]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/bio.c
blk-mq: add timer in blk_mq_start_request
[mirror_ubuntu-zesty-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
f1970baf 31#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 32
55782138 33#include <trace/events/block.h>
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
1da177e4 46#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 47static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
9f060e22 166 mempool_free(bv, pool);
bb799ca0
JA
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
9f060e22
KO
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
1da177e4
LT
176{
177 struct bio_vec *bvl;
1da177e4 178
7ff9345f
JA
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
9f060e22 211 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
0a0d96b0 216 /*
7ff9345f
JA
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
0a0d96b0 220 */
7ff9345f 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
0a0d96b0 226 */
7ff9345f
JA
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
1da177e4
LT
234 return bvl;
235}
236
4254bba1 237static void __bio_free(struct bio *bio)
1da177e4 238{
4254bba1 239 bio_disassociate_task(bio);
1da177e4 240
7ba1ba12 241 if (bio_integrity(bio))
1e2a410f 242 bio_integrity_free(bio);
4254bba1 243}
7ba1ba12 244
4254bba1
KO
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
a38352e0 253 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
bb799ca0
JA
260 p -= bs->front_pad;
261
4254bba1
KO
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
3676347a
PO
267}
268
858119e1 269void bio_init(struct bio *bio)
1da177e4 270{
2b94de55 271 memset(bio, 0, sizeof(*bio));
1da177e4 272 bio->bi_flags = 1 << BIO_UPTODATE;
196d38bc 273 atomic_set(&bio->bi_remaining, 1);
1da177e4 274 atomic_set(&bio->bi_cnt, 1);
1da177e4 275}
a112a71d 276EXPORT_SYMBOL(bio_init);
1da177e4 277
f44b48c7
KO
278/**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288void bio_reset(struct bio *bio)
289{
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
4254bba1 292 __bio_free(bio);
f44b48c7
KO
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags|(1 << BIO_UPTODATE);
196d38bc 296 atomic_set(&bio->bi_remaining, 1);
f44b48c7
KO
297}
298EXPORT_SYMBOL(bio_reset);
299
196d38bc
KO
300static void bio_chain_endio(struct bio *bio, int error)
301{
302 bio_endio(bio->bi_private, error);
303 bio_put(bio);
304}
305
306/**
307 * bio_chain - chain bio completions
1051a902
RD
308 * @bio: the target bio
309 * @parent: the @bio's parent bio
196d38bc
KO
310 *
311 * The caller won't have a bi_end_io called when @bio completes - instead,
312 * @parent's bi_end_io won't be called until both @parent and @bio have
313 * completed; the chained bio will also be freed when it completes.
314 *
315 * The caller must not set bi_private or bi_end_io in @bio.
316 */
317void bio_chain(struct bio *bio, struct bio *parent)
318{
319 BUG_ON(bio->bi_private || bio->bi_end_io);
320
321 bio->bi_private = parent;
322 bio->bi_end_io = bio_chain_endio;
323 atomic_inc(&parent->bi_remaining);
324}
325EXPORT_SYMBOL(bio_chain);
326
df2cb6da
KO
327static void bio_alloc_rescue(struct work_struct *work)
328{
329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 struct bio *bio;
331
332 while (1) {
333 spin_lock(&bs->rescue_lock);
334 bio = bio_list_pop(&bs->rescue_list);
335 spin_unlock(&bs->rescue_lock);
336
337 if (!bio)
338 break;
339
340 generic_make_request(bio);
341 }
342}
343
344static void punt_bios_to_rescuer(struct bio_set *bs)
345{
346 struct bio_list punt, nopunt;
347 struct bio *bio;
348
349 /*
350 * In order to guarantee forward progress we must punt only bios that
351 * were allocated from this bio_set; otherwise, if there was a bio on
352 * there for a stacking driver higher up in the stack, processing it
353 * could require allocating bios from this bio_set, and doing that from
354 * our own rescuer would be bad.
355 *
356 * Since bio lists are singly linked, pop them all instead of trying to
357 * remove from the middle of the list:
358 */
359
360 bio_list_init(&punt);
361 bio_list_init(&nopunt);
362
363 while ((bio = bio_list_pop(current->bio_list)))
364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365
366 *current->bio_list = nopunt;
367
368 spin_lock(&bs->rescue_lock);
369 bio_list_merge(&bs->rescue_list, &punt);
370 spin_unlock(&bs->rescue_lock);
371
372 queue_work(bs->rescue_workqueue, &bs->rescue_work);
373}
374
1da177e4
LT
375/**
376 * bio_alloc_bioset - allocate a bio for I/O
377 * @gfp_mask: the GFP_ mask given to the slab allocator
378 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 379 * @bs: the bio_set to allocate from.
1da177e4
LT
380 *
381 * Description:
3f86a82a
KO
382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383 * backed by the @bs's mempool.
384 *
385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386 * able to allocate a bio. This is due to the mempool guarantees. To make this
387 * work, callers must never allocate more than 1 bio at a time from this pool.
388 * Callers that need to allocate more than 1 bio must always submit the
389 * previously allocated bio for IO before attempting to allocate a new one.
390 * Failure to do so can cause deadlocks under memory pressure.
391 *
df2cb6da
KO
392 * Note that when running under generic_make_request() (i.e. any block
393 * driver), bios are not submitted until after you return - see the code in
394 * generic_make_request() that converts recursion into iteration, to prevent
395 * stack overflows.
396 *
397 * This would normally mean allocating multiple bios under
398 * generic_make_request() would be susceptible to deadlocks, but we have
399 * deadlock avoidance code that resubmits any blocked bios from a rescuer
400 * thread.
401 *
402 * However, we do not guarantee forward progress for allocations from other
403 * mempools. Doing multiple allocations from the same mempool under
404 * generic_make_request() should be avoided - instead, use bio_set's front_pad
405 * for per bio allocations.
406 *
3f86a82a
KO
407 * RETURNS:
408 * Pointer to new bio on success, NULL on failure.
409 */
dd0fc66f 410struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 411{
df2cb6da 412 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
413 unsigned front_pad;
414 unsigned inline_vecs;
451a9ebf 415 unsigned long idx = BIO_POOL_NONE;
34053979 416 struct bio_vec *bvl = NULL;
451a9ebf
TH
417 struct bio *bio;
418 void *p;
419
3f86a82a
KO
420 if (!bs) {
421 if (nr_iovecs > UIO_MAXIOV)
422 return NULL;
423
424 p = kmalloc(sizeof(struct bio) +
425 nr_iovecs * sizeof(struct bio_vec),
426 gfp_mask);
427 front_pad = 0;
428 inline_vecs = nr_iovecs;
429 } else {
df2cb6da
KO
430 /*
431 * generic_make_request() converts recursion to iteration; this
432 * means if we're running beneath it, any bios we allocate and
433 * submit will not be submitted (and thus freed) until after we
434 * return.
435 *
436 * This exposes us to a potential deadlock if we allocate
437 * multiple bios from the same bio_set() while running
438 * underneath generic_make_request(). If we were to allocate
439 * multiple bios (say a stacking block driver that was splitting
440 * bios), we would deadlock if we exhausted the mempool's
441 * reserve.
442 *
443 * We solve this, and guarantee forward progress, with a rescuer
444 * workqueue per bio_set. If we go to allocate and there are
445 * bios on current->bio_list, we first try the allocation
446 * without __GFP_WAIT; if that fails, we punt those bios we
447 * would be blocking to the rescuer workqueue before we retry
448 * with the original gfp_flags.
