]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bio.c
block_dev: get rid of blksize bits calculation
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 46static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
3f86a82a 56EXPORT_SYMBOL(fs_bio_set);
1da177e4 57
bb799ca0
JA
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
389d7b26 75 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 76 unsigned int new_bio_slab_max;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 99 new_bio_slab_max = bio_slab_max << 1;
389d7b26 100 new_bio_slabs = krealloc(bio_slabs,
386bc35a 101 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
386bc35a 105 bio_slab_max = new_bio_slab_max;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 162{
ed996a52
CH
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 168
ed996a52 169 if (idx == BVEC_POOL_MAX) {
9f060e22 170 mempool_free(bv, pool);
ed996a52 171 } else {
bb799ca0
JA
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176}
177
9f060e22
KO
178struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
1da177e4
LT
180{
181 struct bio_vec *bvl;
1da177e4 182
7ff9345f
JA
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
ed996a52 213 if (*idx == BVEC_POOL_MAX) {
7ff9345f 214fallback:
9f060e22 215 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 219
0a0d96b0 220 /*
7ff9345f
JA
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
0a0d96b0 224 */
7ff9345f 225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 226
0a0d96b0 227 /*
d0164adc 228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 229 * is set, retry with the 1-entry mempool
0a0d96b0 230 */
7ff9345f 231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 233 *idx = BVEC_POOL_MAX;
7ff9345f
JA
234 goto fallback;
235 }
236 }
237
ed996a52 238 (*idx)++;
1da177e4
LT
239 return bvl;
240}
241
4254bba1 242static void __bio_free(struct bio *bio)
1da177e4 243{
4254bba1 244 bio_disassociate_task(bio);
1da177e4 245
7ba1ba12 246 if (bio_integrity(bio))
1e2a410f 247 bio_integrity_free(bio);
4254bba1 248}
7ba1ba12 249
4254bba1
KO
250static void bio_free(struct bio *bio)
251{
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
ed996a52 258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
bb799ca0
JA
264 p -= bs->front_pad;
265
4254bba1
KO
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
3676347a
PO
271}
272
858119e1 273void bio_init(struct bio *bio)
1da177e4 274{
2b94de55 275 memset(bio, 0, sizeof(*bio));
c4cf5261 276 atomic_set(&bio->__bi_remaining, 1);
dac56212 277 atomic_set(&bio->__bi_cnt, 1);
1da177e4 278}
a112a71d 279EXPORT_SYMBOL(bio_init);
1da177e4 280
f44b48c7
KO
281/**
282 * bio_reset - reinitialize a bio
283 * @bio: bio to reset
284 *
285 * Description:
286 * After calling bio_reset(), @bio will be in the same state as a freshly
287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
288 * preserved are the ones that are initialized by bio_alloc_bioset(). See
289 * comment in struct bio.
290 */
291void bio_reset(struct bio *bio)
292{
293 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294
4254bba1 295 __bio_free(bio);
f44b48c7
KO
296
297 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 298 bio->bi_flags = flags;
c4cf5261 299 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
300}
301EXPORT_SYMBOL(bio_reset);
302
38f8baae 303static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 304{
4246a0b6
CH
305 struct bio *parent = bio->bi_private;
306
af3e3a52
CH
307 if (!parent->bi_error)
308 parent->bi_error = bio->bi_error;
196d38bc 309 bio_put(bio);
38f8baae
CH
310 return parent;
311}
312
313static void bio_chain_endio(struct bio *bio)
314{
315 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
316}
317
318/**
319 * bio_chain - chain bio completions
1051a902
RD
320 * @bio: the target bio
321 * @parent: the @bio's parent bio
196d38bc
KO
322 *
323 * The caller won't have a bi_end_io called when @bio completes - instead,
324 * @parent's bi_end_io won't be called until both @parent and @bio have
325 * completed; the chained bio will also be freed when it completes.
326 *
327 * The caller must not set bi_private or bi_end_io in @bio.
328 */
329void bio_chain(struct bio *bio, struct bio *parent)
330{
331 BUG_ON(bio->bi_private || bio->bi_end_io);
332
333 bio->bi_private = parent;
334 bio->bi_end_io = bio_chain_endio;
c4cf5261 335 bio_inc_remaining(parent);
196d38bc
KO
336}
337EXPORT_SYMBOL(bio_chain);
338
df2cb6da
KO
339static void bio_alloc_rescue(struct work_struct *work)
340{
341 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 struct bio *bio;
343
344 while (1) {
345 spin_lock(&bs->rescue_lock);
346 bio = bio_list_pop(&bs->rescue_list);
347 spin_unlock(&bs->rescue_lock);
348
349 if (!bio)
350 break;
351
352 generic_make_request(bio);
353 }
354}
355
356static void punt_bios_to_rescuer(struct bio_set *bs)
357{
358 struct bio_list punt, nopunt;
359 struct bio *bio;
360
361 /*
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
367 *
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
370 */
371
372 bio_list_init(&punt);
373 bio_list_init(&nopunt);
374
375 while ((bio = bio_list_pop(current->bio_list)))
376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377
378 *current->bio_list = nopunt;
379
380 spin_lock(&bs->rescue_lock);
381 bio_list_merge(&bs->rescue_list, &punt);
382 spin_unlock(&bs->rescue_lock);
383
384 queue_work(bs->rescue_workqueue, &bs->rescue_work);
385}
386
1da177e4
LT
387/**
388 * bio_alloc_bioset - allocate a bio for I/O
389 * @gfp_mask: the GFP_ mask given to the slab allocator
390 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 391 * @bs: the bio_set to allocate from.
1da177e4
LT
392 *
393 * Description:
3f86a82a
KO
394 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
395 * backed by the @bs's mempool.
396 *
d0164adc
MG
397 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
398 * always be able to allocate a bio. This is due to the mempool guarantees.
399 * To make this work, callers must never allocate more than 1 bio at a time
400 * from this pool. Callers that need to allocate more than 1 bio must always
401 * submit the previously allocated bio for IO before attempting to allocate
402 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 403 *
df2cb6da
KO
404 * Note that when running under generic_make_request() (i.e. any block
405 * driver), bios are not submitted until after you return - see the code in
406 * generic_make_request() that converts recursion into iteration, to prevent
407 * stack overflows.
408 *
409 * This would normally mean allocating multiple bios under
410 * generic_make_request() would be susceptible to deadlocks, but we have
411 * deadlock avoidance code that resubmits any blocked bios from a rescuer
412 * thread.
413 *
414 * However, we do not guarantee forward progress for allocations from other
415 * mempools. Doing multiple allocations from the same mempool under
416 * generic_make_request() should be avoided - instead, use bio_set's front_pad
417 * for per bio allocations.
418 *
3f86a82a
KO
419 * RETURNS:
420 * Pointer to new bio on success, NULL on failure.
421 */
dd0fc66f 422struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 423{
df2cb6da 424 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
425 unsigned front_pad;
426 unsigned inline_vecs;
34053979 427 struct bio_vec *bvl = NULL;
451a9ebf
TH
428 struct bio *bio;
429 void *p;
430
3f86a82a
KO
431 if (!bs) {
432 if (nr_iovecs > UIO_MAXIOV)
433 return NULL;
434
435 p = kmalloc(sizeof(struct bio) +
436 nr_iovecs * sizeof(struct bio_vec),
437 gfp_mask);
438 front_pad = 0;
439 inline_vecs = nr_iovecs;
440 } else {
d8f429e1
JN
441 /* should not use nobvec bioset for nr_iovecs > 0 */
442 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
443 return NULL;
df2cb6da
KO
444 /*
445 * generic_make_request() converts recursion to iteration; this
446 * means if we're running beneath it, any bios we allocate and
447 * submit will not be submitted (and thus freed) until after we
448 * return.
