]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bio.c
blk-wbt: don't throttle discard or write zeroes
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 46static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
3f86a82a 56EXPORT_SYMBOL(fs_bio_set);
1da177e4 57
bb799ca0
JA
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
389d7b26 75 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 76 unsigned int new_bio_slab_max;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 99 new_bio_slab_max = bio_slab_max << 1;
389d7b26 100 new_bio_slabs = krealloc(bio_slabs,
386bc35a 101 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
386bc35a 105 bio_slab_max = new_bio_slab_max;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 162{
ed996a52
CH
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 168
ed996a52 169 if (idx == BVEC_POOL_MAX) {
9f060e22 170 mempool_free(bv, pool);
ed996a52 171 } else {
bb799ca0
JA
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176}
177
9f060e22
KO
178struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
1da177e4
LT
180{
181 struct bio_vec *bvl;
1da177e4 182
7ff9345f
JA
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
ed996a52 213 if (*idx == BVEC_POOL_MAX) {
7ff9345f 214fallback:
9f060e22 215 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 219
0a0d96b0 220 /*
7ff9345f
JA
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
0a0d96b0 224 */
7ff9345f 225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 226
0a0d96b0 227 /*
d0164adc 228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 229 * is set, retry with the 1-entry mempool
0a0d96b0 230 */
7ff9345f 231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 233 *idx = BVEC_POOL_MAX;
7ff9345f
JA
234 goto fallback;
235 }
236 }
237
ed996a52 238 (*idx)++;
1da177e4
LT
239 return bvl;
240}
241
4254bba1 242static void __bio_free(struct bio *bio)
1da177e4 243{
4254bba1 244 bio_disassociate_task(bio);
1da177e4 245
7ba1ba12 246 if (bio_integrity(bio))
1e2a410f 247 bio_integrity_free(bio);
4254bba1 248}
7ba1ba12 249
4254bba1
KO
250static void bio_free(struct bio *bio)
251{
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
ed996a52 258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
bb799ca0
JA
264 p -= bs->front_pad;
265
4254bba1
KO
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
3676347a
PO
271}
272
3a83f467
ML
273void bio_init(struct bio *bio, struct bio_vec *table,
274 unsigned short max_vecs)
1da177e4 275{
2b94de55 276 memset(bio, 0, sizeof(*bio));
c4cf5261 277 atomic_set(&bio->__bi_remaining, 1);
dac56212 278 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
279
280 bio->bi_io_vec = table;
281 bio->bi_max_vecs = max_vecs;
1da177e4 282}
a112a71d 283EXPORT_SYMBOL(bio_init);
1da177e4 284
f44b48c7
KO
285/**
286 * bio_reset - reinitialize a bio
287 * @bio: bio to reset
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
295void bio_reset(struct bio *bio)
296{
297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298
4254bba1 299 __bio_free(bio);
f44b48c7
KO
300
301 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 302 bio->bi_flags = flags;
c4cf5261 303 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
304}
305EXPORT_SYMBOL(bio_reset);
306
38f8baae 307static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 308{
4246a0b6
CH
309 struct bio *parent = bio->bi_private;
310
af3e3a52
CH
311 if (!parent->bi_error)
312 parent->bi_error = bio->bi_error;
196d38bc 313 bio_put(bio);
38f8baae
CH
314 return parent;
315}
316
317static void bio_chain_endio(struct bio *bio)
318{
319 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
320}
321
322/**
323 * bio_chain - chain bio completions
1051a902
RD
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
196d38bc
KO
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
333void bio_chain(struct bio *bio, struct bio *parent)
334{
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
c4cf5261 339 bio_inc_remaining(parent);
196d38bc
KO
340}
341EXPORT_SYMBOL(bio_chain);
342
df2cb6da
KO
343static void bio_alloc_rescue(struct work_struct *work)
344{
345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 struct bio *bio;
347
348 while (1) {
349 spin_lock(&bs->rescue_lock);
350 bio = bio_list_pop(&bs->rescue_list);
351 spin_unlock(&bs->rescue_lock);
352
353 if (!bio)
354 break;
355
356 generic_make_request(bio);
357 }
358}
359
360static void punt_bios_to_rescuer(struct bio_set *bs)
361{
362 struct bio_list punt, nopunt;
363 struct bio *bio;
364
365 /*
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
371 *
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
374 */
375
376 bio_list_init(&punt);
377 bio_list_init(&nopunt);
378
379 while ((bio = bio_list_pop(current->bio_list)))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381
382 *current->bio_list = nopunt;
383
384 spin_lock(&bs->rescue_lock);
385 bio_list_merge(&bs->rescue_list, &punt);
386 spin_unlock(&bs->rescue_lock);
387
388 queue_work(bs->rescue_workqueue, &bs->rescue_work);
389}
390
1da177e4
LT
391/**
392 * bio_alloc_bioset - allocate a bio for I/O
393 * @gfp_mask: the GFP_ mask given to the slab allocator
394 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 395 * @bs: the bio_set to allocate from.
1da177e4
LT
396 *
397 * Description:
3f86a82a
KO
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
400 *
d0164adc
MG
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 407 *
df2cb6da
KO
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
411 * stack overflows.
412 *
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
416 * thread.
417 *
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
422 *
3f86a82a
KO
423 * RETURNS:
424 * Pointer to new bio on success, NULL on failure.
425 */
dd0fc66f 426struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 427{
df2cb6da 428 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
429 unsigned front_pad;
430 unsigned inline_vecs;
34053979 431 struct bio_vec *bvl = NULL;
451a9ebf
TH
432 struct bio *bio;
433 void *p;
434
3f86a82a
KO
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
d8f429e1
JN
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
447 return NULL;
df2cb6da
KO
448 /*
449 * generic_make_request() converts recursion to iteration; this
450 * means if we're running beneath it, any bios we allocate and
451 * submit will not be submitted (and thus freed) until after we
452 * return.
453 *
454 * This exposes us to a potential deadlock if we allocate
455 * multiple bios from the same bio_set() while running
456 * underneath generic_make_request(). If we were to allocate
457 * multiple bios (say a stacking block driver that was splitting
458 * bios), we would deadlock if we exhausted the mempool's
459 * reserve.
460 *
461 * We solve this, and guarantee forward progress, with a rescuer
462 * workqueue per bio_set. If we go to allocate and there are
463 * bios on current->bio_list, we first try the allocation
d0164adc
MG
464 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
465 * bios we would be blocking to the rescuer workqueue before
466 * we retry with the original gfp_flags.
