]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/bio.c
block: merge __bio_map_user_iov into bio_map_user_iov
[mirror_ubuntu-zesty-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
3f86a82a 56EXPORT_SYMBOL(fs_bio_set);
1da177e4 57
bb799ca0
JA
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
389d7b26 75 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 76 unsigned int new_bio_slab_max;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 99 new_bio_slab_max = bio_slab_max << 1;
389d7b26 100 new_bio_slabs = krealloc(bio_slabs,
386bc35a 101 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
386bc35a 105 bio_slab_max = new_bio_slab_max;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
9f060e22 166 mempool_free(bv, pool);
bb799ca0
JA
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
9f060e22
KO
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
1da177e4
LT
176{
177 struct bio_vec *bvl;
1da177e4 178
7ff9345f
JA
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
9f060e22 211 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
0a0d96b0 216 /*
7ff9345f
JA
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
0a0d96b0 220 */
7ff9345f 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
0a0d96b0 226 */
7ff9345f
JA
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
1da177e4
LT
234 return bvl;
235}
236
4254bba1 237static void __bio_free(struct bio *bio)
1da177e4 238{
4254bba1 239 bio_disassociate_task(bio);
1da177e4 240
7ba1ba12 241 if (bio_integrity(bio))
1e2a410f 242 bio_integrity_free(bio);
4254bba1 243}
7ba1ba12 244
4254bba1
KO
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
a38352e0 253 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
bb799ca0
JA
260 p -= bs->front_pad;
261
4254bba1
KO
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
3676347a
PO
267}
268
858119e1 269void bio_init(struct bio *bio)
1da177e4 270{
2b94de55 271 memset(bio, 0, sizeof(*bio));
1da177e4 272 bio->bi_flags = 1 << BIO_UPTODATE;
196d38bc 273 atomic_set(&bio->bi_remaining, 1);
1da177e4 274 atomic_set(&bio->bi_cnt, 1);
1da177e4 275}
a112a71d 276EXPORT_SYMBOL(bio_init);
1da177e4 277
f44b48c7
KO
278/**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288void bio_reset(struct bio *bio)
289{
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
4254bba1 292 __bio_free(bio);
f44b48c7
KO
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags|(1 << BIO_UPTODATE);
196d38bc 296 atomic_set(&bio->bi_remaining, 1);
f44b48c7
KO
297}
298EXPORT_SYMBOL(bio_reset);
299
196d38bc
KO
300static void bio_chain_endio(struct bio *bio, int error)
301{
302 bio_endio(bio->bi_private, error);
303 bio_put(bio);
304}
305
306/**
307 * bio_chain - chain bio completions
1051a902
RD
308 * @bio: the target bio
309 * @parent: the @bio's parent bio
196d38bc
KO
310 *
311 * The caller won't have a bi_end_io called when @bio completes - instead,
312 * @parent's bi_end_io won't be called until both @parent and @bio have
313 * completed; the chained bio will also be freed when it completes.
314 *
315 * The caller must not set bi_private or bi_end_io in @bio.
316 */
317void bio_chain(struct bio *bio, struct bio *parent)
318{
319 BUG_ON(bio->bi_private || bio->bi_end_io);
320
321 bio->bi_private = parent;
322 bio->bi_end_io = bio_chain_endio;
323 atomic_inc(&parent->bi_remaining);
324}
325EXPORT_SYMBOL(bio_chain);
326
df2cb6da
KO
327static void bio_alloc_rescue(struct work_struct *work)
328{
329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 struct bio *bio;
331
332 while (1) {
333 spin_lock(&bs->rescue_lock);
334 bio = bio_list_pop(&bs->rescue_list);
335 spin_unlock(&bs->rescue_lock);
336
337 if (!bio)
338 break;
339
340 generic_make_request(bio);
341 }
342}
343
344static void punt_bios_to_rescuer(struct bio_set *bs)
345{
346 struct bio_list punt, nopunt;
347 struct bio *bio;
348
349 /*
350 * In order to guarantee forward progress we must punt only bios that
351 * were allocated from this bio_set; otherwise, if there was a bio on
352 * there for a stacking driver higher up in the stack, processing it
353 * could require allocating bios from this bio_set, and doing that from
354 * our own rescuer would be bad.
355 *
356 * Since bio lists are singly linked, pop them all instead of trying to
357 * remove from the middle of the list:
358 */
359
360 bio_list_init(&punt);
361 bio_list_init(&nopunt);
362
363 while ((bio = bio_list_pop(current->bio_list)))
364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365
366 *current->bio_list = nopunt;
367
368 spin_lock(&bs->rescue_lock);
369 bio_list_merge(&bs->rescue_list, &punt);
370 spin_unlock(&bs->rescue_lock);
371
372 queue_work(bs->rescue_workqueue, &bs->rescue_work);
373}
374
1da177e4
LT
375/**
376 * bio_alloc_bioset - allocate a bio for I/O
377 * @gfp_mask: the GFP_ mask given to the slab allocator
378 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 379 * @bs: the bio_set to allocate from.
1da177e4
LT
380 *
381 * Description:
3f86a82a
KO
382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383 * backed by the @bs's mempool.
384 *
385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386 * able to allocate a bio. This is due to the mempool guarantees. To make this
387 * work, callers must never allocate more than 1 bio at a time from this pool.
388 * Callers that need to allocate more than 1 bio must always submit the
389 * previously allocated bio for IO before attempting to allocate a new one.
390 * Failure to do so can cause deadlocks under memory pressure.
391 *
df2cb6da
KO
392 * Note that when running under generic_make_request() (i.e. any block
393 * driver), bios are not submitted until after you return - see the code in
394 * generic_make_request() that converts recursion into iteration, to prevent
395 * stack overflows.
396 *
397 * This would normally mean allocating multiple bios under
398 * generic_make_request() would be susceptible to deadlocks, but we have
399 * deadlock avoidance code that resubmits any blocked bios from a rescuer
400 * thread.
401 *
402 * However, we do not guarantee forward progress for allocations from other
403 * mempools. Doing multiple allocations from the same mempool under
404 * generic_make_request() should be avoided - instead, use bio_set's front_pad
405 * for per bio allocations.
406 *
3f86a82a
KO
407 * RETURNS:
408 * Pointer to new bio on success, NULL on failure.
409 */
dd0fc66f 410struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 411{
df2cb6da 412 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
413 unsigned front_pad;
414 unsigned inline_vecs;
451a9ebf 415 unsigned long idx = BIO_POOL_NONE;
34053979 416 struct bio_vec *bvl = NULL;
451a9ebf
TH
417 struct bio *bio;
418 void *p;
419
3f86a82a
KO
420 if (!bs) {
421 if (nr_iovecs > UIO_MAXIOV)
422 return NULL;
423
424 p = kmalloc(sizeof(struct bio) +
425 nr_iovecs * sizeof(struct bio_vec),
426 gfp_mask);
427 front_pad = 0;
428 inline_vecs = nr_iovecs;
429 } else {
d8f429e1
JN
430 /* should not use nobvec bioset for nr_iovecs > 0 */
431 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
432 return NULL;
df2cb6da
KO
433 /*
434 * generic_make_request() converts recursion to iteration; this
435 * means if we're running beneath it, any bios we allocate and
436 * submit will not be submitted (and thus freed) until after we
437 * return.
438 *
439 * This exposes us to a potential deadlock if we allocate
440 * multiple bios from the same bio_set() while running
441 * underneath generic_make_request(). If we were to allocate
442 * multiple bios (say a stacking block driver that was splitting
443 * bios), we would deadlock if we exhausted the mempool's
444 * reserve.