449 *
450 * This exposes us to a potential deadlock if we allocate
451 * multiple bios from the same bio_set() while running
452 * underneath generic_make_request(). If we were to allocate
453 * multiple bios (say a stacking block driver that was splitting
454 * bios), we would deadlock if we exhausted the mempool's
455 * reserve.
456 *
457 * We solve this, and guarantee forward progress, with a rescuer
458 * workqueue per bio_set. If we go to allocate and there are
459 * bios on current->bio_list, we first try the allocation
d0164adc
MG
460 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
461 * bios we would be blocking to the rescuer workqueue before
462 * we retry with the original gfp_flags.
df2cb6da
KO
463 */
464
465 if (current->bio_list && !bio_list_empty(current->bio_list))
d0164adc 466 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 467
3f86a82a 468 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
469 if (!p && gfp_mask != saved_gfp) {
470 punt_bios_to_rescuer(bs);
471 gfp_mask = saved_gfp;
472 p = mempool_alloc(bs->bio_pool, gfp_mask);
473 }
474
3f86a82a
KO
475 front_pad = bs->front_pad;
476 inline_vecs = BIO_INLINE_VECS;
477 }
478
451a9ebf
TH
479 if (unlikely(!p))
480 return NULL;
1da177e4 481
3f86a82a 482 bio = p + front_pad;
34053979
IM
483 bio_init(bio);
484
3f86a82a 485 if (nr_iovecs > inline_vecs) {
ed996a52
CH
486 unsigned long idx = 0;
487
9f060e22 488 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
489 if (!bvl && gfp_mask != saved_gfp) {
490 punt_bios_to_rescuer(bs);
491 gfp_mask = saved_gfp;
9f060e22 492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
493 }
494
34053979
IM
495 if (unlikely(!bvl))
496 goto err_free;
a38352e0 497
ed996a52 498 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
499 } else if (nr_iovecs) {
500 bvl = bio->bi_inline_vecs;
1da177e4 501 }
3f86a82a
KO
502
503 bio->bi_pool = bs;
34053979 504 bio->bi_max_vecs = nr_iovecs;
34053979 505 bio->bi_io_vec = bvl;
1da177e4 506 return bio;
34053979
IM
507
508err_free:
451a9ebf 509 mempool_free(p, bs->bio_pool);
34053979 510 return NULL;
1da177e4 511}
a112a71d 512EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 513
1da177e4
LT
514void zero_fill_bio(struct bio *bio)
515{
516 unsigned long flags;
7988613b
KO
517 struct bio_vec bv;
518 struct bvec_iter iter;
1da177e4 519
7988613b
KO
520 bio_for_each_segment(bv, bio, iter) {
521 char *data = bvec_kmap_irq(&bv, &flags);
522 memset(data, 0, bv.bv_len);
523 flush_dcache_page(bv.bv_page);
1da177e4
LT
524 bvec_kunmap_irq(data, &flags);
525 }
526}
527EXPORT_SYMBOL(zero_fill_bio);
528
529/**
530 * bio_put - release a reference to a bio
531 * @bio: bio to release reference to
532 *
533 * Description:
534 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 535 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
536 **/
537void bio_put(struct bio *bio)
538{
dac56212 539 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 540 bio_free(bio);
dac56212
JA
541 else {
542 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
543
544 /*
545 * last put frees it
546 */
547 if (atomic_dec_and_test(&bio->__bi_cnt))
548 bio_free(bio);
549 }
1da177e4 550}
a112a71d 551EXPORT_SYMBOL(bio_put);
1da177e4 552
165125e1 553inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
554{
555 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
556 blk_recount_segments(q, bio);
557
558 return bio->bi_phys_segments;
559}
a112a71d 560EXPORT_SYMBOL(bio_phys_segments);
1da177e4 561
59d276fe
KO
562/**
563 * __bio_clone_fast - clone a bio that shares the original bio's biovec
564 * @bio: destination bio
565 * @bio_src: bio to clone
566 *
567 * Clone a &bio. Caller will own the returned bio, but not
568 * the actual data it points to. Reference count of returned
569 * bio will be one.
570 *
571 * Caller must ensure that @bio_src is not freed before @bio.
572 */
573void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574{
ed996a52 575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
576
577 /*
578 * most users will be overriding ->bi_bdev with a new target,
579 * so we don't set nor calculate new physical/hw segment counts here
580 */
581 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 582 bio_set_flag(bio, BIO_CLONED);
1eff9d32 583 bio->bi_opf = bio_src->bi_opf;
59d276fe
KO
584 bio->bi_iter = bio_src->bi_iter;
585 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
586
587 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
588}
589EXPORT_SYMBOL(__bio_clone_fast);
590
591/**
592 * bio_clone_fast - clone a bio that shares the original bio's biovec
593 * @bio: bio to clone
594 * @gfp_mask: allocation priority
595 * @bs: bio_set to allocate from
596 *
597 * Like __bio_clone_fast, only also allocates the returned bio
598 */
599struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
600{
601 struct bio *b;
602
603 b = bio_alloc_bioset(gfp_mask, 0, bs);
604 if (!b)
605 return NULL;
606
607 __bio_clone_fast(b, bio);
608
609 if (bio_integrity(bio)) {
610 int ret;
611
612 ret = bio_integrity_clone(b, bio, gfp_mask);
613
614 if (ret < 0) {
615 bio_put(b);
616 return NULL;
617 }
618 }
619
620 return b;
621}
622EXPORT_SYMBOL(bio_clone_fast);
623
1da177e4 624/**
bdb53207
KO
625 * bio_clone_bioset - clone a bio
626 * @bio_src: bio to clone
1da177e4 627 * @gfp_mask: allocation priority
bf800ef1 628 * @bs: bio_set to allocate from
1da177e4 629 *
bdb53207
KO
630 * Clone bio. Caller will own the returned bio, but not the actual data it
631 * points to. Reference count of returned bio will be one.
1da177e4 632 */
bdb53207 633struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 634 struct bio_set *bs)
1da177e4 635{
bdb53207
KO
636 struct bvec_iter iter;
637 struct bio_vec bv;
638 struct bio *bio;
1da177e4 639
bdb53207
KO
640 /*
641 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
642 * bio_src->bi_io_vec to bio->bi_io_vec.
643 *
644 * We can't do that anymore, because:
645 *
646 * - The point of cloning the biovec is to produce a bio with a biovec
647 * the caller can modify: bi_idx and bi_bvec_done should be 0.
648 *
649 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
650 * we tried to clone the whole thing bio_alloc_bioset() would fail.
651 * But the clone should succeed as long as the number of biovecs we
652 * actually need to allocate is fewer than BIO_MAX_PAGES.
653 *
654 * - Lastly, bi_vcnt should not be looked at or relied upon by code
655 * that does not own the bio - reason being drivers don't use it for
656 * iterating over the biovec anymore, so expecting it to be kept up
657 * to date (i.e. for clones that share the parent biovec) is just
658 * asking for trouble and would force extra work on
659 * __bio_clone_fast() anyways.
