]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - block/bio.c
block: Define and use STAT_READ and STAT_WRITE
[mirror_ubuntu-hirsute-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
161 return bvec_slabs[idx].nr_vecs;
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
4254bba1 247 bio_disassociate_task(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
165125e1 574inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
a112a71d 581EXPORT_SYMBOL(bio_phys_segments);
1da177e4 582
59d276fe
KO
583/**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595{
ed996a52 596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
597
598 /*
74d46992 599 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
74d46992 602 bio->bi_disk = bio_src->bi_disk;
62530ed8 603 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 604 bio_set_flag(bio, BIO_CLONED);
111be883
SL
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 607 bio->bi_opf = bio_src->bi_opf;
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
611
612 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
613}
614EXPORT_SYMBOL(__bio_clone_fast);
615
616/**
617 * bio_clone_fast - clone a bio that shares the original bio's biovec
618 * @bio: bio to clone
619 * @gfp_mask: allocation priority
620 * @bs: bio_set to allocate from
621 *
622 * Like __bio_clone_fast, only also allocates the returned bio
623 */
624struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
625{
626 struct bio *b;
627
628 b = bio_alloc_bioset(gfp_mask, 0, bs);
629 if (!b)
630 return NULL;
631
632 __bio_clone_fast(b, bio);
633
634 if (bio_integrity(bio)) {
635 int ret;
636
637 ret = bio_integrity_clone(b, bio, gfp_mask);
638
639 if (ret < 0) {
640 bio_put(b);
641 return NULL;
642 }
643 }
644
645 return b;
646}
647EXPORT_SYMBOL(bio_clone_fast);
648
f4595875
SL
649/**
650 * bio_clone_bioset - clone a bio
651 * @bio_src: bio to clone
652 * @gfp_mask: allocation priority
653 * @bs: bio_set to allocate from
654 *
655 * Clone bio. Caller will own the returned bio, but not the actual data it
656 * points to. Reference count of returned bio will be one.
657 */
658struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
659 struct bio_set *bs)
1da177e4 660{
bdb53207
KO
661 struct bvec_iter iter;
662 struct bio_vec bv;
663 struct bio *bio;
1da177e4 664
bdb53207
KO
665 /*
666 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
667 * bio_src->bi_io_vec to bio->bi_io_vec.
668 *
669 * We can't do that anymore, because:
670 *
671 * - The point of cloning the biovec is to produce a bio with a biovec
672 * the caller can modify: bi_idx and bi_bvec_done should be 0.
673 *
674 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
675 * we tried to clone the whole thing bio_alloc_bioset() would fail.
676 * But the clone should succeed as long as the number of biovecs we
677 * actually need to allocate is fewer than BIO_MAX_PAGES.
678 *
679 * - Lastly, bi_vcnt should not be looked at or relied upon by code
680 * that does not own the bio - reason being drivers don't use it for
681 * iterating over the biovec anymore, so expecting it to be kept up
682 * to date (i.e. for clones that share the parent biovec) is just
683 * asking for trouble and would force extra work on
684 * __bio_clone_fast() anyways.
685 */
686
f4595875 687 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 688 if (!bio)
7ba1ba12 689 return NULL;
74d46992 690 bio->bi_disk = bio_src->bi_disk;
1eff9d32 691 bio->bi_opf = bio_src->bi_opf;
cb6934f8 692 bio->bi_write_hint = bio_src->bi_write_hint;
bdb53207
KO
693 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
694 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 695
7afafc8a
AH
696 switch (bio_op(bio)) {
697 case REQ_OP_DISCARD:
698 case REQ_OP_SECURE_ERASE:
a6f0788e 699 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
700 break;
701 case REQ_OP_WRITE_SAME:
8423ae3d 702 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
703 break;
704 default:
f4595875 705 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
706 bio->bi_io_vec[bio->bi_vcnt++] = bv;
707 break;
8423ae3d
KO
708 }
709
bdb53207
KO
710 if (bio_integrity(bio_src)) {
711 int ret;
7ba1ba12 712
bdb53207 713 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 714 if (ret < 0) {
bdb53207 715 bio_put(bio);
7ba1ba12 716 return NULL;
059ea331 717 }
3676347a 718 }
1da177e4 719
20bd723e
PV
720 bio_clone_blkcg_association(bio, bio_src);
721
bdb53207 722 return bio;
1da177e4 723}
bf800ef1 724EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
725
726/**
c66a14d0
KO
727 * bio_add_pc_page - attempt to add page to bio
728 * @q: the target queue
729 * @bio: destination bio
730 * @page: page to add
731 * @len: vec entry length
732 * @offset: vec entry offset
1da177e4 733 *
c66a14d0
KO
734 * Attempt to add a page to the bio_vec maplist. This can fail for a
735 * number of reasons, such as the bio being full or target block device
736 * limitations. The target block device must allow bio's up to PAGE_SIZE,
737 * so it is always possible to add a single page to an empty bio.
738 *
739 * This should only be used by REQ_PC bios.
1da177e4 740 */
c66a14d0
KO
741int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
742 *page, unsigned int len, unsigned int offset)
1da177e4
LT
743{
744 int retried_segments = 0;
745 struct bio_vec *bvec;
746
747 /*
748 * cloned bio must not modify vec list
749 */
750 if (unlikely(bio_flagged(bio, BIO_CLONED)))
751 return 0;
752
c66a14d0 753 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
754 return 0;
755
80cfd548
JA
756 /*
757 * For filesystems with a blocksize smaller than the pagesize
758 * we will often be called with the same page as last time and
759 * a consecutive offset. Optimize this special case.
760 */
761 if (bio->bi_vcnt > 0) {
762 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
763
764 if (page == prev->bv_page &&
765 offset == prev->bv_offset + prev->bv_len) {
766 prev->bv_len += len;
fcbf6a08 767 bio->bi_iter.bi_size += len;
80cfd548
JA
768 goto done;
769 }
66cb45aa
JA
770
771 /*
772 * If the queue doesn't support SG gaps and adding this
773 * offset would create a gap, disallow it.