445 *
446 * We solve this, and guarantee forward progress, with a rescuer
447 * workqueue per bio_set. If we go to allocate and there are
448 * bios on current->bio_list, we first try the allocation
449 * without __GFP_WAIT; if that fails, we punt those bios we
450 * would be blocking to the rescuer workqueue before we retry
451 * with the original gfp_flags.
452 */
453
454 if (current->bio_list && !bio_list_empty(current->bio_list))
455 gfp_mask &= ~__GFP_WAIT;
456
3f86a82a 457 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
458 if (!p && gfp_mask != saved_gfp) {
459 punt_bios_to_rescuer(bs);
460 gfp_mask = saved_gfp;
461 p = mempool_alloc(bs->bio_pool, gfp_mask);
462 }
463
3f86a82a
KO
464 front_pad = bs->front_pad;
465 inline_vecs = BIO_INLINE_VECS;
466 }
467
451a9ebf
TH
468 if (unlikely(!p))
469 return NULL;
1da177e4 470
3f86a82a 471 bio = p + front_pad;
34053979
IM
472 bio_init(bio);
473
3f86a82a 474 if (nr_iovecs > inline_vecs) {
9f060e22 475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
476 if (!bvl && gfp_mask != saved_gfp) {
477 punt_bios_to_rescuer(bs);
478 gfp_mask = saved_gfp;
9f060e22 479 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
480 }
481
34053979
IM
482 if (unlikely(!bvl))
483 goto err_free;
a38352e0
KO
484
485 bio->bi_flags |= 1 << BIO_OWNS_VEC;
3f86a82a
KO
486 } else if (nr_iovecs) {
487 bvl = bio->bi_inline_vecs;
1da177e4 488 }
3f86a82a
KO
489
490 bio->bi_pool = bs;
34053979
IM
491 bio->bi_flags |= idx << BIO_POOL_OFFSET;
492 bio->bi_max_vecs = nr_iovecs;
34053979 493 bio->bi_io_vec = bvl;
1da177e4 494 return bio;
34053979
IM
495
496err_free:
451a9ebf 497 mempool_free(p, bs->bio_pool);
34053979 498 return NULL;
1da177e4 499}
a112a71d 500EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 501
1da177e4
LT
502void zero_fill_bio(struct bio *bio)
503{
504 unsigned long flags;
7988613b
KO
505 struct bio_vec bv;
506 struct bvec_iter iter;
1da177e4 507
7988613b
KO
508 bio_for_each_segment(bv, bio, iter) {
509 char *data = bvec_kmap_irq(&bv, &flags);
510 memset(data, 0, bv.bv_len);
511 flush_dcache_page(bv.bv_page);
1da177e4
LT
512 bvec_kunmap_irq(data, &flags);
513 }
514}
515EXPORT_SYMBOL(zero_fill_bio);
516
517/**
518 * bio_put - release a reference to a bio
519 * @bio: bio to release reference to
520 *
521 * Description:
522 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 523 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
524 **/
525void bio_put(struct bio *bio)
526{
527 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
528
529 /*
530 * last put frees it
531 */
4254bba1
KO
532 if (atomic_dec_and_test(&bio->bi_cnt))
533 bio_free(bio);
1da177e4 534}
a112a71d 535EXPORT_SYMBOL(bio_put);
1da177e4 536
165125e1 537inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
538{
539 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
540 blk_recount_segments(q, bio);
541
542 return bio->bi_phys_segments;
543}
a112a71d 544EXPORT_SYMBOL(bio_phys_segments);
1da177e4 545
59d276fe
KO
546/**
547 * __bio_clone_fast - clone a bio that shares the original bio's biovec
548 * @bio: destination bio
549 * @bio_src: bio to clone
550 *
551 * Clone a &bio. Caller will own the returned bio, but not
552 * the actual data it points to. Reference count of returned
553 * bio will be one.
554 *
555 * Caller must ensure that @bio_src is not freed before @bio.
556 */
557void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
558{
559 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
560
561 /*
562 * most users will be overriding ->bi_bdev with a new target,
563 * so we don't set nor calculate new physical/hw segment counts here
564 */
565 bio->bi_bdev = bio_src->bi_bdev;
566 bio->bi_flags |= 1 << BIO_CLONED;
567 bio->bi_rw = bio_src->bi_rw;
568 bio->bi_iter = bio_src->bi_iter;
569 bio->bi_io_vec = bio_src->bi_io_vec;
570}
571EXPORT_SYMBOL(__bio_clone_fast);
572
573/**
574 * bio_clone_fast - clone a bio that shares the original bio's biovec
575 * @bio: bio to clone
576 * @gfp_mask: allocation priority
577 * @bs: bio_set to allocate from
578 *
579 * Like __bio_clone_fast, only also allocates the returned bio
580 */
581struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
582{
583 struct bio *b;
584
585 b = bio_alloc_bioset(gfp_mask, 0, bs);
586 if (!b)
587 return NULL;
588
589 __bio_clone_fast(b, bio);
590
591 if (bio_integrity(bio)) {
592 int ret;
593
594 ret = bio_integrity_clone(b, bio, gfp_mask);
595
596 if (ret < 0) {
597 bio_put(b);
598 return NULL;
599 }
600 }
601
602 return b;
603}
604EXPORT_SYMBOL(bio_clone_fast);
605
1da177e4 606/**
bdb53207
KO
607 * bio_clone_bioset - clone a bio
608 * @bio_src: bio to clone
1da177e4 609 * @gfp_mask: allocation priority
bf800ef1 610 * @bs: bio_set to allocate from
1da177e4 611 *
bdb53207
KO
612 * Clone bio. Caller will own the returned bio, but not the actual data it
613 * points to. Reference count of returned bio will be one.
1da177e4 614 */
bdb53207 615struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 616 struct bio_set *bs)
1da177e4 617{
bdb53207
KO
618 struct bvec_iter iter;
619 struct bio_vec bv;
620 struct bio *bio;
1da177e4 621
bdb53207
KO
622 /*
623 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
624 * bio_src->bi_io_vec to bio->bi_io_vec.
625 *
626 * We can't do that anymore, because:
627 *
628 * - The point of cloning the biovec is to produce a bio with a biovec
629 * the caller can modify: bi_idx and bi_bvec_done should be 0.
630 *
631 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
632 * we tried to clone the whole thing bio_alloc_bioset() would fail.
633 * But the clone should succeed as long as the number of biovecs we
634 * actually need to allocate is fewer than BIO_MAX_PAGES.
635 *
636 * - Lastly, bi_vcnt should not be looked at or relied upon by code
637 * that does not own the bio - reason being drivers don't use it for
638 * iterating over the biovec anymore, so expecting it to be kept up
639 * to date (i.e. for clones that share the parent biovec) is just
640 * asking for trouble and would force extra work on
641 * __bio_clone_fast() anyways.
642 */
643
8423ae3d 644 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 645 if (!bio)
7ba1ba12
MP
646 return NULL;
647
bdb53207
KO
648 bio->bi_bdev = bio_src->bi_bdev;
649 bio->bi_rw = bio_src->bi_rw;
650 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
651 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 652
8423ae3d
KO
653 if (bio->bi_rw & REQ_DISCARD)
654 goto integrity_clone;
655
656 if (bio->bi_rw & REQ_WRITE_SAME) {
657 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
658 goto integrity_clone;
659 }
660
bdb53207
KO
661 bio_for_each_segment(bv, bio_src, iter)
662 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 663
8423ae3d 664integrity_clone:
bdb53207
KO
665 if (bio_integrity(bio_src)) {
666 int ret;
7ba1ba12 667
bdb53207 668 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 669 if (ret < 0) {
bdb53207 670 bio_put(bio);
7ba1ba12 671 return NULL;
059ea331 672 }
3676347a 673 }
1da177e4 674
bdb53207 675 return bio;
1da177e4 676}
bf800ef1 677EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
678
679/**
680 * bio_get_nr_vecs - return approx number of vecs
681 * @bdev: I/O target
682 *
683 * Return the approximate number of pages we can send to this target.