660 */
661
8423ae3d 662 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 663 if (!bio)
7ba1ba12 664 return NULL;
bdb53207 665 bio->bi_bdev = bio_src->bi_bdev;
1eff9d32 666 bio->bi_opf = bio_src->bi_opf;
bdb53207
KO
667 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
668 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 669
7afafc8a
AH
670 switch (bio_op(bio)) {
671 case REQ_OP_DISCARD:
672 case REQ_OP_SECURE_ERASE:
673 break;
674 case REQ_OP_WRITE_SAME:
8423ae3d 675 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
676 break;
677 default:
678 bio_for_each_segment(bv, bio_src, iter)
679 bio->bi_io_vec[bio->bi_vcnt++] = bv;
680 break;
8423ae3d
KO
681 }
682
bdb53207
KO
683 if (bio_integrity(bio_src)) {
684 int ret;
7ba1ba12 685
bdb53207 686 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 687 if (ret < 0) {
bdb53207 688 bio_put(bio);
7ba1ba12 689 return NULL;
059ea331 690 }
3676347a 691 }
1da177e4 692
20bd723e
PV
693 bio_clone_blkcg_association(bio, bio_src);
694
bdb53207 695 return bio;
1da177e4 696}
bf800ef1 697EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
698
699/**
c66a14d0
KO
700 * bio_add_pc_page - attempt to add page to bio
701 * @q: the target queue
702 * @bio: destination bio
703 * @page: page to add
704 * @len: vec entry length
705 * @offset: vec entry offset
1da177e4 706 *
c66a14d0
KO
707 * Attempt to add a page to the bio_vec maplist. This can fail for a
708 * number of reasons, such as the bio being full or target block device
709 * limitations. The target block device must allow bio's up to PAGE_SIZE,
710 * so it is always possible to add a single page to an empty bio.
711 *
712 * This should only be used by REQ_PC bios.
1da177e4 713 */
c66a14d0
KO
714int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
715 *page, unsigned int len, unsigned int offset)
1da177e4
LT
716{
717 int retried_segments = 0;
718 struct bio_vec *bvec;
719
720 /*
721 * cloned bio must not modify vec list
722 */
723 if (unlikely(bio_flagged(bio, BIO_CLONED)))
724 return 0;
725
c66a14d0 726 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
727 return 0;
728
80cfd548
JA
729 /*
730 * For filesystems with a blocksize smaller than the pagesize
731 * we will often be called with the same page as last time and
732 * a consecutive offset. Optimize this special case.
733 */
734 if (bio->bi_vcnt > 0) {
735 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
736
737 if (page == prev->bv_page &&
738 offset == prev->bv_offset + prev->bv_len) {
739 prev->bv_len += len;
fcbf6a08 740 bio->bi_iter.bi_size += len;
80cfd548
JA
741 goto done;
742 }
66cb45aa
JA
743
744 /*
745 * If the queue doesn't support SG gaps and adding this
746 * offset would create a gap, disallow it.
747 */
03100aad 748 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 749 return 0;
80cfd548
JA
750 }
751
752 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
753 return 0;
754
755 /*
fcbf6a08
ML
756 * setup the new entry, we might clear it again later if we
757 * cannot add the page
758 */
759 bvec = &bio->bi_io_vec[bio->bi_vcnt];
760 bvec->bv_page = page;
761 bvec->bv_len = len;
762 bvec->bv_offset = offset;
763 bio->bi_vcnt++;
764 bio->bi_phys_segments++;
765 bio->bi_iter.bi_size += len;
766
767 /*
768 * Perform a recount if the number of segments is greater
769 * than queue_max_segments(q).
1da177e4
LT
770 */
771
fcbf6a08 772 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
773
774 if (retried_segments)
fcbf6a08 775 goto failed;
1da177e4
LT
776
777 retried_segments = 1;
778 blk_recount_segments(q, bio);
779 }
780
1da177e4 781 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 782 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 783 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 784
80cfd548 785 done:
1da177e4 786 return len;
fcbf6a08
ML
787
788 failed:
789 bvec->bv_page = NULL;
790 bvec->bv_len = 0;
791 bvec->bv_offset = 0;
792 bio->bi_vcnt--;
793 bio->bi_iter.bi_size -= len;
794 blk_recount_segments(q, bio);
795 return 0;
1da177e4 796}
a112a71d 797EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 798
1da177e4
LT
799/**
800 * bio_add_page - attempt to add page to bio
801 * @bio: destination bio
802 * @page: page to add
803 * @len: vec entry length
804 * @offset: vec entry offset
805 *
c66a14d0
KO
806 * Attempt to add a page to the bio_vec maplist. This will only fail
807 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 808 */
c66a14d0
KO
809int bio_add_page(struct bio *bio, struct page *page,
810 unsigned int len, unsigned int offset)
1da177e4 811{
c66a14d0
KO
812 struct bio_vec *bv;
813
814 /*
815 * cloned bio must not modify vec list
816 */
817 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
818 return 0;
762380ad 819
c66a14d0
KO
820 /*
821 * For filesystems with a blocksize smaller than the pagesize
822 * we will often be called with the same page as last time and
823 * a consecutive offset. Optimize this special case.
824 */
825 if (bio->bi_vcnt > 0) {
826 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 827
c66a14d0
KO
828 if (page == bv->bv_page &&
829 offset == bv->bv_offset + bv->bv_len) {
830 bv->bv_len += len;
831 goto done;
832 }
833 }
834
835 if (bio->bi_vcnt >= bio->bi_max_vecs)
836 return 0;
837
838 bv = &bio->bi_io_vec[bio->bi_vcnt];
839 bv->bv_page = page;
840 bv->bv_len = len;
841 bv->bv_offset = offset;
842
843 bio->bi_vcnt++;
844done:
845 bio->bi_iter.bi_size += len;
846 return len;
1da177e4 847}
a112a71d 848EXPORT_SYMBOL(bio_add_page);
1da177e4 849
2cefe4db
KO
850/**
851 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
852 * @bio: bio to add pages to
853 * @iter: iov iterator describing the region to be mapped
854 *
855 * Pins as many pages from *iter and appends them to @bio's bvec array. The
856 * pages will have to be released using put_page() when done.
857 */
858int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
859{
860 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
861 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
862 struct page **pages = (struct page **)bv;
863 size_t offset, diff;
864 ssize_t size;
865
866 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
867 if (unlikely(size <= 0))
868 return size ? size : -EFAULT;
869 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
870
871 /*
872 * Deep magic below: We need to walk the pinned pages backwards
873 * because we are abusing the space allocated for the bio_vecs
874 * for the page array. Because the bio_vecs are larger than the
875 * page pointers by definition this will always work. But it also
876 * means we can't use bio_add_page, so any changes to it's semantics
877 * need to be reflected here as well.
878 */
879 bio->bi_iter.bi_size += size;
880 bio->bi_vcnt += nr_pages;
881
882 diff = (nr_pages * PAGE_SIZE - offset) - size;
883 while (nr_pages--) {
884 bv[nr_pages].bv_page = pages[nr_pages];
885 bv[nr_pages].bv_len = PAGE_SIZE;
886 bv[nr_pages].bv_offset = 0;
887 }
888
889 bv[0].bv_offset += offset;
890 bv[0].bv_len -= offset;
891 if (diff)
892 bv[bio->bi_vcnt - 1].bv_len -= diff;
893
894 iov_iter_advance(iter, size);
895 return 0;
896}
897EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
898
9e882242
KO
899struct submit_bio_ret {
900 struct completion event;
901 int error;
902};
903
4246a0b6 904static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
905{
906 struct submit_bio_ret *ret = bio->bi_private;
907
4246a0b6 908 ret->error = bio->bi_error;
9e882242
KO
909 complete(&ret->event);
910}
911
912/**
913 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
914 * @bio: The &struct bio which describes the I/O
915 *
916 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
917 * bio_endio() on failure.
