]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - block/bio.c
bcache: use op_is_write instead of checking for REQ_WRITE
[mirror_ubuntu-eoan-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
3f86a82a 56EXPORT_SYMBOL(fs_bio_set);
1da177e4 57
bb799ca0
JA
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
389d7b26 75 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 76 unsigned int new_bio_slab_max;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 99 new_bio_slab_max = bio_slab_max << 1;
389d7b26 100 new_bio_slabs = krealloc(bio_slabs,
386bc35a 101 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
386bc35a 105 bio_slab_max = new_bio_slab_max;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
9f060e22 166 mempool_free(bv, pool);
bb799ca0
JA
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
9f060e22
KO
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
1da177e4
LT
176{
177 struct bio_vec *bvl;
1da177e4 178
7ff9345f
JA
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
9f060e22 211 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 215
0a0d96b0 216 /*
7ff9345f
JA
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
0a0d96b0 220 */
7ff9345f 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 222
0a0d96b0 223 /*
d0164adc 224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 225 * is set, retry with the 1-entry mempool
0a0d96b0 226 */
7ff9345f 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
7ff9345f
JA
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
1da177e4
LT
234 return bvl;
235}
236
4254bba1 237static void __bio_free(struct bio *bio)
1da177e4 238{
4254bba1 239 bio_disassociate_task(bio);
1da177e4 240
7ba1ba12 241 if (bio_integrity(bio))
1e2a410f 242 bio_integrity_free(bio);
4254bba1 243}
7ba1ba12 244
4254bba1
KO
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
a38352e0 253 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
bb799ca0
JA
260 p -= bs->front_pad;
261
4254bba1
KO
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
3676347a
PO
267}
268
858119e1 269void bio_init(struct bio *bio)
1da177e4 270{
2b94de55 271 memset(bio, 0, sizeof(*bio));
c4cf5261 272 atomic_set(&bio->__bi_remaining, 1);
dac56212 273 atomic_set(&bio->__bi_cnt, 1);
1da177e4 274}
a112a71d 275EXPORT_SYMBOL(bio_init);
1da177e4 276
f44b48c7
KO
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
4254bba1 291 __bio_free(bio);
f44b48c7
KO
292
293 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 294 bio->bi_flags = flags;
c4cf5261 295 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
296}
297EXPORT_SYMBOL(bio_reset);
298
38f8baae 299static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 300{
4246a0b6
CH
301 struct bio *parent = bio->bi_private;
302
af3e3a52
CH
303 if (!parent->bi_error)
304 parent->bi_error = bio->bi_error;
196d38bc 305 bio_put(bio);
38f8baae
CH
306 return parent;
307}
308
309static void bio_chain_endio(struct bio *bio)
310{
311 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
312}
313
314/**
315 * bio_chain - chain bio completions
1051a902
RD
316 * @bio: the target bio
317 * @parent: the @bio's parent bio
196d38bc
KO
318 *
319 * The caller won't have a bi_end_io called when @bio completes - instead,
320 * @parent's bi_end_io won't be called until both @parent and @bio have
321 * completed; the chained bio will also be freed when it completes.
322 *
323 * The caller must not set bi_private or bi_end_io in @bio.
324 */
325void bio_chain(struct bio *bio, struct bio *parent)
326{
327 BUG_ON(bio->bi_private || bio->bi_end_io);
328
329 bio->bi_private = parent;
330 bio->bi_end_io = bio_chain_endio;
c4cf5261 331 bio_inc_remaining(parent);
196d38bc
KO
332}
333EXPORT_SYMBOL(bio_chain);
334
df2cb6da
KO
335static void bio_alloc_rescue(struct work_struct *work)
336{
337 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
338 struct bio *bio;
339
340 while (1) {
341 spin_lock(&bs->rescue_lock);
342 bio = bio_list_pop(&bs->rescue_list);
343 spin_unlock(&bs->rescue_lock);
344
345 if (!bio)
346 break;
347
348 generic_make_request(bio);
349 }
350}
351
352static void punt_bios_to_rescuer(struct bio_set *bs)
353{
354 struct bio_list punt, nopunt;
355 struct bio *bio;
356
357 /*
358 * In order to guarantee forward progress we must punt only bios that
359 * were allocated from this bio_set; otherwise, if there was a bio on
360 * there for a stacking driver higher up in the stack, processing it
361 * could require allocating bios from this bio_set, and doing that from
362 * our own rescuer would be bad.
363 *
364 * Since bio lists are singly linked, pop them all instead of trying to
365 * remove from the middle of the list:
366 */
367
368 bio_list_init(&punt);
369 bio_list_init(&nopunt);
370
371 while ((bio = bio_list_pop(current->bio_list)))
372 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
373
374 *current->bio_list = nopunt;
375
376 spin_lock(&bs->rescue_lock);
377 bio_list_merge(&bs->rescue_list, &punt);
378 spin_unlock(&bs->rescue_lock);
379
380 queue_work(bs->rescue_workqueue, &bs->rescue_work);
381}
382
1da177e4
LT
383/**
384 * bio_alloc_bioset - allocate a bio for I/O
385 * @gfp_mask: the GFP_ mask given to the slab allocator
386 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 387 * @bs: the bio_set to allocate from.
1da177e4
LT
388 *
389 * Description:
3f86a82a
KO
390 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
391 * backed by the @bs's mempool.
392 *
d0164adc
MG
393 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
394 * always be able to allocate a bio. This is due to the mempool guarantees.
395 * To make this work, callers must never allocate more than 1 bio at a time
396 * from this pool. Callers that need to allocate more than 1 bio must always
397 * submit the previously allocated bio for IO before attempting to allocate
398 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 399 *
df2cb6da
KO
400 * Note that when running under generic_make_request() (i.e. any block
401 * driver), bios are not submitted until after you return - see the code in
402 * generic_make_request() that converts recursion into iteration, to prevent
403 * stack overflows.
404 *
405 * This would normally mean allocating multiple bios under
406 * generic_make_request() would be susceptible to deadlocks, but we have
407 * deadlock avoidance code that resubmits any blocked bios from a rescuer
408 * thread.
409 *
410 * However, we do not guarantee forward progress for allocations from other
411 * mempools. Doing multiple allocations from the same mempool under
412 * generic_make_request() should be avoided - instead, use bio_set's front_pad
413 * for per bio allocations.
414 *
3f86a82a
KO
415 * RETURNS:
416 * Pointer to new bio on success, NULL on failure.
417 */
dd0fc66f 418struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 419{
df2cb6da 420 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
421 unsigned front_pad;
422 unsigned inline_vecs;
451a9ebf 423 unsigned long idx = BIO_POOL_NONE;
34053979 424 struct bio_vec *bvl = NULL;
451a9ebf
TH
425 struct bio *bio;
426 void *p;
427
3f86a82a
KO
428 if (!bs) {
429 if (nr_iovecs > UIO_MAXIOV)
430 return NULL;
431
432 p = kmalloc(sizeof(struct bio) +
433 nr_iovecs * sizeof(struct bio_vec),
434 gfp_mask);
435 front_pad = 0;
436 inline_vecs = nr_iovecs;
437 } else {
d8f429e1
JN
438 /* should not use nobvec bioset for nr_iovecs > 0 */
439 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
440 return NULL;
df2cb6da
KO
441 /*
442 * generic_make_request() converts recursion to iteration; this
443 * means if we're running beneath it, any bios we allocate and
444 * submit will not be submitted (and thus freed) until after we
445 * return.