774 */
03100aad 775 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 776 return 0;
80cfd548
JA
777 }
778
0aa69fd3 779 if (bio_full(bio))
1da177e4
LT
780 return 0;
781
782 /*
fcbf6a08
ML
783 * setup the new entry, we might clear it again later if we
784 * cannot add the page
785 */
786 bvec = &bio->bi_io_vec[bio->bi_vcnt];
787 bvec->bv_page = page;
788 bvec->bv_len = len;
789 bvec->bv_offset = offset;
790 bio->bi_vcnt++;
791 bio->bi_phys_segments++;
792 bio->bi_iter.bi_size += len;
793
794 /*
795 * Perform a recount if the number of segments is greater
796 * than queue_max_segments(q).
1da177e4
LT
797 */
798
fcbf6a08 799 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
800
801 if (retried_segments)
fcbf6a08 802 goto failed;
1da177e4
LT
803
804 retried_segments = 1;
805 blk_recount_segments(q, bio);
806 }
807
1da177e4 808 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 809 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 810 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 811
80cfd548 812 done:
1da177e4 813 return len;
fcbf6a08
ML
814
815 failed:
816 bvec->bv_page = NULL;
817 bvec->bv_len = 0;
818 bvec->bv_offset = 0;
819 bio->bi_vcnt--;
820 bio->bi_iter.bi_size -= len;
821 blk_recount_segments(q, bio);
822 return 0;
1da177e4 823}
a112a71d 824EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 825
1da177e4 826/**
0aa69fd3
CH
827 * __bio_try_merge_page - try appending data to an existing bvec.
828 * @bio: destination bio
829 * @page: page to add
830 * @len: length of the data to add
831 * @off: offset of the data in @page
1da177e4 832 *
0aa69fd3
CH
833 * Try to add the data at @page + @off to the last bvec of @bio. This is a
834 * a useful optimisation for file systems with a block size smaller than the
835 * page size.
836 *
837 * Return %true on success or %false on failure.
1da177e4 838 */
0aa69fd3
CH
839bool __bio_try_merge_page(struct bio *bio, struct page *page,
840 unsigned int len, unsigned int off)
1da177e4 841{
c66a14d0 842 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 843 return false;
762380ad 844
c66a14d0 845 if (bio->bi_vcnt > 0) {
0aa69fd3 846 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 847
0aa69fd3 848 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
c66a14d0 849 bv->bv_len += len;
0aa69fd3
CH
850 bio->bi_iter.bi_size += len;
851 return true;
c66a14d0
KO
852 }
853 }
0aa69fd3
CH
854 return false;
855}
856EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 857
0aa69fd3
CH
858/**
859 * __bio_add_page - add page to a bio in a new segment
860 * @bio: destination bio
861 * @page: page to add
862 * @len: length of the data to add
863 * @off: offset of the data in @page
864 *
865 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
866 * that @bio has space for another bvec.
867 */
868void __bio_add_page(struct bio *bio, struct page *page,
869 unsigned int len, unsigned int off)
870{
871 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 872
0aa69fd3
CH
873 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
874 WARN_ON_ONCE(bio_full(bio));
875
876 bv->bv_page = page;
877 bv->bv_offset = off;
878 bv->bv_len = len;
c66a14d0 879
c66a14d0 880 bio->bi_iter.bi_size += len;
0aa69fd3
CH
881 bio->bi_vcnt++;
882}
883EXPORT_SYMBOL_GPL(__bio_add_page);
884
885/**
886 * bio_add_page - attempt to add page to bio
887 * @bio: destination bio
888 * @page: page to add
889 * @len: vec entry length
890 * @offset: vec entry offset
891 *
892 * Attempt to add a page to the bio_vec maplist. This will only fail
893 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
894 */
895int bio_add_page(struct bio *bio, struct page *page,
896 unsigned int len, unsigned int offset)
897{
898 if (!__bio_try_merge_page(bio, page, len, offset)) {
899 if (bio_full(bio))
900 return 0;
901 __bio_add_page(bio, page, len, offset);
902 }
c66a14d0 903 return len;
1da177e4 904}
a112a71d 905EXPORT_SYMBOL(bio_add_page);
1da177e4 906
2cefe4db
KO
907/**
908 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
909 * @bio: bio to add pages to
910 * @iter: iov iterator describing the region to be mapped
911 *
912 * Pins as many pages from *iter and appends them to @bio's bvec array. The
913 * pages will have to be released using put_page() when done.
914 */
915int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
916{
917 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
918 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
919 struct page **pages = (struct page **)bv;
920 size_t offset, diff;
921 ssize_t size;
922
923 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
924 if (unlikely(size <= 0))
925 return size ? size : -EFAULT;
926 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
927
928 /*
929 * Deep magic below: We need to walk the pinned pages backwards
930 * because we are abusing the space allocated for the bio_vecs
931 * for the page array. Because the bio_vecs are larger than the
932 * page pointers by definition this will always work. But it also
933 * means we can't use bio_add_page, so any changes to it's semantics
934 * need to be reflected here as well.
935 */
936 bio->bi_iter.bi_size += size;
937 bio->bi_vcnt += nr_pages;
938
939 diff = (nr_pages * PAGE_SIZE - offset) - size;
940 while (nr_pages--) {
941 bv[nr_pages].bv_page = pages[nr_pages];
942 bv[nr_pages].bv_len = PAGE_SIZE;
943 bv[nr_pages].bv_offset = 0;
944 }
945
946 bv[0].bv_offset += offset;
947 bv[0].bv_len -= offset;
948 if (diff)
949 bv[bio->bi_vcnt - 1].bv_len -= diff;
950
951 iov_iter_advance(iter, size);
952 return 0;
953}
954EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
955
4246a0b6 956static void submit_bio_wait_endio(struct bio *bio)
9e882242 957{
65e53aab 958 complete(bio->bi_private);
9e882242
KO
959}
960
961/**
962 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
963 * @bio: The &struct bio which describes the I/O
964 *
965 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
966 * bio_endio() on failure.
3d289d68
JK
967 *
968 * WARNING: Unlike to how submit_bio() is usually used, this function does not
969 * result in bio reference to be consumed. The caller must drop the reference
970 * on his own.
9e882242 971 */
4e49ea4a 972int submit_bio_wait(struct bio *bio)
9e882242 973{
e319e1fb 974 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 975
65e53aab 976 bio->bi_private = &done;
9e882242 977 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 978 bio->bi_opf |= REQ_SYNC;
4e49ea4a 979 submit_bio(bio);
65e53aab 980 wait_for_completion_io(&done);
9e882242 981
65e53aab 982 return blk_status_to_errno(bio->bi_status);
9e882242
KO
983}
984EXPORT_SYMBOL(submit_bio_wait);
985
054bdf64
KO
986/**
987 * bio_advance - increment/complete a bio by some number of bytes
988 * @bio: bio to advance
989 * @bytes: number of bytes to complete
990 *
991 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
992 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
993 * be updated on the last bvec as well.