df2cb6da
KO
467 */
468
469 if (current->bio_list && !bio_list_empty(current->bio_list))
d0164adc 470 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 471
3f86a82a 472 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
473 if (!p && gfp_mask != saved_gfp) {
474 punt_bios_to_rescuer(bs);
475 gfp_mask = saved_gfp;
476 p = mempool_alloc(bs->bio_pool, gfp_mask);
477 }
478
3f86a82a
KO
479 front_pad = bs->front_pad;
480 inline_vecs = BIO_INLINE_VECS;
481 }
482
451a9ebf
TH
483 if (unlikely(!p))
484 return NULL;
1da177e4 485
3f86a82a 486 bio = p + front_pad;
3a83f467 487 bio_init(bio, NULL, 0);
34053979 488
3f86a82a 489 if (nr_iovecs > inline_vecs) {
ed996a52
CH
490 unsigned long idx = 0;
491
9f060e22 492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
493 if (!bvl && gfp_mask != saved_gfp) {
494 punt_bios_to_rescuer(bs);
495 gfp_mask = saved_gfp;
9f060e22 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
497 }
498
34053979
IM
499 if (unlikely(!bvl))
500 goto err_free;
a38352e0 501
ed996a52 502 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
503 } else if (nr_iovecs) {
504 bvl = bio->bi_inline_vecs;
1da177e4 505 }
3f86a82a
KO
506
507 bio->bi_pool = bs;
34053979 508 bio->bi_max_vecs = nr_iovecs;
34053979 509 bio->bi_io_vec = bvl;
1da177e4 510 return bio;
34053979
IM
511
512err_free:
451a9ebf 513 mempool_free(p, bs->bio_pool);
34053979 514 return NULL;
1da177e4 515}
a112a71d 516EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 517
1da177e4
LT
518void zero_fill_bio(struct bio *bio)
519{
520 unsigned long flags;
7988613b
KO
521 struct bio_vec bv;
522 struct bvec_iter iter;
1da177e4 523
7988613b
KO
524 bio_for_each_segment(bv, bio, iter) {
525 char *data = bvec_kmap_irq(&bv, &flags);
526 memset(data, 0, bv.bv_len);
527 flush_dcache_page(bv.bv_page);
1da177e4
LT
528 bvec_kunmap_irq(data, &flags);
529 }
530}
531EXPORT_SYMBOL(zero_fill_bio);
532
533/**
534 * bio_put - release a reference to a bio
535 * @bio: bio to release reference to
536 *
537 * Description:
538 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 539 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
540 **/
541void bio_put(struct bio *bio)
542{
dac56212 543 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 544 bio_free(bio);
dac56212
JA
545 else {
546 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
547
548 /*
549 * last put frees it
550 */
551 if (atomic_dec_and_test(&bio->__bi_cnt))
552 bio_free(bio);
553 }
1da177e4 554}
a112a71d 555EXPORT_SYMBOL(bio_put);
1da177e4 556
165125e1 557inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
558{
559 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
560 blk_recount_segments(q, bio);
561
562 return bio->bi_phys_segments;
563}
a112a71d 564EXPORT_SYMBOL(bio_phys_segments);
1da177e4 565
59d276fe
KO
566/**
567 * __bio_clone_fast - clone a bio that shares the original bio's biovec
568 * @bio: destination bio
569 * @bio_src: bio to clone
570 *
571 * Clone a &bio. Caller will own the returned bio, but not
572 * the actual data it points to. Reference count of returned
573 * bio will be one.
574 *
575 * Caller must ensure that @bio_src is not freed before @bio.
576 */
577void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
578{
ed996a52 579 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
580
581 /*
582 * most users will be overriding ->bi_bdev with a new target,
583 * so we don't set nor calculate new physical/hw segment counts here
584 */
585 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 586 bio_set_flag(bio, BIO_CLONED);
1eff9d32 587 bio->bi_opf = bio_src->bi_opf;
59d276fe
KO
588 bio->bi_iter = bio_src->bi_iter;
589 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
590
591 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
592}
593EXPORT_SYMBOL(__bio_clone_fast);
594
595/**
596 * bio_clone_fast - clone a bio that shares the original bio's biovec
597 * @bio: bio to clone
598 * @gfp_mask: allocation priority
599 * @bs: bio_set to allocate from
600 *
601 * Like __bio_clone_fast, only also allocates the returned bio
602 */
603struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
604{
605 struct bio *b;
606
607 b = bio_alloc_bioset(gfp_mask, 0, bs);
608 if (!b)
609 return NULL;
610
611 __bio_clone_fast(b, bio);
612
613 if (bio_integrity(bio)) {
614 int ret;
615
616 ret = bio_integrity_clone(b, bio, gfp_mask);
617
618 if (ret < 0) {
619 bio_put(b);
620 return NULL;
621 }
622 }
623
624 return b;
625}
626EXPORT_SYMBOL(bio_clone_fast);
627
1da177e4 628/**
bdb53207
KO
629 * bio_clone_bioset - clone a bio
630 * @bio_src: bio to clone
1da177e4 631 * @gfp_mask: allocation priority
bf800ef1 632 * @bs: bio_set to allocate from
1da177e4 633 *
bdb53207
KO
634 * Clone bio. Caller will own the returned bio, but not the actual data it
635 * points to. Reference count of returned bio will be one.
1da177e4 636 */
bdb53207 637struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 638 struct bio_set *bs)
1da177e4 639{
bdb53207
KO
640 struct bvec_iter iter;
641 struct bio_vec bv;
642 struct bio *bio;
1da177e4 643
bdb53207
KO
644 /*
645 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
646 * bio_src->bi_io_vec to bio->bi_io_vec.
647 *
648 * We can't do that anymore, because:
649 *
650 * - The point of cloning the biovec is to produce a bio with a biovec
651 * the caller can modify: bi_idx and bi_bvec_done should be 0.
652 *
653 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
654 * we tried to clone the whole thing bio_alloc_bioset() would fail.
655 * But the clone should succeed as long as the number of biovecs we
656 * actually need to allocate is fewer than BIO_MAX_PAGES.
657 *
658 * - Lastly, bi_vcnt should not be looked at or relied upon by code
659 * that does not own the bio - reason being drivers don't use it for
660 * iterating over the biovec anymore, so expecting it to be kept up
661 * to date (i.e. for clones that share the parent biovec) is just
662 * asking for trouble and would force extra work on
663 * __bio_clone_fast() anyways.
664 */
665
8423ae3d 666 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 667 if (!bio)
7ba1ba12 668 return NULL;
bdb53207 669 bio->bi_bdev = bio_src->bi_bdev;
1eff9d32 670 bio->bi_opf = bio_src->bi_opf;
bdb53207
KO
671 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
672 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 673
7afafc8a
AH
674 switch (bio_op(bio)) {
675 case REQ_OP_DISCARD:
676 case REQ_OP_SECURE_ERASE:
a6f0788e 677 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
678 break;
679 case REQ_OP_WRITE_SAME:
8423ae3d 680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
681 break;
682 default:
683 bio_for_each_segment(bv, bio_src, iter)
684 bio->bi_io_vec[bio->bi_vcnt++] = bv;
685 break;
8423ae3d
KO
686 }
687
bdb53207
KO
688 if (bio_integrity(bio_src)) {
689 int ret;
7ba1ba12 690
bdb53207 691 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 692 if (ret < 0) {
bdb53207 693 bio_put(bio);
7ba1ba12 694 return NULL;
059ea331 695 }
3676347a 696 }
1da177e4 697
20bd723e
PV
698 bio_clone_blkcg_association(bio, bio_src);
699
bdb53207 700 return bio;
1da177e4 701}
bf800ef1 702EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
703
704/**
c66a14d0
KO
705 * bio_add_pc_page - attempt to add page to bio
706 * @q: the target queue
707 * @bio: destination bio
708 * @page: page to add
709 * @len: vec entry length
710 * @offset: vec entry offset
1da177e4 711 *
c66a14d0
KO
712 * Attempt to add a page to the bio_vec maplist. This can fail for a
713 * number of reasons, such as the bio being full or target block device
714 * limitations. The target block device must allow bio's up to PAGE_SIZE,
715 * so it is always possible to add a single page to an empty bio.
716 *
717 * This should only be used by REQ_PC bios.
