]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/blk-core.c
Merge tag 'sound-5.5-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-jammy-kernel.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
320ae51f 20#include <linux/blk-mq.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/completion.h>
27#include <linux/slab.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
faccbd4b 30#include <linux/task_io_accounting_ops.h>
c17bb495 31#include <linux/fault-inject.h>
73c10101 32#include <linux/list_sort.h>
e3c78ca5 33#include <linux/delay.h>
aaf7c680 34#include <linux/ratelimit.h>
6c954667 35#include <linux/pm_runtime.h>
eea8f41c 36#include <linux/blk-cgroup.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
b8e24a93 40#include <linux/psi.h>
55782138
LZ
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/block.h>
1da177e4 44
8324aa91 45#include "blk.h"
43a5e4e2 46#include "blk-mq.h"
bd166ef1 47#include "blk-mq-sched.h"
bca6b067 48#include "blk-pm.h"
c1c80384 49#include "blk-rq-qos.h"
8324aa91 50
18fbda91
OS
51#ifdef CONFIG_DEBUG_FS
52struct dentry *blk_debugfs_root;
53#endif
54
d07335e5 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 60
a73f730d
TH
61DEFINE_IDA(blk_queue_ida);
62
1da177e4
LT
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
8814ce8a
BVA
73/**
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
76 * @q: request queue
77 */
78void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79{
57d74df9 80 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
81}
82EXPORT_SYMBOL(blk_queue_flag_set);
83
84/**
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
87 * @q: request queue
88 */
89void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90{
57d74df9 91 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
92}
93EXPORT_SYMBOL(blk_queue_flag_clear);
94
95/**
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
98 * @q: request queue
99 *
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
102 */
103bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104{
57d74df9 105 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
106}
107EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108
2a4aa30c 109void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 110{
1afb20f3
FT
111 memset(rq, 0, sizeof(*rq));
112
1da177e4 113 INIT_LIST_HEAD(&rq->queuelist);
63a71386 114 rq->q = q;
a2dec7b3 115 rq->__sector = (sector_t) -1;
2e662b65
JA
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
63a71386 118 rq->tag = -1;
bd166ef1 119 rq->internal_tag = -1;
522a7775 120 rq->start_time_ns = ktime_get_ns();
09e099d4 121 rq->part = NULL;
b554db14 122 refcount_set(&rq->ref, 1);
1da177e4 123}
2a4aa30c 124EXPORT_SYMBOL(blk_rq_init);
1da177e4 125
e47bc4ed
CK
126#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127static const char *const blk_op_name[] = {
128 REQ_OP_NAME(READ),
129 REQ_OP_NAME(WRITE),
130 REQ_OP_NAME(FLUSH),
131 REQ_OP_NAME(DISCARD),
132 REQ_OP_NAME(SECURE_ERASE),
133 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 134 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
135 REQ_OP_NAME(ZONE_OPEN),
136 REQ_OP_NAME(ZONE_CLOSE),
137 REQ_OP_NAME(ZONE_FINISH),
e47bc4ed
CK
138 REQ_OP_NAME(WRITE_SAME),
139 REQ_OP_NAME(WRITE_ZEROES),
140 REQ_OP_NAME(SCSI_IN),
141 REQ_OP_NAME(SCSI_OUT),
142 REQ_OP_NAME(DRV_IN),
143 REQ_OP_NAME(DRV_OUT),
144};
145#undef REQ_OP_NAME
146
147/**
148 * blk_op_str - Return string XXX in the REQ_OP_XXX.
149 * @op: REQ_OP_XXX.
150 *
151 * Description: Centralize block layer function to convert REQ_OP_XXX into
152 * string format. Useful in the debugging and tracing bio or request. For
153 * invalid REQ_OP_XXX it returns string "UNKNOWN".