446 *
447 * This exposes us to a potential deadlock if we allocate
448 * multiple bios from the same bio_set() while running
449 * underneath generic_make_request(). If we were to allocate
450 * multiple bios (say a stacking block driver that was splitting
451 * bios), we would deadlock if we exhausted the mempool's
452 * reserve.
453 *
454 * We solve this, and guarantee forward progress, with a rescuer
455 * workqueue per bio_set. If we go to allocate and there are
456 * bios on current->bio_list, we first try the allocation
d0164adc
MG
457 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
458 * bios we would be blocking to the rescuer workqueue before
459 * we retry with the original gfp_flags.
df2cb6da
KO
460 */
461
462 if (current->bio_list && !bio_list_empty(current->bio_list))
d0164adc 463 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 464
3f86a82a 465 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
466 if (!p && gfp_mask != saved_gfp) {
467 punt_bios_to_rescuer(bs);
468 gfp_mask = saved_gfp;
469 p = mempool_alloc(bs->bio_pool, gfp_mask);
470 }
471
3f86a82a
KO
472 front_pad = bs->front_pad;
473 inline_vecs = BIO_INLINE_VECS;
474 }
475
451a9ebf
TH
476 if (unlikely(!p))
477 return NULL;
1da177e4 478
3f86a82a 479 bio = p + front_pad;
34053979
IM
480 bio_init(bio);
481
3f86a82a 482 if (nr_iovecs > inline_vecs) {
9f060e22 483 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
484 if (!bvl && gfp_mask != saved_gfp) {
485 punt_bios_to_rescuer(bs);
486 gfp_mask = saved_gfp;
9f060e22 487 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
488 }
489
34053979
IM
490 if (unlikely(!bvl))
491 goto err_free;
a38352e0 492
b7c44ed9 493 bio_set_flag(bio, BIO_OWNS_VEC);
3f86a82a
KO
494 } else if (nr_iovecs) {
495 bvl = bio->bi_inline_vecs;
1da177e4 496 }
3f86a82a
KO
497
498 bio->bi_pool = bs;
34053979
IM
499 bio->bi_flags |= idx << BIO_POOL_OFFSET;
500 bio->bi_max_vecs = nr_iovecs;
34053979 501 bio->bi_io_vec = bvl;
1da177e4 502 return bio;
34053979
IM
503
504err_free:
451a9ebf 505 mempool_free(p, bs->bio_pool);
34053979 506 return NULL;
1da177e4 507}
a112a71d 508EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 509
1da177e4
LT
510void zero_fill_bio(struct bio *bio)
511{
512 unsigned long flags;
7988613b
KO
513 struct bio_vec bv;
514 struct bvec_iter iter;
1da177e4 515
7988613b
KO
516 bio_for_each_segment(bv, bio, iter) {
517 char *data = bvec_kmap_irq(&bv, &flags);
518 memset(data, 0, bv.bv_len);
519 flush_dcache_page(bv.bv_page);
1da177e4
LT
520 bvec_kunmap_irq(data, &flags);
521 }
522}
523EXPORT_SYMBOL(zero_fill_bio);
524
525/**
526 * bio_put - release a reference to a bio
527 * @bio: bio to release reference to
528 *
529 * Description:
530 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 531 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
532 **/
533void bio_put(struct bio *bio)
534{
dac56212 535 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 536 bio_free(bio);
dac56212
JA
537 else {
538 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
539
540 /*
541 * last put frees it
542 */
543 if (atomic_dec_and_test(&bio->__bi_cnt))
544 bio_free(bio);
545 }
1da177e4 546}
a112a71d 547EXPORT_SYMBOL(bio_put);
1da177e4 548
165125e1 549inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
550{
551 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
552 blk_recount_segments(q, bio);
553
554 return bio->bi_phys_segments;
555}
a112a71d 556EXPORT_SYMBOL(bio_phys_segments);
1da177e4 557
59d276fe
KO
558/**
559 * __bio_clone_fast - clone a bio that shares the original bio's biovec
560 * @bio: destination bio
561 * @bio_src: bio to clone
562 *
563 * Clone a &bio. Caller will own the returned bio, but not
564 * the actual data it points to. Reference count of returned
565 * bio will be one.
566 *
567 * Caller must ensure that @bio_src is not freed before @bio.
568 */
569void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
570{
571 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
572
573 /*
574 * most users will be overriding ->bi_bdev with a new target,
575 * so we don't set nor calculate new physical/hw segment counts here
576 */
577 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 578 bio_set_flag(bio, BIO_CLONED);
59d276fe
KO
579 bio->bi_rw = bio_src->bi_rw;
580 bio->bi_iter = bio_src->bi_iter;
581 bio->bi_io_vec = bio_src->bi_io_vec;
582}
583EXPORT_SYMBOL(__bio_clone_fast);
584
585/**
586 * bio_clone_fast - clone a bio that shares the original bio's biovec
587 * @bio: bio to clone
588 * @gfp_mask: allocation priority
589 * @bs: bio_set to allocate from
590 *
591 * Like __bio_clone_fast, only also allocates the returned bio
592 */
593struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
594{
595 struct bio *b;
596
597 b = bio_alloc_bioset(gfp_mask, 0, bs);
598 if (!b)
599 return NULL;
600
601 __bio_clone_fast(b, bio);
602
603 if (bio_integrity(bio)) {
604 int ret;
605
606 ret = bio_integrity_clone(b, bio, gfp_mask);
607
608 if (ret < 0) {
609 bio_put(b);
610 return NULL;
611 }
612 }
613
614 return b;
615}
616EXPORT_SYMBOL(bio_clone_fast);
617
1da177e4 618/**
bdb53207
KO
619 * bio_clone_bioset - clone a bio
620 * @bio_src: bio to clone
1da177e4 621 * @gfp_mask: allocation priority
bf800ef1 622 * @bs: bio_set to allocate from
1da177e4 623 *
bdb53207
KO
624 * Clone bio. Caller will own the returned bio, but not the actual data it
625 * points to. Reference count of returned bio will be one.
1da177e4 626 */
bdb53207 627struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 628 struct bio_set *bs)
1da177e4 629{
bdb53207
KO
630 struct bvec_iter iter;
631 struct bio_vec bv;
632 struct bio *bio;
1da177e4 633
bdb53207
KO
634 /*
635 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
636 * bio_src->bi_io_vec to bio->bi_io_vec.
637 *
638 * We can't do that anymore, because:
639 *
640 * - The point of cloning the biovec is to produce a bio with a biovec
641 * the caller can modify: bi_idx and bi_bvec_done should be 0.
642 *
643 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
644 * we tried to clone the whole thing bio_alloc_bioset() would fail.
645 * But the clone should succeed as long as the number of biovecs we
646 * actually need to allocate is fewer than BIO_MAX_PAGES.
647 *
648 * - Lastly, bi_vcnt should not be looked at or relied upon by code
649 * that does not own the bio - reason being drivers don't use it for
650 * iterating over the biovec anymore, so expecting it to be kept up
651 * to date (i.e. for clones that share the parent biovec) is just
652 * asking for trouble and would force extra work on
653 * __bio_clone_fast() anyways.