1da177e4 718 */
c66a14d0
KO
719int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
720 *page, unsigned int len, unsigned int offset)
1da177e4
LT
721{
722 int retried_segments = 0;
723 struct bio_vec *bvec;
724
725 /*
726 * cloned bio must not modify vec list
727 */
728 if (unlikely(bio_flagged(bio, BIO_CLONED)))
729 return 0;
730
c66a14d0 731 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
732 return 0;
733
80cfd548
JA
734 /*
735 * For filesystems with a blocksize smaller than the pagesize
736 * we will often be called with the same page as last time and
737 * a consecutive offset. Optimize this special case.
738 */
739 if (bio->bi_vcnt > 0) {
740 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
741
742 if (page == prev->bv_page &&
743 offset == prev->bv_offset + prev->bv_len) {
744 prev->bv_len += len;
fcbf6a08 745 bio->bi_iter.bi_size += len;
80cfd548
JA
746 goto done;
747 }
66cb45aa
JA
748
749 /*
750 * If the queue doesn't support SG gaps and adding this
751 * offset would create a gap, disallow it.
752 */
03100aad 753 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 754 return 0;
80cfd548
JA
755 }
756
757 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
758 return 0;
759
760 /*
fcbf6a08
ML
761 * setup the new entry, we might clear it again later if we
762 * cannot add the page
763 */
764 bvec = &bio->bi_io_vec[bio->bi_vcnt];
765 bvec->bv_page = page;
766 bvec->bv_len = len;
767 bvec->bv_offset = offset;
768 bio->bi_vcnt++;
769 bio->bi_phys_segments++;
770 bio->bi_iter.bi_size += len;
771
772 /*
773 * Perform a recount if the number of segments is greater
774 * than queue_max_segments(q).
1da177e4
LT
775 */
776
fcbf6a08 777 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
778
779 if (retried_segments)
fcbf6a08 780 goto failed;
1da177e4
LT
781
782 retried_segments = 1;
783 blk_recount_segments(q, bio);
784 }
785
1da177e4 786 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 787 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 788 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 789
80cfd548 790 done:
1da177e4 791 return len;
fcbf6a08
ML
792
793 failed:
794 bvec->bv_page = NULL;
795 bvec->bv_len = 0;
796 bvec->bv_offset = 0;
797 bio->bi_vcnt--;
798 bio->bi_iter.bi_size -= len;
799 blk_recount_segments(q, bio);
800 return 0;
1da177e4 801}
a112a71d 802EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 803
1da177e4
LT
804/**
805 * bio_add_page - attempt to add page to bio
806 * @bio: destination bio
807 * @page: page to add
808 * @len: vec entry length
809 * @offset: vec entry offset
810 *
c66a14d0
KO
811 * Attempt to add a page to the bio_vec maplist. This will only fail
812 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 813 */
c66a14d0
KO
814int bio_add_page(struct bio *bio, struct page *page,
815 unsigned int len, unsigned int offset)
1da177e4 816{
c66a14d0
KO
817 struct bio_vec *bv;
818
819 /*
820 * cloned bio must not modify vec list
821 */
822 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
823 return 0;
762380ad 824
c66a14d0
KO
825 /*
826 * For filesystems with a blocksize smaller than the pagesize
827 * we will often be called with the same page as last time and
828 * a consecutive offset. Optimize this special case.
829 */
830 if (bio->bi_vcnt > 0) {
831 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 832
c66a14d0
KO
833 if (page == bv->bv_page &&
834 offset == bv->bv_offset + bv->bv_len) {
835 bv->bv_len += len;
836 goto done;
837 }
838 }
839
840 if (bio->bi_vcnt >= bio->bi_max_vecs)
841 return 0;
842
843 bv = &bio->bi_io_vec[bio->bi_vcnt];
844 bv->bv_page = page;
845 bv->bv_len = len;
846 bv->bv_offset = offset;
847
848 bio->bi_vcnt++;
849done:
850 bio->bi_iter.bi_size += len;
851 return len;
1da177e4 852}
a112a71d 853EXPORT_SYMBOL(bio_add_page);
1da177e4 854
2cefe4db
KO
855/**
856 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
857 * @bio: bio to add pages to
858 * @iter: iov iterator describing the region to be mapped
859 *
860 * Pins as many pages from *iter and appends them to @bio's bvec array. The
861 * pages will have to be released using put_page() when done.
862 */
863int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
864{
865 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
866 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
867 struct page **pages = (struct page **)bv;
868 size_t offset, diff;
869 ssize_t size;
870
871 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
872 if (unlikely(size <= 0))
873 return size ? size : -EFAULT;
874 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
875
876 /*
877 * Deep magic below: We need to walk the pinned pages backwards
878 * because we are abusing the space allocated for the bio_vecs
879 * for the page array. Because the bio_vecs are larger than the
880 * page pointers by definition this will always work. But it also
881 * means we can't use bio_add_page, so any changes to it's semantics
882 * need to be reflected here as well.
883 */
884 bio->bi_iter.bi_size += size;
885 bio->bi_vcnt += nr_pages;
886
887 diff = (nr_pages * PAGE_SIZE - offset) - size;
888 while (nr_pages--) {
889 bv[nr_pages].bv_page = pages[nr_pages];
890 bv[nr_pages].bv_len = PAGE_SIZE;
891 bv[nr_pages].bv_offset = 0;
892 }
893
894 bv[0].bv_offset += offset;
895 bv[0].bv_len -= offset;
896 if (diff)
897 bv[bio->bi_vcnt - 1].bv_len -= diff;
898
899 iov_iter_advance(iter, size);
900 return 0;
901}
902EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
903
9e882242
KO
904struct submit_bio_ret {
905 struct completion event;
906 int error;
907};
908
4246a0b6 909static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
910{
911 struct submit_bio_ret *ret = bio->bi_private;
912
4246a0b6 913 ret->error = bio->bi_error;
9e882242
KO
914 complete(&ret->event);
915}
916
917/**
918 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
919 * @bio: The &struct bio which describes the I/O
920 *
921 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
922 * bio_endio() on failure.
923 */
4e49ea4a 924int submit_bio_wait(struct bio *bio)
9e882242
KO
925{
926 struct submit_bio_ret ret;
927
9e882242
KO
928 init_completion(&ret.event);
929 bio->bi_private = &ret;
930 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 931 bio->bi_opf |= REQ_SYNC;
4e49ea4a 932 submit_bio(bio);
d57d6115 933 wait_for_completion_io(&ret.event);
9e882242
KO
934
935 return ret.error;
936}
937EXPORT_SYMBOL(submit_bio_wait);
938
054bdf64
KO
939/**
940 * bio_advance - increment/complete a bio by some number of bytes
941 * @bio: bio to advance
942 * @bytes: number of bytes to complete
943 *
944 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
945 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
946 * be updated on the last bvec as well.
947 *
948 * @bio will then represent the remaining, uncompleted portion of the io.
949 */
950void bio_advance(struct bio *bio, unsigned bytes)
951{
952 if (bio_integrity(bio))
953 bio_integrity_advance(bio, bytes);
954
4550dd6c 955 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
956}
957EXPORT_SYMBOL(bio_advance);
958
a0787606
KO
959/**
960 * bio_alloc_pages - allocates a single page for each bvec in a bio
961 * @bio: bio to allocate pages for
962 * @gfp_mask: flags for allocation
963 *
964 * Allocates pages up to @bio->bi_vcnt.
965 *
966 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
967 * freed.