449 */
450
451 if (current->bio_list && !bio_list_empty(current->bio_list))
452 gfp_mask &= ~__GFP_WAIT;
453
3f86a82a 454 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
455 if (!p && gfp_mask != saved_gfp) {
456 punt_bios_to_rescuer(bs);
457 gfp_mask = saved_gfp;
458 p = mempool_alloc(bs->bio_pool, gfp_mask);
459 }
460
3f86a82a
KO
461 front_pad = bs->front_pad;
462 inline_vecs = BIO_INLINE_VECS;
463 }
464
451a9ebf
TH
465 if (unlikely(!p))
466 return NULL;
1da177e4 467
3f86a82a 468 bio = p + front_pad;
34053979
IM
469 bio_init(bio);
470
3f86a82a 471 if (nr_iovecs > inline_vecs) {
9f060e22 472 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
473 if (!bvl && gfp_mask != saved_gfp) {
474 punt_bios_to_rescuer(bs);
475 gfp_mask = saved_gfp;
9f060e22 476 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
477 }
478
34053979
IM
479 if (unlikely(!bvl))
480 goto err_free;
a38352e0
KO
481
482 bio->bi_flags |= 1 << BIO_OWNS_VEC;
3f86a82a
KO
483 } else if (nr_iovecs) {
484 bvl = bio->bi_inline_vecs;
1da177e4 485 }
3f86a82a
KO
486
487 bio->bi_pool = bs;
34053979
IM
488 bio->bi_flags |= idx << BIO_POOL_OFFSET;
489 bio->bi_max_vecs = nr_iovecs;
34053979 490 bio->bi_io_vec = bvl;
1da177e4 491 return bio;
34053979
IM
492
493err_free:
451a9ebf 494 mempool_free(p, bs->bio_pool);
34053979 495 return NULL;
1da177e4 496}
a112a71d 497EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 498
1da177e4
LT
499void zero_fill_bio(struct bio *bio)
500{
501 unsigned long flags;
7988613b
KO
502 struct bio_vec bv;
503 struct bvec_iter iter;
1da177e4 504
7988613b
KO
505 bio_for_each_segment(bv, bio, iter) {
506 char *data = bvec_kmap_irq(&bv, &flags);
507 memset(data, 0, bv.bv_len);
508 flush_dcache_page(bv.bv_page);
1da177e4
LT
509 bvec_kunmap_irq(data, &flags);
510 }
511}
512EXPORT_SYMBOL(zero_fill_bio);
513
514/**
515 * bio_put - release a reference to a bio
516 * @bio: bio to release reference to
517 *
518 * Description:
519 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 520 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
521 **/
522void bio_put(struct bio *bio)
523{
524 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
525
526 /*
527 * last put frees it
528 */
4254bba1
KO
529 if (atomic_dec_and_test(&bio->bi_cnt))
530 bio_free(bio);
1da177e4 531}
a112a71d 532EXPORT_SYMBOL(bio_put);
1da177e4 533
165125e1 534inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
535{
536 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
537 blk_recount_segments(q, bio);
538
539 return bio->bi_phys_segments;
540}
a112a71d 541EXPORT_SYMBOL(bio_phys_segments);
1da177e4 542
59d276fe
KO
543/**
544 * __bio_clone_fast - clone a bio that shares the original bio's biovec
545 * @bio: destination bio
546 * @bio_src: bio to clone
547 *
548 * Clone a &bio. Caller will own the returned bio, but not
549 * the actual data it points to. Reference count of returned
550 * bio will be one.
551 *
552 * Caller must ensure that @bio_src is not freed before @bio.
553 */
554void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
555{
556 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
557
558 /*
559 * most users will be overriding ->bi_bdev with a new target,
560 * so we don't set nor calculate new physical/hw segment counts here
561 */
562 bio->bi_bdev = bio_src->bi_bdev;
563 bio->bi_flags |= 1 << BIO_CLONED;
564 bio->bi_rw = bio_src->bi_rw;
565 bio->bi_iter = bio_src->bi_iter;
566 bio->bi_io_vec = bio_src->bi_io_vec;
567}
568EXPORT_SYMBOL(__bio_clone_fast);
569
570/**
571 * bio_clone_fast - clone a bio that shares the original bio's biovec
572 * @bio: bio to clone
573 * @gfp_mask: allocation priority
574 * @bs: bio_set to allocate from
575 *
576 * Like __bio_clone_fast, only also allocates the returned bio
577 */
578struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
579{
580 struct bio *b;
581
582 b = bio_alloc_bioset(gfp_mask, 0, bs);
583 if (!b)
584 return NULL;
585
586 __bio_clone_fast(b, bio);
587
588 if (bio_integrity(bio)) {
589 int ret;
590
591 ret = bio_integrity_clone(b, bio, gfp_mask);
592
593 if (ret < 0) {
594 bio_put(b);
595 return NULL;
596 }
597 }
598
599 return b;
600}
601EXPORT_SYMBOL(bio_clone_fast);
602
1da177e4 603/**
bdb53207
KO
604 * bio_clone_bioset - clone a bio
605 * @bio_src: bio to clone
1da177e4 606 * @gfp_mask: allocation priority
bf800ef1 607 * @bs: bio_set to allocate from
1da177e4 608 *
bdb53207
KO
609 * Clone bio. Caller will own the returned bio, but not the actual data it
610 * points to. Reference count of returned bio will be one.
1da177e4 611 */
bdb53207 612struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 613 struct bio_set *bs)
1da177e4 614{
bdb53207
KO
615 struct bvec_iter iter;
616 struct bio_vec bv;
617 struct bio *bio;
1da177e4 618
bdb53207
KO
619 /*
620 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
621 * bio_src->bi_io_vec to bio->bi_io_vec.
622 *
623 * We can't do that anymore, because:
624 *
625 * - The point of cloning the biovec is to produce a bio with a biovec
626 * the caller can modify: bi_idx and bi_bvec_done should be 0.
627 *
628 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
629 * we tried to clone the whole thing bio_alloc_bioset() would fail.
630 * But the clone should succeed as long as the number of biovecs we
631 * actually need to allocate is fewer than BIO_MAX_PAGES.
632 *
633 * - Lastly, bi_vcnt should not be looked at or relied upon by code
634 * that does not own the bio - reason being drivers don't use it for
635 * iterating over the biovec anymore, so expecting it to be kept up
636 * to date (i.e. for clones that share the parent biovec) is just
637 * asking for trouble and would force extra work on
638 * __bio_clone_fast() anyways.
639 */
640
8423ae3d 641 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 642 if (!bio)
7ba1ba12
MP
643 return NULL;
644
bdb53207
KO
645 bio->bi_bdev = bio_src->bi_bdev;
646 bio->bi_rw = bio_src->bi_rw;
647 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
648 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 649
8423ae3d
KO
650 if (bio->bi_rw & REQ_DISCARD)
651 goto integrity_clone;
652
653 if (bio->bi_rw & REQ_WRITE_SAME) {
654 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
655 goto integrity_clone;
656 }
657
bdb53207
KO
658 bio_for_each_segment(bv, bio_src, iter)
659 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 660
8423ae3d 661integrity_clone:
bdb53207
KO
662 if (bio_integrity(bio_src)) {
663 int ret;
7ba1ba12 664
bdb53207 665 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 666 if (ret < 0) {
bdb53207 667 bio_put(bio);
7ba1ba12 668 return NULL;
059ea331 669 }
3676347a 670 }
1da177e4 671
bdb53207 672 return bio;
1da177e4 673}
bf800ef1 674EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
675
676/**
677 * bio_get_nr_vecs - return approx number of vecs
678 * @bdev: I/O target
679 *
680 * Return the approximate number of pages we can send to this target.
