab = NULL;
2204 continue;
2205 }
a7fcd37c 2206
1da177e4
LT
2207 size = bvs->nr_vecs * sizeof(struct bio_vec);
2208 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2209 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2210 }
2211}
2212
2213static int __init init_bio(void)
2214{
bb799ca0
JA
2215 bio_slab_max = 2;
2216 bio_slab_nr = 0;
6396bb22
KC
2217 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2218 GFP_KERNEL);
2b24e6f6
JT
2219
2220 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2221
bb799ca0
JA
2222 if (!bio_slabs)
2223 panic("bio: can't allocate bios\n");
1da177e4 2224
7878cba9 2225 bio_integrity_init();
1da177e4
LT
2226 biovec_init_slabs();
2227
f4f8154a 2228 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2229 panic("bio: can't allocate bios\n");
2230
f4f8154a 2231 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2232 panic("bio: can't create integrity pool\n");
2233
1da177e4
LT
2234 return 0;
2235}
1da177e4 2236subsys_initcall(init_bio);