654 */
655
8423ae3d 656 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 657 if (!bio)
7ba1ba12
MP
658 return NULL;
659
bdb53207
KO
660 bio->bi_bdev = bio_src->bi_bdev;
661 bio->bi_rw = bio_src->bi_rw;
662 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
663 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 664
8423ae3d
KO
665 if (bio->bi_rw & REQ_DISCARD)
666 goto integrity_clone;
667
668 if (bio->bi_rw & REQ_WRITE_SAME) {
669 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
670 goto integrity_clone;
671 }
672
bdb53207
KO
673 bio_for_each_segment(bv, bio_src, iter)
674 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 675
8423ae3d 676integrity_clone:
bdb53207
KO
677 if (bio_integrity(bio_src)) {
678 int ret;
7ba1ba12 679
bdb53207 680 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 681 if (ret < 0) {
bdb53207 682 bio_put(bio);
7ba1ba12 683 return NULL;
059ea331 684 }
3676347a 685 }
1da177e4 686
bdb53207 687 return bio;
1da177e4 688}
bf800ef1 689EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
690
691/**
c66a14d0
KO
692 * bio_add_pc_page - attempt to add page to bio
693 * @q: the target queue
694 * @bio: destination bio
695 * @page: page to add
696 * @len: vec entry length
697 * @offset: vec entry offset
1da177e4 698 *
c66a14d0
KO
699 * Attempt to add a page to the bio_vec maplist. This can fail for a
700 * number of reasons, such as the bio being full or target block device
701 * limitations. The target block device must allow bio's up to PAGE_SIZE,
702 * so it is always possible to add a single page to an empty bio.
703 *
704 * This should only be used by REQ_PC bios.
1da177e4 705 */
c66a14d0
KO
706int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
707 *page, unsigned int len, unsigned int offset)
1da177e4
LT
708{
709 int retried_segments = 0;
710 struct bio_vec *bvec;
711
712 /*
713 * cloned bio must not modify vec list
714 */
715 if (unlikely(bio_flagged(bio, BIO_CLONED)))
716 return 0;
717
c66a14d0 718 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
719 return 0;
720
80cfd548
JA
721 /*
722 * For filesystems with a blocksize smaller than the pagesize
723 * we will often be called with the same page as last time and
724 * a consecutive offset. Optimize this special case.
725 */
726 if (bio->bi_vcnt > 0) {
727 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
728
729 if (page == prev->bv_page &&
730 offset == prev->bv_offset + prev->bv_len) {
731 prev->bv_len += len;
fcbf6a08 732 bio->bi_iter.bi_size += len;
80cfd548
JA
733 goto done;
734 }
66cb45aa
JA
735
736 /*
737 * If the queue doesn't support SG gaps and adding this
738 * offset would create a gap, disallow it.
739 */
03100aad 740 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 741 return 0;
80cfd548
JA
742 }
743
744 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
745 return 0;
746
747 /*
fcbf6a08
ML
748 * setup the new entry, we might clear it again later if we
749 * cannot add the page
750 */
751 bvec = &bio->bi_io_vec[bio->bi_vcnt];
752 bvec->bv_page = page;
753 bvec->bv_len = len;
754 bvec->bv_offset = offset;
755 bio->bi_vcnt++;
756 bio->bi_phys_segments++;
757 bio->bi_iter.bi_size += len;
758
759 /*
760 * Perform a recount if the number of segments is greater
761 * than queue_max_segments(q).
1da177e4
LT
762 */
763
fcbf6a08 764 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
765
766 if (retried_segments)
fcbf6a08 767 goto failed;
1da177e4
LT
768
769 retried_segments = 1;
770 blk_recount_segments(q, bio);
771 }
772
1da177e4 773 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 774 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 775 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 776
80cfd548 777 done:
1da177e4 778 return len;
fcbf6a08
ML
779
780 failed:
781 bvec->bv_page = NULL;
782 bvec->bv_len = 0;
783 bvec->bv_offset = 0;
784 bio->bi_vcnt--;
785 bio->bi_iter.bi_size -= len;
786 blk_recount_segments(q, bio);
787 return 0;
1da177e4 788}
a112a71d 789EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 790
1da177e4
LT
791/**
792 * bio_add_page - attempt to add page to bio
793 * @bio: destination bio
794 * @page: page to add
795 * @len: vec entry length
796 * @offset: vec entry offset
797 *
c66a14d0
KO
798 * Attempt to add a page to the bio_vec maplist. This will only fail
799 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 800 */
c66a14d0
KO
801int bio_add_page(struct bio *bio, struct page *page,
802 unsigned int len, unsigned int offset)
1da177e4 803{
c66a14d0
KO
804 struct bio_vec *bv;
805
806 /*
807 * cloned bio must not modify vec list
808 */
809 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
810 return 0;
762380ad 811
c66a14d0
KO
812 /*
813 * For filesystems with a blocksize smaller than the pagesize
814 * we will often be called with the same page as last time and
815 * a consecutive offset. Optimize this special case.
816 */
817 if (bio->bi_vcnt > 0) {
818 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 819
c66a14d0
KO
820 if (page == bv->bv_page &&
821 offset == bv->bv_offset + bv->bv_len) {
822 bv->bv_len += len;
823 goto done;
824 }
825 }
826
827 if (bio->bi_vcnt >= bio->bi_max_vecs)
828 return 0;
829
830 bv = &bio->bi_io_vec[bio->bi_vcnt];
831 bv->bv_page = page;
832 bv->bv_len = len;
833 bv->bv_offset = offset;
834
835 bio->bi_vcnt++;
836done:
837 bio->bi_iter.bi_size += len;
838 return len;
1da177e4 839}
a112a71d 840EXPORT_SYMBOL(bio_add_page);
1da177e4 841
9e882242
KO
842struct submit_bio_ret {
843 struct completion event;
844 int error;
845};
846
4246a0b6 847static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
848{
849 struct submit_bio_ret *ret = bio->bi_private;
850
4246a0b6 851 ret->error = bio->bi_error;
9e882242
KO
852 complete(&ret->event);
853}
854
855/**
856 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
857 * @bio: The &struct bio which describes the I/O
858 *
859 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
860 * bio_endio() on failure.
861 */
4e49ea4a 862int submit_bio_wait(struct bio *bio)
9e882242
KO
863{
864 struct submit_bio_ret ret;
865
9e882242
KO
866 init_completion(&ret.event);
867 bio->bi_private = &ret;
868 bio->bi_end_io = submit_bio_wait_endio;
4e49ea4a
MC
869 bio->bi_rw |= REQ_SYNC;
870 submit_bio(bio);
d57d6115 871 wait_for_completion_io(&ret.event);
9e882242
KO
872
873 return ret.error;
874}
875EXPORT_SYMBOL(submit_bio_wait);
876
054bdf64
KO
877/**
878 * bio_advance - increment/complete a bio by some number of bytes
879 * @bio: bio to advance
880 * @bytes: number of bytes to complete
881 *
882 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
883 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
884 * be updated on the last bvec as well.
885 *
886 * @bio will then represent the remaining, uncompleted portion of the io.
887 */
888void bio_advance(struct bio *bio, unsigned bytes)
889{
890 if (bio_integrity(bio))
891 bio_integrity_advance(bio, bytes);
892
4550dd6c 893 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
894}
895EXPORT_SYMBOL(bio_advance);
896
a0787606
KO
897/**
898 * bio_alloc_pages - allocates a single page for each bvec in a bio
899 * @bio: bio to allocate pages for
900 * @gfp_mask: flags for allocation
901 *
902 * Allocates pages up to @bio->bi_vcnt.
903 *
904 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
905 * freed.