684 * There's no guarantee that you will be able to fit this number of pages
685 * into a bio, it does not account for dynamic restrictions that vary
686 * on offset.
687 */
688int bio_get_nr_vecs(struct block_device *bdev)
689{
165125e1 690 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
691 int nr_pages;
692
693 nr_pages = min_t(unsigned,
5abebfdd
KO
694 queue_max_segments(q),
695 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
696
697 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
698
1da177e4 699}
a112a71d 700EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 701
165125e1 702static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7 703 *page, unsigned int len, unsigned int offset,
34f2fd8d 704 unsigned int max_sectors)
1da177e4
LT
705{
706 int retried_segments = 0;
707 struct bio_vec *bvec;
708
709 /*
710 * cloned bio must not modify vec list
711 */
712 if (unlikely(bio_flagged(bio, BIO_CLONED)))
713 return 0;
714
4f024f37 715 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
716 return 0;
717
80cfd548
JA
718 /*
719 * For filesystems with a blocksize smaller than the pagesize
720 * we will often be called with the same page as last time and
721 * a consecutive offset. Optimize this special case.
722 */
723 if (bio->bi_vcnt > 0) {
724 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
725
726 if (page == prev->bv_page &&
727 offset == prev->bv_offset + prev->bv_len) {
1d616585 728 unsigned int prev_bv_len = prev->bv_len;
80cfd548 729 prev->bv_len += len;
cc371e66
AK
730
731 if (q->merge_bvec_fn) {
732 struct bvec_merge_data bvm = {
1d616585
DM
733 /* prev_bvec is already charged in
734 bi_size, discharge it in order to
735 simulate merging updated prev_bvec
736 as new bvec. */
cc371e66 737 .bi_bdev = bio->bi_bdev,
4f024f37
KO
738 .bi_sector = bio->bi_iter.bi_sector,
739 .bi_size = bio->bi_iter.bi_size -
740 prev_bv_len,
cc371e66
AK
741 .bi_rw = bio->bi_rw,
742 };
743
8bf8c376 744 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
745 prev->bv_len -= len;
746 return 0;
747 }
80cfd548
JA
748 }
749
fcbf6a08 750 bio->bi_iter.bi_size += len;
80cfd548
JA
751 goto done;
752 }
66cb45aa
JA
753
754 /*
755 * If the queue doesn't support SG gaps and adding this
756 * offset would create a gap, disallow it.
757 */
758 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
759 bvec_gap_to_prev(prev, offset))
760 return 0;
80cfd548
JA
761 }
762
763 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
764 return 0;
765
766 /*
fcbf6a08
ML
767 * setup the new entry, we might clear it again later if we
768 * cannot add the page
769 */
770 bvec = &bio->bi_io_vec[bio->bi_vcnt];
771 bvec->bv_page = page;
772 bvec->bv_len = len;
773 bvec->bv_offset = offset;
774 bio->bi_vcnt++;
775 bio->bi_phys_segments++;
776 bio->bi_iter.bi_size += len;
777
778 /*
779 * Perform a recount if the number of segments is greater
780 * than queue_max_segments(q).
1da177e4
LT
781 */
782
fcbf6a08 783 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
784
785 if (retried_segments)
fcbf6a08 786 goto failed;
1da177e4
LT
787
788 retried_segments = 1;
789 blk_recount_segments(q, bio);
790 }
791
1da177e4
LT
792 /*
793 * if queue has other restrictions (eg varying max sector size
794 * depending on offset), it can specify a merge_bvec_fn in the
795 * queue to get further control
796 */
797 if (q->merge_bvec_fn) {
cc371e66
AK
798 struct bvec_merge_data bvm = {
799 .bi_bdev = bio->bi_bdev,
4f024f37 800 .bi_sector = bio->bi_iter.bi_sector,
fcbf6a08 801 .bi_size = bio->bi_iter.bi_size - len,
cc371e66
AK
802 .bi_rw = bio->bi_rw,
803 };
804
1da177e4
LT
805 /*
806 * merge_bvec_fn() returns number of bytes it can accept
807 * at this offset
808 */
fcbf6a08
ML
809 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
810 goto failed;
1da177e4
LT
811 }
812
813 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 814 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
815 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
816
80cfd548 817 done:
1da177e4 818 return len;
fcbf6a08
ML
819
820 failed:
821 bvec->bv_page = NULL;
822 bvec->bv_len = 0;
823 bvec->bv_offset = 0;
824 bio->bi_vcnt--;
825 bio->bi_iter.bi_size -= len;
826 blk_recount_segments(q, bio);
827 return 0;
1da177e4
LT
828}
829
6e68af66
MC
830/**
831 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 832 * @q: the target queue
6e68af66
MC
833 * @bio: destination bio
834 * @page: page to add
835 * @len: vec entry length
836 * @offset: vec entry offset
837 *
838 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
839 * number of reasons, such as the bio being full or target block device
840 * limitations. The target block device must allow bio's up to PAGE_SIZE,
841 * so it is always possible to add a single page to an empty bio.
842 *
843 * This should only be used by REQ_PC bios.
6e68af66 844 */
165125e1 845int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
846 unsigned int len, unsigned int offset)
847{
ae03bf63
MP
848 return __bio_add_page(q, bio, page, len, offset,
849 queue_max_hw_sectors(q));
6e68af66 850}
a112a71d 851EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 852
1da177e4
LT
853/**
854 * bio_add_page - attempt to add page to bio
855 * @bio: destination bio
856 * @page: page to add
857 * @len: vec entry length
858 * @offset: vec entry offset
859 *
860 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
861 * number of reasons, such as the bio being full or target block device
862 * limitations. The target block device must allow bio's up to PAGE_SIZE,
863 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
864 */
865int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
866 unsigned int offset)
867{
defd94b7 868 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
58a4915a 869 unsigned int max_sectors;
762380ad 870
58a4915a
JA
871 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
872 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
873 max_sectors = len >> 9;
874
875 return __bio_add_page(q, bio, page, len, offset, max_sectors);
1da177e4 876}
a112a71d 877EXPORT_SYMBOL(bio_add_page);
1da177e4 878
9e882242
KO
879struct submit_bio_ret {
880 struct completion event;
881 int error;
882};
883
884static void submit_bio_wait_endio(struct bio *bio, int error)
885{
886 struct submit_bio_ret *ret = bio->bi_private;
887
888 ret->error = error;
889 complete(&ret->event);
890}
891
892/**
893 * submit_bio_wait - submit a bio, and wait until it completes
894 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
895 * @bio: The &struct bio which describes the I/O
896 *
897 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
898 * bio_endio() on failure.