681 * There's no guarantee that you will be able to fit this number of pages
682 * into a bio, it does not account for dynamic restrictions that vary
683 * on offset.
684 */
685int bio_get_nr_vecs(struct block_device *bdev)
686{
165125e1 687 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
688 int nr_pages;
689
690 nr_pages = min_t(unsigned,
5abebfdd
KO
691 queue_max_segments(q),
692 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
693
694 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
695
1da177e4 696}
a112a71d 697EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 698
165125e1 699static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7 700 *page, unsigned int len, unsigned int offset,
34f2fd8d 701 unsigned int max_sectors)
1da177e4
LT
702{
703 int retried_segments = 0;
704 struct bio_vec *bvec;
705
706 /*
707 * cloned bio must not modify vec list
708 */
709 if (unlikely(bio_flagged(bio, BIO_CLONED)))
710 return 0;
711
4f024f37 712 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
713 return 0;
714
80cfd548
JA
715 /*
716 * For filesystems with a blocksize smaller than the pagesize
717 * we will often be called with the same page as last time and
718 * a consecutive offset. Optimize this special case.
719 */
720 if (bio->bi_vcnt > 0) {
721 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
722
723 if (page == prev->bv_page &&
724 offset == prev->bv_offset + prev->bv_len) {
1d616585 725 unsigned int prev_bv_len = prev->bv_len;
80cfd548 726 prev->bv_len += len;
cc371e66
AK
727
728 if (q->merge_bvec_fn) {
729 struct bvec_merge_data bvm = {
1d616585
DM
730 /* prev_bvec is already charged in
731 bi_size, discharge it in order to
732 simulate merging updated prev_bvec
733 as new bvec. */
cc371e66 734 .bi_bdev = bio->bi_bdev,
4f024f37
KO
735 .bi_sector = bio->bi_iter.bi_sector,
736 .bi_size = bio->bi_iter.bi_size -
737 prev_bv_len,
cc371e66
AK
738 .bi_rw = bio->bi_rw,
739 };
740
8bf8c376 741 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
742 prev->bv_len -= len;
743 return 0;
744 }
80cfd548
JA
745 }
746
747 goto done;
748 }
749 }
750
751 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
752 return 0;
753
754 /*
755 * we might lose a segment or two here, but rather that than
756 * make this too complex.
757 */
758
8a78362c 759 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
760
761 if (retried_segments)
762 return 0;
763
764 retried_segments = 1;
765 blk_recount_segments(q, bio);
766 }
767
768 /*
769 * setup the new entry, we might clear it again later if we
770 * cannot add the page
771 */
772 bvec = &bio->bi_io_vec[bio->bi_vcnt];
773 bvec->bv_page = page;
774 bvec->bv_len = len;
775 bvec->bv_offset = offset;
776
777 /*
778 * if queue has other restrictions (eg varying max sector size
779 * depending on offset), it can specify a merge_bvec_fn in the
780 * queue to get further control
781 */
782 if (q->merge_bvec_fn) {
cc371e66
AK
783 struct bvec_merge_data bvm = {
784 .bi_bdev = bio->bi_bdev,
4f024f37
KO
785 .bi_sector = bio->bi_iter.bi_sector,
786 .bi_size = bio->bi_iter.bi_size,
cc371e66
AK
787 .bi_rw = bio->bi_rw,
788 };
789
1da177e4
LT
790 /*
791 * merge_bvec_fn() returns number of bytes it can accept
792 * at this offset
793 */
8bf8c376 794 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
795 bvec->bv_page = NULL;
796 bvec->bv_len = 0;
797 bvec->bv_offset = 0;
798 return 0;
799 }
800 }
801
802 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 803 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
804 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
805
806 bio->bi_vcnt++;
807 bio->bi_phys_segments++;
80cfd548 808 done:
4f024f37 809 bio->bi_iter.bi_size += len;
1da177e4
LT
810 return len;
811}
812
6e68af66
MC
813/**
814 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 815 * @q: the target queue
6e68af66
MC
816 * @bio: destination bio
817 * @page: page to add
818 * @len: vec entry length
819 * @offset: vec entry offset
820 *
821 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
822 * number of reasons, such as the bio being full or target block device
823 * limitations. The target block device must allow bio's up to PAGE_SIZE,
824 * so it is always possible to add a single page to an empty bio.
825 *
826 * This should only be used by REQ_PC bios.
6e68af66 827 */
165125e1 828int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
829 unsigned int len, unsigned int offset)
830{
ae03bf63
MP
831 return __bio_add_page(q, bio, page, len, offset,
832 queue_max_hw_sectors(q));
6e68af66 833}
a112a71d 834EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 835
1da177e4
LT
836/**
837 * bio_add_page - attempt to add page to bio
838 * @bio: destination bio
839 * @page: page to add
840 * @len: vec entry length
841 * @offset: vec entry offset
842 *
843 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
844 * number of reasons, such as the bio being full or target block device
845 * limitations. The target block device must allow bio's up to PAGE_SIZE,
846 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
847 */
848int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
849 unsigned int offset)
850{
defd94b7 851 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
762380ad
JA
852
853 return __bio_add_page(q, bio, page, len, offset, blk_max_size_offset(q, bio->bi_iter.bi_sector));
1da177e4 854}
a112a71d 855EXPORT_SYMBOL(bio_add_page);
1da177e4 856
9e882242
KO
857struct submit_bio_ret {
858 struct completion event;
859 int error;
860};
861
862static void submit_bio_wait_endio(struct bio *bio, int error)
863{
864 struct submit_bio_ret *ret = bio->bi_private;
865
866 ret->error = error;
867 complete(&ret->event);
868}
869
870/**
871 * submit_bio_wait - submit a bio, and wait until it completes
872 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
873 * @bio: The &struct bio which describes the I/O
874 *
875 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
876 * bio_endio() on failure.
877 */
878int submit_bio_wait(int rw, struct bio *bio)
879{
880 struct submit_bio_ret ret;
881
882 rw |= REQ_SYNC;
883 init_completion(&ret.event);
884 bio->bi_private = &ret;
885 bio->bi_end_io = submit_bio_wait_endio;
886 submit_bio(rw, bio);
887 wait_for_completion(&ret.event);
888
889 return ret.error;
890}
891EXPORT_SYMBOL(submit_bio_wait);
892
054bdf64
KO
893/**
894 * bio_advance - increment/complete a bio by some number of bytes
895 * @bio: bio to advance
896 * @bytes: number of bytes to complete
897 *
898 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
899 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
900 * be updated on the last bvec as well.
901 *
902 * @bio will then represent the remaining, uncompleted portion of the io.
903 */
904void bio_advance(struct bio *bio, unsigned bytes)
905{
906 if (bio_integrity(bio))
907 bio_integrity_advance(bio, bytes);
908
4550dd6c 909 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
910}
911EXPORT_SYMBOL(bio_advance);
912
a0787606
KO
913/**
914 * bio_alloc_pages - allocates a single page for each bvec in a bio
915 * @bio: bio to allocate pages for
916 * @gfp_mask: flags for allocation
917 *
918 * Allocates pages up to @bio->bi_vcnt.