918 */
4e49ea4a 919int submit_bio_wait(struct bio *bio)
9e882242
KO
920{
921 struct submit_bio_ret ret;
922
9e882242
KO
923 init_completion(&ret.event);
924 bio->bi_private = &ret;
925 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 926 bio->bi_opf |= REQ_SYNC;
4e49ea4a 927 submit_bio(bio);
d57d6115 928 wait_for_completion_io(&ret.event);
9e882242
KO
929
930 return ret.error;
931}
932EXPORT_SYMBOL(submit_bio_wait);
933
054bdf64
KO
934/**
935 * bio_advance - increment/complete a bio by some number of bytes
936 * @bio: bio to advance
937 * @bytes: number of bytes to complete
938 *
939 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
940 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
941 * be updated on the last bvec as well.
942 *
943 * @bio will then represent the remaining, uncompleted portion of the io.
944 */
945void bio_advance(struct bio *bio, unsigned bytes)
946{
947 if (bio_integrity(bio))
948 bio_integrity_advance(bio, bytes);
949
4550dd6c 950 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
951}
952EXPORT_SYMBOL(bio_advance);
953
a0787606
KO
954/**
955 * bio_alloc_pages - allocates a single page for each bvec in a bio
956 * @bio: bio to allocate pages for
957 * @gfp_mask: flags for allocation
958 *
959 * Allocates pages up to @bio->bi_vcnt.
960 *
961 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
962 * freed.
963 */
964int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
965{
966 int i;
967 struct bio_vec *bv;
968
969 bio_for_each_segment_all(bv, bio, i) {
970 bv->bv_page = alloc_page(gfp_mask);
971 if (!bv->bv_page) {
972 while (--bv >= bio->bi_io_vec)
973 __free_page(bv->bv_page);
974 return -ENOMEM;
975 }
976 }
977
978 return 0;
979}
980EXPORT_SYMBOL(bio_alloc_pages);
981
16ac3d63
KO
982/**
983 * bio_copy_data - copy contents of data buffers from one chain of bios to
984 * another
985 * @src: source bio list
986 * @dst: destination bio list
987 *
988 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
989 * @src and @dst as linked lists of bios.
990 *
991 * Stops when it reaches the end of either @src or @dst - that is, copies
992 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
993 */
994void bio_copy_data(struct bio *dst, struct bio *src)
995{
1cb9dda4
KO
996 struct bvec_iter src_iter, dst_iter;
997 struct bio_vec src_bv, dst_bv;
16ac3d63 998 void *src_p, *dst_p;
1cb9dda4 999 unsigned bytes;
16ac3d63 1000
1cb9dda4
KO
1001 src_iter = src->bi_iter;
1002 dst_iter = dst->bi_iter;
16ac3d63
KO
1003
1004 while (1) {
1cb9dda4
KO
1005 if (!src_iter.bi_size) {
1006 src = src->bi_next;
1007 if (!src)
1008 break;
16ac3d63 1009
1cb9dda4 1010 src_iter = src->bi_iter;
16ac3d63
KO
1011 }
1012
1cb9dda4
KO
1013 if (!dst_iter.bi_size) {
1014 dst = dst->bi_next;
1015 if (!dst)
1016 break;
16ac3d63 1017
1cb9dda4 1018 dst_iter = dst->bi_iter;
16ac3d63
KO
1019 }
1020
1cb9dda4
KO
1021 src_bv = bio_iter_iovec(src, src_iter);
1022 dst_bv = bio_iter_iovec(dst, dst_iter);
1023
1024 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1025
1cb9dda4
KO
1026 src_p = kmap_atomic(src_bv.bv_page);
1027 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1028
1cb9dda4
KO
1029 memcpy(dst_p + dst_bv.bv_offset,
1030 src_p + src_bv.bv_offset,
16ac3d63
KO
1031 bytes);
1032
1033 kunmap_atomic(dst_p);
1034 kunmap_atomic(src_p);
1035
1cb9dda4
KO
1036 bio_advance_iter(src, &src_iter, bytes);
1037 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1038 }
1039}
1040EXPORT_SYMBOL(bio_copy_data);
1041
1da177e4 1042struct bio_map_data {
152e283f 1043 int is_our_pages;
26e49cfc
KO
1044 struct iov_iter iter;
1045 struct iovec iov[];
1da177e4
LT
1046};
1047
7410b3c6 1048static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1049 gfp_t gfp_mask)
1da177e4 1050{
f3f63c1c
JA
1051 if (iov_count > UIO_MAXIOV)
1052 return NULL;
1da177e4 1053
c8db4448 1054 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1055 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1056}
1057
9124d3fe
DP
1058/**
1059 * bio_copy_from_iter - copy all pages from iov_iter to bio
1060 * @bio: The &struct bio which describes the I/O as destination
1061 * @iter: iov_iter as source
1062 *
1063 * Copy all pages from iov_iter to bio.
1064 * Returns 0 on success, or error on failure.
1065 */
1066static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1067{
9124d3fe 1068 int i;
c5dec1c3 1069 struct bio_vec *bvec;
c5dec1c3 1070
d74c6d51 1071 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1072 ssize_t ret;
c5dec1c3 1073
9124d3fe
DP
1074 ret = copy_page_from_iter(bvec->bv_page,
1075 bvec->bv_offset,
1076 bvec->bv_len,
1077 &iter);
1078
1079 if (!iov_iter_count(&iter))
1080 break;
1081
1082 if (ret < bvec->bv_len)
1083 return -EFAULT;
c5dec1c3
FT
1084 }
1085
9124d3fe
DP
1086 return 0;
1087}
1088
1089/**
1090 * bio_copy_to_iter - copy all pages from bio to iov_iter
1091 * @bio: The &struct bio which describes the I/O as source
1092 * @iter: iov_iter as destination
1093 *
1094 * Copy all pages from bio to iov_iter.
1095 * Returns 0 on success, or error on failure.
1096 */
1097static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1098{
1099 int i;
1100 struct bio_vec *bvec;
1101
1102 bio_for_each_segment_all(bvec, bio, i) {
1103 ssize_t ret;
1104
1105 ret = copy_page_to_iter(bvec->bv_page,
1106 bvec->bv_offset,
1107 bvec->bv_len,
1108 &iter);
1109
1110 if (!iov_iter_count(&iter))
1111 break;
1112
1113 if (ret < bvec->bv_len)
1114 return -EFAULT;
1115 }
1116
1117 return 0;
c5dec1c3
FT
1118}
1119
491221f8 1120void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1121{
1122 struct bio_vec *bvec;
1123 int i;
1124
1125 bio_for_each_segment_all(bvec, bio, i)
1126 __free_page(bvec->bv_page);
1127}
491221f8 1128EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1129
1da177e4
LT
1130/**
1131 * bio_uncopy_user - finish previously mapped bio
1132 * @bio: bio being terminated
1133 *
ddad8dd0 1134 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1135 * to user space in case of a read.
1136 */
1137int bio_uncopy_user(struct bio *bio)
1138{
1139 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1140 int ret = 0;
1da177e4 1141
35dc2483
RD
1142 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1143 /*
1144 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1145 * don't copy into a random user address space, just free
1146 * and return -EINTR so user space doesn't expect any data.
35dc2483 1147 */
2d99b55d
HR
1148 if (!current->mm)
1149 ret = -EINTR;
1150 else if (bio_data_dir(bio) == READ)
9124d3fe 1151 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1152 if (bmd->is_our_pages)
1153 bio_free_pages(bio);
35dc2483 1154 }
c8db4448 1155 kfree(bmd);
1da177e4
LT
1156 bio_put(bio);
1157 return ret;
1158}
1159
1160/**
c5dec1c3 1161 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1162 * @q: destination block queue
1163 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1164 * @iter: iovec iterator
1165 * @gfp_mask: memory allocation flags
1da177e4
LT
1166 *
1167 * Prepares and returns a bio for indirect user io, bouncing data
1168 * to/from kernel pages as necessary. Must be paired with
1169 * call bio_uncopy_user() on io completion.