899 */
900int submit_bio_wait(int rw, struct bio *bio)
901{
902 struct submit_bio_ret ret;
903
904 rw |= REQ_SYNC;
905 init_completion(&ret.event);
906 bio->bi_private = &ret;
907 bio->bi_end_io = submit_bio_wait_endio;
908 submit_bio(rw, bio);
909 wait_for_completion(&ret.event);
910
911 return ret.error;
912}
913EXPORT_SYMBOL(submit_bio_wait);
914
054bdf64
KO
915/**
916 * bio_advance - increment/complete a bio by some number of bytes
917 * @bio: bio to advance
918 * @bytes: number of bytes to complete
919 *
920 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
921 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
922 * be updated on the last bvec as well.
923 *
924 * @bio will then represent the remaining, uncompleted portion of the io.
925 */
926void bio_advance(struct bio *bio, unsigned bytes)
927{
928 if (bio_integrity(bio))
929 bio_integrity_advance(bio, bytes);
930
4550dd6c 931 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
932}
933EXPORT_SYMBOL(bio_advance);
934
a0787606
KO
935/**
936 * bio_alloc_pages - allocates a single page for each bvec in a bio
937 * @bio: bio to allocate pages for
938 * @gfp_mask: flags for allocation
939 *
940 * Allocates pages up to @bio->bi_vcnt.
941 *
942 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
943 * freed.
944 */
945int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
946{
947 int i;
948 struct bio_vec *bv;
949
950 bio_for_each_segment_all(bv, bio, i) {
951 bv->bv_page = alloc_page(gfp_mask);
952 if (!bv->bv_page) {
953 while (--bv >= bio->bi_io_vec)
954 __free_page(bv->bv_page);
955 return -ENOMEM;
956 }
957 }
958
959 return 0;
960}
961EXPORT_SYMBOL(bio_alloc_pages);
962
16ac3d63
KO
963/**
964 * bio_copy_data - copy contents of data buffers from one chain of bios to
965 * another
966 * @src: source bio list
967 * @dst: destination bio list
968 *
969 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
970 * @src and @dst as linked lists of bios.
971 *
972 * Stops when it reaches the end of either @src or @dst - that is, copies
973 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
974 */
975void bio_copy_data(struct bio *dst, struct bio *src)
976{
1cb9dda4
KO
977 struct bvec_iter src_iter, dst_iter;
978 struct bio_vec src_bv, dst_bv;
16ac3d63 979 void *src_p, *dst_p;
1cb9dda4 980 unsigned bytes;
16ac3d63 981
1cb9dda4
KO
982 src_iter = src->bi_iter;
983 dst_iter = dst->bi_iter;
16ac3d63
KO
984
985 while (1) {
1cb9dda4
KO
986 if (!src_iter.bi_size) {
987 src = src->bi_next;
988 if (!src)
989 break;
16ac3d63 990
1cb9dda4 991 src_iter = src->bi_iter;
16ac3d63
KO
992 }
993
1cb9dda4
KO
994 if (!dst_iter.bi_size) {
995 dst = dst->bi_next;
996 if (!dst)
997 break;
16ac3d63 998
1cb9dda4 999 dst_iter = dst->bi_iter;
16ac3d63
KO
1000 }
1001
1cb9dda4
KO
1002 src_bv = bio_iter_iovec(src, src_iter);
1003 dst_bv = bio_iter_iovec(dst, dst_iter);
1004
1005 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1006
1cb9dda4
KO
1007 src_p = kmap_atomic(src_bv.bv_page);
1008 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1009
1cb9dda4
KO
1010 memcpy(dst_p + dst_bv.bv_offset,
1011 src_p + src_bv.bv_offset,
16ac3d63
KO
1012 bytes);
1013
1014 kunmap_atomic(dst_p);
1015 kunmap_atomic(src_p);
1016
1cb9dda4
KO
1017 bio_advance_iter(src, &src_iter, bytes);
1018 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1019 }
1020}
1021EXPORT_SYMBOL(bio_copy_data);
1022
1da177e4 1023struct bio_map_data {
152e283f 1024 int is_our_pages;
26e49cfc
KO
1025 struct iov_iter iter;
1026 struct iovec iov[];
1da177e4
LT
1027};
1028
7410b3c6 1029static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1030 gfp_t gfp_mask)
1da177e4 1031{
f3f63c1c
JA
1032 if (iov_count > UIO_MAXIOV)
1033 return NULL;
1da177e4 1034
c8db4448 1035 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1036 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1037}
1038
26e49cfc
KO
1039static int __bio_copy_iov(struct bio *bio, const struct iov_iter *iter,
1040 int to_user, int from_user)
c5dec1c3
FT
1041{
1042 int ret = 0, i;
1043 struct bio_vec *bvec;
26e49cfc 1044 struct iov_iter iov_iter = *iter;
c5dec1c3 1045
d74c6d51 1046 bio_for_each_segment_all(bvec, bio, i) {
c5dec1c3 1047 char *bv_addr = page_address(bvec->bv_page);
c8db4448 1048 unsigned int bv_len = bvec->bv_len;
c5dec1c3 1049
26e49cfc
KO
1050 while (bv_len && iov_iter.count) {
1051 struct iovec iov = iov_iter_iovec(&iov_iter);
1052 unsigned int bytes = min_t(unsigned int, bv_len,
1053 iov.iov_len);
c5dec1c3
FT
1054
1055 if (!ret) {
ecb554a8 1056 if (to_user)
26e49cfc
KO
1057 ret = copy_to_user(iov.iov_base,
1058 bv_addr, bytes);
c5dec1c3 1059
ecb554a8 1060 if (from_user)
26e49cfc
KO
1061 ret = copy_from_user(bv_addr,
1062 iov.iov_base,
ecb554a8
FT
1063 bytes);
1064
c5dec1c3
FT
1065 if (ret)
1066 ret = -EFAULT;
1067 }
1068
1069 bv_len -= bytes;
1070 bv_addr += bytes;
26e49cfc 1071 iov_iter_advance(&iov_iter, bytes);
c5dec1c3 1072 }
c5dec1c3
FT
1073 }
1074
1075 return ret;
1076}
1077
1dfa0f68
CH
1078static void bio_free_pages(struct bio *bio)
1079{
1080 struct bio_vec *bvec;
1081 int i;
1082
1083 bio_for_each_segment_all(bvec, bio, i)
1084 __free_page(bvec->bv_page);
1085}
1086
1da177e4
LT
1087/**
1088 * bio_uncopy_user - finish previously mapped bio
1089 * @bio: bio being terminated
1090 *
ddad8dd0 1091 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1092 * to user space in case of a read.
1093 */
1094int bio_uncopy_user(struct bio *bio)
1095{
1096 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1097 int ret = 0;
1da177e4 1098
35dc2483
RD
1099 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1100 /*
1101 * if we're in a workqueue, the request is orphaned, so
1102 * don't copy into a random user address space, just free.
1103 */
1104 if (current->mm)
26e49cfc 1105 ret = __bio_copy_iov(bio, &bmd->iter,
1dfa0f68
CH
1106 bio_data_dir(bio) == READ, 0);
1107 if (bmd->is_our_pages)
1108 bio_free_pages(bio);
35dc2483 1109 }
c8db4448 1110 kfree(bmd);
1da177e4
LT
1111 bio_put(bio);
1112 return ret;
1113}
a112a71d 1114EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1115
1116/**
c5dec1c3 1117 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1118 * @q: destination block queue
1119 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1120 * @iter: iovec iterator
1121 * @gfp_mask: memory allocation flags
1da177e4
LT
1122 *
1123 * Prepares and returns a bio for indirect user io, bouncing data
1124 * to/from kernel pages as necessary. Must be paired with
1125 * call bio_uncopy_user() on io completion.