968 */
969int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
970{
971 int i;
972 struct bio_vec *bv;
973
974 bio_for_each_segment_all(bv, bio, i) {
975 bv->bv_page = alloc_page(gfp_mask);
976 if (!bv->bv_page) {
977 while (--bv >= bio->bi_io_vec)
978 __free_page(bv->bv_page);
979 return -ENOMEM;
980 }
981 }
982
983 return 0;
984}
985EXPORT_SYMBOL(bio_alloc_pages);
986
16ac3d63
KO
987/**
988 * bio_copy_data - copy contents of data buffers from one chain of bios to
989 * another
990 * @src: source bio list
991 * @dst: destination bio list
992 *
993 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
994 * @src and @dst as linked lists of bios.
995 *
996 * Stops when it reaches the end of either @src or @dst - that is, copies
997 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
998 */
999void bio_copy_data(struct bio *dst, struct bio *src)
1000{
1cb9dda4
KO
1001 struct bvec_iter src_iter, dst_iter;
1002 struct bio_vec src_bv, dst_bv;
16ac3d63 1003 void *src_p, *dst_p;
1cb9dda4 1004 unsigned bytes;
16ac3d63 1005
1cb9dda4
KO
1006 src_iter = src->bi_iter;
1007 dst_iter = dst->bi_iter;
16ac3d63
KO
1008
1009 while (1) {
1cb9dda4
KO
1010 if (!src_iter.bi_size) {
1011 src = src->bi_next;
1012 if (!src)
1013 break;
16ac3d63 1014
1cb9dda4 1015 src_iter = src->bi_iter;
16ac3d63
KO
1016 }
1017
1cb9dda4
KO
1018 if (!dst_iter.bi_size) {
1019 dst = dst->bi_next;
1020 if (!dst)
1021 break;
16ac3d63 1022
1cb9dda4 1023 dst_iter = dst->bi_iter;
16ac3d63
KO
1024 }
1025
1cb9dda4
KO
1026 src_bv = bio_iter_iovec(src, src_iter);
1027 dst_bv = bio_iter_iovec(dst, dst_iter);
1028
1029 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1030
1cb9dda4
KO
1031 src_p = kmap_atomic(src_bv.bv_page);
1032 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1033
1cb9dda4
KO
1034 memcpy(dst_p + dst_bv.bv_offset,
1035 src_p + src_bv.bv_offset,
16ac3d63
KO
1036 bytes);
1037
1038 kunmap_atomic(dst_p);
1039 kunmap_atomic(src_p);
1040
1cb9dda4
KO
1041 bio_advance_iter(src, &src_iter, bytes);
1042 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1043 }
1044}
1045EXPORT_SYMBOL(bio_copy_data);
1046
1da177e4 1047struct bio_map_data {
152e283f 1048 int is_our_pages;
26e49cfc
KO
1049 struct iov_iter iter;
1050 struct iovec iov[];
1da177e4
LT
1051};
1052
7410b3c6 1053static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1054 gfp_t gfp_mask)
1da177e4 1055{
f3f63c1c
JA
1056 if (iov_count > UIO_MAXIOV)
1057 return NULL;
1da177e4 1058
c8db4448 1059 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1060 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1061}
1062
9124d3fe
DP
1063/**
1064 * bio_copy_from_iter - copy all pages from iov_iter to bio
1065 * @bio: The &struct bio which describes the I/O as destination
1066 * @iter: iov_iter as source
1067 *
1068 * Copy all pages from iov_iter to bio.
1069 * Returns 0 on success, or error on failure.
1070 */
1071static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1072{
9124d3fe 1073 int i;
c5dec1c3 1074 struct bio_vec *bvec;
c5dec1c3 1075
d74c6d51 1076 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1077 ssize_t ret;
c5dec1c3 1078
9124d3fe
DP
1079 ret = copy_page_from_iter(bvec->bv_page,
1080 bvec->bv_offset,
1081 bvec->bv_len,
1082 &iter);
1083
1084 if (!iov_iter_count(&iter))
1085 break;
1086
1087 if (ret < bvec->bv_len)
1088 return -EFAULT;
c5dec1c3
FT
1089 }
1090
9124d3fe
DP
1091 return 0;
1092}
1093
1094/**
1095 * bio_copy_to_iter - copy all pages from bio to iov_iter
1096 * @bio: The &struct bio which describes the I/O as source
1097 * @iter: iov_iter as destination
1098 *
1099 * Copy all pages from bio to iov_iter.
1100 * Returns 0 on success, or error on failure.
1101 */
1102static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1103{
1104 int i;
1105 struct bio_vec *bvec;
1106
1107 bio_for_each_segment_all(bvec, bio, i) {
1108 ssize_t ret;
1109
1110 ret = copy_page_to_iter(bvec->bv_page,
1111 bvec->bv_offset,
1112 bvec->bv_len,
1113 &iter);
1114
1115 if (!iov_iter_count(&iter))
1116 break;
1117
1118 if (ret < bvec->bv_len)
1119 return -EFAULT;
1120 }
1121
1122 return 0;
c5dec1c3
FT
1123}
1124
491221f8 1125void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1126{
1127 struct bio_vec *bvec;
1128 int i;
1129
1130 bio_for_each_segment_all(bvec, bio, i)
1131 __free_page(bvec->bv_page);
1132}
491221f8 1133EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1134
1da177e4
LT
1135/**
1136 * bio_uncopy_user - finish previously mapped bio
1137 * @bio: bio being terminated
1138 *
ddad8dd0 1139 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1140 * to user space in case of a read.
1141 */
1142int bio_uncopy_user(struct bio *bio)
1143{
1144 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1145 int ret = 0;
1da177e4 1146
35dc2483
RD
1147 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1148 /*
1149 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1150 * don't copy into a random user address space, just free
1151 * and return -EINTR so user space doesn't expect any data.
35dc2483 1152 */
2d99b55d
HR
1153 if (!current->mm)
1154 ret = -EINTR;
1155 else if (bio_data_dir(bio) == READ)
9124d3fe 1156 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1157 if (bmd->is_our_pages)
1158 bio_free_pages(bio);
35dc2483 1159 }
c8db4448 1160 kfree(bmd);
1da177e4
LT
1161 bio_put(bio);
1162 return ret;
1163}
1164
1165/**
c5dec1c3 1166 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1167 * @q: destination block queue
1168 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1169 * @iter: iovec iterator
1170 * @gfp_mask: memory allocation flags
1da177e4
LT
1171 *
1172 * Prepares and returns a bio for indirect user io, bouncing data
1173 * to/from kernel pages as necessary. Must be paired with
1174 * call bio_uncopy_user() on io completion.
1175 */
152e283f
FT
1176struct bio *bio_copy_user_iov(struct request_queue *q,
1177 struct rq_map_data *map_data,
26e49cfc
KO
1178 const struct iov_iter *iter,
1179 gfp_t gfp_mask)
1da177e4 1180{
1da177e4 1181 struct bio_map_data *bmd;
1da177e4
LT
1182 struct page *page;
1183 struct bio *bio;
1184 int i, ret;
c5dec1c3 1185 int nr_pages = 0;
26e49cfc 1186 unsigned int len = iter->count;
bd5cecea 1187 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1188
26e49cfc 1189 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1190 unsigned long uaddr;
1191 unsigned long end;
1192 unsigned long start;
1193
26e49cfc
KO
1194 uaddr = (unsigned long) iter->iov[i].iov_base;
1195 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1196 >> PAGE_SHIFT;
c5dec1c3
FT
1197 start = uaddr >> PAGE_SHIFT;
1198
cb4644ca
JA
1199 /*
1200 * Overflow, abort
1201 */
1202 if (end < start)
1203 return ERR_PTR(-EINVAL);
1204
c5dec1c3 1205 nr_pages += end - start;
c5dec1c3
FT
1206 }
1207
69838727
FT
1208 if (offset)
1209 nr_pages++;
1210
26e49cfc 1211 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1212 if (!bmd)
1213 return ERR_PTR(-ENOMEM);
1214
26e49cfc
KO
1215 /*
1216 * We need to do a deep copy of the iov_iter including the iovecs.