154 */
155inline const char *blk_op_str(unsigned int op)
156{
157 const char *op_str = "UNKNOWN";
158
159 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 op_str = blk_op_name[op];
161
162 return op_str;
163}
164EXPORT_SYMBOL_GPL(blk_op_str);
165
2a842aca
CH
166static const struct {
167 int errno;
168 const char *name;
169} blk_errors[] = {
170 [BLK_STS_OK] = { 0, "" },
171 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
172 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
173 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
174 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
175 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
176 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
177 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
178 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
179 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 180 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 181 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 182
4e4cbee9
CH
183 /* device mapper special case, should not leak out: */
184 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
185
2a842aca
CH
186 /* everything else not covered above: */
187 [BLK_STS_IOERR] = { -EIO, "I/O" },
188};
189
190blk_status_t errno_to_blk_status(int errno)
191{
192 int i;
193
194 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
195 if (blk_errors[i].errno == errno)
196 return (__force blk_status_t)i;
197 }
198
199 return BLK_STS_IOERR;
200}
201EXPORT_SYMBOL_GPL(errno_to_blk_status);
202
203int blk_status_to_errno(blk_status_t status)
204{
205 int idx = (__force int)status;
206
34bd9c1c 207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
208 return -EIO;
209 return blk_errors[idx].errno;
210}
211EXPORT_SYMBOL_GPL(blk_status_to_errno);
212
178cc590
CH
213static void print_req_error(struct request *req, blk_status_t status,
214 const char *caller)
2a842aca
CH
215{
216 int idx = (__force int)status;
217
34bd9c1c 218 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
219 return;
220
178cc590 221 printk_ratelimited(KERN_ERR
b0e5168a
CK
222 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
223 "phys_seg %u prio class %u\n",
178cc590 224 caller, blk_errors[idx].name,
b0e5168a
CK
225 req->rq_disk ? req->rq_disk->disk_name : "?",
226 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
227 req->cmd_flags & ~REQ_OP_MASK,
228 req->nr_phys_segments,
229 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
230}
231
5bb23a68 232static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 233 unsigned int nbytes, blk_status_t error)
1da177e4 234{
78d8e58a 235 if (error)
4e4cbee9 236 bio->bi_status = error;
797e7dbb 237
e8064021 238 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 239 bio_set_flag(bio, BIO_QUIET);
08bafc03 240
f79ea416 241 bio_advance(bio, nbytes);
7ba1ba12 242
143a87f4 243 /* don't actually finish bio if it's part of flush sequence */
e8064021 244 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 245 bio_endio(bio);
1da177e4 246}
1da177e4 247
1da177e4
LT
248void blk_dump_rq_flags(struct request *rq, char *msg)
249{
aebf526b
CH
250 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
251 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 252 (unsigned long long) rq->cmd_flags);
1da177e4 253
83096ebf
TH
254 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
255 (unsigned long long)blk_rq_pos(rq),
256 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
257 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
258 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 259}
1da177e4
LT
260EXPORT_SYMBOL(blk_dump_rq_flags);
261
1da177e4
LT
262/**
263 * blk_sync_queue - cancel any pending callbacks on a queue
264 * @q: the queue
265 *
266 * Description:
267 * The block layer may perform asynchronous callback activity
268 * on a queue, such as calling the unplug function after a timeout.
269 * A block device may call blk_sync_queue to ensure that any
270 * such activity is cancelled, thus allowing it to release resources
59c51591 271 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
272 * that its ->make_request_fn will not re-add plugging prior to calling
273 * this function.
274 *
da527770 275 * This function does not cancel any asynchronous activity arising
da3dae54 276 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 277 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 278 *
1da177e4
LT
279 */
280void blk_sync_queue(struct request_queue *q)
281{
70ed28b9 282 del_timer_sync(&q->timeout);
4e9b6f20 283 cancel_work_sync(&q->timeout_work);
1da177e4
LT
284}
285EXPORT_SYMBOL(blk_sync_queue);
286
c9254f2d 287/**
cd84a62e 288 * blk_set_pm_only - increment pm_only counter
c9254f2d 289 * @q: request queue pointer
c9254f2d 290 */
cd84a62e 291void blk_set_pm_only(struct request_queue *q)
c9254f2d 292{
cd84a62e 293 atomic_inc(&q->pm_only);
c9254f2d 294}
cd84a62e 295EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 296
cd84a62e 297void blk_clear_pm_only(struct request_queue *q)
c9254f2d 298{
cd84a62e
BVA
299 int pm_only;
300
301 pm_only = atomic_dec_return(&q->pm_only);
302 WARN_ON_ONCE(pm_only < 0);
303 if (pm_only == 0)
304 wake_up_all(&q->mq_freeze_wq);
c9254f2d 305}
cd84a62e 306EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 307
165125e1 308void blk_put_queue(struct request_queue *q)
483f4afc
AV
309{
310 kobject_put(&q->kobj);
311}
d86e0e83 312EXPORT_SYMBOL(blk_put_queue);
483f4afc 313
aed3ea94
JA
314void blk_set_queue_dying(struct request_queue *q)
315{
8814ce8a 316 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 317
d3cfb2a0
ML
318 /*
319 * When queue DYING flag is set, we need to block new req
320 * entering queue, so we call blk_freeze_queue_start() to
321 * prevent I/O from crossing blk_queue_enter().