994 *
995 * @bio will then represent the remaining, uncompleted portion of the io.
996 */
997void bio_advance(struct bio *bio, unsigned bytes)
998{
999 if (bio_integrity(bio))
1000 bio_integrity_advance(bio, bytes);
1001
4550dd6c 1002 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1003}
1004EXPORT_SYMBOL(bio_advance);
1005
45db54d5
KO
1006void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1007 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1008{
1cb9dda4 1009 struct bio_vec src_bv, dst_bv;
16ac3d63 1010 void *src_p, *dst_p;
1cb9dda4 1011 unsigned bytes;
16ac3d63 1012
45db54d5
KO
1013 while (src_iter->bi_size && dst_iter->bi_size) {
1014 src_bv = bio_iter_iovec(src, *src_iter);
1015 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1016
1017 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1018
1cb9dda4
KO
1019 src_p = kmap_atomic(src_bv.bv_page);
1020 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1021
1cb9dda4
KO
1022 memcpy(dst_p + dst_bv.bv_offset,
1023 src_p + src_bv.bv_offset,
16ac3d63
KO
1024 bytes);
1025
1026 kunmap_atomic(dst_p);
1027 kunmap_atomic(src_p);
1028
6e6e811d
KO
1029 flush_dcache_page(dst_bv.bv_page);
1030
45db54d5
KO
1031 bio_advance_iter(src, src_iter, bytes);
1032 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1033 }
1034}
38a72dac
KO
1035EXPORT_SYMBOL(bio_copy_data_iter);
1036
1037/**
45db54d5
KO
1038 * bio_copy_data - copy contents of data buffers from one bio to another
1039 * @src: source bio
1040 * @dst: destination bio
38a72dac
KO
1041 *
1042 * Stops when it reaches the end of either @src or @dst - that is, copies
1043 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1044 */
1045void bio_copy_data(struct bio *dst, struct bio *src)
1046{
45db54d5
KO
1047 struct bvec_iter src_iter = src->bi_iter;
1048 struct bvec_iter dst_iter = dst->bi_iter;
1049
1050 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1051}
16ac3d63
KO
1052EXPORT_SYMBOL(bio_copy_data);
1053
45db54d5
KO
1054/**
1055 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1056 * another
1057 * @src: source bio list
1058 * @dst: destination bio list
1059 *
1060 * Stops when it reaches the end of either the @src list or @dst list - that is,
1061 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1062 * bios).
1063 */
1064void bio_list_copy_data(struct bio *dst, struct bio *src)
1065{
1066 struct bvec_iter src_iter = src->bi_iter;
1067 struct bvec_iter dst_iter = dst->bi_iter;
1068
1069 while (1) {
1070 if (!src_iter.bi_size) {
1071 src = src->bi_next;
1072 if (!src)
1073 break;
1074
1075 src_iter = src->bi_iter;
1076 }
1077
1078 if (!dst_iter.bi_size) {
1079 dst = dst->bi_next;
1080 if (!dst)
1081 break;
1082
1083 dst_iter = dst->bi_iter;
1084 }
1085
1086 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1087 }
1088}
1089EXPORT_SYMBOL(bio_list_copy_data);
1090
1da177e4 1091struct bio_map_data {
152e283f 1092 int is_our_pages;
26e49cfc
KO
1093 struct iov_iter iter;
1094 struct iovec iov[];
1da177e4
LT
1095};
1096
0e5b935d 1097static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1098 gfp_t gfp_mask)
1da177e4 1099{
0e5b935d
AV
1100 struct bio_map_data *bmd;
1101 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1102 return NULL;
1da177e4 1103
0e5b935d
AV
1104 bmd = kmalloc(sizeof(struct bio_map_data) +
1105 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1106 if (!bmd)
1107 return NULL;
1108 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1109 bmd->iter = *data;
1110 bmd->iter.iov = bmd->iov;
1111 return bmd;
1da177e4
LT
1112}
1113
9124d3fe
DP
1114/**
1115 * bio_copy_from_iter - copy all pages from iov_iter to bio
1116 * @bio: The &struct bio which describes the I/O as destination
1117 * @iter: iov_iter as source
1118 *
1119 * Copy all pages from iov_iter to bio.
1120 * Returns 0 on success, or error on failure.
1121 */
98a09d61 1122static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1123{
9124d3fe 1124 int i;
c5dec1c3 1125 struct bio_vec *bvec;
c5dec1c3 1126
d74c6d51 1127 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1128 ssize_t ret;
c5dec1c3 1129
9124d3fe
DP
1130 ret = copy_page_from_iter(bvec->bv_page,
1131 bvec->bv_offset,
1132 bvec->bv_len,
98a09d61 1133 iter);
9124d3fe 1134
98a09d61 1135 if (!iov_iter_count(iter))
9124d3fe
DP
1136 break;
1137
1138 if (ret < bvec->bv_len)
1139 return -EFAULT;
c5dec1c3
FT
1140 }
1141
9124d3fe
DP
1142 return 0;
1143}
1144
1145/**
1146 * bio_copy_to_iter - copy all pages from bio to iov_iter
1147 * @bio: The &struct bio which describes the I/O as source
1148 * @iter: iov_iter as destination
1149 *
1150 * Copy all pages from bio to iov_iter.
1151 * Returns 0 on success, or error on failure.
1152 */
1153static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1154{
1155 int i;
1156 struct bio_vec *bvec;
1157
1158 bio_for_each_segment_all(bvec, bio, i) {
1159 ssize_t ret;
1160
1161 ret = copy_page_to_iter(bvec->bv_page,
1162 bvec->bv_offset,
1163 bvec->bv_len,
1164 &iter);
1165
1166 if (!iov_iter_count(&iter))
1167 break;
1168
1169 if (ret < bvec->bv_len)
1170 return -EFAULT;
1171 }
1172
1173 return 0;
c5dec1c3
FT
1174}
1175
491221f8 1176void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1177{
1178 struct bio_vec *bvec;
1179 int i;
1180
1181 bio_for_each_segment_all(bvec, bio, i)
1182 __free_page(bvec->bv_page);
1183}
491221f8 1184EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1185
1da177e4
LT
1186/**
1187 * bio_uncopy_user - finish previously mapped bio
1188 * @bio: bio being terminated
1189 *
ddad8dd0 1190 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1191 * to user space in case of a read.