919 *
920 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
921 * freed.
922 */
923int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
924{
925 int i;
926 struct bio_vec *bv;
927
928 bio_for_each_segment_all(bv, bio, i) {
929 bv->bv_page = alloc_page(gfp_mask);
930 if (!bv->bv_page) {
931 while (--bv >= bio->bi_io_vec)
932 __free_page(bv->bv_page);
933 return -ENOMEM;
934 }
935 }
936
937 return 0;
938}
939EXPORT_SYMBOL(bio_alloc_pages);
940
16ac3d63
KO
941/**
942 * bio_copy_data - copy contents of data buffers from one chain of bios to
943 * another
944 * @src: source bio list
945 * @dst: destination bio list
946 *
947 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
948 * @src and @dst as linked lists of bios.
949 *
950 * Stops when it reaches the end of either @src or @dst - that is, copies
951 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
952 */
953void bio_copy_data(struct bio *dst, struct bio *src)
954{
1cb9dda4
KO
955 struct bvec_iter src_iter, dst_iter;
956 struct bio_vec src_bv, dst_bv;
16ac3d63 957 void *src_p, *dst_p;
1cb9dda4 958 unsigned bytes;
16ac3d63 959
1cb9dda4
KO
960 src_iter = src->bi_iter;
961 dst_iter = dst->bi_iter;
16ac3d63
KO
962
963 while (1) {
1cb9dda4
KO
964 if (!src_iter.bi_size) {
965 src = src->bi_next;
966 if (!src)
967 break;
16ac3d63 968
1cb9dda4 969 src_iter = src->bi_iter;
16ac3d63
KO
970 }
971
1cb9dda4
KO
972 if (!dst_iter.bi_size) {
973 dst = dst->bi_next;
974 if (!dst)
975 break;
16ac3d63 976
1cb9dda4 977 dst_iter = dst->bi_iter;
16ac3d63
KO
978 }
979
1cb9dda4
KO
980 src_bv = bio_iter_iovec(src, src_iter);
981 dst_bv = bio_iter_iovec(dst, dst_iter);
982
983 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 984
1cb9dda4
KO
985 src_p = kmap_atomic(src_bv.bv_page);
986 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 987
1cb9dda4
KO
988 memcpy(dst_p + dst_bv.bv_offset,
989 src_p + src_bv.bv_offset,
16ac3d63
KO
990 bytes);
991
992 kunmap_atomic(dst_p);
993 kunmap_atomic(src_p);
994
1cb9dda4
KO
995 bio_advance_iter(src, &src_iter, bytes);
996 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
997 }
998}
999EXPORT_SYMBOL(bio_copy_data);
1000
1da177e4 1001struct bio_map_data {
152e283f
FT
1002 int nr_sgvecs;
1003 int is_our_pages;
c8db4448 1004 struct sg_iovec sgvecs[];
1da177e4
LT
1005};
1006
c5dec1c3 1007static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
86d564c8 1008 const struct sg_iovec *iov, int iov_count,
152e283f 1009 int is_our_pages)
1da177e4 1010{
c5dec1c3
FT
1011 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1012 bmd->nr_sgvecs = iov_count;
152e283f 1013 bmd->is_our_pages = is_our_pages;
1da177e4
LT
1014 bio->bi_private = bmd;
1015}
1016
7410b3c6 1017static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1018 gfp_t gfp_mask)
1da177e4 1019{
f3f63c1c
JA
1020 if (iov_count > UIO_MAXIOV)
1021 return NULL;
1da177e4 1022
c8db4448
KO
1023 return kmalloc(sizeof(struct bio_map_data) +
1024 sizeof(struct sg_iovec) * iov_count, gfp_mask);
1da177e4
LT
1025}
1026
86d564c8 1027static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
ecb554a8 1028 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
1029{
1030 int ret = 0, i;
1031 struct bio_vec *bvec;
1032 int iov_idx = 0;
1033 unsigned int iov_off = 0;
c5dec1c3 1034
d74c6d51 1035 bio_for_each_segment_all(bvec, bio, i) {
c5dec1c3 1036 char *bv_addr = page_address(bvec->bv_page);
c8db4448 1037 unsigned int bv_len = bvec->bv_len;
c5dec1c3
FT
1038
1039 while (bv_len && iov_idx < iov_count) {
1040 unsigned int bytes;
0e0c6212 1041 char __user *iov_addr;
c5dec1c3
FT
1042
1043 bytes = min_t(unsigned int,
1044 iov[iov_idx].iov_len - iov_off, bv_len);
1045 iov_addr = iov[iov_idx].iov_base + iov_off;
1046
1047 if (!ret) {
ecb554a8 1048 if (to_user)
c5dec1c3
FT
1049 ret = copy_to_user(iov_addr, bv_addr,
1050 bytes);
1051
ecb554a8
FT
1052 if (from_user)
1053 ret = copy_from_user(bv_addr, iov_addr,
1054 bytes);
1055
c5dec1c3
FT
1056 if (ret)
1057 ret = -EFAULT;
1058 }
1059
1060 bv_len -= bytes;
1061 bv_addr += bytes;
1062 iov_addr += bytes;
1063 iov_off += bytes;
1064
1065 if (iov[iov_idx].iov_len == iov_off) {
1066 iov_idx++;
1067 iov_off = 0;
1068 }
1069 }
1070
152e283f 1071 if (do_free_page)
c5dec1c3
FT
1072 __free_page(bvec->bv_page);
1073 }
1074
1075 return ret;
1076}
1077
1da177e4
LT
1078/**
1079 * bio_uncopy_user - finish previously mapped bio
1080 * @bio: bio being terminated
1081 *
1082 * Free pages allocated from bio_copy_user() and write back data
1083 * to user space in case of a read.
1084 */
1085int bio_uncopy_user(struct bio *bio)
1086{
1087 struct bio_map_data *bmd = bio->bi_private;
35dc2483
RD
1088 struct bio_vec *bvec;
1089 int ret = 0, i;
1da177e4 1090
35dc2483
RD
1091 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1092 /*
1093 * if we're in a workqueue, the request is orphaned, so
1094 * don't copy into a random user address space, just free.
1095 */
1096 if (current->mm)
c8db4448
KO
1097 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1098 bio_data_dir(bio) == READ,
35dc2483
RD
1099 0, bmd->is_our_pages);
1100 else if (bmd->is_our_pages)
1101 bio_for_each_segment_all(bvec, bio, i)
1102 __free_page(bvec->bv_page);
1103 }
c8db4448 1104 kfree(bmd);
1da177e4
LT
1105 bio_put(bio);
1106 return ret;
1107}
a112a71d 1108EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1109
1110/**
c5dec1c3 1111 * bio_copy_user_iov - copy user data to bio
1da177e4 1112 * @q: destination block queue
152e283f 1113 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1114 * @iov: the iovec.
1115 * @iov_count: number of elements in the iovec
1da177e4 1116 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1117 * @gfp_mask: memory allocation flags
1da177e4
LT
1118 *
1119 * Prepares and returns a bio for indirect user io, bouncing data
1120 * to/from kernel pages as necessary. Must be paired with
1121 * call bio_uncopy_user() on io completion.