322 */
323 blk_freeze_queue_start(q);
324
344e9ffc 325 if (queue_is_mq(q))
aed3ea94 326 blk_mq_wake_waiters(q);
055f6e18
ML
327
328 /* Make blk_queue_enter() reexamine the DYING flag. */
329 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
330}
331EXPORT_SYMBOL_GPL(blk_set_queue_dying);
332
c9a929dd
TH
333/**
334 * blk_cleanup_queue - shutdown a request queue
335 * @q: request queue to shutdown
336 *
c246e80d
BVA
337 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
338 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 339 */
6728cb0e 340void blk_cleanup_queue(struct request_queue *q)
483f4afc 341{
bae85c15
BVA
342 WARN_ON_ONCE(blk_queue_registered(q));
343
3f3299d5 344 /* mark @q DYING, no new request or merges will be allowed afterwards */
aed3ea94 345 blk_set_queue_dying(q);
6ecf23af 346
57d74df9
CH
347 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd 350
c246e80d
BVA
351 /*
352 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
353 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
354 * after draining finished.
c246e80d 355 */
3ef28e83 356 blk_freeze_queue(q);
c57cdf7a
ML
357
358 rq_qos_exit(q);
359
57d74df9 360 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 361
5a48fc14
DW
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
364
c9a929dd 365 /* @q won't process any more request, flush async actions */
dc3b17cc 366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
367 blk_sync_queue(q);
368
344e9ffc 369 if (queue_is_mq(q))
c7e2d94b 370 blk_mq_exit_queue(q);
a1ce35fa 371
c3e22192
ML
372 /*
373 * In theory, request pool of sched_tags belongs to request queue.
374 * However, the current implementation requires tag_set for freeing
375 * requests, so free the pool now.
376 *
377 * Queue has become frozen, there can't be any in-queue requests, so
378 * it is safe to free requests now.
379 */
380 mutex_lock(&q->sysfs_lock);
381 if (q->elevator)
382 blk_mq_sched_free_requests(q);
383 mutex_unlock(&q->sysfs_lock);
384
3ef28e83 385 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 386
c9a929dd 387 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
388 blk_put_queue(q);
389}
1da177e4
LT
390EXPORT_SYMBOL(blk_cleanup_queue);
391
165125e1 392struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 393{
6d469642 394 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
395}
396EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 397
3a0a5299
BVA
398/**
399 * blk_queue_enter() - try to increase q->q_usage_counter
400 * @q: request queue pointer
401 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
402 */
9a95e4ef 403int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 404{
cd84a62e 405 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 406
3ef28e83 407 while (true) {
3a0a5299 408 bool success = false;
3ef28e83 409
818e0fa2 410 rcu_read_lock();
3a0a5299
BVA
411 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
412 /*
cd84a62e
BVA
413 * The code that increments the pm_only counter is
414 * responsible for ensuring that that counter is
415 * globally visible before the queue is unfrozen.
3a0a5299 416 */
cd84a62e 417 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
418 success = true;
419 } else {
420 percpu_ref_put(&q->q_usage_counter);
421 }
422 }
818e0fa2 423 rcu_read_unlock();
3a0a5299
BVA
424
425 if (success)
3ef28e83
DW
426 return 0;
427
3a0a5299 428 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
429 return -EBUSY;
430
5ed61d3f 431 /*
1671d522 432 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 433 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
434 * .q_usage_counter and reading .mq_freeze_depth or
435 * queue dying flag, otherwise the following wait may
436 * never return if the two reads are reordered.