1192 */
1193int bio_uncopy_user(struct bio *bio)
1194{
1195 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1196 int ret = 0;
1da177e4 1197
35dc2483
RD
1198 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1199 /*
1200 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1201 * don't copy into a random user address space, just free
1202 * and return -EINTR so user space doesn't expect any data.
35dc2483 1203 */
2d99b55d
HR
1204 if (!current->mm)
1205 ret = -EINTR;
1206 else if (bio_data_dir(bio) == READ)
9124d3fe 1207 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1208 if (bmd->is_our_pages)
1209 bio_free_pages(bio);
35dc2483 1210 }
c8db4448 1211 kfree(bmd);
1da177e4
LT
1212 bio_put(bio);
1213 return ret;
1214}
1215
1216/**
c5dec1c3 1217 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1218 * @q: destination block queue
1219 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1220 * @iter: iovec iterator
1221 * @gfp_mask: memory allocation flags
1da177e4
LT
1222 *
1223 * Prepares and returns a bio for indirect user io, bouncing data
1224 * to/from kernel pages as necessary. Must be paired with
1225 * call bio_uncopy_user() on io completion.
1226 */
152e283f
FT
1227struct bio *bio_copy_user_iov(struct request_queue *q,
1228 struct rq_map_data *map_data,
e81cef5d 1229 struct iov_iter *iter,
26e49cfc 1230 gfp_t gfp_mask)
1da177e4 1231{
1da177e4 1232 struct bio_map_data *bmd;
1da177e4
LT
1233 struct page *page;
1234 struct bio *bio;
d16d44eb
AV
1235 int i = 0, ret;
1236 int nr_pages;
26e49cfc 1237 unsigned int len = iter->count;
bd5cecea 1238 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1239
0e5b935d 1240 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1241 if (!bmd)
1242 return ERR_PTR(-ENOMEM);
1243
26e49cfc
KO
1244 /*
1245 * We need to do a deep copy of the iov_iter including the iovecs.
1246 * The caller provided iov might point to an on-stack or otherwise
1247 * shortlived one.
1248 */
1249 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1250
d16d44eb
AV
1251 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1252 if (nr_pages > BIO_MAX_PAGES)
1253 nr_pages = BIO_MAX_PAGES;
26e49cfc 1254
1da177e4 1255 ret = -ENOMEM;
a9e9dc24 1256 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1257 if (!bio)
1258 goto out_bmd;
1259
1da177e4 1260 ret = 0;
56c451f4
FT
1261
1262 if (map_data) {
e623ddb4 1263 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1264 i = map_data->offset / PAGE_SIZE;
1265 }
1da177e4 1266 while (len) {
e623ddb4 1267 unsigned int bytes = PAGE_SIZE;
1da177e4 1268
56c451f4
FT
1269 bytes -= offset;
1270
1da177e4
LT
1271 if (bytes > len)
1272 bytes = len;
1273
152e283f 1274 if (map_data) {
e623ddb4 1275 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1276 ret = -ENOMEM;
1277 break;
1278 }
e623ddb4
FT
1279
1280 page = map_data->pages[i / nr_pages];
1281 page += (i % nr_pages);
1282
1283 i++;
1284 } else {
152e283f 1285 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1286 if (!page) {
1287 ret = -ENOMEM;
1288 break;
1289 }
1da177e4
LT
1290 }
1291
56c451f4 1292 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1293 break;
1da177e4
LT
1294
1295 len -= bytes;
56c451f4 1296 offset = 0;
1da177e4
LT
1297 }
1298
1299 if (ret)
1300 goto cleanup;
1301
2884d0be
AV
1302 if (map_data)
1303 map_data->offset += bio->bi_iter.bi_size;
1304
1da177e4
LT
1305 /*
1306 * success
1307 */
26e49cfc 1308 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1309 (map_data && map_data->from_user)) {
98a09d61 1310 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1311 if (ret)
1312 goto cleanup;
98a09d61
AV
1313 } else {
1314 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1315 }
1316
26e49cfc 1317 bio->bi_private = bmd;
2884d0be
AV
1318 if (map_data && map_data->null_mapped)
1319 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1320 return bio;
1321cleanup:
152e283f 1322 if (!map_data)
1dfa0f68 1323 bio_free_pages(bio);
1da177e4
LT
1324 bio_put(bio);
1325out_bmd:
c8db4448 1326 kfree(bmd);
1da177e4
LT
1327 return ERR_PTR(ret);
1328}
1329
37f19e57
CH
1330/**
1331 * bio_map_user_iov - map user iovec into bio
1332 * @q: the struct request_queue for the bio
1333 * @iter: iovec iterator
1334 * @gfp_mask: memory allocation flags
1335 *
1336 * Map the user space address into a bio suitable for io to a block
1337 * device. Returns an error pointer in case of error.
1338 */
1339struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1340 struct iov_iter *iter,
37f19e57 1341 gfp_t gfp_mask)
1da177e4 1342{
26e49cfc 1343 int j;
1da177e4 1344 struct bio *bio;
076098e5 1345 int ret;
2b04e8f6 1346 struct bio_vec *bvec;
1da177e4 1347
b282cc76 1348 if (!iov_iter_count(iter))
1da177e4
LT
1349 return ERR_PTR(-EINVAL);
1350
b282cc76 1351 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1352 if (!bio)
1353 return ERR_PTR(-ENOMEM);
1354
0a0f1513 1355 while (iov_iter_count(iter)) {
629e42bc 1356 struct page **pages;
076098e5
AV
1357 ssize_t bytes;
1358 size_t offs, added = 0;
1359 int npages;
1da177e4 1360
0a0f1513 1361 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1362 if (unlikely(bytes <= 0)) {
1363 ret = bytes ? bytes : -EFAULT;
f1970baf 1364 goto out_unmap;
99172157 1365 }
f1970baf 1366
076098e5 1367 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1368
98f0bc99
AV
1369 if (unlikely(offs & queue_dma_alignment(q))) {
1370 ret = -EINVAL;
1371 j = 0;
1372 } else {
1373 for (j = 0; j < npages; j++) {
1374 struct page *page = pages[j];
1375 unsigned int n = PAGE_SIZE - offs;
1376 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1377
98f0bc99
AV
1378 if (n > bytes)
1379 n = bytes;
95d78c28 1380
98f0bc99
AV
1381 if (!bio_add_pc_page(q, bio, page, n, offs))
1382 break;
1da177e4 1383
98f0bc99
AV
1384 /*
1385 * check if vector was merged with previous
1386 * drop page reference if needed
1387 */
1388 if (bio->bi_vcnt == prev_bi_vcnt)
1389 put_page(page);
1390
1391 added += n;
1392 bytes -= n;
1393 offs = 0;
1394 }
0a0f1513 1395 iov_iter_advance(iter, added);
f1970baf 1396 }
1da177e4 1397 /*
f1970baf 1398 * release the pages we didn't map into the bio, if any
1da177e4 1399 */
629e42bc 1400 while (j < npages)
09cbfeaf 1401 put_page(pages[j++]);
629e42bc 1402 kvfree(pages);
e2e115d1
AV
1403 /* couldn't stuff something into bio? */
1404 if (bytes)
1405 break;
1da177e4
LT
1406 }
1407
b7c44ed9 1408 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1409
1410 /*
5fad1b64 1411 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1412 * it would normally disappear when its bi_end_io is run.