1217 * The caller provided iov might point to an on-stack or otherwise
1218 * shortlived one.
1219 */
1220 bmd->is_our_pages = map_data ? 0 : 1;
1221 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1222 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1223 iter->nr_segs, iter->count);
1224
1da177e4 1225 ret = -ENOMEM;
a9e9dc24 1226 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1227 if (!bio)
1228 goto out_bmd;
1229
26e49cfc 1230 if (iter->type & WRITE)
95fe6c1a 1231 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
1232
1233 ret = 0;
56c451f4
FT
1234
1235 if (map_data) {
e623ddb4 1236 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1237 i = map_data->offset / PAGE_SIZE;
1238 }
1da177e4 1239 while (len) {
e623ddb4 1240 unsigned int bytes = PAGE_SIZE;
1da177e4 1241
56c451f4
FT
1242 bytes -= offset;
1243
1da177e4
LT
1244 if (bytes > len)
1245 bytes = len;
1246
152e283f 1247 if (map_data) {
e623ddb4 1248 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1249 ret = -ENOMEM;
1250 break;
1251 }
e623ddb4
FT
1252
1253 page = map_data->pages[i / nr_pages];
1254 page += (i % nr_pages);
1255
1256 i++;
1257 } else {
152e283f 1258 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1259 if (!page) {
1260 ret = -ENOMEM;
1261 break;
1262 }
1da177e4
LT
1263 }
1264
56c451f4 1265 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1266 break;
1da177e4
LT
1267
1268 len -= bytes;
56c451f4 1269 offset = 0;
1da177e4
LT
1270 }
1271
1272 if (ret)
1273 goto cleanup;
1274
1275 /*
1276 * success
1277 */
26e49cfc 1278 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1279 (map_data && map_data->from_user)) {
9124d3fe 1280 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1281 if (ret)
1282 goto cleanup;
1da177e4
LT
1283 }
1284
26e49cfc 1285 bio->bi_private = bmd;
1da177e4
LT
1286 return bio;
1287cleanup:
152e283f 1288 if (!map_data)
1dfa0f68 1289 bio_free_pages(bio);
1da177e4
LT
1290 bio_put(bio);
1291out_bmd:
c8db4448 1292 kfree(bmd);
1da177e4
LT
1293 return ERR_PTR(ret);
1294}
1295
37f19e57
CH
1296/**
1297 * bio_map_user_iov - map user iovec into bio
1298 * @q: the struct request_queue for the bio
1299 * @iter: iovec iterator
1300 * @gfp_mask: memory allocation flags
1301 *
1302 * Map the user space address into a bio suitable for io to a block
1303 * device. Returns an error pointer in case of error.
1304 */
1305struct bio *bio_map_user_iov(struct request_queue *q,
1306 const struct iov_iter *iter,
1307 gfp_t gfp_mask)
1da177e4 1308{
26e49cfc 1309 int j;
f1970baf 1310 int nr_pages = 0;
1da177e4
LT
1311 struct page **pages;
1312 struct bio *bio;
f1970baf
JB
1313 int cur_page = 0;
1314 int ret, offset;
26e49cfc
KO
1315 struct iov_iter i;
1316 struct iovec iov;
1da177e4 1317
26e49cfc
KO
1318 iov_for_each(iov, i, *iter) {
1319 unsigned long uaddr = (unsigned long) iov.iov_base;
1320 unsigned long len = iov.iov_len;
f1970baf
JB
1321 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1322 unsigned long start = uaddr >> PAGE_SHIFT;
1323
cb4644ca
JA
1324 /*
1325 * Overflow, abort
1326 */
1327 if (end < start)
1328 return ERR_PTR(-EINVAL);
1329
f1970baf
JB
1330 nr_pages += end - start;
1331 /*
a441b0d0 1332 * buffer must be aligned to at least logical block size for now
f1970baf 1333 */
ad2d7225 1334 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1335 return ERR_PTR(-EINVAL);
1336 }
1337
1338 if (!nr_pages)
1da177e4
LT
1339 return ERR_PTR(-EINVAL);
1340
a9e9dc24 1341 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1342 if (!bio)
1343 return ERR_PTR(-ENOMEM);
1344
1345 ret = -ENOMEM;
a3bce90e 1346 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1347 if (!pages)
1348 goto out;
1349
26e49cfc
KO
1350 iov_for_each(iov, i, *iter) {
1351 unsigned long uaddr = (unsigned long) iov.iov_base;
1352 unsigned long len = iov.iov_len;
f1970baf
JB
1353 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1354 unsigned long start = uaddr >> PAGE_SHIFT;
1355 const int local_nr_pages = end - start;
1356 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1357
f5dd33c4 1358 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1359 (iter->type & WRITE) != WRITE,
1360 &pages[cur_page]);
99172157
JA
1361 if (ret < local_nr_pages) {
1362 ret = -EFAULT;
f1970baf 1363 goto out_unmap;
99172157 1364 }
f1970baf 1365
bd5cecea 1366 offset = offset_in_page(uaddr);
f1970baf
JB
1367 for (j = cur_page; j < page_limit; j++) {
1368 unsigned int bytes = PAGE_SIZE - offset;
1369
1370 if (len <= 0)
1371 break;
1372
1373 if (bytes > len)
1374 bytes = len;
1375
1376 /*
1377 * sorry...
1378 */
defd94b7
MC
1379 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1380 bytes)
f1970baf
JB
1381 break;
1382
1383 len -= bytes;
1384 offset = 0;
1385 }
1da177e4 1386
f1970baf 1387 cur_page = j;
1da177e4 1388 /*
f1970baf 1389 * release the pages we didn't map into the bio, if any
1da177e4 1390 */
f1970baf 1391 while (j < page_limit)
09cbfeaf 1392 put_page(pages[j++]);
1da177e4
LT
1393 }
1394
1da177e4
LT
1395 kfree(pages);
1396
1397 /*
1398 * set data direction, and check if mapped pages need bouncing
1399 */
26e49cfc 1400 if (iter->type & WRITE)
95fe6c1a 1401 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4 1402
b7c44ed9 1403 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1404
1405 /*
1406 * subtle -- if __bio_map_user() ended up bouncing a bio,
1407 * it would normally disappear when its bi_end_io is run.