1126 */
152e283f
FT
1127struct bio *bio_copy_user_iov(struct request_queue *q,
1128 struct rq_map_data *map_data,
26e49cfc
KO
1129 const struct iov_iter *iter,
1130 gfp_t gfp_mask)
1da177e4 1131{
1da177e4 1132 struct bio_map_data *bmd;
1da177e4
LT
1133 struct page *page;
1134 struct bio *bio;
1135 int i, ret;
c5dec1c3 1136 int nr_pages = 0;
26e49cfc 1137 unsigned int len = iter->count;
56c451f4 1138 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1139
26e49cfc 1140 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1141 unsigned long uaddr;
1142 unsigned long end;
1143 unsigned long start;
1144
26e49cfc
KO
1145 uaddr = (unsigned long) iter->iov[i].iov_base;
1146 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1147 >> PAGE_SHIFT;
c5dec1c3
FT
1148 start = uaddr >> PAGE_SHIFT;
1149
cb4644ca
JA
1150 /*
1151 * Overflow, abort
1152 */
1153 if (end < start)
1154 return ERR_PTR(-EINVAL);
1155
c5dec1c3 1156 nr_pages += end - start;
c5dec1c3
FT
1157 }
1158
69838727
FT
1159 if (offset)
1160 nr_pages++;
1161
26e49cfc 1162 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1163 if (!bmd)
1164 return ERR_PTR(-ENOMEM);
1165
26e49cfc
KO
1166 /*
1167 * We need to do a deep copy of the iov_iter including the iovecs.
1168 * The caller provided iov might point to an on-stack or otherwise
1169 * shortlived one.
1170 */
1171 bmd->is_our_pages = map_data ? 0 : 1;
1172 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1173 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1174 iter->nr_segs, iter->count);
1175
1da177e4 1176 ret = -ENOMEM;
a9e9dc24 1177 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1178 if (!bio)
1179 goto out_bmd;
1180
26e49cfc 1181 if (iter->type & WRITE)
7b6d91da 1182 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1183
1184 ret = 0;
56c451f4
FT
1185
1186 if (map_data) {
e623ddb4 1187 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1188 i = map_data->offset / PAGE_SIZE;
1189 }
1da177e4 1190 while (len) {
e623ddb4 1191 unsigned int bytes = PAGE_SIZE;
1da177e4 1192
56c451f4
FT
1193 bytes -= offset;
1194
1da177e4
LT
1195 if (bytes > len)
1196 bytes = len;
1197
152e283f 1198 if (map_data) {
e623ddb4 1199 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1200 ret = -ENOMEM;
1201 break;
1202 }
e623ddb4
FT
1203
1204 page = map_data->pages[i / nr_pages];
1205 page += (i % nr_pages);
1206
1207 i++;
1208 } else {
152e283f 1209 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1210 if (!page) {
1211 ret = -ENOMEM;
1212 break;
1213 }
1da177e4
LT
1214 }
1215
56c451f4 1216 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1217 break;
1da177e4
LT
1218
1219 len -= bytes;
56c451f4 1220 offset = 0;
1da177e4
LT
1221 }
1222
1223 if (ret)
1224 goto cleanup;
1225
1226 /*
1227 * success
1228 */
26e49cfc 1229 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1230 (map_data && map_data->from_user)) {
26e49cfc 1231 ret = __bio_copy_iov(bio, iter, 0, 1);
c5dec1c3
FT
1232 if (ret)
1233 goto cleanup;
1da177e4
LT
1234 }
1235
26e49cfc 1236 bio->bi_private = bmd;
1da177e4
LT
1237 return bio;
1238cleanup:
152e283f 1239 if (!map_data)
1dfa0f68 1240 bio_free_pages(bio);
1da177e4
LT
1241 bio_put(bio);
1242out_bmd:
c8db4448 1243 kfree(bmd);
1da177e4
LT
1244 return ERR_PTR(ret);
1245}
1246
37f19e57
CH
1247/**
1248 * bio_map_user_iov - map user iovec into bio
1249 * @q: the struct request_queue for the bio
1250 * @iter: iovec iterator
1251 * @gfp_mask: memory allocation flags
1252 *
1253 * Map the user space address into a bio suitable for io to a block
1254 * device. Returns an error pointer in case of error.
1255 */
1256struct bio *bio_map_user_iov(struct request_queue *q,
1257 const struct iov_iter *iter,
1258 gfp_t gfp_mask)
1da177e4 1259{
26e49cfc 1260 int j;
f1970baf 1261 int nr_pages = 0;
1da177e4
LT
1262 struct page **pages;
1263 struct bio *bio;
f1970baf
JB
1264 int cur_page = 0;
1265 int ret, offset;
26e49cfc
KO
1266 struct iov_iter i;
1267 struct iovec iov;
1da177e4 1268
26e49cfc
KO
1269 iov_for_each(iov, i, *iter) {
1270 unsigned long uaddr = (unsigned long) iov.iov_base;
1271 unsigned long len = iov.iov_len;
f1970baf
JB
1272 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1273 unsigned long start = uaddr >> PAGE_SHIFT;
1274
cb4644ca
JA
1275 /*
1276 * Overflow, abort
1277 */
1278 if (end < start)
1279 return ERR_PTR(-EINVAL);
1280
f1970baf
JB
1281 nr_pages += end - start;
1282 /*
ad2d7225 1283 * buffer must be aligned to at least hardsector size for now
f1970baf 1284 */
ad2d7225 1285 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1286 return ERR_PTR(-EINVAL);
1287 }
1288
1289 if (!nr_pages)
1da177e4
LT
1290 return ERR_PTR(-EINVAL);
1291
a9e9dc24 1292 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1293 if (!bio)
1294 return ERR_PTR(-ENOMEM);
1295
1296 ret = -ENOMEM;
a3bce90e 1297 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1298 if (!pages)
1299 goto out;
1300
26e49cfc
KO
1301 iov_for_each(iov, i, *iter) {
1302 unsigned long uaddr = (unsigned long) iov.iov_base;
1303 unsigned long len = iov.iov_len;
f1970baf
JB
1304 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1305 unsigned long start = uaddr >> PAGE_SHIFT;
1306 const int local_nr_pages = end - start;
1307 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1308
f5dd33c4 1309 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1310 (iter->type & WRITE) != WRITE,
1311 &pages[cur_page]);
99172157
JA
1312 if (ret < local_nr_pages) {
1313 ret = -EFAULT;
f1970baf 1314 goto out_unmap;
99172157 1315 }
f1970baf
JB
1316
1317 offset = uaddr & ~PAGE_MASK;
1318 for (j = cur_page; j < page_limit; j++) {
1319 unsigned int bytes = PAGE_SIZE - offset;
1320
1321 if (len <= 0)
1322 break;
1323
1324 if (bytes > len)
1325 bytes = len;
1326
1327 /*
1328 * sorry...
1329 */
defd94b7
MC
1330 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1331 bytes)
f1970baf
JB
1332 break;
1333
1334 len -= bytes;
1335 offset = 0;
1336 }
1da177e4 1337
f1970baf 1338 cur_page = j;
1da177e4 1339 /*
f1970baf 1340 * release the pages we didn't map into the bio, if any
1da177e4 1341 */
f1970baf
JB
1342 while (j < page_limit)
1343 page_cache_release(pages[j++]);
1da177e4
LT
1344 }
1345
1da177e4
LT
1346 kfree(pages);
1347
1348 /*
1349 * set data direction, and check if mapped pages need bouncing
1350 */
26e49cfc 1351 if (iter->type & WRITE)
7b6d91da 1352 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1353
1354 bio->bi_flags |= (1 << BIO_USER_MAPPED);
37f19e57
CH
1355
1356 /*
1357 * subtle -- if __bio_map_user() ended up bouncing a bio,
1358 * it would normally disappear when its bi_end_io is run.