1413 * however, we need it for the unmap, so grab an extra
1414 * reference to it
1415 */
1416 bio_get(bio);
1da177e4 1417 return bio;
f1970baf
JB
1418
1419 out_unmap:
2b04e8f6
AV
1420 bio_for_each_segment_all(bvec, bio, j) {
1421 put_page(bvec->bv_page);
f1970baf 1422 }
1da177e4
LT
1423 bio_put(bio);
1424 return ERR_PTR(ret);
1425}
1426
1da177e4
LT
1427static void __bio_unmap_user(struct bio *bio)
1428{
1429 struct bio_vec *bvec;
1430 int i;
1431
1432 /*
1433 * make sure we dirty pages we wrote to
1434 */
d74c6d51 1435 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1436 if (bio_data_dir(bio) == READ)
1437 set_page_dirty_lock(bvec->bv_page);
1438
09cbfeaf 1439 put_page(bvec->bv_page);
1da177e4
LT
1440 }
1441
1442 bio_put(bio);
1443}
1444
1445/**
1446 * bio_unmap_user - unmap a bio
1447 * @bio: the bio being unmapped
1448 *
5fad1b64
BVA
1449 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1450 * process context.
1da177e4
LT
1451 *
1452 * bio_unmap_user() may sleep.
1453 */
1454void bio_unmap_user(struct bio *bio)
1455{
1456 __bio_unmap_user(bio);
1457 bio_put(bio);
1458}
1459
4246a0b6 1460static void bio_map_kern_endio(struct bio *bio)
b823825e 1461{
b823825e 1462 bio_put(bio);
b823825e
JA
1463}
1464
75c72b83
CH
1465/**
1466 * bio_map_kern - map kernel address into bio
1467 * @q: the struct request_queue for the bio
1468 * @data: pointer to buffer to map
1469 * @len: length in bytes
1470 * @gfp_mask: allocation flags for bio allocation
1471 *
1472 * Map the kernel address into a bio suitable for io to a block
1473 * device. Returns an error pointer in case of error.
1474 */
1475struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1476 gfp_t gfp_mask)
df46b9a4
MC
1477{
1478 unsigned long kaddr = (unsigned long)data;
1479 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1480 unsigned long start = kaddr >> PAGE_SHIFT;
1481 const int nr_pages = end - start;
1482 int offset, i;
1483 struct bio *bio;
1484
a9e9dc24 1485 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1486 if (!bio)
1487 return ERR_PTR(-ENOMEM);
1488
1489 offset = offset_in_page(kaddr);
1490 for (i = 0; i < nr_pages; i++) {
1491 unsigned int bytes = PAGE_SIZE - offset;
1492
1493 if (len <= 0)
1494 break;
1495
1496 if (bytes > len)
1497 bytes = len;
1498
defd94b7 1499 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1500 offset) < bytes) {
1501 /* we don't support partial mappings */
1502 bio_put(bio);
1503 return ERR_PTR(-EINVAL);
1504 }
df46b9a4
MC
1505
1506 data += bytes;
1507 len -= bytes;
1508 offset = 0;
1509 }
1510
b823825e 1511 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1512 return bio;
1513}
a112a71d 1514EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1515
4246a0b6 1516static void bio_copy_kern_endio(struct bio *bio)
68154e90 1517{
1dfa0f68
CH
1518 bio_free_pages(bio);
1519 bio_put(bio);
1520}
1521
4246a0b6 1522static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1523{
42d2683a 1524 char *p = bio->bi_private;
1dfa0f68 1525 struct bio_vec *bvec;
68154e90
FT
1526 int i;
1527
d74c6d51 1528 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1529 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1530 p += bvec->bv_len;
68154e90
FT
1531 }
1532
4246a0b6 1533 bio_copy_kern_endio(bio);
68154e90
FT
1534}
1535
1536/**
1537 * bio_copy_kern - copy kernel address into bio
1538 * @q: the struct request_queue for the bio
1539 * @data: pointer to buffer to copy
1540 * @len: length in bytes
1541 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1542 * @reading: data direction is READ
68154e90
FT
1543 *
1544 * copy the kernel address into a bio suitable for io to a block
1545 * device. Returns an error pointer in case of error.