1122 */
152e283f
FT
1123struct bio *bio_copy_user_iov(struct request_queue *q,
1124 struct rq_map_data *map_data,
86d564c8 1125 const struct sg_iovec *iov, int iov_count,
152e283f 1126 int write_to_vm, gfp_t gfp_mask)
1da177e4 1127{
1da177e4
LT
1128 struct bio_map_data *bmd;
1129 struct bio_vec *bvec;
1130 struct page *page;
1131 struct bio *bio;
1132 int i, ret;
c5dec1c3
FT
1133 int nr_pages = 0;
1134 unsigned int len = 0;
56c451f4 1135 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1136
c5dec1c3
FT
1137 for (i = 0; i < iov_count; i++) {
1138 unsigned long uaddr;
1139 unsigned long end;
1140 unsigned long start;
1141
1142 uaddr = (unsigned long)iov[i].iov_base;
1143 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1144 start = uaddr >> PAGE_SHIFT;
1145
cb4644ca
JA
1146 /*
1147 * Overflow, abort
1148 */
1149 if (end < start)
1150 return ERR_PTR(-EINVAL);
1151
c5dec1c3
FT
1152 nr_pages += end - start;
1153 len += iov[i].iov_len;
1154 }
1155
69838727
FT
1156 if (offset)
1157 nr_pages++;
1158
7410b3c6 1159 bmd = bio_alloc_map_data(iov_count, gfp_mask);
1da177e4
LT
1160 if (!bmd)
1161 return ERR_PTR(-ENOMEM);
1162
1da177e4 1163 ret = -ENOMEM;
a9e9dc24 1164 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1165 if (!bio)
1166 goto out_bmd;
1167
7b6d91da
CH
1168 if (!write_to_vm)
1169 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1170
1171 ret = 0;
56c451f4
FT
1172
1173 if (map_data) {
e623ddb4 1174 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1175 i = map_data->offset / PAGE_SIZE;
1176 }
1da177e4 1177 while (len) {
e623ddb4 1178 unsigned int bytes = PAGE_SIZE;
1da177e4 1179
56c451f4
FT
1180 bytes -= offset;
1181
1da177e4
LT
1182 if (bytes > len)
1183 bytes = len;
1184
152e283f 1185 if (map_data) {
e623ddb4 1186 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1187 ret = -ENOMEM;
1188 break;
1189 }
e623ddb4
FT
1190
1191 page = map_data->pages[i / nr_pages];
1192 page += (i % nr_pages);
1193
1194 i++;
1195 } else {
152e283f 1196 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1197 if (!page) {
1198 ret = -ENOMEM;
1199 break;
1200 }
1da177e4
LT
1201 }
1202
56c451f4 1203 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1204 break;
1da177e4
LT
1205
1206 len -= bytes;
56c451f4 1207 offset = 0;
1da177e4
LT
1208 }
1209
1210 if (ret)
1211 goto cleanup;
1212
1213 /*
1214 * success
1215 */
ecb554a8
FT
1216 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1217 (map_data && map_data->from_user)) {
c8db4448 1218 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1219 if (ret)
1220 goto cleanup;
1da177e4
LT
1221 }
1222
152e283f 1223 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1224 return bio;
1225cleanup:
152e283f 1226 if (!map_data)
d74c6d51 1227 bio_for_each_segment_all(bvec, bio, i)
152e283f 1228 __free_page(bvec->bv_page);
1da177e4
LT
1229
1230 bio_put(bio);
1231out_bmd:
c8db4448 1232 kfree(bmd);
1da177e4
LT
1233 return ERR_PTR(ret);
1234}
1235
c5dec1c3
FT
1236/**
1237 * bio_copy_user - copy user data to bio
1238 * @q: destination block queue
152e283f 1239 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1240 * @uaddr: start of user address
1241 * @len: length in bytes
1242 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1243 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1244 *
1245 * Prepares and returns a bio for indirect user io, bouncing data
1246 * to/from kernel pages as necessary. Must be paired with
1247 * call bio_uncopy_user() on io completion.
1248 */
152e283f
FT
1249struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1250 unsigned long uaddr, unsigned int len,
1251 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1252{
1253 struct sg_iovec iov;
1254
1255 iov.iov_base = (void __user *)uaddr;
1256 iov.iov_len = len;
1257
152e283f 1258 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1259}
a112a71d 1260EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1261
165125e1 1262static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf 1263 struct block_device *bdev,
86d564c8 1264 const struct sg_iovec *iov, int iov_count,
a3bce90e 1265 int write_to_vm, gfp_t gfp_mask)
1da177e4 1266{
f1970baf
JB
1267 int i, j;
1268 int nr_pages = 0;
1da177e4
LT
1269 struct page **pages;
1270 struct bio *bio;
f1970baf
JB
1271 int cur_page = 0;
1272 int ret, offset;
1da177e4 1273
f1970baf
JB
1274 for (i = 0; i < iov_count; i++) {
1275 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1276 unsigned long len = iov[i].iov_len;
1277 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1278 unsigned long start = uaddr >> PAGE_SHIFT;
1279
cb4644ca
JA
1280 /*
1281 * Overflow, abort
1282 */
1283 if (end < start)
1284 return ERR_PTR(-EINVAL);
1285
f1970baf
JB
1286 nr_pages += end - start;
1287 /*
ad2d7225 1288 * buffer must be aligned to at least hardsector size for now
f1970baf 1289 */
ad2d7225 1290 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1291 return ERR_PTR(-EINVAL);
1292 }
1293
1294 if (!nr_pages)
1da177e4
LT
1295 return ERR_PTR(-EINVAL);
1296
a9e9dc24 1297 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1298 if (!bio)
1299 return ERR_PTR(-ENOMEM);
1300
1301 ret = -ENOMEM;
a3bce90e 1302 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1303 if (!pages)
1304 goto out;
1305
f1970baf
JB
1306 for (i = 0; i < iov_count; i++) {
1307 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1308 unsigned long len = iov[i].iov_len;
1309 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310 unsigned long start = uaddr >> PAGE_SHIFT;
1311 const int local_nr_pages = end - start;
1312 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1313
f5dd33c4
NP
1314 ret = get_user_pages_fast(uaddr, local_nr_pages,
1315 write_to_vm, &pages[cur_page]);
99172157
JA
1316 if (ret < local_nr_pages) {
1317 ret = -EFAULT;
f1970baf 1318 goto out_unmap;
99172157 1319 }
f1970baf
JB
1320
1321 offset = uaddr & ~PAGE_MASK;
1322 for (j = cur_page; j < page_limit; j++) {
1323 unsigned int bytes = PAGE_SIZE - offset;
1324
1325 if (len <= 0)
1326 break;
1327
1328 if (bytes > len)
1329 bytes = len;
1330
1331 /*
1332 * sorry...