1170 */
152e283f
FT
1171struct bio *bio_copy_user_iov(struct request_queue *q,
1172 struct rq_map_data *map_data,
26e49cfc
KO
1173 const struct iov_iter *iter,
1174 gfp_t gfp_mask)
1da177e4 1175{
1da177e4 1176 struct bio_map_data *bmd;
1da177e4
LT
1177 struct page *page;
1178 struct bio *bio;
1179 int i, ret;
c5dec1c3 1180 int nr_pages = 0;
26e49cfc 1181 unsigned int len = iter->count;
bd5cecea 1182 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1183
26e49cfc 1184 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1185 unsigned long uaddr;
1186 unsigned long end;
1187 unsigned long start;
1188
26e49cfc
KO
1189 uaddr = (unsigned long) iter->iov[i].iov_base;
1190 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1191 >> PAGE_SHIFT;
c5dec1c3
FT
1192 start = uaddr >> PAGE_SHIFT;
1193
cb4644ca
JA
1194 /*
1195 * Overflow, abort
1196 */
1197 if (end < start)
1198 return ERR_PTR(-EINVAL);
1199
c5dec1c3 1200 nr_pages += end - start;
c5dec1c3
FT
1201 }
1202
69838727
FT
1203 if (offset)
1204 nr_pages++;
1205
26e49cfc 1206 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1207 if (!bmd)
1208 return ERR_PTR(-ENOMEM);
1209
26e49cfc
KO
1210 /*
1211 * We need to do a deep copy of the iov_iter including the iovecs.
1212 * The caller provided iov might point to an on-stack or otherwise
1213 * shortlived one.
1214 */
1215 bmd->is_our_pages = map_data ? 0 : 1;
1216 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1217 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1218 iter->nr_segs, iter->count);
1219
1da177e4 1220 ret = -ENOMEM;
a9e9dc24 1221 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1222 if (!bio)
1223 goto out_bmd;
1224
26e49cfc 1225 if (iter->type & WRITE)
95fe6c1a 1226 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
1227
1228 ret = 0;
56c451f4
FT
1229
1230 if (map_data) {
e623ddb4 1231 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1232 i = map_data->offset / PAGE_SIZE;
1233 }
1da177e4 1234 while (len) {
e623ddb4 1235 unsigned int bytes = PAGE_SIZE;
1da177e4 1236
56c451f4
FT
1237 bytes -= offset;
1238
1da177e4
LT
1239 if (bytes > len)
1240 bytes = len;
1241
152e283f 1242 if (map_data) {
e623ddb4 1243 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1244 ret = -ENOMEM;
1245 break;
1246 }
e623ddb4
FT
1247
1248 page = map_data->pages[i / nr_pages];
1249 page += (i % nr_pages);
1250
1251 i++;
1252 } else {
152e283f 1253 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1254 if (!page) {
1255 ret = -ENOMEM;
1256 break;
1257 }
1da177e4
LT
1258 }
1259
56c451f4 1260 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1261 break;
1da177e4
LT
1262
1263 len -= bytes;
56c451f4 1264 offset = 0;
1da177e4
LT
1265 }
1266
1267 if (ret)
1268 goto cleanup;
1269
1270 /*
1271 * success
1272 */
26e49cfc 1273 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1274 (map_data && map_data->from_user)) {
9124d3fe 1275 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1276 if (ret)
1277 goto cleanup;
1da177e4
LT
1278 }
1279
26e49cfc 1280 bio->bi_private = bmd;
1da177e4
LT
1281 return bio;
1282cleanup:
152e283f 1283 if (!map_data)
1dfa0f68 1284 bio_free_pages(bio);
1da177e4
LT
1285 bio_put(bio);
1286out_bmd:
c8db4448 1287 kfree(bmd);
1da177e4
LT
1288 return ERR_PTR(ret);
1289}
1290
37f19e57
CH
1291/**
1292 * bio_map_user_iov - map user iovec into bio
1293 * @q: the struct request_queue for the bio
1294 * @iter: iovec iterator
1295 * @gfp_mask: memory allocation flags
1296 *
1297 * Map the user space address into a bio suitable for io to a block
1298 * device. Returns an error pointer in case of error.
1299 */
1300struct bio *bio_map_user_iov(struct request_queue *q,
1301 const struct iov_iter *iter,
1302 gfp_t gfp_mask)
1da177e4 1303{
26e49cfc 1304 int j;
f1970baf 1305 int nr_pages = 0;
1da177e4
LT
1306 struct page **pages;
1307 struct bio *bio;
f1970baf
JB
1308 int cur_page = 0;
1309 int ret, offset;
26e49cfc
KO
1310 struct iov_iter i;
1311 struct iovec iov;
1da177e4 1312
26e49cfc
KO
1313 iov_for_each(iov, i, *iter) {
1314 unsigned long uaddr = (unsigned long) iov.iov_base;
1315 unsigned long len = iov.iov_len;
f1970baf
JB
1316 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1317 unsigned long start = uaddr >> PAGE_SHIFT;
1318
cb4644ca
JA
1319 /*
1320 * Overflow, abort
1321 */
1322 if (end < start)
1323 return ERR_PTR(-EINVAL);
1324
f1970baf
JB
1325 nr_pages += end - start;
1326 /*
a441b0d0 1327 * buffer must be aligned to at least logical block size for now
f1970baf 1328 */
ad2d7225 1329 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1330 return ERR_PTR(-EINVAL);
1331 }
1332
1333 if (!nr_pages)
1da177e4
LT
1334 return ERR_PTR(-EINVAL);
1335
a9e9dc24 1336 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1337 if (!bio)
1338 return ERR_PTR(-ENOMEM);
1339
1340 ret = -ENOMEM;
a3bce90e 1341 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1342 if (!pages)
1343 goto out;
1344
26e49cfc
KO
1345 iov_for_each(iov, i, *iter) {
1346 unsigned long uaddr = (unsigned long) iov.iov_base;
1347 unsigned long len = iov.iov_len;
f1970baf
JB
1348 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1349 unsigned long start = uaddr >> PAGE_SHIFT;
1350 const int local_nr_pages = end - start;
1351 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1352
f5dd33c4 1353 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1354 (iter->type & WRITE) != WRITE,
1355 &pages[cur_page]);
99172157
JA
1356 if (ret < local_nr_pages) {
1357 ret = -EFAULT;
f1970baf 1358 goto out_unmap;
99172157 1359 }
f1970baf 1360
bd5cecea 1361 offset = offset_in_page(uaddr);
f1970baf
JB
1362 for (j = cur_page; j < page_limit; j++) {
1363 unsigned int bytes = PAGE_SIZE - offset;
1364
1365 if (len <= 0)
1366 break;
1367
1368 if (bytes > len)
1369 bytes = len;
1370
1371 /*
1372 * sorry...
1373 */
defd94b7
MC
1374 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1375 bytes)
f1970baf
JB
1376 break;
1377
1378 len -= bytes;
1379 offset = 0;
1380 }
1da177e4 1381
f1970baf 1382 cur_page = j;
1da177e4 1383 /*
f1970baf 1384 * release the pages we didn't map into the bio, if any
1da177e4 1385 */
f1970baf 1386 while (j < page_limit)
09cbfeaf 1387 put_page(pages[j++]);
1da177e4
LT
1388 }
1389
1da177e4
LT
1390 kfree(pages);
1391
1392 /*
1393 * set data direction, and check if mapped pages need bouncing
1394 */
26e49cfc 1395 if (iter->type & WRITE)
95fe6c1a 1396 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4 1397
b7c44ed9 1398 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1399
1400 /*
1401 * subtle -- if __bio_map_user() ended up bouncing a bio,
1402 * it would normally disappear when its bi_end_io is run.