1408 * however, we need it for the unmap, so grab an extra
1409 * reference to it
1410 */
1411 bio_get(bio);
1da177e4 1412 return bio;
f1970baf
JB
1413
1414 out_unmap:
26e49cfc
KO
1415 for (j = 0; j < nr_pages; j++) {
1416 if (!pages[j])
f1970baf 1417 break;
09cbfeaf 1418 put_page(pages[j]);
f1970baf
JB
1419 }
1420 out:
1da177e4
LT
1421 kfree(pages);
1422 bio_put(bio);
1423 return ERR_PTR(ret);
1424}
1425
1da177e4
LT
1426static void __bio_unmap_user(struct bio *bio)
1427{
1428 struct bio_vec *bvec;
1429 int i;
1430
1431 /*
1432 * make sure we dirty pages we wrote to
1433 */
d74c6d51 1434 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1435 if (bio_data_dir(bio) == READ)
1436 set_page_dirty_lock(bvec->bv_page);
1437
09cbfeaf 1438 put_page(bvec->bv_page);
1da177e4
LT
1439 }
1440
1441 bio_put(bio);
1442}
1443
1444/**
1445 * bio_unmap_user - unmap a bio
1446 * @bio: the bio being unmapped
1447 *
1448 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1449 * a process context.
1450 *
1451 * bio_unmap_user() may sleep.
1452 */
1453void bio_unmap_user(struct bio *bio)
1454{
1455 __bio_unmap_user(bio);
1456 bio_put(bio);
1457}
1458
4246a0b6 1459static void bio_map_kern_endio(struct bio *bio)
b823825e 1460{
b823825e 1461 bio_put(bio);
b823825e
JA
1462}
1463
75c72b83
CH
1464/**
1465 * bio_map_kern - map kernel address into bio
1466 * @q: the struct request_queue for the bio
1467 * @data: pointer to buffer to map
1468 * @len: length in bytes
1469 * @gfp_mask: allocation flags for bio allocation
1470 *
1471 * Map the kernel address into a bio suitable for io to a block
1472 * device. Returns an error pointer in case of error.
1473 */
1474struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1475 gfp_t gfp_mask)
df46b9a4
MC
1476{
1477 unsigned long kaddr = (unsigned long)data;
1478 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1479 unsigned long start = kaddr >> PAGE_SHIFT;
1480 const int nr_pages = end - start;
1481 int offset, i;
1482 struct bio *bio;
1483
a9e9dc24 1484 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1485 if (!bio)
1486 return ERR_PTR(-ENOMEM);
1487
1488 offset = offset_in_page(kaddr);
1489 for (i = 0; i < nr_pages; i++) {
1490 unsigned int bytes = PAGE_SIZE - offset;
1491
1492 if (len <= 0)
1493 break;
1494
1495 if (bytes > len)
1496 bytes = len;
1497
defd94b7 1498 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1499 offset) < bytes) {
1500 /* we don't support partial mappings */
1501 bio_put(bio);
1502 return ERR_PTR(-EINVAL);
1503 }
df46b9a4
MC
1504
1505 data += bytes;
1506 len -= bytes;
1507 offset = 0;
1508 }
1509
b823825e 1510 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1511 return bio;
1512}
a112a71d 1513EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1514
4246a0b6 1515static void bio_copy_kern_endio(struct bio *bio)
68154e90 1516{
1dfa0f68
CH
1517 bio_free_pages(bio);
1518 bio_put(bio);
1519}
1520
4246a0b6 1521static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1522{
42d2683a 1523 char *p = bio->bi_private;
1dfa0f68 1524 struct bio_vec *bvec;
68154e90
FT
1525 int i;
1526
d74c6d51 1527 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1528 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1529 p += bvec->bv_len;
68154e90
FT
1530 }
1531
4246a0b6 1532 bio_copy_kern_endio(bio);
68154e90
FT
1533}
1534
1535/**
1536 * bio_copy_kern - copy kernel address into bio
1537 * @q: the struct request_queue for the bio
1538 * @data: pointer to buffer to copy
1539 * @len: length in bytes
1540 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1541 * @reading: data direction is READ
68154e90
FT
1542 *
1543 * copy the kernel address into a bio suitable for io to a block
1544 * device. Returns an error pointer in case of error.
1545 */
1546struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1547 gfp_t gfp_mask, int reading)
1548{
42d2683a
CH
1549 unsigned long kaddr = (unsigned long)data;
1550 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1551 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1552 struct bio *bio;
1553 void *p = data;
1dfa0f68 1554 int nr_pages = 0;
68154e90 1555
42d2683a
CH
1556 /*
1557 * Overflow, abort
1558 */
1559 if (end < start)
1560 return ERR_PTR(-EINVAL);
68154e90 1561
42d2683a
CH
1562 nr_pages = end - start;
1563 bio = bio_kmalloc(gfp_mask, nr_pages);
1564 if (!bio)
1565 return ERR_PTR(-ENOMEM);
68154e90 1566
42d2683a
CH
1567 while (len) {
1568 struct page *page;
1569 unsigned int bytes = PAGE_SIZE;
68154e90 1570
42d2683a
CH
1571 if (bytes > len)
1572 bytes = len;
1573
1574 page = alloc_page(q->bounce_gfp | gfp_mask);
1575 if (!page)
1576 goto cleanup;
1577
1578 if (!reading)
1579 memcpy(page_address(page), p, bytes);
1580
1581 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1582 break;
1583
1584 len -= bytes;
1585 p += bytes;
68154e90
FT
1586 }
1587
1dfa0f68
CH
1588 if (reading) {
1589 bio->bi_end_io = bio_copy_kern_endio_read;
1590 bio->bi_private = data;
1591 } else {
1592 bio->bi_end_io = bio_copy_kern_endio;
95fe6c1a 1593 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1dfa0f68 1594 }
76029ff3 1595
68154e90 1596 return bio;
42d2683a
CH
1597
1598cleanup:
1dfa0f68 1599 bio_free_pages(bio);
42d2683a
CH
1600 bio_put(bio);
1601 return ERR_PTR(-ENOMEM);
68154e90
FT
1602}
1603
1da177e4
LT
1604/*
1605 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1606 * for performing direct-IO in BIOs.
1607 *
1608 * The problem is that we cannot run set_page_dirty() from interrupt context
1609 * because the required locks are not interrupt-safe. So what we can do is to
1610 * mark the pages dirty _before_ performing IO. And in interrupt context,
1611 * check that the pages are still dirty. If so, fine. If not, redirty them
1612 * in process context.
1613 *
1614 * We special-case compound pages here: normally this means reads into hugetlb
1615 * pages. The logic in here doesn't really work right for compound pages
1616 * because the VM does not uniformly chase down the head page in all cases.
1617 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1618 * handle them at all. So we skip compound pages here at an early stage.
1619 *
1620 * Note that this code is very hard to test under normal circumstances because
1621 * direct-io pins the pages with get_user_pages(). This makes
1622 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1623 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1624 * pagecache.
1625 *
1626 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1627 * deferred bio dirtying paths.
1628 */
1629
1630/*
1631 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1632 */
1633void bio_set_pages_dirty(struct bio *bio)
1634{
cb34e057 1635 struct bio_vec *bvec;
1da177e4
LT
1636 int i;
1637
cb34e057
KO
1638 bio_for_each_segment_all(bvec, bio, i) {
1639 struct page *page = bvec->bv_page;
1da177e4
LT
1640
1641 if (page && !PageCompound(page))
1642 set_page_dirty_lock(page);
1643 }
1644}
1645
86b6c7a7 1646static void bio_release_pages(struct bio *bio)
1da177e4 1647{
cb34e057 1648 struct bio_vec *bvec;
1da177e4
LT
1649 int i;
1650
cb34e057
KO
1651 bio_for_each_segment_all(bvec, bio, i) {
1652 struct page *page = bvec->bv_page;
1da177e4
LT
1653
1654 if (page)
1655 put_page(page);
1656 }
1657}
1658
1659/*
1660 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1661 * If they are, then fine. If, however, some pages are clean then they must
1662 * have been written out during the direct-IO read. So we take another ref on
1663 * the BIO and the offending pages and re-dirty the pages in process context.