1333 */
defd94b7
MC
1334 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1335 bytes)
f1970baf
JB
1336 break;
1337
1338 len -= bytes;
1339 offset = 0;
1340 }
1da177e4 1341
f1970baf 1342 cur_page = j;
1da177e4 1343 /*
f1970baf 1344 * release the pages we didn't map into the bio, if any
1da177e4 1345 */
f1970baf
JB
1346 while (j < page_limit)
1347 page_cache_release(pages[j++]);
1da177e4
LT
1348 }
1349
1da177e4
LT
1350 kfree(pages);
1351
1352 /*
1353 * set data direction, and check if mapped pages need bouncing
1354 */
1355 if (!write_to_vm)
7b6d91da 1356 bio->bi_rw |= REQ_WRITE;
1da177e4 1357
f1970baf 1358 bio->bi_bdev = bdev;
1da177e4
LT
1359 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1360 return bio;
f1970baf
JB
1361
1362 out_unmap:
1363 for (i = 0; i < nr_pages; i++) {
1364 if(!pages[i])
1365 break;
1366 page_cache_release(pages[i]);
1367 }
1368 out:
1da177e4
LT
1369 kfree(pages);
1370 bio_put(bio);
1371 return ERR_PTR(ret);
1372}
1373
1374/**
1375 * bio_map_user - map user address into bio
165125e1 1376 * @q: the struct request_queue for the bio
1da177e4
LT
1377 * @bdev: destination block device
1378 * @uaddr: start of user address
1379 * @len: length in bytes
1380 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1381 * @gfp_mask: memory allocation flags
1da177e4
LT
1382 *
1383 * Map the user space address into a bio suitable for io to a block
1384 * device. Returns an error pointer in case of error.
1385 */
165125e1 1386struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1387 unsigned long uaddr, unsigned int len, int write_to_vm,
1388 gfp_t gfp_mask)
f1970baf
JB
1389{
1390 struct sg_iovec iov;
1391
3f70353e 1392 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1393 iov.iov_len = len;
1394
a3bce90e 1395 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1396}
a112a71d 1397EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1398
1399/**
1400 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1401 * @q: the struct request_queue for the bio
f1970baf
JB
1402 * @bdev: destination block device
1403 * @iov: the iovec.
1404 * @iov_count: number of elements in the iovec
1405 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1406 * @gfp_mask: memory allocation flags
f1970baf
JB
1407 *
1408 * Map the user space address into a bio suitable for io to a block
1409 * device. Returns an error pointer in case of error.
1410 */
165125e1 1411struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
86d564c8 1412 const struct sg_iovec *iov, int iov_count,
a3bce90e 1413 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1414{
1415 struct bio *bio;
1416
a3bce90e
FT
1417 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1418 gfp_mask);
1da177e4
LT
1419 if (IS_ERR(bio))
1420 return bio;
1421
1422 /*
1423 * subtle -- if __bio_map_user() ended up bouncing a bio,
1424 * it would normally disappear when its bi_end_io is run.
1425 * however, we need it for the unmap, so grab an extra
1426 * reference to it
1427 */
1428 bio_get(bio);
1429
0e75f906 1430 return bio;
1da177e4
LT
1431}
1432
1433static void __bio_unmap_user(struct bio *bio)
1434{
1435 struct bio_vec *bvec;
1436 int i;
1437
1438 /*
1439 * make sure we dirty pages we wrote to
1440 */
d74c6d51 1441 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1442 if (bio_data_dir(bio) == READ)
1443 set_page_dirty_lock(bvec->bv_page);
1444
1445 page_cache_release(bvec->bv_page);
1446 }
1447
1448 bio_put(bio);
1449}
1450
1451/**
1452 * bio_unmap_user - unmap a bio
1453 * @bio: the bio being unmapped
1454 *
1455 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1456 * a process context.
1457 *
1458 * bio_unmap_user() may sleep.
1459 */
1460void bio_unmap_user(struct bio *bio)
1461{
1462 __bio_unmap_user(bio);
1463 bio_put(bio);
1464}
a112a71d 1465EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1466
6712ecf8 1467static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1468{
b823825e 1469 bio_put(bio);
b823825e
JA
1470}
1471
165125e1 1472static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1473 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1474{
1475 unsigned long kaddr = (unsigned long)data;
1476 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1477 unsigned long start = kaddr >> PAGE_SHIFT;
1478 const int nr_pages = end - start;
1479 int offset, i;
1480 struct bio *bio;
1481
a9e9dc24 1482 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1483 if (!bio)
1484 return ERR_PTR(-ENOMEM);
1485
1486 offset = offset_in_page(kaddr);
1487 for (i = 0; i < nr_pages; i++) {
1488 unsigned int bytes = PAGE_SIZE - offset;
1489
1490 if (len <= 0)
1491 break;
1492
1493 if (bytes > len)
1494 bytes = len;
1495
defd94b7
MC
1496 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1497 offset) < bytes)
df46b9a4
MC
1498 break;
1499
1500 data += bytes;
1501 len -= bytes;
1502 offset = 0;
1503 }
1504
b823825e 1505 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1506 return bio;
1507}
1508
1509/**
1510 * bio_map_kern - map kernel address into bio
165125e1 1511 * @q: the struct request_queue for the bio
df46b9a4
MC
1512 * @data: pointer to buffer to map
1513 * @len: length in bytes
1514 * @gfp_mask: allocation flags for bio allocation
1515 *
1516 * Map the kernel address into a bio suitable for io to a block
1517 * device. Returns an error pointer in case of error.
1518 */
165125e1 1519struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1520 gfp_t gfp_mask)
df46b9a4
MC
1521{
1522 struct bio *bio;
1523
1524 bio = __bio_map_kern(q, data, len, gfp_mask);
1525 if (IS_ERR(bio))
1526 return bio;
1527
4f024f37 1528 if (bio->bi_iter.bi_size == len)
df46b9a4
MC
1529 return bio;
1530
1531 /*
1532 * Don't support partial mappings.
1533 */
1534 bio_put(bio);
1535 return ERR_PTR(-EINVAL);
1536}
a112a71d 1537EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1538
68154e90
FT
1539static void bio_copy_kern_endio(struct bio *bio, int err)
1540{
1541 struct bio_vec *bvec;
1542 const int read = bio_data_dir(bio) == READ;
76029ff3 1543 struct bio_map_data *bmd = bio->bi_private;
68154e90 1544 int i;
76029ff3 1545 char *p = bmd->sgvecs[0].iov_base;
68154e90 1546
d74c6d51 1547 bio_for_each_segment_all(bvec, bio, i) {
68154e90
FT
1548 char *addr = page_address(bvec->bv_page);
1549
4fc981ef 1550 if (read)
c8db4448 1551 memcpy(p, addr, bvec->bv_len);
68154e90
FT
1552
1553 __free_page(bvec->bv_page);
c8db4448 1554 p += bvec->bv_len;
68154e90
FT
1555 }
1556
c8db4448 1557 kfree(bmd);
68154e90
FT
1558 bio_put(bio);
1559}
1560
1561/**
1562 * bio_copy_kern - copy kernel address into bio
1563 * @q: the struct request_queue for the bio
1564 * @data: pointer to buffer to copy
1565 * @len: length in bytes
1566 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1567 * @reading: data direction is READ
68154e90
FT
1568 *
1569 * copy the kernel address into a bio suitable for io to a block
1570 * device. Returns an error pointer in case of error.
1571 */
1572struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1573 gfp_t gfp_mask, int reading)
1574{
68154e90
FT
1575 struct bio *bio;
1576 struct bio_vec *bvec;
4d8ab62e 1577 int i;
68154e90 1578
4d8ab62e
FT
1579 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1580 if (IS_ERR(bio))
1581 return bio;
68154e90
FT
1582
1583 if (!reading) {
1584 void *p = data;
1585
d74c6d51 1586 bio_for_each_segment_all(bvec, bio, i) {
68154e90
FT
1587 char *addr = page_address(bvec->bv_page);
1588
1589 memcpy(addr, p, bvec->bv_len);
1590 p += bvec->bv_len;
1591 }
1592 }
1593
68154e90 1594 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1595
68154e90 1596 return bio;
68154e90 1597}
a112a71d 1598EXPORT_SYMBOL(bio_copy_kern);
68154e90 1599
1da177e4
LT
1600/*
1601 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1602 * for performing direct-IO in BIOs.