1403 * however, we need it for the unmap, so grab an extra
1404 * reference to it
1405 */
1406 bio_get(bio);
1da177e4 1407 return bio;
f1970baf
JB
1408
1409 out_unmap:
26e49cfc
KO
1410 for (j = 0; j < nr_pages; j++) {
1411 if (!pages[j])
f1970baf 1412 break;
09cbfeaf 1413 put_page(pages[j]);
f1970baf
JB
1414 }
1415 out:
1da177e4
LT
1416 kfree(pages);
1417 bio_put(bio);
1418 return ERR_PTR(ret);
1419}
1420
1da177e4
LT
1421static void __bio_unmap_user(struct bio *bio)
1422{
1423 struct bio_vec *bvec;
1424 int i;
1425
1426 /*
1427 * make sure we dirty pages we wrote to
1428 */
d74c6d51 1429 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1430 if (bio_data_dir(bio) == READ)
1431 set_page_dirty_lock(bvec->bv_page);
1432
09cbfeaf 1433 put_page(bvec->bv_page);
1da177e4
LT
1434 }
1435
1436 bio_put(bio);
1437}
1438
1439/**
1440 * bio_unmap_user - unmap a bio
1441 * @bio: the bio being unmapped
1442 *
1443 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1444 * a process context.
1445 *
1446 * bio_unmap_user() may sleep.
1447 */
1448void bio_unmap_user(struct bio *bio)
1449{
1450 __bio_unmap_user(bio);
1451 bio_put(bio);
1452}
1453
4246a0b6 1454static void bio_map_kern_endio(struct bio *bio)
b823825e 1455{
b823825e 1456 bio_put(bio);
b823825e
JA
1457}
1458
75c72b83
CH
1459/**
1460 * bio_map_kern - map kernel address into bio
1461 * @q: the struct request_queue for the bio
1462 * @data: pointer to buffer to map
1463 * @len: length in bytes
1464 * @gfp_mask: allocation flags for bio allocation
1465 *
1466 * Map the kernel address into a bio suitable for io to a block
1467 * device. Returns an error pointer in case of error.
1468 */
1469struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1470 gfp_t gfp_mask)
df46b9a4
MC
1471{
1472 unsigned long kaddr = (unsigned long)data;
1473 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1474 unsigned long start = kaddr >> PAGE_SHIFT;
1475 const int nr_pages = end - start;
1476 int offset, i;
1477 struct bio *bio;
1478
a9e9dc24 1479 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1480 if (!bio)
1481 return ERR_PTR(-ENOMEM);
1482
1483 offset = offset_in_page(kaddr);
1484 for (i = 0; i < nr_pages; i++) {
1485 unsigned int bytes = PAGE_SIZE - offset;
1486
1487 if (len <= 0)
1488 break;
1489
1490 if (bytes > len)
1491 bytes = len;
1492
defd94b7 1493 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1494 offset) < bytes) {
1495 /* we don't support partial mappings */
1496 bio_put(bio);
1497 return ERR_PTR(-EINVAL);
1498 }
df46b9a4
MC
1499
1500 data += bytes;
1501 len -= bytes;
1502 offset = 0;
1503 }
1504
b823825e 1505 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1506 return bio;
1507}
a112a71d 1508EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1509
4246a0b6 1510static void bio_copy_kern_endio(struct bio *bio)
68154e90 1511{
1dfa0f68
CH
1512 bio_free_pages(bio);
1513 bio_put(bio);
1514}
1515
4246a0b6 1516static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1517{
42d2683a 1518 char *p = bio->bi_private;
1dfa0f68 1519 struct bio_vec *bvec;
68154e90
FT
1520 int i;
1521
d74c6d51 1522 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1523 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1524 p += bvec->bv_len;
68154e90
FT
1525 }
1526
4246a0b6 1527 bio_copy_kern_endio(bio);
68154e90
FT
1528}
1529
1530/**
1531 * bio_copy_kern - copy kernel address into bio
1532 * @q: the struct request_queue for the bio
1533 * @data: pointer to buffer to copy
1534 * @len: length in bytes
1535 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1536 * @reading: data direction is READ
68154e90
FT
1537 *
1538 * copy the kernel address into a bio suitable for io to a block
1539 * device. Returns an error pointer in case of error.
1540 */
1541struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1542 gfp_t gfp_mask, int reading)
1543{
42d2683a
CH
1544 unsigned long kaddr = (unsigned long)data;
1545 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1546 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1547 struct bio *bio;
1548 void *p = data;
1dfa0f68 1549 int nr_pages = 0;
68154e90 1550
42d2683a
CH
1551 /*
1552 * Overflow, abort
1553 */
1554 if (end < start)
1555 return ERR_PTR(-EINVAL);
68154e90 1556
42d2683a
CH
1557 nr_pages = end - start;
1558 bio = bio_kmalloc(gfp_mask, nr_pages);
1559 if (!bio)
1560 return ERR_PTR(-ENOMEM);
68154e90 1561
42d2683a
CH
1562 while (len) {
1563 struct page *page;
1564 unsigned int bytes = PAGE_SIZE;
68154e90 1565
42d2683a
CH
1566 if (bytes > len)
1567 bytes = len;
1568
1569 page = alloc_page(q->bounce_gfp | gfp_mask);
1570 if (!page)
1571 goto cleanup;
1572
1573 if (!reading)
1574 memcpy(page_address(page), p, bytes);
1575
1576 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1577 break;
1578
1579 len -= bytes;
1580 p += bytes;
68154e90
FT
1581 }
1582
1dfa0f68
CH
1583 if (reading) {
1584 bio->bi_end_io = bio_copy_kern_endio_read;
1585 bio->bi_private = data;
1586 } else {
1587 bio->bi_end_io = bio_copy_kern_endio;
95fe6c1a 1588 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1dfa0f68 1589 }
76029ff3 1590
68154e90 1591 return bio;
42d2683a
CH
1592
1593cleanup:
1dfa0f68 1594 bio_free_pages(bio);
42d2683a
CH
1595 bio_put(bio);
1596 return ERR_PTR(-ENOMEM);
68154e90
FT
1597}
1598
1da177e4
LT
1599/*
1600 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1601 * for performing direct-IO in BIOs.
1602 *
1603 * The problem is that we cannot run set_page_dirty() from interrupt context
1604 * because the required locks are not interrupt-safe. So what we can do is to
1605 * mark the pages dirty _before_ performing IO. And in interrupt context,
1606 * check that the pages are still dirty. If so, fine. If not, redirty them
1607 * in process context.
1608 *
1609 * We special-case compound pages here: normally this means reads into hugetlb
1610 * pages. The logic in here doesn't really work right for compound pages
1611 * because the VM does not uniformly chase down the head page in all cases.
1612 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1613 * handle them at all. So we skip compound pages here at an early stage.
1614 *
1615 * Note that this code is very hard to test under normal circumstances because
1616 * direct-io pins the pages with get_user_pages(). This makes
1617 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1618 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1619 * pagecache.
1620 *
1621 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1622 * deferred bio dirtying paths.
1623 */
1624
1625/*
1626 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1627 */
1628void bio_set_pages_dirty(struct bio *bio)
1629{
cb34e057 1630 struct bio_vec *bvec;
1da177e4
LT
1631 int i;
1632
cb34e057
KO
1633 bio_for_each_segment_all(bvec, bio, i) {
1634 struct page *page = bvec->bv_page;
1da177e4
LT
1635
1636 if (page && !PageCompound(page))
1637 set_page_dirty_lock(page);
1638 }
1639}
1640
86b6c7a7 1641static void bio_release_pages(struct bio *bio)
1da177e4 1642{
cb34e057 1643 struct bio_vec *bvec;
1da177e4
LT
1644 int i;
1645
cb34e057
KO
1646 bio_for_each_segment_all(bvec, bio, i) {
1647 struct page *page = bvec->bv_page;
1da177e4
LT
1648
1649 if (page)
1650 put_page(page);
1651 }
1652}
1653
1654/*
1655 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1656 * If they are, then fine. If, however, some pages are clean then they must
1657 * have been written out during the direct-IO read. So we take another ref on
1658 * the BIO and the offending pages and re-dirty the pages in process context.