1359 * however, we need it for the unmap, so grab an extra
1360 * reference to it
1361 */
1362 bio_get(bio);
1da177e4 1363 return bio;
f1970baf
JB
1364
1365 out_unmap:
26e49cfc
KO
1366 for (j = 0; j < nr_pages; j++) {
1367 if (!pages[j])
f1970baf 1368 break;
26e49cfc 1369 page_cache_release(pages[j]);
f1970baf
JB
1370 }
1371 out:
1da177e4
LT
1372 kfree(pages);
1373 bio_put(bio);
1374 return ERR_PTR(ret);
1375}
1376
1da177e4
LT
1377static void __bio_unmap_user(struct bio *bio)
1378{
1379 struct bio_vec *bvec;
1380 int i;
1381
1382 /*
1383 * make sure we dirty pages we wrote to
1384 */
d74c6d51 1385 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1386 if (bio_data_dir(bio) == READ)
1387 set_page_dirty_lock(bvec->bv_page);
1388
1389 page_cache_release(bvec->bv_page);
1390 }
1391
1392 bio_put(bio);
1393}
1394
1395/**
1396 * bio_unmap_user - unmap a bio
1397 * @bio: the bio being unmapped
1398 *
1399 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1400 * a process context.
1401 *
1402 * bio_unmap_user() may sleep.
1403 */
1404void bio_unmap_user(struct bio *bio)
1405{
1406 __bio_unmap_user(bio);
1407 bio_put(bio);
1408}
a112a71d 1409EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1410
6712ecf8 1411static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1412{
b823825e 1413 bio_put(bio);
b823825e
JA
1414}
1415
75c72b83
CH
1416/**
1417 * bio_map_kern - map kernel address into bio
1418 * @q: the struct request_queue for the bio
1419 * @data: pointer to buffer to map
1420 * @len: length in bytes
1421 * @gfp_mask: allocation flags for bio allocation
1422 *
1423 * Map the kernel address into a bio suitable for io to a block
1424 * device. Returns an error pointer in case of error.
1425 */
1426struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1427 gfp_t gfp_mask)
df46b9a4
MC
1428{
1429 unsigned long kaddr = (unsigned long)data;
1430 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1431 unsigned long start = kaddr >> PAGE_SHIFT;
1432 const int nr_pages = end - start;
1433 int offset, i;
1434 struct bio *bio;
1435
a9e9dc24 1436 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1437 if (!bio)
1438 return ERR_PTR(-ENOMEM);
1439
1440 offset = offset_in_page(kaddr);
1441 for (i = 0; i < nr_pages; i++) {
1442 unsigned int bytes = PAGE_SIZE - offset;
1443
1444 if (len <= 0)
1445 break;
1446
1447 if (bytes > len)
1448 bytes = len;
1449
defd94b7 1450 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1451 offset) < bytes) {
1452 /* we don't support partial mappings */
1453 bio_put(bio);
1454 return ERR_PTR(-EINVAL);
1455 }
df46b9a4
MC
1456
1457 data += bytes;
1458 len -= bytes;
1459 offset = 0;
1460 }
1461
b823825e 1462 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1463 return bio;
1464}
a112a71d 1465EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1466
68154e90
FT
1467static void bio_copy_kern_endio(struct bio *bio, int err)
1468{
1dfa0f68
CH
1469 bio_free_pages(bio);
1470 bio_put(bio);
1471}
1472
1473static void bio_copy_kern_endio_read(struct bio *bio, int err)
1474{
42d2683a 1475 char *p = bio->bi_private;
1dfa0f68 1476 struct bio_vec *bvec;
68154e90
FT
1477 int i;
1478
d74c6d51 1479 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1480 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1481 p += bvec->bv_len;
68154e90
FT
1482 }
1483
1dfa0f68 1484 bio_copy_kern_endio(bio, err);
68154e90
FT
1485}
1486
1487/**
1488 * bio_copy_kern - copy kernel address into bio
1489 * @q: the struct request_queue for the bio
1490 * @data: pointer to buffer to copy
1491 * @len: length in bytes
1492 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1493 * @reading: data direction is READ
68154e90
FT
1494 *
1495 * copy the kernel address into a bio suitable for io to a block
1496 * device. Returns an error pointer in case of error.
1497 */
1498struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1499 gfp_t gfp_mask, int reading)
1500{
42d2683a
CH
1501 unsigned long kaddr = (unsigned long)data;
1502 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1504 struct bio *bio;
1505 void *p = data;
1dfa0f68 1506 int nr_pages = 0;
68154e90 1507
42d2683a
CH
1508 /*
1509 * Overflow, abort
1510 */
1511 if (end < start)
1512 return ERR_PTR(-EINVAL);
68154e90 1513
42d2683a
CH
1514 nr_pages = end - start;
1515 bio = bio_kmalloc(gfp_mask, nr_pages);
1516 if (!bio)
1517 return ERR_PTR(-ENOMEM);
68154e90 1518
42d2683a
CH
1519 while (len) {
1520 struct page *page;
1521 unsigned int bytes = PAGE_SIZE;
68154e90 1522
42d2683a
CH
1523 if (bytes > len)
1524 bytes = len;
1525
1526 page = alloc_page(q->bounce_gfp | gfp_mask);
1527 if (!page)
1528 goto cleanup;
1529
1530 if (!reading)
1531 memcpy(page_address(page), p, bytes);
1532
1533 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1534 break;
1535
1536 len -= bytes;
1537 p += bytes;
68154e90
FT
1538 }
1539
1dfa0f68
CH
1540 if (reading) {
1541 bio->bi_end_io = bio_copy_kern_endio_read;
1542 bio->bi_private = data;
1543 } else {
1544 bio->bi_end_io = bio_copy_kern_endio;
42d2683a 1545 bio->bi_rw |= REQ_WRITE;
1dfa0f68 1546 }
76029ff3 1547
68154e90 1548 return bio;
42d2683a
CH
1549
1550cleanup:
1dfa0f68 1551 bio_free_pages(bio);
42d2683a
CH
1552 bio_put(bio);
1553 return ERR_PTR(-ENOMEM);
68154e90 1554}
a112a71d 1555EXPORT_SYMBOL(bio_copy_kern);
68154e90 1556
1da177e4
LT
1557/*
1558 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1559 * for performing direct-IO in BIOs.
1560 *
1561 * The problem is that we cannot run set_page_dirty() from interrupt context
1562 * because the required locks are not interrupt-safe. So what we can do is to
1563 * mark the pages dirty _before_ performing IO. And in interrupt context,
1564 * check that the pages are still dirty. If so, fine. If not, redirty them
1565 * in process context.
1566 *
1567 * We special-case compound pages here: normally this means reads into hugetlb
1568 * pages. The logic in here doesn't really work right for compound pages
1569 * because the VM does not uniformly chase down the head page in all cases.
1570 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1571 * handle them at all. So we skip compound pages here at an early stage.
1572 *
1573 * Note that this code is very hard to test under normal circumstances because
1574 * direct-io pins the pages with get_user_pages(). This makes
1575 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1576 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1577 * pagecache.
1578 *
1579 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1580 * deferred bio dirtying paths.