1603 *
1604 * The problem is that we cannot run set_page_dirty() from interrupt context
1605 * because the required locks are not interrupt-safe. So what we can do is to
1606 * mark the pages dirty _before_ performing IO. And in interrupt context,
1607 * check that the pages are still dirty. If so, fine. If not, redirty them
1608 * in process context.
1609 *
1610 * We special-case compound pages here: normally this means reads into hugetlb
1611 * pages. The logic in here doesn't really work right for compound pages
1612 * because the VM does not uniformly chase down the head page in all cases.
1613 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1614 * handle them at all. So we skip compound pages here at an early stage.
1615 *
1616 * Note that this code is very hard to test under normal circumstances because
1617 * direct-io pins the pages with get_user_pages(). This makes
1618 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1619 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1620 * pagecache.
1621 *
1622 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1623 * deferred bio dirtying paths.
1624 */
1625
1626/*
1627 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1628 */
1629void bio_set_pages_dirty(struct bio *bio)
1630{
cb34e057 1631 struct bio_vec *bvec;
1da177e4
LT
1632 int i;
1633
cb34e057
KO
1634 bio_for_each_segment_all(bvec, bio, i) {
1635 struct page *page = bvec->bv_page;
1da177e4
LT
1636
1637 if (page && !PageCompound(page))
1638 set_page_dirty_lock(page);
1639 }
1640}
1641
86b6c7a7 1642static void bio_release_pages(struct bio *bio)
1da177e4 1643{
cb34e057 1644 struct bio_vec *bvec;
1da177e4
LT
1645 int i;
1646
cb34e057
KO
1647 bio_for_each_segment_all(bvec, bio, i) {
1648 struct page *page = bvec->bv_page;
1da177e4
LT
1649
1650 if (page)
1651 put_page(page);
1652 }
1653}
1654
1655/*
1656 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1657 * If they are, then fine. If, however, some pages are clean then they must
1658 * have been written out during the direct-IO read. So we take another ref on
1659 * the BIO and the offending pages and re-dirty the pages in process context.
1660 *
1661 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1662 * here on. It will run one page_cache_release() against each page and will
1663 * run one bio_put() against the BIO.
1664 */
1665
65f27f38 1666static void bio_dirty_fn(struct work_struct *work);
1da177e4 1667
65f27f38 1668static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1669static DEFINE_SPINLOCK(bio_dirty_lock);
1670static struct bio *bio_dirty_list;
1671
1672/*
1673 * This runs in process context
1674 */
65f27f38 1675static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1676{
1677 unsigned long flags;
1678 struct bio *bio;
1679
1680 spin_lock_irqsave(&bio_dirty_lock, flags);
1681 bio = bio_dirty_list;
1682 bio_dirty_list = NULL;
1683 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1684
1685 while (bio) {
1686 struct bio *next = bio->bi_private;
1687
1688 bio_set_pages_dirty(bio);
1689 bio_release_pages(bio);
1690 bio_put(bio);
1691 bio = next;
1692 }
1693}
1694
1695void bio_check_pages_dirty(struct bio *bio)
1696{
cb34e057 1697 struct bio_vec *bvec;
1da177e4
LT
1698 int nr_clean_pages = 0;
1699 int i;
1700
cb34e057
KO
1701 bio_for_each_segment_all(bvec, bio, i) {
1702 struct page *page = bvec->bv_page;
1da177e4
LT
1703
1704 if (PageDirty(page) || PageCompound(page)) {
1705 page_cache_release(page);
cb34e057 1706 bvec->bv_page = NULL;
1da177e4
LT
1707 } else {
1708 nr_clean_pages++;
1709 }
1710 }
1711
1712 if (nr_clean_pages) {
1713 unsigned long flags;
1714
1715 spin_lock_irqsave(&bio_dirty_lock, flags);
1716 bio->bi_private = bio_dirty_list;
1717 bio_dirty_list = bio;
1718 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1719 schedule_work(&bio_dirty_work);
1720 } else {
1721 bio_put(bio);
1722 }
1723}
1724
2d4dc890
IL
1725#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1726void bio_flush_dcache_pages(struct bio *bi)
1727{
7988613b
KO
1728 struct bio_vec bvec;
1729 struct bvec_iter iter;
2d4dc890 1730
7988613b
KO
1731 bio_for_each_segment(bvec, bi, iter)
1732 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1733}
1734EXPORT_SYMBOL(bio_flush_dcache_pages);
1735#endif
1736
1da177e4
LT
1737/**
1738 * bio_endio - end I/O on a bio
1739 * @bio: bio
1da177e4
LT
1740 * @error: error, if any
1741 *
1742 * Description:
6712ecf8 1743 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1744 * preferred way to end I/O on a bio, it takes care of clearing
1745 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1746 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1747 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1748 * bio unless they own it and thus know that it has an end_io
1749 * function.
1da177e4 1750 **/
6712ecf8 1751void bio_endio(struct bio *bio, int error)
1da177e4 1752{
196d38bc
KO
1753 while (bio) {
1754 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1755
1756 if (error)
1757 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1758 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1759 error = -EIO;
1760
1761 if (!atomic_dec_and_test(&bio->bi_remaining))
1762 return;
1da177e4 1763
196d38bc
KO
1764 /*
1765 * Need to have a real endio function for chained bios,
1766 * otherwise various corner cases will break (like stacking
1767 * block devices that save/restore bi_end_io) - however, we want
1768 * to avoid unbounded recursion and blowing the stack. Tail call
1769 * optimization would handle this, but compiling with frame
1770 * pointers also disables gcc's sibling call optimization.
1771 */
1772 if (bio->bi_end_io == bio_chain_endio) {
1773 struct bio *parent = bio->bi_private;
1774 bio_put(bio);
1775 bio = parent;
1776 } else {
1777 if (bio->bi_end_io)
1778 bio->bi_end_io(bio, error);
1779 bio = NULL;
1780 }
1781 }
1da177e4 1782}
a112a71d 1783EXPORT_SYMBOL(bio_endio);
1da177e4 1784
196d38bc
KO
1785/**
1786 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1787 * @bio: bio
1788 * @error: error, if any
1789 *
1790 * For code that has saved and restored bi_end_io; thing hard before using this
1791 * function, probably you should've cloned the entire bio.
1792 **/
1793void bio_endio_nodec(struct bio *bio, int error)
1794{
1795 atomic_inc(&bio->bi_remaining);
1796 bio_endio(bio, error);
1797}
1798EXPORT_SYMBOL(bio_endio_nodec);
1799
20d0189b
KO
1800/**
1801 * bio_split - split a bio
1802 * @bio: bio to split
1803 * @sectors: number of sectors to split from the front of @bio
1804 * @gfp: gfp mask
1805 * @bs: bio set to allocate from
1806 *
1807 * Allocates and returns a new bio which represents @sectors from the start of
1808 * @bio, and updates @bio to represent the remaining sectors.