1659 *
1660 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1661 * here on. It will run one put_page() against each page and will run one
1662 * bio_put() against the BIO.
1da177e4
LT
1663 */
1664
65f27f38 1665static void bio_dirty_fn(struct work_struct *work);
1da177e4 1666
65f27f38 1667static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1668static DEFINE_SPINLOCK(bio_dirty_lock);
1669static struct bio *bio_dirty_list;
1670
1671/*
1672 * This runs in process context
1673 */
65f27f38 1674static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1675{
1676 unsigned long flags;
1677 struct bio *bio;
1678
1679 spin_lock_irqsave(&bio_dirty_lock, flags);
1680 bio = bio_dirty_list;
1681 bio_dirty_list = NULL;
1682 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1683
1684 while (bio) {
1685 struct bio *next = bio->bi_private;
1686
1687 bio_set_pages_dirty(bio);
1688 bio_release_pages(bio);
1689 bio_put(bio);
1690 bio = next;
1691 }
1692}
1693
1694void bio_check_pages_dirty(struct bio *bio)
1695{
cb34e057 1696 struct bio_vec *bvec;
1da177e4
LT
1697 int nr_clean_pages = 0;
1698 int i;
1699
cb34e057
KO
1700 bio_for_each_segment_all(bvec, bio, i) {
1701 struct page *page = bvec->bv_page;
1da177e4
LT
1702
1703 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1704 put_page(page);
cb34e057 1705 bvec->bv_page = NULL;
1da177e4
LT
1706 } else {
1707 nr_clean_pages++;
1708 }
1709 }
1710
1711 if (nr_clean_pages) {
1712 unsigned long flags;
1713
1714 spin_lock_irqsave(&bio_dirty_lock, flags);
1715 bio->bi_private = bio_dirty_list;
1716 bio_dirty_list = bio;
1717 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1718 schedule_work(&bio_dirty_work);
1719 } else {
1720 bio_put(bio);
1721 }
1722}
1723
394ffa50
GZ
1724void generic_start_io_acct(int rw, unsigned long sectors,
1725 struct hd_struct *part)
1726{
1727 int cpu = part_stat_lock();
1728
1729 part_round_stats(cpu, part);
1730 part_stat_inc(cpu, part, ios[rw]);
1731 part_stat_add(cpu, part, sectors[rw], sectors);
1732 part_inc_in_flight(part, rw);
1733
1734 part_stat_unlock();
1735}
1736EXPORT_SYMBOL(generic_start_io_acct);
1737
1738void generic_end_io_acct(int rw, struct hd_struct *part,
1739 unsigned long start_time)
1740{
1741 unsigned long duration = jiffies - start_time;
1742 int cpu = part_stat_lock();
1743
1744 part_stat_add(cpu, part, ticks[rw], duration);
1745 part_round_stats(cpu, part);
1746 part_dec_in_flight(part, rw);
1747
1748 part_stat_unlock();
1749}
1750EXPORT_SYMBOL(generic_end_io_acct);
1751
2d4dc890
IL
1752#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1753void bio_flush_dcache_pages(struct bio *bi)
1754{
7988613b
KO
1755 struct bio_vec bvec;
1756 struct bvec_iter iter;
2d4dc890 1757
7988613b
KO
1758 bio_for_each_segment(bvec, bi, iter)
1759 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1760}
1761EXPORT_SYMBOL(bio_flush_dcache_pages);
1762#endif
1763
c4cf5261
JA
1764static inline bool bio_remaining_done(struct bio *bio)
1765{
1766 /*
1767 * If we're not chaining, then ->__bi_remaining is always 1 and
1768 * we always end io on the first invocation.
1769 */
1770 if (!bio_flagged(bio, BIO_CHAIN))
1771 return true;
1772
1773 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1774
326e1dbb 1775 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1776 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1777 return true;
326e1dbb 1778 }
c4cf5261
JA
1779
1780 return false;
1781}
1782
1da177e4
LT
1783/**
1784 * bio_endio - end I/O on a bio
1785 * @bio: bio
1da177e4
LT
1786 *
1787 * Description:
4246a0b6
CH
1788 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1789 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1790 * bio unless they own it and thus know that it has an end_io function.
1da177e4 1791 **/
4246a0b6 1792void bio_endio(struct bio *bio)
1da177e4 1793{
ba8c6967 1794again:
2b885517 1795 if (!bio_remaining_done(bio))
ba8c6967 1796 return;
1da177e4 1797
ba8c6967
CH
1798 /*
1799 * Need to have a real endio function for chained bios, otherwise
1800 * various corner cases will break (like stacking block devices that
1801 * save/restore bi_end_io) - however, we want to avoid unbounded
1802 * recursion and blowing the stack. Tail call optimization would
1803 * handle this, but compiling with frame pointers also disables
1804 * gcc's sibling call optimization.
1805 */
1806 if (bio->bi_end_io == bio_chain_endio) {
1807 bio = __bio_chain_endio(bio);
1808 goto again;
196d38bc 1809 }
ba8c6967
CH
1810
1811 if (bio->bi_end_io)
1812 bio->bi_end_io(bio);
1da177e4 1813}
a112a71d 1814EXPORT_SYMBOL(bio_endio);
1da177e4 1815
20d0189b
KO
1816/**
1817 * bio_split - split a bio
1818 * @bio: bio to split
1819 * @sectors: number of sectors to split from the front of @bio
1820 * @gfp: gfp mask
1821 * @bs: bio set to allocate from
1822 *
1823 * Allocates and returns a new bio which represents @sectors from the start of
1824 * @bio, and updates @bio to represent the remaining sectors.
1825 *
f3f5da62
MP
1826 * Unless this is a discard request the newly allocated bio will point
1827 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1828 * @bio is not freed before the split.
20d0189b
KO
1829 */
1830struct bio *bio_split(struct bio *bio, int sectors,
1831 gfp_t gfp, struct bio_set *bs)
1832{
1833 struct bio *split = NULL;
1834
1835 BUG_ON(sectors <= 0);
1836 BUG_ON(sectors >= bio_sectors(bio));
1837
f3f5da62
MP
1838 /*
1839 * Discards need a mutable bio_vec to accommodate the payload
1840 * required by the DSM TRIM and UNMAP commands.
1841 */
7afafc8a 1842 if (bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE)
f3f5da62
MP
1843 split = bio_clone_bioset(bio, gfp, bs);
1844 else
1845 split = bio_clone_fast(bio, gfp, bs);
1846
20d0189b
KO
1847 if (!split)
1848 return NULL;
1849
1850 split->bi_iter.bi_size = sectors << 9;
1851
1852 if (bio_integrity(split))
1853 bio_integrity_trim(split, 0, sectors);
1854
1855 bio_advance(bio, split->bi_iter.bi_size);
1856
1857 return split;
1858}
1859EXPORT_SYMBOL(bio_split);
1860
6678d83f
KO
1861/**
1862 * bio_trim - trim a bio
1863 * @bio: bio to trim
1864 * @offset: number of sectors to trim from the front of @bio
1865 * @size: size we want to trim @bio to, in sectors
1866 */
1867void bio_trim(struct bio *bio, int offset, int size)
1868{
1869 /* 'bio' is a cloned bio which we need to trim to match
1870 * the given offset and size.