1581 */
1582
1583/*
1584 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1585 */
1586void bio_set_pages_dirty(struct bio *bio)
1587{
cb34e057 1588 struct bio_vec *bvec;
1da177e4
LT
1589 int i;
1590
cb34e057
KO
1591 bio_for_each_segment_all(bvec, bio, i) {
1592 struct page *page = bvec->bv_page;
1da177e4
LT
1593
1594 if (page && !PageCompound(page))
1595 set_page_dirty_lock(page);
1596 }
1597}
1598
86b6c7a7 1599static void bio_release_pages(struct bio *bio)
1da177e4 1600{
cb34e057 1601 struct bio_vec *bvec;
1da177e4
LT
1602 int i;
1603
cb34e057
KO
1604 bio_for_each_segment_all(bvec, bio, i) {
1605 struct page *page = bvec->bv_page;
1da177e4
LT
1606
1607 if (page)
1608 put_page(page);
1609 }
1610}
1611
1612/*
1613 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1614 * If they are, then fine. If, however, some pages are clean then they must
1615 * have been written out during the direct-IO read. So we take another ref on
1616 * the BIO and the offending pages and re-dirty the pages in process context.
1617 *
1618 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1619 * here on. It will run one page_cache_release() against each page and will
1620 * run one bio_put() against the BIO.
1621 */
1622
65f27f38 1623static void bio_dirty_fn(struct work_struct *work);
1da177e4 1624
65f27f38 1625static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1626static DEFINE_SPINLOCK(bio_dirty_lock);
1627static struct bio *bio_dirty_list;
1628
1629/*
1630 * This runs in process context
1631 */
65f27f38 1632static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1633{
1634 unsigned long flags;
1635 struct bio *bio;
1636
1637 spin_lock_irqsave(&bio_dirty_lock, flags);
1638 bio = bio_dirty_list;
1639 bio_dirty_list = NULL;
1640 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1641
1642 while (bio) {
1643 struct bio *next = bio->bi_private;
1644
1645 bio_set_pages_dirty(bio);
1646 bio_release_pages(bio);
1647 bio_put(bio);
1648 bio = next;
1649 }
1650}
1651
1652void bio_check_pages_dirty(struct bio *bio)
1653{
cb34e057 1654 struct bio_vec *bvec;
1da177e4
LT
1655 int nr_clean_pages = 0;
1656 int i;
1657
cb34e057
KO
1658 bio_for_each_segment_all(bvec, bio, i) {
1659 struct page *page = bvec->bv_page;
1da177e4
LT
1660
1661 if (PageDirty(page) || PageCompound(page)) {
1662 page_cache_release(page);
cb34e057 1663 bvec->bv_page = NULL;
1da177e4
LT
1664 } else {
1665 nr_clean_pages++;
1666 }
1667 }
1668
1669 if (nr_clean_pages) {
1670 unsigned long flags;
1671
1672 spin_lock_irqsave(&bio_dirty_lock, flags);
1673 bio->bi_private = bio_dirty_list;
1674 bio_dirty_list = bio;
1675 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1676 schedule_work(&bio_dirty_work);
1677 } else {
1678 bio_put(bio);
1679 }
1680}
1681
394ffa50
GZ
1682void generic_start_io_acct(int rw, unsigned long sectors,
1683 struct hd_struct *part)
1684{
1685 int cpu = part_stat_lock();
1686
1687 part_round_stats(cpu, part);
1688 part_stat_inc(cpu, part, ios[rw]);
1689 part_stat_add(cpu, part, sectors[rw], sectors);
1690 part_inc_in_flight(part, rw);
1691
1692 part_stat_unlock();
1693}
1694EXPORT_SYMBOL(generic_start_io_acct);
1695
1696void generic_end_io_acct(int rw, struct hd_struct *part,
1697 unsigned long start_time)
1698{
1699 unsigned long duration = jiffies - start_time;
1700 int cpu = part_stat_lock();
1701
1702 part_stat_add(cpu, part, ticks[rw], duration);
1703 part_round_stats(cpu, part);
1704 part_dec_in_flight(part, rw);
1705
1706 part_stat_unlock();
1707}
1708EXPORT_SYMBOL(generic_end_io_acct);
1709
2d4dc890
IL
1710#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1711void bio_flush_dcache_pages(struct bio *bi)
1712{
7988613b
KO
1713 struct bio_vec bvec;
1714 struct bvec_iter iter;
2d4dc890 1715
7988613b
KO
1716 bio_for_each_segment(bvec, bi, iter)
1717 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1718}
1719EXPORT_SYMBOL(bio_flush_dcache_pages);
1720#endif
1721
1da177e4
LT
1722/**
1723 * bio_endio - end I/O on a bio
1724 * @bio: bio
1da177e4
LT
1725 * @error: error, if any
1726 *
1727 * Description:
6712ecf8 1728 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1729 * preferred way to end I/O on a bio, it takes care of clearing
1730 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1731 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1732 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1733 * bio unless they own it and thus know that it has an end_io
1734 * function.
1da177e4 1735 **/
6712ecf8 1736void bio_endio(struct bio *bio, int error)
1da177e4 1737{
196d38bc
KO
1738 while (bio) {
1739 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1740
1741 if (error)
1742 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1743 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1744 error = -EIO;
1745
1746 if (!atomic_dec_and_test(&bio->bi_remaining))
1747 return;
1da177e4 1748
196d38bc
KO
1749 /*
1750 * Need to have a real endio function for chained bios,
1751 * otherwise various corner cases will break (like stacking
1752 * block devices that save/restore bi_end_io) - however, we want
1753 * to avoid unbounded recursion and blowing the stack. Tail call
1754 * optimization would handle this, but compiling with frame
1755 * pointers also disables gcc's sibling call optimization.
1756 */
1757 if (bio->bi_end_io == bio_chain_endio) {
1758 struct bio *parent = bio->bi_private;
1759 bio_put(bio);
1760 bio = parent;
1761 } else {
1762 if (bio->bi_end_io)
1763 bio->bi_end_io(bio, error);
1764 bio = NULL;
1765 }
1766 }
1da177e4 1767}
a112a71d 1768EXPORT_SYMBOL(bio_endio);
1da177e4 1769
196d38bc
KO
1770/**
1771 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1772 * @bio: bio
1773 * @error: error, if any
1774 *
1775 * For code that has saved and restored bi_end_io; thing hard before using this
1776 * function, probably you should've cloned the entire bio.
1777 **/
1778void bio_endio_nodec(struct bio *bio, int error)
1779{
1780 atomic_inc(&bio->bi_remaining);
1781 bio_endio(bio, error);
1782}
1783EXPORT_SYMBOL(bio_endio_nodec);
1784
20d0189b
KO
1785/**
1786 * bio_split - split a bio
1787 * @bio: bio to split
1788 * @sectors: number of sectors to split from the front of @bio
1789 * @gfp: gfp mask
1790 * @bs: bio set to allocate from
1791 *
1792 * Allocates and returns a new bio which represents @sectors from the start of
1793 * @bio, and updates @bio to represent the remaining sectors.
1794 *
1795 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1796 * responsibility to ensure that @bio is not freed before the split.