906 */
907int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
908{
909 int i;
910 struct bio_vec *bv;
911
912 bio_for_each_segment_all(bv, bio, i) {
913 bv->bv_page = alloc_page(gfp_mask);
914 if (!bv->bv_page) {
915 while (--bv >= bio->bi_io_vec)
916 __free_page(bv->bv_page);
917 return -ENOMEM;
918 }
919 }
920
921 return 0;
922}
923EXPORT_SYMBOL(bio_alloc_pages);
924
16ac3d63
KO
925/**
926 * bio_copy_data - copy contents of data buffers from one chain of bios to
927 * another
928 * @src: source bio list
929 * @dst: destination bio list
930 *
931 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
932 * @src and @dst as linked lists of bios.
933 *
934 * Stops when it reaches the end of either @src or @dst - that is, copies
935 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
936 */
937void bio_copy_data(struct bio *dst, struct bio *src)
938{
1cb9dda4
KO
939 struct bvec_iter src_iter, dst_iter;
940 struct bio_vec src_bv, dst_bv;
16ac3d63 941 void *src_p, *dst_p;
1cb9dda4 942 unsigned bytes;
16ac3d63 943
1cb9dda4
KO
944 src_iter = src->bi_iter;
945 dst_iter = dst->bi_iter;
16ac3d63
KO
946
947 while (1) {
1cb9dda4
KO
948 if (!src_iter.bi_size) {
949 src = src->bi_next;
950 if (!src)
951 break;
16ac3d63 952
1cb9dda4 953 src_iter = src->bi_iter;
16ac3d63
KO
954 }
955
1cb9dda4
KO
956 if (!dst_iter.bi_size) {
957 dst = dst->bi_next;
958 if (!dst)
959 break;
16ac3d63 960
1cb9dda4 961 dst_iter = dst->bi_iter;
16ac3d63
KO
962 }
963
1cb9dda4
KO
964 src_bv = bio_iter_iovec(src, src_iter);
965 dst_bv = bio_iter_iovec(dst, dst_iter);
966
967 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 968
1cb9dda4
KO
969 src_p = kmap_atomic(src_bv.bv_page);
970 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 971
1cb9dda4
KO
972 memcpy(dst_p + dst_bv.bv_offset,
973 src_p + src_bv.bv_offset,
16ac3d63
KO
974 bytes);
975
976 kunmap_atomic(dst_p);
977 kunmap_atomic(src_p);
978
1cb9dda4
KO
979 bio_advance_iter(src, &src_iter, bytes);
980 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
981 }
982}
983EXPORT_SYMBOL(bio_copy_data);
984
1da177e4 985struct bio_map_data {
152e283f 986 int is_our_pages;
26e49cfc
KO
987 struct iov_iter iter;
988 struct iovec iov[];
1da177e4
LT
989};
990
7410b3c6 991static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 992 gfp_t gfp_mask)
1da177e4 993{
f3f63c1c
JA
994 if (iov_count > UIO_MAXIOV)
995 return NULL;
1da177e4 996
c8db4448 997 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 998 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
999}
1000
9124d3fe
DP
1001/**
1002 * bio_copy_from_iter - copy all pages from iov_iter to bio
1003 * @bio: The &struct bio which describes the I/O as destination
1004 * @iter: iov_iter as source
1005 *
1006 * Copy all pages from iov_iter to bio.
1007 * Returns 0 on success, or error on failure.
1008 */
1009static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1010{
9124d3fe 1011 int i;
c5dec1c3 1012 struct bio_vec *bvec;
c5dec1c3 1013
d74c6d51 1014 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1015 ssize_t ret;
c5dec1c3 1016
9124d3fe
DP
1017 ret = copy_page_from_iter(bvec->bv_page,
1018 bvec->bv_offset,
1019 bvec->bv_len,
1020 &iter);
1021
1022 if (!iov_iter_count(&iter))
1023 break;
1024
1025 if (ret < bvec->bv_len)
1026 return -EFAULT;
c5dec1c3
FT
1027 }
1028
9124d3fe
DP
1029 return 0;
1030}
1031
1032/**
1033 * bio_copy_to_iter - copy all pages from bio to iov_iter
1034 * @bio: The &struct bio which describes the I/O as source
1035 * @iter: iov_iter as destination
1036 *
1037 * Copy all pages from bio to iov_iter.
1038 * Returns 0 on success, or error on failure.
1039 */
1040static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1041{
1042 int i;
1043 struct bio_vec *bvec;
1044
1045 bio_for_each_segment_all(bvec, bio, i) {
1046 ssize_t ret;
1047
1048 ret = copy_page_to_iter(bvec->bv_page,
1049 bvec->bv_offset,
1050 bvec->bv_len,
1051 &iter);
1052
1053 if (!iov_iter_count(&iter))
1054 break;
1055
1056 if (ret < bvec->bv_len)
1057 return -EFAULT;
1058 }
1059
1060 return 0;
c5dec1c3
FT
1061}
1062
1dfa0f68
CH
1063static void bio_free_pages(struct bio *bio)
1064{
1065 struct bio_vec *bvec;
1066 int i;
1067
1068 bio_for_each_segment_all(bvec, bio, i)
1069 __free_page(bvec->bv_page);
1070}
1071
1da177e4
LT
1072/**
1073 * bio_uncopy_user - finish previously mapped bio
1074 * @bio: bio being terminated
1075 *
ddad8dd0 1076 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1077 * to user space in case of a read.
1078 */
1079int bio_uncopy_user(struct bio *bio)
1080{
1081 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1082 int ret = 0;
1da177e4 1083
35dc2483
RD
1084 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1085 /*
1086 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1087 * don't copy into a random user address space, just free
1088 * and return -EINTR so user space doesn't expect any data.
35dc2483 1089 */
2d99b55d
HR
1090 if (!current->mm)
1091 ret = -EINTR;
1092 else if (bio_data_dir(bio) == READ)
9124d3fe 1093 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1094 if (bmd->is_our_pages)
1095 bio_free_pages(bio);
35dc2483 1096 }
c8db4448 1097 kfree(bmd);
1da177e4
LT
1098 bio_put(bio);
1099 return ret;
1100}
a112a71d 1101EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1102
1103/**
c5dec1c3 1104 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1105 * @q: destination block queue
1106 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1107 * @iter: iovec iterator
1108 * @gfp_mask: memory allocation flags
1da177e4
LT
1109 *
1110 * Prepares and returns a bio for indirect user io, bouncing data
1111 * to/from kernel pages as necessary. Must be paired with
1112 * call bio_uncopy_user() on io completion.
1113 */
152e283f
FT
1114struct bio *bio_copy_user_iov(struct request_queue *q,
1115 struct rq_map_data *map_data,
26e49cfc
KO
1116 const struct iov_iter *iter,
1117 gfp_t gfp_mask)
1da177e4 1118{
1da177e4 1119 struct bio_map_data *bmd;
1da177e4
LT
1120 struct page *page;
1121 struct bio *bio;
1122 int i, ret;
c5dec1c3 1123 int nr_pages = 0;
26e49cfc 1124 unsigned int len = iter->count;
bd5cecea 1125 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1126
26e49cfc 1127 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1128 unsigned long uaddr;
1129 unsigned long end;
1130 unsigned long start;
1131
26e49cfc
KO
1132 uaddr = (unsigned long) iter->iov[i].iov_base;
1133 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1134 >> PAGE_SHIFT;
c5dec1c3
FT
1135 start = uaddr >> PAGE_SHIFT;
1136
cb4644ca
JA
1137 /*
1138 * Overflow, abort
1139 */
1140 if (end < start)
1141 return ERR_PTR(-EINVAL);
1142
c5dec1c3 1143 nr_pages += end - start;
c5dec1c3
FT
1144 }
1145
69838727
FT
1146 if (offset)
1147 nr_pages++;
1148
26e49cfc 1149 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1150 if (!bmd)
1151 return ERR_PTR(-ENOMEM);
1152
26e49cfc
KO
1153 /*
1154 * We need to do a deep copy of the iov_iter including the iovecs.