1546 */
1547struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1548 gfp_t gfp_mask, int reading)
1549{
42d2683a
CH
1550 unsigned long kaddr = (unsigned long)data;
1551 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1552 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1553 struct bio *bio;
1554 void *p = data;
1dfa0f68 1555 int nr_pages = 0;
68154e90 1556
42d2683a
CH
1557 /*
1558 * Overflow, abort
1559 */
1560 if (end < start)
1561 return ERR_PTR(-EINVAL);
68154e90 1562
42d2683a
CH
1563 nr_pages = end - start;
1564 bio = bio_kmalloc(gfp_mask, nr_pages);
1565 if (!bio)
1566 return ERR_PTR(-ENOMEM);
68154e90 1567
42d2683a
CH
1568 while (len) {
1569 struct page *page;
1570 unsigned int bytes = PAGE_SIZE;
68154e90 1571
42d2683a
CH
1572 if (bytes > len)
1573 bytes = len;
1574
1575 page = alloc_page(q->bounce_gfp | gfp_mask);
1576 if (!page)
1577 goto cleanup;
1578
1579 if (!reading)
1580 memcpy(page_address(page), p, bytes);
1581
1582 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1583 break;
1584
1585 len -= bytes;
1586 p += bytes;
68154e90
FT
1587 }
1588
1dfa0f68
CH
1589 if (reading) {
1590 bio->bi_end_io = bio_copy_kern_endio_read;
1591 bio->bi_private = data;
1592 } else {
1593 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1594 }
76029ff3 1595
68154e90 1596 return bio;
42d2683a
CH
1597
1598cleanup:
1dfa0f68 1599 bio_free_pages(bio);
42d2683a
CH
1600 bio_put(bio);
1601 return ERR_PTR(-ENOMEM);
68154e90
FT
1602}
1603
1da177e4
LT
1604/*
1605 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1606 * for performing direct-IO in BIOs.
1607 *
1608 * The problem is that we cannot run set_page_dirty() from interrupt context
1609 * because the required locks are not interrupt-safe. So what we can do is to
1610 * mark the pages dirty _before_ performing IO. And in interrupt context,
1611 * check that the pages are still dirty. If so, fine. If not, redirty them
1612 * in process context.
1613 *
1614 * We special-case compound pages here: normally this means reads into hugetlb
1615 * pages. The logic in here doesn't really work right for compound pages
1616 * because the VM does not uniformly chase down the head page in all cases.
1617 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1618 * handle them at all. So we skip compound pages here at an early stage.
1619 *
1620 * Note that this code is very hard to test under normal circumstances because
1621 * direct-io pins the pages with get_user_pages(). This makes
1622 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1623 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1624 * pagecache.
1625 *
1626 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1627 * deferred bio dirtying paths.
1628 */
1629
1630/*
1631 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1632 */
1633void bio_set_pages_dirty(struct bio *bio)
1634{
cb34e057 1635 struct bio_vec *bvec;
1da177e4
LT
1636 int i;
1637
cb34e057
KO
1638 bio_for_each_segment_all(bvec, bio, i) {
1639 struct page *page = bvec->bv_page;
1da177e4
LT
1640
1641 if (page && !PageCompound(page))
1642 set_page_dirty_lock(page);
1643 }
1644}
1900fcc4 1645EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1646
86b6c7a7 1647static void bio_release_pages(struct bio *bio)
1da177e4 1648{
cb34e057 1649 struct bio_vec *bvec;
1da177e4
LT
1650 int i;
1651
cb34e057
KO
1652 bio_for_each_segment_all(bvec, bio, i) {
1653 struct page *page = bvec->bv_page;
1da177e4
LT
1654
1655 if (page)
1656 put_page(page);
1657 }
1658}
1659
1660/*
1661 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1662 * If they are, then fine. If, however, some pages are clean then they must
1663 * have been written out during the direct-IO read. So we take another ref on
1664 * the BIO and the offending pages and re-dirty the pages in process context.
1665 *
1666 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1667 * here on. It will run one put_page() against each page and will run one
1668 * bio_put() against the BIO.
1da177e4
LT
1669 */
1670
65f27f38 1671static void bio_dirty_fn(struct work_struct *work);
1da177e4 1672
65f27f38 1673static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1674static DEFINE_SPINLOCK(bio_dirty_lock);
1675static struct bio *bio_dirty_list;
1676
1677/*
1678 * This runs in process context
1679 */
65f27f38 1680static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1681{
1682 unsigned long flags;
1683 struct bio *bio;
1684
1685 spin_lock_irqsave(&bio_dirty_lock, flags);
1686 bio = bio_dirty_list;
1687 bio_dirty_list = NULL;
1688 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1689
1690 while (bio) {
1691 struct bio *next = bio->bi_private;
1692
1693 bio_set_pages_dirty(bio);
1694 bio_release_pages(bio);
1695 bio_put(bio);
1696 bio = next;
1697 }
1698}
1699
1700void bio_check_pages_dirty(struct bio *bio)
1701{
cb34e057 1702 struct bio_vec *bvec;
1da177e4
LT
1703 int nr_clean_pages = 0;
1704 int i;
1705
cb34e057
KO
1706 bio_for_each_segment_all(bvec, bio, i) {
1707 struct page *page = bvec->bv_page;
1da177e4
LT
1708
1709 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1710 put_page(page);
cb34e057 1711 bvec->bv_page = NULL;
1da177e4
LT
1712 } else {
1713 nr_clean_pages++;
1714 }
1715 }
1716
1717 if (nr_clean_pages) {
1718 unsigned long flags;
1719
1720 spin_lock_irqsave(&bio_dirty_lock, flags);
1721 bio->bi_private = bio_dirty_list;
1722 bio_dirty_list = bio;
1723 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1724 schedule_work(&bio_dirty_work);
1725 } else {
1726 bio_put(bio);
1727 }
1728}
1900fcc4 1729EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1730
d62e26b3
JA
1731void generic_start_io_acct(struct request_queue *q, int rw,
1732 unsigned long sectors, struct hd_struct *part)
394ffa50
GZ
1733{
1734 int cpu = part_stat_lock();
1735
d62e26b3 1736 part_round_stats(q, cpu, part);
394ffa50
GZ
1737 part_stat_inc(cpu, part, ios[rw]);
1738 part_stat_add(cpu, part, sectors[rw], sectors);
d62e26b3 1739 part_inc_in_flight(q, part, rw);
394ffa50
GZ
1740
1741 part_stat_unlock();
1742}
1743EXPORT_SYMBOL(generic_start_io_acct);
1744
d62e26b3
JA
1745void generic_end_io_acct(struct request_queue *q, int rw,
1746 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1747{
1748 unsigned long duration = jiffies - start_time;
1749 int cpu = part_stat_lock();
1750
1751 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
1752 part_round_stats(q, cpu, part);
1753 part_dec_in_flight(q, part, rw);
394ffa50
GZ
1754
1755 part_stat_unlock();
1756}
1757EXPORT_SYMBOL(generic_end_io_acct);
1758
2d4dc890
IL
1759#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1760void bio_flush_dcache_pages(struct bio *bi)
1761{
7988613b
KO
1762 struct bio_vec bvec;
1763 struct bvec_iter iter;
2d4dc890 1764
7988613b
KO
1765 bio_for_each_segment(bvec, bi, iter)
1766 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1767}
1768EXPORT_SYMBOL(bio_flush_dcache_pages);
1769#endif
1770
c4cf5261
JA
1771static inline bool bio_remaining_done(struct bio *bio)
1772{
1773 /*
1774 * If we're not chaining, then ->__bi_remaining is always 1 and
1775 * we always end io on the first invocation.