6678d83f 1871 */
6678d83f
KO
1872
1873 size <<= 9;
4f024f37 1874 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1875 return;
1876
b7c44ed9 1877 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1878
1879 bio_advance(bio, offset << 9);
1880
4f024f37 1881 bio->bi_iter.bi_size = size;
6678d83f
KO
1882}
1883EXPORT_SYMBOL_GPL(bio_trim);
1884
1da177e4
LT
1885/*
1886 * create memory pools for biovec's in a bio_set.
1887 * use the global biovec slabs created for general use.
1888 */
a6c39cb4 1889mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1890{
ed996a52 1891 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1892
9f060e22 1893 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1894}
1895
1896void bioset_free(struct bio_set *bs)
1897{
df2cb6da
KO
1898 if (bs->rescue_workqueue)
1899 destroy_workqueue(bs->rescue_workqueue);
1900
1da177e4
LT
1901 if (bs->bio_pool)
1902 mempool_destroy(bs->bio_pool);
1903
9f060e22
KO
1904 if (bs->bvec_pool)
1905 mempool_destroy(bs->bvec_pool);
1906
7878cba9 1907 bioset_integrity_free(bs);
bb799ca0 1908 bio_put_slab(bs);
1da177e4
LT
1909
1910 kfree(bs);
1911}
a112a71d 1912EXPORT_SYMBOL(bioset_free);
1da177e4 1913
d8f429e1
JN
1914static struct bio_set *__bioset_create(unsigned int pool_size,
1915 unsigned int front_pad,
1916 bool create_bvec_pool)
1da177e4 1917{
392ddc32 1918 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1919 struct bio_set *bs;
1da177e4 1920
1b434498 1921 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1922 if (!bs)
1923 return NULL;
1924
bb799ca0 1925 bs->front_pad = front_pad;
1b434498 1926
df2cb6da
KO
1927 spin_lock_init(&bs->rescue_lock);
1928 bio_list_init(&bs->rescue_list);
1929 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1930
392ddc32 1931 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1932 if (!bs->bio_slab) {
1933 kfree(bs);
1934 return NULL;
1935 }
1936
1937 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1938 if (!bs->bio_pool)
1939 goto bad;
1940
d8f429e1
JN
1941 if (create_bvec_pool) {
1942 bs->bvec_pool = biovec_create_pool(pool_size);
1943 if (!bs->bvec_pool)
1944 goto bad;
1945 }
df2cb6da
KO
1946
1947 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1948 if (!bs->rescue_workqueue)
1949 goto bad;
1da177e4 1950
df2cb6da 1951 return bs;
1da177e4
LT
1952bad:
1953 bioset_free(bs);
1954 return NULL;
1955}
d8f429e1
JN
1956
1957/**
1958 * bioset_create - Create a bio_set
1959 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1960 * @front_pad: Number of bytes to allocate in front of the returned bio
1961 *
1962 * Description:
1963 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1964 * to ask for a number of bytes to be allocated in front of the bio.
1965 * Front pad allocation is useful for embedding the bio inside
1966 * another structure, to avoid allocating extra data to go with the bio.
1967 * Note that the bio must be embedded at the END of that structure always,
1968 * or things will break badly.
1969 */
1970struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1971{
1972 return __bioset_create(pool_size, front_pad, true);
1973}
a112a71d 1974EXPORT_SYMBOL(bioset_create);
1da177e4 1975
d8f429e1
JN
1976/**
1977 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1978 * @pool_size: Number of bio to cache in the mempool
1979 * @front_pad: Number of bytes to allocate in front of the returned bio
1980 *
1981 * Description:
1982 * Same functionality as bioset_create() except that mempool is not
1983 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1984 */
1985struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1986{
1987 return __bioset_create(pool_size, front_pad, false);
1988}
1989EXPORT_SYMBOL(bioset_create_nobvec);
1990
852c788f 1991#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1992
1993/**
1994 * bio_associate_blkcg - associate a bio with the specified blkcg
1995 * @bio: target bio
1996 * @blkcg_css: css of the blkcg to associate
1997 *
1998 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1999 * treat @bio as if it were issued by a task which belongs to the blkcg.
2000 *
2001 * This function takes an extra reference of @blkcg_css which will be put
2002 * when @bio is released. The caller must own @bio and is responsible for
2003 * synchronizing calls to this function.
2004 */
2005int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2006{
2007 if (unlikely(bio->bi_css))
2008 return -EBUSY;
2009 css_get(blkcg_css);
2010 bio->bi_css = blkcg_css;
2011 return 0;
2012}
5aa2a96b 2013EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2014
852c788f
TH
2015/**
2016 * bio_associate_current - associate a bio with %current
2017 * @bio: target bio
2018 *
2019 * Associate @bio with %current if it hasn't been associated yet. Block
2020 * layer will treat @bio as if it were issued by %current no matter which
2021 * task actually issues it.
2022 *
2023 * This function takes an extra reference of @task's io_context and blkcg
2024 * which will be put when @bio is released. The caller must own @bio,
2025 * ensure %current->io_context exists, and is responsible for synchronizing
2026 * calls to this function.
2027 */
2028int bio_associate_current(struct bio *bio)
2029{
2030 struct io_context *ioc;
852c788f 2031
1d933cf0 2032 if (bio->bi_css)
852c788f
TH
2033 return -EBUSY;
2034
2035 ioc = current->io_context;
2036 if (!ioc)
2037 return -ENOENT;
2038
852c788f
TH
2039 get_io_context_active(ioc);
2040 bio->bi_ioc = ioc;
c165b3e3 2041 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2042 return 0;
2043}
5aa2a96b 2044EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2045
2046/**
2047 * bio_disassociate_task - undo bio_associate_current()
2048 * @bio: target bio
2049 */
2050void bio_disassociate_task(struct bio *bio)
2051{
2052 if (bio->bi_ioc) {
2053 put_io_context(bio->bi_ioc);
2054 bio->bi_ioc = NULL;
2055 }
2056 if (bio->bi_css) {
2057 css_put(bio->bi_css);
2058 bio->bi_css = NULL;
2059 }
2060}
2061
20bd723e
PV
2062/**
2063 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2064 * @dst: destination bio
2065 * @src: source bio
2066 */
2067void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2068{
2069 if (src->bi_css)
2070 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2071}
2072
852c788f
TH
2073#endif /* CONFIG_BLK_CGROUP */
2074
1da177e4
LT
2075static void __init biovec_init_slabs(void)
2076{
2077 int i;
2078
ed996a52 2079 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2080 int size;
2081 struct biovec_slab *bvs = bvec_slabs + i;
2082
a7fcd37c
JA
2083 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2084 bvs->slab = NULL;
2085 continue;
2086 }
a7fcd37c 2087
1da177e4
LT
2088 size = bvs->nr_vecs * sizeof(struct bio_vec);
2089 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2090 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2091 }
2092}
2093
2094static int __init init_bio(void)
2095{
bb799ca0
JA
2096 bio_slab_max = 2;
2097 bio_slab_nr = 0;
2098 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2099 if (!bio_slabs)
2100 panic("bio: can't allocate bios\n");
1da177e4 2101
7878cba9 2102 bio_integrity_init();
1da177e4
LT
2103 biovec_init_slabs();
2104
bb799ca0 2105 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2106 if (!fs_bio_set)
2107 panic("bio: can't allocate bios\n");
2108
a91a2785
MP
2109 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2110 panic("bio: can't create integrity pool\n");
2111
1da177e4
LT
2112 return 0;
2113}
1da177e4 2114subsys_initcall(init_bio);