1155 * The caller provided iov might point to an on-stack or otherwise
1156 * shortlived one.
1157 */
1158 bmd->is_our_pages = map_data ? 0 : 1;
1159 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1160 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1161 iter->nr_segs, iter->count);
1162
1da177e4 1163 ret = -ENOMEM;
a9e9dc24 1164 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1165 if (!bio)
1166 goto out_bmd;
1167
26e49cfc 1168 if (iter->type & WRITE)
7b6d91da 1169 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1170
1171 ret = 0;
56c451f4
FT
1172
1173 if (map_data) {
e623ddb4 1174 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1175 i = map_data->offset / PAGE_SIZE;
1176 }
1da177e4 1177 while (len) {
e623ddb4 1178 unsigned int bytes = PAGE_SIZE;
1da177e4 1179
56c451f4
FT
1180 bytes -= offset;
1181
1da177e4
LT
1182 if (bytes > len)
1183 bytes = len;
1184
152e283f 1185 if (map_data) {
e623ddb4 1186 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1187 ret = -ENOMEM;
1188 break;
1189 }
e623ddb4
FT
1190
1191 page = map_data->pages[i / nr_pages];
1192 page += (i % nr_pages);
1193
1194 i++;
1195 } else {
152e283f 1196 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1197 if (!page) {
1198 ret = -ENOMEM;
1199 break;
1200 }
1da177e4
LT
1201 }
1202
56c451f4 1203 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1204 break;
1da177e4
LT
1205
1206 len -= bytes;
56c451f4 1207 offset = 0;
1da177e4
LT
1208 }
1209
1210 if (ret)
1211 goto cleanup;
1212
1213 /*
1214 * success
1215 */
26e49cfc 1216 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1217 (map_data && map_data->from_user)) {
9124d3fe 1218 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1219 if (ret)
1220 goto cleanup;
1da177e4
LT
1221 }
1222
26e49cfc 1223 bio->bi_private = bmd;
1da177e4
LT
1224 return bio;
1225cleanup:
152e283f 1226 if (!map_data)
1dfa0f68 1227 bio_free_pages(bio);
1da177e4
LT
1228 bio_put(bio);
1229out_bmd:
c8db4448 1230 kfree(bmd);
1da177e4
LT
1231 return ERR_PTR(ret);
1232}
1233
37f19e57
CH
1234/**
1235 * bio_map_user_iov - map user iovec into bio
1236 * @q: the struct request_queue for the bio
1237 * @iter: iovec iterator
1238 * @gfp_mask: memory allocation flags
1239 *
1240 * Map the user space address into a bio suitable for io to a block
1241 * device. Returns an error pointer in case of error.
1242 */
1243struct bio *bio_map_user_iov(struct request_queue *q,
1244 const struct iov_iter *iter,
1245 gfp_t gfp_mask)
1da177e4 1246{
26e49cfc 1247 int j;
f1970baf 1248 int nr_pages = 0;
1da177e4
LT
1249 struct page **pages;
1250 struct bio *bio;
f1970baf
JB
1251 int cur_page = 0;
1252 int ret, offset;
26e49cfc
KO
1253 struct iov_iter i;
1254 struct iovec iov;
1da177e4 1255
26e49cfc
KO
1256 iov_for_each(iov, i, *iter) {
1257 unsigned long uaddr = (unsigned long) iov.iov_base;
1258 unsigned long len = iov.iov_len;
f1970baf
JB
1259 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1260 unsigned long start = uaddr >> PAGE_SHIFT;
1261
cb4644ca
JA
1262 /*
1263 * Overflow, abort
1264 */
1265 if (end < start)
1266 return ERR_PTR(-EINVAL);
1267
f1970baf
JB
1268 nr_pages += end - start;
1269 /*
ad2d7225 1270 * buffer must be aligned to at least hardsector size for now
f1970baf 1271 */
ad2d7225 1272 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1273 return ERR_PTR(-EINVAL);
1274 }
1275
1276 if (!nr_pages)
1da177e4
LT
1277 return ERR_PTR(-EINVAL);
1278
a9e9dc24 1279 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1280 if (!bio)
1281 return ERR_PTR(-ENOMEM);
1282
1283 ret = -ENOMEM;
a3bce90e 1284 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1285 if (!pages)
1286 goto out;
1287
26e49cfc
KO
1288 iov_for_each(iov, i, *iter) {
1289 unsigned long uaddr = (unsigned long) iov.iov_base;
1290 unsigned long len = iov.iov_len;
f1970baf
JB
1291 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1292 unsigned long start = uaddr >> PAGE_SHIFT;
1293 const int local_nr_pages = end - start;
1294 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1295
f5dd33c4 1296 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1297 (iter->type & WRITE) != WRITE,
1298 &pages[cur_page]);
99172157
JA
1299 if (ret < local_nr_pages) {
1300 ret = -EFAULT;
f1970baf 1301 goto out_unmap;
99172157 1302 }
f1970baf 1303
bd5cecea 1304 offset = offset_in_page(uaddr);
f1970baf
JB
1305 for (j = cur_page; j < page_limit; j++) {
1306 unsigned int bytes = PAGE_SIZE - offset;
1307
1308 if (len <= 0)
1309 break;
1310
1311 if (bytes > len)
1312 bytes = len;
1313
1314 /*
1315 * sorry...
1316 */
defd94b7
MC
1317 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1318 bytes)
f1970baf
JB
1319 break;
1320
1321 len -= bytes;
1322 offset = 0;
1323 }
1da177e4 1324
f1970baf 1325 cur_page = j;
1da177e4 1326 /*
f1970baf 1327 * release the pages we didn't map into the bio, if any
1da177e4 1328 */
f1970baf 1329 while (j < page_limit)
09cbfeaf 1330 put_page(pages[j++]);
1da177e4
LT
1331 }
1332
1da177e4
LT
1333 kfree(pages);
1334
1335 /*
1336 * set data direction, and check if mapped pages need bouncing
1337 */
26e49cfc 1338 if (iter->type & WRITE)
7b6d91da 1339 bio->bi_rw |= REQ_WRITE;
1da177e4 1340
b7c44ed9 1341 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1342
1343 /*
1344 * subtle -- if __bio_map_user() ended up bouncing a bio,
1345 * it would normally disappear when its bi_end_io is run.