1797 */
1798struct bio *bio_split(struct bio *bio, int sectors,
1799 gfp_t gfp, struct bio_set *bs)
1800{
1801 struct bio *split = NULL;
1802
1803 BUG_ON(sectors <= 0);
1804 BUG_ON(sectors >= bio_sectors(bio));
1805
1806 split = bio_clone_fast(bio, gfp, bs);
1807 if (!split)
1808 return NULL;
1809
1810 split->bi_iter.bi_size = sectors << 9;
1811
1812 if (bio_integrity(split))
1813 bio_integrity_trim(split, 0, sectors);
1814
1815 bio_advance(bio, split->bi_iter.bi_size);
1816
1817 return split;
1818}
1819EXPORT_SYMBOL(bio_split);
1820
6678d83f
KO
1821/**
1822 * bio_trim - trim a bio
1823 * @bio: bio to trim
1824 * @offset: number of sectors to trim from the front of @bio
1825 * @size: size we want to trim @bio to, in sectors
1826 */
1827void bio_trim(struct bio *bio, int offset, int size)
1828{
1829 /* 'bio' is a cloned bio which we need to trim to match
1830 * the given offset and size.
6678d83f 1831 */
6678d83f
KO
1832
1833 size <<= 9;
4f024f37 1834 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1835 return;
1836
1837 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1838
1839 bio_advance(bio, offset << 9);
1840
4f024f37 1841 bio->bi_iter.bi_size = size;
6678d83f
KO
1842}
1843EXPORT_SYMBOL_GPL(bio_trim);
1844
1da177e4
LT
1845/*
1846 * create memory pools for biovec's in a bio_set.
1847 * use the global biovec slabs created for general use.
1848 */
a6c39cb4 1849mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1850{
7ff9345f 1851 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1852
9f060e22 1853 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1854}
1855
1856void bioset_free(struct bio_set *bs)
1857{
df2cb6da
KO
1858 if (bs->rescue_workqueue)
1859 destroy_workqueue(bs->rescue_workqueue);
1860
1da177e4
LT
1861 if (bs->bio_pool)
1862 mempool_destroy(bs->bio_pool);
1863
9f060e22
KO
1864 if (bs->bvec_pool)
1865 mempool_destroy(bs->bvec_pool);
1866
7878cba9 1867 bioset_integrity_free(bs);
bb799ca0 1868 bio_put_slab(bs);
1da177e4
LT
1869
1870 kfree(bs);
1871}
a112a71d 1872EXPORT_SYMBOL(bioset_free);
1da177e4 1873
d8f429e1
JN
1874static struct bio_set *__bioset_create(unsigned int pool_size,
1875 unsigned int front_pad,
1876 bool create_bvec_pool)
1da177e4 1877{
392ddc32 1878 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1879 struct bio_set *bs;
1da177e4 1880
1b434498 1881 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1882 if (!bs)
1883 return NULL;
1884
bb799ca0 1885 bs->front_pad = front_pad;
1b434498 1886
df2cb6da
KO
1887 spin_lock_init(&bs->rescue_lock);
1888 bio_list_init(&bs->rescue_list);
1889 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1890
392ddc32 1891 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1892 if (!bs->bio_slab) {
1893 kfree(bs);
1894 return NULL;
1895 }
1896
1897 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1898 if (!bs->bio_pool)
1899 goto bad;
1900
d8f429e1
JN
1901 if (create_bvec_pool) {
1902 bs->bvec_pool = biovec_create_pool(pool_size);
1903 if (!bs->bvec_pool)
1904 goto bad;
1905 }
df2cb6da
KO
1906
1907 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1908 if (!bs->rescue_workqueue)
1909 goto bad;
1da177e4 1910
df2cb6da 1911 return bs;
1da177e4
LT
1912bad:
1913 bioset_free(bs);
1914 return NULL;
1915}
d8f429e1
JN
1916
1917/**
1918 * bioset_create - Create a bio_set
1919 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1920 * @front_pad: Number of bytes to allocate in front of the returned bio
1921 *
1922 * Description:
1923 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1924 * to ask for a number of bytes to be allocated in front of the bio.
1925 * Front pad allocation is useful for embedding the bio inside
1926 * another structure, to avoid allocating extra data to go with the bio.
1927 * Note that the bio must be embedded at the END of that structure always,
1928 * or things will break badly.
1929 */
1930struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1931{
1932 return __bioset_create(pool_size, front_pad, true);
1933}
a112a71d 1934EXPORT_SYMBOL(bioset_create);
1da177e4 1935
d8f429e1
JN
1936/**
1937 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1938 * @pool_size: Number of bio to cache in the mempool
1939 * @front_pad: Number of bytes to allocate in front of the returned bio
1940 *
1941 * Description:
1942 * Same functionality as bioset_create() except that mempool is not
1943 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1944 */
1945struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1946{
1947 return __bioset_create(pool_size, front_pad, false);
1948}
1949EXPORT_SYMBOL(bioset_create_nobvec);
1950
852c788f
TH
1951#ifdef CONFIG_BLK_CGROUP
1952/**
1953 * bio_associate_current - associate a bio with %current
1954 * @bio: target bio
1955 *
1956 * Associate @bio with %current if it hasn't been associated yet. Block
1957 * layer will treat @bio as if it were issued by %current no matter which
1958 * task actually issues it.
1959 *
1960 * This function takes an extra reference of @task's io_context and blkcg
1961 * which will be put when @bio is released. The caller must own @bio,
1962 * ensure %current->io_context exists, and is responsible for synchronizing
1963 * calls to this function.
1964 */
1965int bio_associate_current(struct bio *bio)
1966{
1967 struct io_context *ioc;
1968 struct cgroup_subsys_state *css;
1969
1970 if (bio->bi_ioc)
1971 return -EBUSY;
1972
1973 ioc = current->io_context;
1974 if (!ioc)
1975 return -ENOENT;
1976
1977 /* acquire active ref on @ioc and associate */
1978 get_io_context_active(ioc);
1979 bio->bi_ioc = ioc;
1980
1981 /* associate blkcg if exists */
1982 rcu_read_lock();
073219e9 1983 css = task_css(current, blkio_cgrp_id);
ec903c0c 1984 if (css && css_tryget_online(css))
852c788f
TH
1985 bio->bi_css = css;
1986 rcu_read_unlock();
1987
1988 return 0;
1989}
1990
1991/**
1992 * bio_disassociate_task - undo bio_associate_current()
1993 * @bio: target bio
1994 */
1995void bio_disassociate_task(struct bio *bio)
1996{
1997 if (bio->bi_ioc) {
1998 put_io_context(bio->bi_ioc);
1999 bio->bi_ioc = NULL;
2000 }
2001 if (bio->bi_css) {
2002 css_put(bio->bi_css);
2003 bio->bi_css = NULL;
2004 }
2005}
2006
2007#endif /* CONFIG_BLK_CGROUP */
2008
1da177e4
LT
2009static void __init biovec_init_slabs(void)
2010{
2011 int i;
2012
2013 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2014 int size;
2015 struct biovec_slab *bvs = bvec_slabs + i;
2016
a7fcd37c
JA
2017 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2018 bvs->slab = NULL;
2019 continue;
2020 }
a7fcd37c 2021
1da177e4
LT
2022 size = bvs->nr_vecs * sizeof(struct bio_vec);
2023 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2024 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2025 }
2026}
2027
2028static int __init init_bio(void)
2029{
bb799ca0
JA
2030 bio_slab_max = 2;
2031 bio_slab_nr = 0;
2032 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2033 if (!bio_slabs)
2034 panic("bio: can't allocate bios\n");
1da177e4 2035
7878cba9 2036 bio_integrity_init();
1da177e4
LT
2037 biovec_init_slabs();
2038
bb799ca0 2039 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2040 if (!fs_bio_set)
2041 panic("bio: can't allocate bios\n");
2042
a91a2785
MP
2043 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2044 panic("bio: can't create integrity pool\n");
2045
1da177e4
LT
2046 return 0;
2047}
1da177e4 2048subsys_initcall(init_bio);