1776 */
1777 if (!bio_flagged(bio, BIO_CHAIN))
1778 return true;
1779
1780 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1781
326e1dbb 1782 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1783 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1784 return true;
326e1dbb 1785 }
c4cf5261
JA
1786
1787 return false;
1788}
1789
1da177e4
LT
1790/**
1791 * bio_endio - end I/O on a bio
1792 * @bio: bio
1da177e4
LT
1793 *
1794 * Description:
4246a0b6
CH
1795 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1796 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1797 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1798 *
1799 * bio_endio() can be called several times on a bio that has been chained
1800 * using bio_chain(). The ->bi_end_io() function will only be called the
1801 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1802 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1803 **/
4246a0b6 1804void bio_endio(struct bio *bio)
1da177e4 1805{
ba8c6967 1806again:
2b885517 1807 if (!bio_remaining_done(bio))
ba8c6967 1808 return;
7c20f116
CH
1809 if (!bio_integrity_endio(bio))
1810 return;
1da177e4 1811
67b42d0b
JB
1812 if (bio->bi_disk)
1813 rq_qos_done_bio(bio->bi_disk->queue, bio);
1814
ba8c6967
CH
1815 /*
1816 * Need to have a real endio function for chained bios, otherwise
1817 * various corner cases will break (like stacking block devices that
1818 * save/restore bi_end_io) - however, we want to avoid unbounded
1819 * recursion and blowing the stack. Tail call optimization would
1820 * handle this, but compiling with frame pointers also disables
1821 * gcc's sibling call optimization.
1822 */
1823 if (bio->bi_end_io == bio_chain_endio) {
1824 bio = __bio_chain_endio(bio);
1825 goto again;
196d38bc 1826 }
ba8c6967 1827
74d46992
CH
1828 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1829 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1830 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1831 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1832 }
1833
9e234eea 1834 blk_throtl_bio_endio(bio);
b222dd2f
SL
1835 /* release cgroup info */
1836 bio_uninit(bio);
ba8c6967
CH
1837 if (bio->bi_end_io)
1838 bio->bi_end_io(bio);
1da177e4 1839}
a112a71d 1840EXPORT_SYMBOL(bio_endio);
1da177e4 1841
20d0189b
KO
1842/**
1843 * bio_split - split a bio
1844 * @bio: bio to split
1845 * @sectors: number of sectors to split from the front of @bio
1846 * @gfp: gfp mask
1847 * @bs: bio set to allocate from
1848 *
1849 * Allocates and returns a new bio which represents @sectors from the start of
1850 * @bio, and updates @bio to represent the remaining sectors.
1851 *
f3f5da62
MP
1852 * Unless this is a discard request the newly allocated bio will point
1853 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1854 * @bio is not freed before the split.
20d0189b
KO
1855 */
1856struct bio *bio_split(struct bio *bio, int sectors,
1857 gfp_t gfp, struct bio_set *bs)
1858{
f341a4d3 1859 struct bio *split;
20d0189b
KO
1860
1861 BUG_ON(sectors <= 0);
1862 BUG_ON(sectors >= bio_sectors(bio));
1863
f9d03f96 1864 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1865 if (!split)
1866 return NULL;
1867
1868 split->bi_iter.bi_size = sectors << 9;
1869
1870 if (bio_integrity(split))
fbd08e76 1871 bio_integrity_trim(split);
20d0189b
KO
1872
1873 bio_advance(bio, split->bi_iter.bi_size);
1874
fbbaf700 1875 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1876 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1877
20d0189b
KO
1878 return split;
1879}
1880EXPORT_SYMBOL(bio_split);
1881
6678d83f
KO
1882/**
1883 * bio_trim - trim a bio
1884 * @bio: bio to trim
1885 * @offset: number of sectors to trim from the front of @bio
1886 * @size: size we want to trim @bio to, in sectors
1887 */
1888void bio_trim(struct bio *bio, int offset, int size)
1889{
1890 /* 'bio' is a cloned bio which we need to trim to match
1891 * the given offset and size.
6678d83f 1892 */
6678d83f
KO
1893
1894 size <<= 9;
4f024f37 1895 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1896 return;
1897
b7c44ed9 1898 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1899
1900 bio_advance(bio, offset << 9);
1901
4f024f37 1902 bio->bi_iter.bi_size = size;
376a78ab
DM
1903
1904 if (bio_integrity(bio))
fbd08e76 1905 bio_integrity_trim(bio);
376a78ab 1906
6678d83f
KO
1907}
1908EXPORT_SYMBOL_GPL(bio_trim);
1909
1da177e4
LT
1910/*
1911 * create memory pools for biovec's in a bio_set.
1912 * use the global biovec slabs created for general use.
1913 */
8aa6ba2f 1914int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1915{
ed996a52 1916 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1917
8aa6ba2f 1918 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1919}
1920
917a38c7
KO
1921/*
1922 * bioset_exit - exit a bioset initialized with bioset_init()
1923 *
1924 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1925 * kzalloc()).
1926 */
1927void bioset_exit(struct bio_set *bs)
1da177e4 1928{
df2cb6da
KO
1929 if (bs->rescue_workqueue)
1930 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1931 bs->rescue_workqueue = NULL;
df2cb6da 1932
8aa6ba2f
KO
1933 mempool_exit(&bs->bio_pool);
1934 mempool_exit(&bs->bvec_pool);
9f060e22 1935
7878cba9 1936 bioset_integrity_free(bs);
917a38c7
KO
1937 if (bs->bio_slab)
1938 bio_put_slab(bs);
1939 bs->bio_slab = NULL;
1940}
1941EXPORT_SYMBOL(bioset_exit);
1da177e4 1942
917a38c7
KO
1943/**
1944 * bioset_init - Initialize a bio_set
dad08527 1945 * @bs: pool to initialize
917a38c7
KO
1946 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1947 * @front_pad: Number of bytes to allocate in front of the returned bio
1948 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1949 * and %BIOSET_NEED_RESCUER
1950 *
dad08527
KO
1951 * Description:
1952 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1953 * to ask for a number of bytes to be allocated in front of the bio.