1346 * however, we need it for the unmap, so grab an extra
1347 * reference to it
1348 */
1349 bio_get(bio);
1da177e4 1350 return bio;
f1970baf
JB
1351
1352 out_unmap:
26e49cfc
KO
1353 for (j = 0; j < nr_pages; j++) {
1354 if (!pages[j])
f1970baf 1355 break;
09cbfeaf 1356 put_page(pages[j]);
f1970baf
JB
1357 }
1358 out:
1da177e4
LT
1359 kfree(pages);
1360 bio_put(bio);
1361 return ERR_PTR(ret);
1362}
1363
1da177e4
LT
1364static void __bio_unmap_user(struct bio *bio)
1365{
1366 struct bio_vec *bvec;
1367 int i;
1368
1369 /*
1370 * make sure we dirty pages we wrote to
1371 */
d74c6d51 1372 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1373 if (bio_data_dir(bio) == READ)
1374 set_page_dirty_lock(bvec->bv_page);
1375
09cbfeaf 1376 put_page(bvec->bv_page);
1da177e4
LT
1377 }
1378
1379 bio_put(bio);
1380}
1381
1382/**
1383 * bio_unmap_user - unmap a bio
1384 * @bio: the bio being unmapped
1385 *
1386 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1387 * a process context.
1388 *
1389 * bio_unmap_user() may sleep.
1390 */
1391void bio_unmap_user(struct bio *bio)
1392{
1393 __bio_unmap_user(bio);
1394 bio_put(bio);
1395}
a112a71d 1396EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1397
4246a0b6 1398static void bio_map_kern_endio(struct bio *bio)
b823825e 1399{
b823825e 1400 bio_put(bio);
b823825e
JA
1401}
1402
75c72b83
CH
1403/**
1404 * bio_map_kern - map kernel address into bio
1405 * @q: the struct request_queue for the bio
1406 * @data: pointer to buffer to map
1407 * @len: length in bytes
1408 * @gfp_mask: allocation flags for bio allocation
1409 *
1410 * Map the kernel address into a bio suitable for io to a block
1411 * device. Returns an error pointer in case of error.
1412 */
1413struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1414 gfp_t gfp_mask)
df46b9a4
MC
1415{
1416 unsigned long kaddr = (unsigned long)data;
1417 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1418 unsigned long start = kaddr >> PAGE_SHIFT;
1419 const int nr_pages = end - start;
1420 int offset, i;
1421 struct bio *bio;
1422
a9e9dc24 1423 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1424 if (!bio)
1425 return ERR_PTR(-ENOMEM);
1426
1427 offset = offset_in_page(kaddr);
1428 for (i = 0; i < nr_pages; i++) {
1429 unsigned int bytes = PAGE_SIZE - offset;
1430
1431 if (len <= 0)
1432 break;
1433
1434 if (bytes > len)
1435 bytes = len;
1436
defd94b7 1437 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1438 offset) < bytes) {
1439 /* we don't support partial mappings */
1440 bio_put(bio);
1441 return ERR_PTR(-EINVAL);
1442 }
df46b9a4
MC
1443
1444 data += bytes;
1445 len -= bytes;
1446 offset = 0;
1447 }
1448
b823825e 1449 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1450 return bio;
1451}
a112a71d 1452EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1453
4246a0b6 1454static void bio_copy_kern_endio(struct bio *bio)
68154e90 1455{
1dfa0f68
CH
1456 bio_free_pages(bio);
1457 bio_put(bio);
1458}
1459
4246a0b6 1460static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1461{
42d2683a 1462 char *p = bio->bi_private;
1dfa0f68 1463 struct bio_vec *bvec;
68154e90
FT
1464 int i;
1465
d74c6d51 1466 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1467 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1468 p += bvec->bv_len;
68154e90
FT
1469 }
1470
4246a0b6 1471 bio_copy_kern_endio(bio);
68154e90
FT
1472}
1473
1474/**
1475 * bio_copy_kern - copy kernel address into bio
1476 * @q: the struct request_queue for the bio
1477 * @data: pointer to buffer to copy
1478 * @len: length in bytes
1479 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1480 * @reading: data direction is READ
68154e90
FT
1481 *
1482 * copy the kernel address into a bio suitable for io to a block
1483 * device. Returns an error pointer in case of error.
1484 */
1485struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1486 gfp_t gfp_mask, int reading)
1487{
42d2683a
CH
1488 unsigned long kaddr = (unsigned long)data;
1489 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1491 struct bio *bio;
1492 void *p = data;
1dfa0f68 1493 int nr_pages = 0;
68154e90 1494
42d2683a
CH
1495 /*
1496 * Overflow, abort
1497 */
1498 if (end < start)
1499 return ERR_PTR(-EINVAL);
68154e90 1500
42d2683a
CH
1501 nr_pages = end - start;
1502 bio = bio_kmalloc(gfp_mask, nr_pages);
1503 if (!bio)
1504 return ERR_PTR(-ENOMEM);
68154e90 1505
42d2683a
CH
1506 while (len) {
1507 struct page *page;
1508 unsigned int bytes = PAGE_SIZE;
68154e90 1509
42d2683a
CH
1510 if (bytes > len)
1511 bytes = len;
1512
1513 page = alloc_page(q->bounce_gfp | gfp_mask);
1514 if (!page)
1515 goto cleanup;
1516
1517 if (!reading)
1518 memcpy(page_address(page), p, bytes);
1519
1520 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1521 break;
1522
1523 len -= bytes;
1524 p += bytes;
68154e90
FT
1525 }
1526
1dfa0f68
CH
1527 if (reading) {
1528 bio->bi_end_io = bio_copy_kern_endio_read;
1529 bio->bi_private = data;
1530 } else {
1531 bio->bi_end_io = bio_copy_kern_endio;
42d2683a 1532 bio->bi_rw |= REQ_WRITE;
1dfa0f68 1533 }
76029ff3 1534
68154e90 1535 return bio;
42d2683a
CH
1536
1537cleanup:
1dfa0f68 1538 bio_free_pages(bio);
42d2683a
CH
1539 bio_put(bio);
1540 return ERR_PTR(-ENOMEM);
68154e90 1541}
a112a71d 1542EXPORT_SYMBOL(bio_copy_kern);
68154e90 1543
1da177e4
LT
1544/*
1545 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1546 * for performing direct-IO in BIOs.
1547 *
1548 * The problem is that we cannot run set_page_dirty() from interrupt context
1549 * because the required locks are not interrupt-safe. So what we can do is to
1550 * mark the pages dirty _before_ performing IO. And in interrupt context,
1551 * check that the pages are still dirty. If so, fine. If not, redirty them
1552 * in process context.
1553 *
1554 * We special-case compound pages here: normally this means reads into hugetlb
1555 * pages. The logic in here doesn't really work right for compound pages
1556 * because the VM does not uniformly chase down the head page in all cases.
1557 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1558 * handle them at all. So we skip compound pages here at an early stage.
1559 *
1560 * Note that this code is very hard to test under normal circumstances because
1561 * direct-io pins the pages with get_user_pages(). This makes
1562 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1563 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1564 * pagecache.
1565 *
1566 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1567 * deferred bio dirtying paths.
1568 */
1569
1570/*
1571 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1572 */
1573void bio_set_pages_dirty(struct bio *bio)
1574{
cb34e057 1575 struct bio_vec *bvec;
1da177e4
LT
1576 int i;
1577
cb34e057
KO
1578 bio_for_each_segment_all(bvec, bio, i) {
1579 struct page *page = bvec->bv_page;
1da177e4
LT
1580
1581 if (page && !PageCompound(page))
1582 set_page_dirty_lock(page);
1583 }
1584}
1585
86b6c7a7 1586static void bio_release_pages(struct bio *bio)
1da177e4 1587{
cb34e057 1588 struct bio_vec *bvec;
1da177e4
LT
1589 int i;
1590
cb34e057
KO
1591 bio_for_each_segment_all(bvec, bio, i) {
1592 struct page *page = bvec->bv_page;
1da177e4
LT
1593
1594 if (page)
1595 put_page(page);
1596 }
1597}
1598
1599/*
1600 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1601 * If they are, then fine. If, however, some pages are clean then they must
1602 * have been written out during the direct-IO read. So we take another ref on
1603 * the BIO and the offending pages and re-dirty the pages in process context.