1809 *
1810 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1811 * responsibility to ensure that @bio is not freed before the split.
1812 */
1813struct bio *bio_split(struct bio *bio, int sectors,
1814 gfp_t gfp, struct bio_set *bs)
1815{
1816 struct bio *split = NULL;
1817
1818 BUG_ON(sectors <= 0);
1819 BUG_ON(sectors >= bio_sectors(bio));
1820
1821 split = bio_clone_fast(bio, gfp, bs);
1822 if (!split)
1823 return NULL;
1824
1825 split->bi_iter.bi_size = sectors << 9;
1826
1827 if (bio_integrity(split))
1828 bio_integrity_trim(split, 0, sectors);
1829
1830 bio_advance(bio, split->bi_iter.bi_size);
1831
1832 return split;
1833}
1834EXPORT_SYMBOL(bio_split);
1835
6678d83f
KO
1836/**
1837 * bio_trim - trim a bio
1838 * @bio: bio to trim
1839 * @offset: number of sectors to trim from the front of @bio
1840 * @size: size we want to trim @bio to, in sectors
1841 */
1842void bio_trim(struct bio *bio, int offset, int size)
1843{
1844 /* 'bio' is a cloned bio which we need to trim to match
1845 * the given offset and size.
6678d83f 1846 */
6678d83f
KO
1847
1848 size <<= 9;
4f024f37 1849 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1850 return;
1851
1852 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1853
1854 bio_advance(bio, offset << 9);
1855
4f024f37 1856 bio->bi_iter.bi_size = size;
6678d83f
KO
1857}
1858EXPORT_SYMBOL_GPL(bio_trim);
1859
1da177e4
LT
1860/*
1861 * create memory pools for biovec's in a bio_set.
1862 * use the global biovec slabs created for general use.
1863 */
a6c39cb4 1864mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1865{
7ff9345f 1866 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1867
9f060e22 1868 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1869}
1870
1871void bioset_free(struct bio_set *bs)
1872{
df2cb6da
KO
1873 if (bs->rescue_workqueue)
1874 destroy_workqueue(bs->rescue_workqueue);
1875
1da177e4
LT
1876 if (bs->bio_pool)
1877 mempool_destroy(bs->bio_pool);
1878
9f060e22
KO
1879 if (bs->bvec_pool)
1880 mempool_destroy(bs->bvec_pool);
1881
7878cba9 1882 bioset_integrity_free(bs);
bb799ca0 1883 bio_put_slab(bs);
1da177e4
LT
1884
1885 kfree(bs);
1886}
a112a71d 1887EXPORT_SYMBOL(bioset_free);
1da177e4 1888
bb799ca0
JA
1889/**
1890 * bioset_create - Create a bio_set
1891 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1892 * @front_pad: Number of bytes to allocate in front of the returned bio
1893 *
1894 * Description:
1895 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1896 * to ask for a number of bytes to be allocated in front of the bio.
1897 * Front pad allocation is useful for embedding the bio inside
1898 * another structure, to avoid allocating extra data to go with the bio.
1899 * Note that the bio must be embedded at the END of that structure always,
1900 * or things will break badly.
1901 */
1902struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1903{
392ddc32 1904 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1905 struct bio_set *bs;
1da177e4 1906
1b434498 1907 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1908 if (!bs)
1909 return NULL;
1910
bb799ca0 1911 bs->front_pad = front_pad;
1b434498 1912
df2cb6da
KO
1913 spin_lock_init(&bs->rescue_lock);
1914 bio_list_init(&bs->rescue_list);
1915 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1916
392ddc32 1917 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1918 if (!bs->bio_slab) {
1919 kfree(bs);
1920 return NULL;
1921 }
1922
1923 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1924 if (!bs->bio_pool)
1925 goto bad;
1926
a6c39cb4 1927 bs->bvec_pool = biovec_create_pool(pool_size);
9f060e22 1928 if (!bs->bvec_pool)
df2cb6da
KO
1929 goto bad;
1930
1931 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1932 if (!bs->rescue_workqueue)
1933 goto bad;
1da177e4 1934
df2cb6da 1935 return bs;
1da177e4
LT
1936bad:
1937 bioset_free(bs);
1938 return NULL;
1939}
a112a71d 1940EXPORT_SYMBOL(bioset_create);
1da177e4 1941
852c788f
TH
1942#ifdef CONFIG_BLK_CGROUP
1943/**
1944 * bio_associate_current - associate a bio with %current
1945 * @bio: target bio
1946 *
1947 * Associate @bio with %current if it hasn't been associated yet. Block
1948 * layer will treat @bio as if it were issued by %current no matter which
1949 * task actually issues it.
1950 *
1951 * This function takes an extra reference of @task's io_context and blkcg
1952 * which will be put when @bio is released. The caller must own @bio,
1953 * ensure %current->io_context exists, and is responsible for synchronizing
1954 * calls to this function.
1955 */
1956int bio_associate_current(struct bio *bio)
1957{
1958 struct io_context *ioc;
1959 struct cgroup_subsys_state *css;
1960
1961 if (bio->bi_ioc)
1962 return -EBUSY;
1963
1964 ioc = current->io_context;
1965 if (!ioc)
1966 return -ENOENT;
1967
1968 /* acquire active ref on @ioc and associate */
1969 get_io_context_active(ioc);
1970 bio->bi_ioc = ioc;
1971
1972 /* associate blkcg if exists */
1973 rcu_read_lock();
073219e9 1974 css = task_css(current, blkio_cgrp_id);
852c788f
TH
1975 if (css && css_tryget(css))
1976 bio->bi_css = css;
1977 rcu_read_unlock();
1978
1979 return 0;
1980}
1981
1982/**
1983 * bio_disassociate_task - undo bio_associate_current()
1984 * @bio: target bio
1985 */
1986void bio_disassociate_task(struct bio *bio)
1987{
1988 if (bio->bi_ioc) {
1989 put_io_context(bio->bi_ioc);
1990 bio->bi_ioc = NULL;
1991 }
1992 if (bio->bi_css) {
1993 css_put(bio->bi_css);
1994 bio->bi_css = NULL;
1995 }
1996}
1997
1998#endif /* CONFIG_BLK_CGROUP */
1999
1da177e4
LT
2000static void __init biovec_init_slabs(void)
2001{
2002 int i;
2003
2004 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2005 int size;
2006 struct biovec_slab *bvs = bvec_slabs + i;
2007
a7fcd37c
JA
2008 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2009 bvs->slab = NULL;
2010 continue;
2011 }
a7fcd37c 2012
1da177e4
LT
2013 size = bvs->nr_vecs * sizeof(struct bio_vec);
2014 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2015 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2016 }
2017}
2018
2019static int __init init_bio(void)
2020{
bb799ca0
JA
2021 bio_slab_max = 2;
2022 bio_slab_nr = 0;
2023 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2024 if (!bio_slabs)
2025 panic("bio: can't allocate bios\n");
1da177e4 2026
7878cba9 2027 bio_integrity_init();
1da177e4
LT
2028 biovec_init_slabs();
2029
bb799ca0 2030 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2031 if (!fs_bio_set)
2032 panic("bio: can't allocate bios\n");
2033
a91a2785
MP
2034 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2035 panic("bio: can't create integrity pool\n");
2036
1da177e4
LT
2037 return 0;
2038}
1da177e4 2039subsys_initcall(init_bio);