1954 * Front pad allocation is useful for embedding the bio inside
1955 * another structure, to avoid allocating extra data to go with the bio.
1956 * Note that the bio must be embedded at the END of that structure always,
1957 * or things will break badly.
1958 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1959 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1960 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1961 * dispatch queued requests when the mempool runs out of space.
1962 *
917a38c7
KO
1963 */
1964int bioset_init(struct bio_set *bs,
1965 unsigned int pool_size,
1966 unsigned int front_pad,
1967 int flags)
1968{
1969 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1970
1971 bs->front_pad = front_pad;
1972
1973 spin_lock_init(&bs->rescue_lock);
1974 bio_list_init(&bs->rescue_list);
1975 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1976
1977 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1978 if (!bs->bio_slab)
1979 return -ENOMEM;
1980
1981 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1982 goto bad;
1983
1984 if ((flags & BIOSET_NEED_BVECS) &&
1985 biovec_init_pool(&bs->bvec_pool, pool_size))
1986 goto bad;
1987
1988 if (!(flags & BIOSET_NEED_RESCUER))
1989 return 0;
1990
1991 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1992 if (!bs->rescue_workqueue)
1993 goto bad;
1994
1995 return 0;
1996bad:
1997 bioset_exit(bs);
1998 return -ENOMEM;
1999}
2000EXPORT_SYMBOL(bioset_init);
2001
28e89fd9
JA
2002/*
2003 * Initialize and setup a new bio_set, based on the settings from
2004 * another bio_set.
2005 */
2006int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2007{
2008 int flags;
2009
2010 flags = 0;
2011 if (src->bvec_pool.min_nr)
2012 flags |= BIOSET_NEED_BVECS;
2013 if (src->rescue_workqueue)
2014 flags |= BIOSET_NEED_RESCUER;
2015
2016 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2017}
2018EXPORT_SYMBOL(bioset_init_from_src);
2019
852c788f 2020#ifdef CONFIG_BLK_CGROUP
1d933cf0 2021
0d3bd88d
TH
2022#ifdef CONFIG_MEMCG
2023/**
2024 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
2025 * @bio: target bio
2026 * @page: the page to lookup the blkcg from
2027 *
2028 * Associate @bio with the blkcg from @page's owning memcg. This works like
2029 * every other associate function wrt references.
2030 */
2031int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
2032{
2033 struct cgroup_subsys_state *blkcg_css;
2034
2035 if (unlikely(bio->bi_css))
2036 return -EBUSY;
2037 if (!page->mem_cgroup)
2038 return 0;
2039 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
2040 &io_cgrp_subsys);
2041 bio->bi_css = blkcg_css;
2042 return 0;
2043}
2044#endif /* CONFIG_MEMCG */
2045
1d933cf0
TH
2046/**
2047 * bio_associate_blkcg - associate a bio with the specified blkcg
2048 * @bio: target bio
2049 * @blkcg_css: css of the blkcg to associate
2050 *
2051 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2052 * treat @bio as if it were issued by a task which belongs to the blkcg.
2053 *
2054 * This function takes an extra reference of @blkcg_css which will be put
2055 * when @bio is released. The caller must own @bio and is responsible for
2056 * synchronizing calls to this function.
2057 */
2058int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2059{
2060 if (unlikely(bio->bi_css))
2061 return -EBUSY;
2062 css_get(blkcg_css);
2063 bio->bi_css = blkcg_css;
2064 return 0;
2065}
5aa2a96b 2066EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2067
08e18eab
JB
2068/**
2069 * bio_associate_blkg - associate a bio with the specified blkg
2070 * @bio: target bio
2071 * @blkg: the blkg to associate
2072 *
2073 * Associate @bio with the blkg specified by @blkg. This is the queue specific
2074 * blkcg information associated with the @bio, a reference will be taken on the
2075 * @blkg and will be freed when the bio is freed.
2076 */
2077int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2078{
2079 if (unlikely(bio->bi_blkg))
2080 return -EBUSY;
2081 blkg_get(blkg);
2082 bio->bi_blkg = blkg;
2083 return 0;
2084}
2085
852c788f
TH
2086/**
2087 * bio_disassociate_task - undo bio_associate_current()
2088 * @bio: target bio
2089 */
2090void bio_disassociate_task(struct bio *bio)
2091{
2092 if (bio->bi_ioc) {
2093 put_io_context(bio->bi_ioc);
2094 bio->bi_ioc = NULL;
2095 }
2096 if (bio->bi_css) {
2097 css_put(bio->bi_css);
2098 bio->bi_css = NULL;
2099 }
08e18eab
JB
2100 if (bio->bi_blkg) {
2101 blkg_put(bio->bi_blkg);
2102 bio->bi_blkg = NULL;
2103 }
852c788f
TH
2104}
2105
20bd723e
PV
2106/**
2107 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2108 * @dst: destination bio
2109 * @src: source bio
2110 */
2111void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2112{
2113 if (src->bi_css)
2114 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2115}
8a8e6f84 2116EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2117#endif /* CONFIG_BLK_CGROUP */
2118
1da177e4
LT
2119static void __init biovec_init_slabs(void)
2120{
2121 int i;
2122
ed996a52 2123 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2124 int size;
2125 struct biovec_slab *bvs = bvec_slabs + i;
2126
a7fcd37c
JA
2127 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2128 bvs->slab = NULL;
2129 continue;
2130 }
a7fcd37c 2131
1da177e4
LT
2132 size = bvs->nr_vecs * sizeof(struct bio_vec);
2133 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2134 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2135 }
2136}
2137
2138static int __init init_bio(void)
2139{
bb799ca0
JA
2140 bio_slab_max = 2;
2141 bio_slab_nr = 0;
6396bb22
KC
2142 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2143 GFP_KERNEL);
bb799ca0
JA
2144 if (!bio_slabs)
2145 panic("bio: can't allocate bios\n");
1da177e4 2146
7878cba9 2147 bio_integrity_init();
1da177e4
LT
2148 biovec_init_slabs();
2149
f4f8154a 2150 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2151 panic("bio: can't allocate bios\n");
2152
f4f8154a 2153 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2154 panic("bio: can't create integrity pool\n");
2155
1da177e4
LT
2156 return 0;
2157}
1da177e4 2158subsys_initcall(init_bio);