1604 *
1605 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1606 * here on. It will run one put_page() against each page and will run one
1607 * bio_put() against the BIO.
1da177e4
LT
1608 */
1609
65f27f38 1610static void bio_dirty_fn(struct work_struct *work);
1da177e4 1611
65f27f38 1612static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1613static DEFINE_SPINLOCK(bio_dirty_lock);
1614static struct bio *bio_dirty_list;
1615
1616/*
1617 * This runs in process context
1618 */
65f27f38 1619static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1620{
1621 unsigned long flags;
1622 struct bio *bio;
1623
1624 spin_lock_irqsave(&bio_dirty_lock, flags);
1625 bio = bio_dirty_list;
1626 bio_dirty_list = NULL;
1627 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1628
1629 while (bio) {
1630 struct bio *next = bio->bi_private;
1631
1632 bio_set_pages_dirty(bio);
1633 bio_release_pages(bio);
1634 bio_put(bio);
1635 bio = next;
1636 }
1637}
1638
1639void bio_check_pages_dirty(struct bio *bio)
1640{
cb34e057 1641 struct bio_vec *bvec;
1da177e4
LT
1642 int nr_clean_pages = 0;
1643 int i;
1644
cb34e057
KO
1645 bio_for_each_segment_all(bvec, bio, i) {
1646 struct page *page = bvec->bv_page;
1da177e4
LT
1647
1648 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1649 put_page(page);
cb34e057 1650 bvec->bv_page = NULL;
1da177e4
LT
1651 } else {
1652 nr_clean_pages++;
1653 }
1654 }
1655
1656 if (nr_clean_pages) {
1657 unsigned long flags;
1658
1659 spin_lock_irqsave(&bio_dirty_lock, flags);
1660 bio->bi_private = bio_dirty_list;
1661 bio_dirty_list = bio;
1662 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1663 schedule_work(&bio_dirty_work);
1664 } else {
1665 bio_put(bio);
1666 }
1667}
1668
394ffa50
GZ
1669void generic_start_io_acct(int rw, unsigned long sectors,
1670 struct hd_struct *part)
1671{
1672 int cpu = part_stat_lock();
1673
1674 part_round_stats(cpu, part);
1675 part_stat_inc(cpu, part, ios[rw]);
1676 part_stat_add(cpu, part, sectors[rw], sectors);
1677 part_inc_in_flight(part, rw);
1678
1679 part_stat_unlock();
1680}
1681EXPORT_SYMBOL(generic_start_io_acct);
1682
1683void generic_end_io_acct(int rw, struct hd_struct *part,
1684 unsigned long start_time)
1685{
1686 unsigned long duration = jiffies - start_time;
1687 int cpu = part_stat_lock();
1688
1689 part_stat_add(cpu, part, ticks[rw], duration);
1690 part_round_stats(cpu, part);
1691 part_dec_in_flight(part, rw);
1692
1693 part_stat_unlock();
1694}
1695EXPORT_SYMBOL(generic_end_io_acct);
1696
2d4dc890
IL
1697#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1698void bio_flush_dcache_pages(struct bio *bi)
1699{
7988613b
KO
1700 struct bio_vec bvec;
1701 struct bvec_iter iter;
2d4dc890 1702
7988613b
KO
1703 bio_for_each_segment(bvec, bi, iter)
1704 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1705}
1706EXPORT_SYMBOL(bio_flush_dcache_pages);
1707#endif
1708
c4cf5261
JA
1709static inline bool bio_remaining_done(struct bio *bio)
1710{
1711 /*
1712 * If we're not chaining, then ->__bi_remaining is always 1 and
1713 * we always end io on the first invocation.
1714 */
1715 if (!bio_flagged(bio, BIO_CHAIN))
1716 return true;
1717
1718 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1719
326e1dbb 1720 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1721 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1722 return true;
326e1dbb 1723 }
c4cf5261
JA
1724
1725 return false;
1726}
1727
1da177e4
LT
1728/**
1729 * bio_endio - end I/O on a bio
1730 * @bio: bio
1da177e4
LT
1731 *
1732 * Description:
4246a0b6
CH
1733 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1734 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1735 * bio unless they own it and thus know that it has an end_io function.
1da177e4 1736 **/
4246a0b6 1737void bio_endio(struct bio *bio)
1da177e4 1738{
ba8c6967 1739again:
2b885517 1740 if (!bio_remaining_done(bio))
ba8c6967 1741 return;
1da177e4 1742
ba8c6967
CH
1743 /*
1744 * Need to have a real endio function for chained bios, otherwise
1745 * various corner cases will break (like stacking block devices that
1746 * save/restore bi_end_io) - however, we want to avoid unbounded
1747 * recursion and blowing the stack. Tail call optimization would
1748 * handle this, but compiling with frame pointers also disables
1749 * gcc's sibling call optimization.
1750 */
1751 if (bio->bi_end_io == bio_chain_endio) {
1752 bio = __bio_chain_endio(bio);
1753 goto again;
196d38bc 1754 }
ba8c6967
CH
1755
1756 if (bio->bi_end_io)
1757 bio->bi_end_io(bio);
1da177e4 1758}
a112a71d 1759EXPORT_SYMBOL(bio_endio);
1da177e4 1760
20d0189b
KO
1761/**
1762 * bio_split - split a bio
1763 * @bio: bio to split
1764 * @sectors: number of sectors to split from the front of @bio
1765 * @gfp: gfp mask
1766 * @bs: bio set to allocate from
1767 *
1768 * Allocates and returns a new bio which represents @sectors from the start of
1769 * @bio, and updates @bio to represent the remaining sectors.
1770 *
f3f5da62
MP
1771 * Unless this is a discard request the newly allocated bio will point
1772 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1773 * @bio is not freed before the split.
20d0189b
KO
1774 */
1775struct bio *bio_split(struct bio *bio, int sectors,
1776 gfp_t gfp, struct bio_set *bs)
1777{
1778 struct bio *split = NULL;
1779
1780 BUG_ON(sectors <= 0);
1781 BUG_ON(sectors >= bio_sectors(bio));
1782
f3f5da62
MP
1783 /*
1784 * Discards need a mutable bio_vec to accommodate the payload
1785 * required by the DSM TRIM and UNMAP commands.
1786 */
1787 if (bio->bi_rw & REQ_DISCARD)
1788 split = bio_clone_bioset(bio, gfp, bs);
1789 else
1790 split = bio_clone_fast(bio, gfp, bs);
1791
20d0189b
KO
1792 if (!split)
1793 return NULL;
1794
1795 split->bi_iter.bi_size = sectors << 9;
1796
1797 if (bio_integrity(split))
1798 bio_integrity_trim(split, 0, sectors);
1799
1800 bio_advance(bio, split->bi_iter.bi_size);
1801
1802 return split;
1803}
1804EXPORT_SYMBOL(bio_split);
1805
6678d83f
KO
1806/**
1807 * bio_trim - trim a bio
1808 * @bio: bio to trim
1809 * @offset: number of sectors to trim from the front of @bio
1810 * @size: size we want to trim @bio to, in sectors
1811 */
1812void bio_trim(struct bio *bio, int offset, int size)
1813{
1814 /* 'bio' is a cloned bio which we need to trim to match
1815 * the given offset and size.