1664 *
1665 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1666 * here on. It will run one put_page() against each page and will run one
1667 * bio_put() against the BIO.
1da177e4
LT
1668 */
1669
65f27f38 1670static void bio_dirty_fn(struct work_struct *work);
1da177e4 1671
65f27f38 1672static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1673static DEFINE_SPINLOCK(bio_dirty_lock);
1674static struct bio *bio_dirty_list;
1675
1676/*
1677 * This runs in process context
1678 */
65f27f38 1679static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1680{
1681 unsigned long flags;
1682 struct bio *bio;
1683
1684 spin_lock_irqsave(&bio_dirty_lock, flags);
1685 bio = bio_dirty_list;
1686 bio_dirty_list = NULL;
1687 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1688
1689 while (bio) {
1690 struct bio *next = bio->bi_private;
1691
1692 bio_set_pages_dirty(bio);
1693 bio_release_pages(bio);
1694 bio_put(bio);
1695 bio = next;
1696 }
1697}
1698
1699void bio_check_pages_dirty(struct bio *bio)
1700{
cb34e057 1701 struct bio_vec *bvec;
1da177e4
LT
1702 int nr_clean_pages = 0;
1703 int i;
1704
cb34e057
KO
1705 bio_for_each_segment_all(bvec, bio, i) {
1706 struct page *page = bvec->bv_page;
1da177e4
LT
1707
1708 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1709 put_page(page);
cb34e057 1710 bvec->bv_page = NULL;
1da177e4
LT
1711 } else {
1712 nr_clean_pages++;
1713 }
1714 }
1715
1716 if (nr_clean_pages) {
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&bio_dirty_lock, flags);
1720 bio->bi_private = bio_dirty_list;
1721 bio_dirty_list = bio;
1722 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1723 schedule_work(&bio_dirty_work);
1724 } else {
1725 bio_put(bio);
1726 }
1727}
1728
394ffa50
GZ
1729void generic_start_io_acct(int rw, unsigned long sectors,
1730 struct hd_struct *part)
1731{
1732 int cpu = part_stat_lock();
1733
1734 part_round_stats(cpu, part);
1735 part_stat_inc(cpu, part, ios[rw]);
1736 part_stat_add(cpu, part, sectors[rw], sectors);
1737 part_inc_in_flight(part, rw);
1738
1739 part_stat_unlock();
1740}
1741EXPORT_SYMBOL(generic_start_io_acct);
1742
1743void generic_end_io_acct(int rw, struct hd_struct *part,
1744 unsigned long start_time)
1745{
1746 unsigned long duration = jiffies - start_time;
1747 int cpu = part_stat_lock();
1748
1749 part_stat_add(cpu, part, ticks[rw], duration);
1750 part_round_stats(cpu, part);
1751 part_dec_in_flight(part, rw);
1752
1753 part_stat_unlock();
1754}
1755EXPORT_SYMBOL(generic_end_io_acct);
1756
2d4dc890
IL
1757#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1758void bio_flush_dcache_pages(struct bio *bi)
1759{
7988613b
KO
1760 struct bio_vec bvec;
1761 struct bvec_iter iter;
2d4dc890 1762
7988613b
KO
1763 bio_for_each_segment(bvec, bi, iter)
1764 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1765}
1766EXPORT_SYMBOL(bio_flush_dcache_pages);
1767#endif
1768
c4cf5261
JA
1769static inline bool bio_remaining_done(struct bio *bio)
1770{
1771 /*
1772 * If we're not chaining, then ->__bi_remaining is always 1 and
1773 * we always end io on the first invocation.
1774 */
1775 if (!bio_flagged(bio, BIO_CHAIN))
1776 return true;
1777
1778 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1779
326e1dbb 1780 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1781 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1782 return true;
326e1dbb 1783 }
c4cf5261
JA
1784
1785 return false;
1786}
1787
1da177e4
LT
1788/**
1789 * bio_endio - end I/O on a bio
1790 * @bio: bio
1da177e4
LT
1791 *
1792 * Description:
4246a0b6
CH
1793 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1794 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1795 * bio unless they own it and thus know that it has an end_io function.
1da177e4 1796 **/
4246a0b6 1797void bio_endio(struct bio *bio)
1da177e4 1798{
ba8c6967 1799again:
2b885517 1800 if (!bio_remaining_done(bio))
ba8c6967 1801 return;
1da177e4 1802
ba8c6967
CH
1803 /*
1804 * Need to have a real endio function for chained bios, otherwise
1805 * various corner cases will break (like stacking block devices that
1806 * save/restore bi_end_io) - however, we want to avoid unbounded
1807 * recursion and blowing the stack. Tail call optimization would
1808 * handle this, but compiling with frame pointers also disables
1809 * gcc's sibling call optimization.
1810 */
1811 if (bio->bi_end_io == bio_chain_endio) {
1812 bio = __bio_chain_endio(bio);
1813 goto again;
196d38bc 1814 }
ba8c6967
CH
1815
1816 if (bio->bi_end_io)
1817 bio->bi_end_io(bio);
1da177e4 1818}
a112a71d 1819EXPORT_SYMBOL(bio_endio);
1da177e4 1820
20d0189b
KO
1821/**
1822 * bio_split - split a bio
1823 * @bio: bio to split
1824 * @sectors: number of sectors to split from the front of @bio
1825 * @gfp: gfp mask
1826 * @bs: bio set to allocate from
1827 *
1828 * Allocates and returns a new bio which represents @sectors from the start of
1829 * @bio, and updates @bio to represent the remaining sectors.
1830 *
f3f5da62
MP
1831 * Unless this is a discard request the newly allocated bio will point
1832 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1833 * @bio is not freed before the split.
20d0189b
KO
1834 */
1835struct bio *bio_split(struct bio *bio, int sectors,
1836 gfp_t gfp, struct bio_set *bs)
1837{
1838 struct bio *split = NULL;
1839
1840 BUG_ON(sectors <= 0);
1841 BUG_ON(sectors >= bio_sectors(bio));
1842
f3f5da62
MP
1843 /*
1844 * Discards need a mutable bio_vec to accommodate the payload
1845 * required by the DSM TRIM and UNMAP commands.
1846 */
7afafc8a 1847 if (bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE)
f3f5da62
MP
1848 split = bio_clone_bioset(bio, gfp, bs);
1849 else
1850 split = bio_clone_fast(bio, gfp, bs);
1851
20d0189b
KO
1852 if (!split)
1853 return NULL;
1854
1855 split->bi_iter.bi_size = sectors << 9;
1856
1857 if (bio_integrity(split))
1858 bio_integrity_trim(split, 0, sectors);
1859
1860 bio_advance(bio, split->bi_iter.bi_size);
1861
1862 return split;
1863}
1864EXPORT_SYMBOL(bio_split);
1865
6678d83f
KO
1866/**
1867 * bio_trim - trim a bio
1868 * @bio: bio to trim
1869 * @offset: number of sectors to trim from the front of @bio
1870 * @size: size we want to trim @bio to, in sectors
1871 */
1872void bio_trim(struct bio *bio, int offset, int size)
1873{
1874 /* 'bio' is a cloned bio which we need to trim to match
1875 * the given offset and size.