6678d83f 1816 */
6678d83f
KO
1817
1818 size <<= 9;
4f024f37 1819 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1820 return;
1821
b7c44ed9 1822 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1823
1824 bio_advance(bio, offset << 9);
1825
4f024f37 1826 bio->bi_iter.bi_size = size;
6678d83f
KO
1827}
1828EXPORT_SYMBOL_GPL(bio_trim);
1829
1da177e4
LT
1830/*
1831 * create memory pools for biovec's in a bio_set.
1832 * use the global biovec slabs created for general use.
1833 */
a6c39cb4 1834mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1835{
7ff9345f 1836 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1837
9f060e22 1838 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1839}
1840
1841void bioset_free(struct bio_set *bs)
1842{
df2cb6da
KO
1843 if (bs->rescue_workqueue)
1844 destroy_workqueue(bs->rescue_workqueue);
1845
1da177e4
LT
1846 if (bs->bio_pool)
1847 mempool_destroy(bs->bio_pool);
1848
9f060e22
KO
1849 if (bs->bvec_pool)
1850 mempool_destroy(bs->bvec_pool);
1851
7878cba9 1852 bioset_integrity_free(bs);
bb799ca0 1853 bio_put_slab(bs);
1da177e4
LT
1854
1855 kfree(bs);
1856}
a112a71d 1857EXPORT_SYMBOL(bioset_free);
1da177e4 1858
d8f429e1
JN
1859static struct bio_set *__bioset_create(unsigned int pool_size,
1860 unsigned int front_pad,
1861 bool create_bvec_pool)
1da177e4 1862{
392ddc32 1863 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1864 struct bio_set *bs;
1da177e4 1865
1b434498 1866 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1867 if (!bs)
1868 return NULL;
1869
bb799ca0 1870 bs->front_pad = front_pad;
1b434498 1871
df2cb6da
KO
1872 spin_lock_init(&bs->rescue_lock);
1873 bio_list_init(&bs->rescue_list);
1874 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1875
392ddc32 1876 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1877 if (!bs->bio_slab) {
1878 kfree(bs);
1879 return NULL;
1880 }
1881
1882 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1883 if (!bs->bio_pool)
1884 goto bad;
1885
d8f429e1
JN
1886 if (create_bvec_pool) {
1887 bs->bvec_pool = biovec_create_pool(pool_size);
1888 if (!bs->bvec_pool)
1889 goto bad;
1890 }
df2cb6da
KO
1891
1892 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1893 if (!bs->rescue_workqueue)
1894 goto bad;
1da177e4 1895
df2cb6da 1896 return bs;
1da177e4
LT
1897bad:
1898 bioset_free(bs);
1899 return NULL;
1900}
d8f429e1
JN
1901
1902/**
1903 * bioset_create - Create a bio_set
1904 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1905 * @front_pad: Number of bytes to allocate in front of the returned bio
1906 *
1907 * Description:
1908 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1909 * to ask for a number of bytes to be allocated in front of the bio.
1910 * Front pad allocation is useful for embedding the bio inside
1911 * another structure, to avoid allocating extra data to go with the bio.
1912 * Note that the bio must be embedded at the END of that structure always,
1913 * or things will break badly.
1914 */
1915struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1916{
1917 return __bioset_create(pool_size, front_pad, true);
1918}
a112a71d 1919EXPORT_SYMBOL(bioset_create);
1da177e4 1920
d8f429e1
JN
1921/**
1922 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1923 * @pool_size: Number of bio to cache in the mempool
1924 * @front_pad: Number of bytes to allocate in front of the returned bio
1925 *
1926 * Description:
1927 * Same functionality as bioset_create() except that mempool is not
1928 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1929 */
1930struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1931{
1932 return __bioset_create(pool_size, front_pad, false);
1933}
1934EXPORT_SYMBOL(bioset_create_nobvec);
1935
852c788f 1936#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1937
1938/**
1939 * bio_associate_blkcg - associate a bio with the specified blkcg
1940 * @bio: target bio
1941 * @blkcg_css: css of the blkcg to associate
1942 *
1943 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1944 * treat @bio as if it were issued by a task which belongs to the blkcg.
1945 *
1946 * This function takes an extra reference of @blkcg_css which will be put
1947 * when @bio is released. The caller must own @bio and is responsible for
1948 * synchronizing calls to this function.
1949 */
1950int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1951{
1952 if (unlikely(bio->bi_css))
1953 return -EBUSY;
1954 css_get(blkcg_css);
1955 bio->bi_css = blkcg_css;
1956 return 0;
1957}
5aa2a96b 1958EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 1959
852c788f
TH
1960/**
1961 * bio_associate_current - associate a bio with %current
1962 * @bio: target bio
1963 *
1964 * Associate @bio with %current if it hasn't been associated yet. Block
1965 * layer will treat @bio as if it were issued by %current no matter which
1966 * task actually issues it.
1967 *
1968 * This function takes an extra reference of @task's io_context and blkcg
1969 * which will be put when @bio is released. The caller must own @bio,
1970 * ensure %current->io_context exists, and is responsible for synchronizing
1971 * calls to this function.
1972 */
1973int bio_associate_current(struct bio *bio)
1974{
1975 struct io_context *ioc;
852c788f 1976
1d933cf0 1977 if (bio->bi_css)
852c788f
TH
1978 return -EBUSY;
1979
1980 ioc = current->io_context;
1981 if (!ioc)
1982 return -ENOENT;
1983
852c788f
TH
1984 get_io_context_active(ioc);
1985 bio->bi_ioc = ioc;
c165b3e3 1986 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
1987 return 0;
1988}
5aa2a96b 1989EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
1990
1991/**
1992 * bio_disassociate_task - undo bio_associate_current()
1993 * @bio: target bio
1994 */
1995void bio_disassociate_task(struct bio *bio)
1996{
1997 if (bio->bi_ioc) {
1998 put_io_context(bio->bi_ioc);
1999 bio->bi_ioc = NULL;
2000 }
2001 if (bio->bi_css) {
2002 css_put(bio->bi_css);
2003 bio->bi_css = NULL;
2004 }
2005}
2006
2007#endif /* CONFIG_BLK_CGROUP */
2008
1da177e4
LT
2009static void __init biovec_init_slabs(void)
2010{
2011 int i;
2012
2013 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2014 int size;
2015 struct biovec_slab *bvs = bvec_slabs + i;
2016
a7fcd37c
JA
2017 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2018 bvs->slab = NULL;
2019 continue;
2020 }
a7fcd37c 2021
1da177e4
LT
2022 size = bvs->nr_vecs * sizeof(struct bio_vec);
2023 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2024 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2025 }
2026}
2027
2028static int __init init_bio(void)
2029{
bb799ca0
JA
2030 bio_slab_max = 2;
2031 bio_slab_nr = 0;
2032 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2033 if (!bio_slabs)
2034 panic("bio: can't allocate bios\n");
1da177e4 2035
7878cba9 2036 bio_integrity_init();
1da177e4
LT
2037 biovec_init_slabs();
2038
bb799ca0 2039 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2040 if (!fs_bio_set)
2041 panic("bio: can't allocate bios\n");
2042
a91a2785
MP
2043 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2044 panic("bio: can't create integrity pool\n");
2045
1da177e4
LT
2046 return 0;
2047}
1da177e4 2048subsys_initcall(init_bio);