6678d83f 1876 */
6678d83f
KO
1877
1878 size <<= 9;
4f024f37 1879 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1880 return;
1881
b7c44ed9 1882 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1883
1884 bio_advance(bio, offset << 9);
1885
4f024f37 1886 bio->bi_iter.bi_size = size;
6678d83f
KO
1887}
1888EXPORT_SYMBOL_GPL(bio_trim);
1889
1da177e4
LT
1890/*
1891 * create memory pools for biovec's in a bio_set.
1892 * use the global biovec slabs created for general use.
1893 */
a6c39cb4 1894mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1895{
ed996a52 1896 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1897
9f060e22 1898 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1899}
1900
1901void bioset_free(struct bio_set *bs)
1902{
df2cb6da
KO
1903 if (bs->rescue_workqueue)
1904 destroy_workqueue(bs->rescue_workqueue);
1905
1da177e4
LT
1906 if (bs->bio_pool)
1907 mempool_destroy(bs->bio_pool);
1908
9f060e22
KO
1909 if (bs->bvec_pool)
1910 mempool_destroy(bs->bvec_pool);
1911
7878cba9 1912 bioset_integrity_free(bs);
bb799ca0 1913 bio_put_slab(bs);
1da177e4
LT
1914
1915 kfree(bs);
1916}
a112a71d 1917EXPORT_SYMBOL(bioset_free);
1da177e4 1918
d8f429e1
JN
1919static struct bio_set *__bioset_create(unsigned int pool_size,
1920 unsigned int front_pad,
1921 bool create_bvec_pool)
1da177e4 1922{
392ddc32 1923 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1924 struct bio_set *bs;
1da177e4 1925
1b434498 1926 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1927 if (!bs)
1928 return NULL;
1929
bb799ca0 1930 bs->front_pad = front_pad;
1b434498 1931
df2cb6da
KO
1932 spin_lock_init(&bs->rescue_lock);
1933 bio_list_init(&bs->rescue_list);
1934 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1935
392ddc32 1936 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1937 if (!bs->bio_slab) {
1938 kfree(bs);
1939 return NULL;
1940 }
1941
1942 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1943 if (!bs->bio_pool)
1944 goto bad;
1945
d8f429e1
JN
1946 if (create_bvec_pool) {
1947 bs->bvec_pool = biovec_create_pool(pool_size);
1948 if (!bs->bvec_pool)
1949 goto bad;
1950 }
df2cb6da
KO
1951
1952 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1953 if (!bs->rescue_workqueue)
1954 goto bad;
1da177e4 1955
df2cb6da 1956 return bs;
1da177e4
LT
1957bad:
1958 bioset_free(bs);
1959 return NULL;
1960}
d8f429e1
JN
1961
1962/**
1963 * bioset_create - Create a bio_set
1964 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1965 * @front_pad: Number of bytes to allocate in front of the returned bio
1966 *
1967 * Description:
1968 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1969 * to ask for a number of bytes to be allocated in front of the bio.
1970 * Front pad allocation is useful for embedding the bio inside
1971 * another structure, to avoid allocating extra data to go with the bio.
1972 * Note that the bio must be embedded at the END of that structure always,
1973 * or things will break badly.
1974 */
1975struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1976{
1977 return __bioset_create(pool_size, front_pad, true);
1978}
a112a71d 1979EXPORT_SYMBOL(bioset_create);
1da177e4 1980
d8f429e1
JN
1981/**
1982 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1983 * @pool_size: Number of bio to cache in the mempool
1984 * @front_pad: Number of bytes to allocate in front of the returned bio
1985 *
1986 * Description:
1987 * Same functionality as bioset_create() except that mempool is not
1988 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1989 */
1990struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1991{
1992 return __bioset_create(pool_size, front_pad, false);
1993}
1994EXPORT_SYMBOL(bioset_create_nobvec);
1995
852c788f 1996#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1997
1998/**
1999 * bio_associate_blkcg - associate a bio with the specified blkcg
2000 * @bio: target bio
2001 * @blkcg_css: css of the blkcg to associate
2002 *
2003 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2004 * treat @bio as if it were issued by a task which belongs to the blkcg.
2005 *
2006 * This function takes an extra reference of @blkcg_css which will be put
2007 * when @bio is released. The caller must own @bio and is responsible for
2008 * synchronizing calls to this function.
2009 */
2010int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2011{
2012 if (unlikely(bio->bi_css))
2013 return -EBUSY;
2014 css_get(blkcg_css);
2015 bio->bi_css = blkcg_css;
2016 return 0;
2017}
5aa2a96b 2018EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2019
852c788f
TH
2020/**
2021 * bio_associate_current - associate a bio with %current
2022 * @bio: target bio
2023 *
2024 * Associate @bio with %current if it hasn't been associated yet. Block
2025 * layer will treat @bio as if it were issued by %current no matter which
2026 * task actually issues it.
2027 *
2028 * This function takes an extra reference of @task's io_context and blkcg
2029 * which will be put when @bio is released. The caller must own @bio,
2030 * ensure %current->io_context exists, and is responsible for synchronizing
2031 * calls to this function.
2032 */
2033int bio_associate_current(struct bio *bio)
2034{
2035 struct io_context *ioc;
852c788f 2036
1d933cf0 2037 if (bio->bi_css)
852c788f
TH
2038 return -EBUSY;
2039
2040 ioc = current->io_context;
2041 if (!ioc)
2042 return -ENOENT;
2043
852c788f
TH
2044 get_io_context_active(ioc);
2045 bio->bi_ioc = ioc;
c165b3e3 2046 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2047 return 0;
2048}
5aa2a96b 2049EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2050
2051/**
2052 * bio_disassociate_task - undo bio_associate_current()
2053 * @bio: target bio
2054 */
2055void bio_disassociate_task(struct bio *bio)
2056{
2057 if (bio->bi_ioc) {
2058 put_io_context(bio->bi_ioc);
2059 bio->bi_ioc = NULL;
2060 }
2061 if (bio->bi_css) {
2062 css_put(bio->bi_css);
2063 bio->bi_css = NULL;
2064 }
2065}
2066
20bd723e
PV
2067/**
2068 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2069 * @dst: destination bio
2070 * @src: source bio
2071 */
2072void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2073{
2074 if (src->bi_css)
2075 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2076}
2077
852c788f
TH
2078#endif /* CONFIG_BLK_CGROUP */
2079
1da177e4
LT
2080static void __init biovec_init_slabs(void)
2081{
2082 int i;
2083
ed996a52 2084 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2085 int size;
2086 struct biovec_slab *bvs = bvec_slabs + i;
2087
a7fcd37c
JA
2088 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2089 bvs->slab = NULL;
2090 continue;
2091 }
a7fcd37c 2092
1da177e4
LT
2093 size = bvs->nr_vecs * sizeof(struct bio_vec);
2094 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2095 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2096 }
2097}
2098
2099static int __init init_bio(void)
2100{
bb799ca0
JA
2101 bio_slab_max = 2;
2102 bio_slab_nr = 0;
2103 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2104 if (!bio_slabs)
2105 panic("bio: can't allocate bios\n");
1da177e4 2106
7878cba9 2107 bio_integrity_init();
1da177e4
LT
2108 biovec_init_slabs();
2109
bb799ca0 2110 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2111 if (!fs_bio_set)
2112 panic("bio: can't allocate bios\n");
2113
a91a2785
MP
2114 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2115 panic("bio: can't create integrity pool\n");
2116
1da177e4
LT
2117 return 0;
2118}
1da177e4 2119subsys_initcall(init_bio);