5ed61d3f
ML
437 */
438 smp_rmb();
439
1dc3039b 440 wait_event(q->mq_freeze_wq,
7996a8b5 441 (!q->mq_freeze_depth &&
0d25bd07
BVA
442 (pm || (blk_pm_request_resume(q),
443 !blk_queue_pm_only(q)))) ||
1dc3039b 444 blk_queue_dying(q));
3ef28e83
DW
445 if (blk_queue_dying(q))
446 return -ENODEV;
3ef28e83
DW
447 }
448}
449
450void blk_queue_exit(struct request_queue *q)
451{
452 percpu_ref_put(&q->q_usage_counter);
453}
454
455static void blk_queue_usage_counter_release(struct percpu_ref *ref)
456{
457 struct request_queue *q =
458 container_of(ref, struct request_queue, q_usage_counter);
459
460 wake_up_all(&q->mq_freeze_wq);
461}
462
bca237a5 463static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 464{
bca237a5 465 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
466
467 kblockd_schedule_work(&q->timeout_work);
468}
469
2e3c18d0
TH
470static void blk_timeout_work(struct work_struct *work)
471{
472}
473
498f6650
BVA
474/**
475 * blk_alloc_queue_node - allocate a request queue
476 * @gfp_mask: memory allocation flags
477 * @node_id: NUMA node to allocate memory from
498f6650 478 */
6d469642 479struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 480{
165125e1 481 struct request_queue *q;
338aa96d 482 int ret;
1946089a 483
8324aa91 484 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 485 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
486 if (!q)
487 return NULL;
488
cbf62af3 489 q->last_merge = NULL;
cbf62af3 490
00380a40 491 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 492 if (q->id < 0)
3d2936f4 493 goto fail_q;
a73f730d 494
338aa96d
KO
495 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
496 if (ret)
54efd50b
KO
497 goto fail_id;
498
d03f6cdc
JK
499 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
500 if (!q->backing_dev_info)
501 goto fail_split;
502
a83b576c
JA
503 q->stats = blk_alloc_queue_stats();
504 if (!q->stats)
505 goto fail_stats;
506
b5420237 507 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
dc3b17cc
JK
508 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
509 q->backing_dev_info->name = "block";
5151412d 510 q->node = node_id;
0989a025 511
bca237a5
KC
512 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
513 laptop_mode_timer_fn, 0);
514 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 515 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 516 INIT_LIST_HEAD(&q->icq_list);
4eef3049 517#ifdef CONFIG_BLK_CGROUP
e8989fae 518 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 519#endif
483f4afc 520
8324aa91 521 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 522
5acb3cc2
WL
523#ifdef CONFIG_BLK_DEV_IO_TRACE
524 mutex_init(&q->blk_trace_mutex);
525#endif
483f4afc 526 mutex_init(&q->sysfs_lock);
cecf5d87 527 mutex_init(&q->sysfs_dir_lock);
0d945c1f 528 spin_lock_init(&q->queue_lock);
c94a96ac 529
320ae51f 530 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 531 mutex_init(&q->mq_freeze_lock);
320ae51f 532
3ef28e83
DW
533 /*
534 * Init percpu_ref in atomic mode so that it's faster to shutdown.
535 * See blk_register_queue() for details.
536 */
537 if (percpu_ref_init(&q->q_usage_counter,
538 blk_queue_usage_counter_release,
539 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 540 goto fail_bdi;
f51b802c 541
3ef28e83
DW
542 if (blkcg_init_queue(q))
543 goto fail_ref;
544
1da177e4 545 return q;
a73f730d 546
3ef28e83
DW
547fail_ref:
548 percpu_ref_exit(&q->q_usage_counter);
fff4996b 549fail_bdi:
a83b576c
JA
550 blk_free_queue_stats(q->stats);
551fail_stats:
d03f6cdc 552 bdi_put(q->backing_dev_info);
54efd50b 553fail_split:
338aa96d 554 bioset_exit(&q->bio_split);
a73f730d
TH
555fail_id:
556 ida_simple_remove(&blk_queue_ida, q->id);
557fail_q:
558 kmem_cache_free(blk_requestq_cachep, q);
559 return NULL;
1da177e4 560}
1946089a 561EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4 562
09ac46c4 563bool blk_get_queue(struct request_queue *q)
1da177e4 564{
3f3299d5 565 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
566 __blk_get_queue(q);
567 return true;
1da177e4
LT
568 }
569
09ac46c4 570 return false;
1da177e4 571}
d86e0e83 572EXPORT_SYMBOL(blk_get_queue);
1da177e4 573
a1ce35fa
JA
574/**
575 * blk_get_request - allocate a request
576 * @q: request queue to allocate a request for
577 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
578 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 579 */
a1ce35fa
JA
580struct request *blk_get_request(struct request_queue *q, unsigned int op,
581 blk_mq_req_flags_t flags)
1da177e4 582{
a1ce35fa 583 struct request *req;
1da177e4 584
a1ce35fa
JA
585 WARN_ON_ONCE(op & REQ_NOWAIT);
586 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1da177e4 587
a1ce35fa
JA
588 req = blk_mq_alloc_request(q, op, flags);
589 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
590 q->mq_ops->initialize_rq_fn(req);
1da177e4 591
a1ce35fa 592 return req;
1da177e4 593}
a1ce35fa 594EXPORT_SYMBOL(blk_get_request);
1da177e4 595
1da177e4
LT
596void blk_put_request(struct request *req)
597{
a1ce35fa 598 blk_mq_free_request(req);
1da177e4 599}
1da177e4
LT
600EXPORT_SYMBOL(blk_put_request);
601
14ccb66b
CH
602bool bio_attempt_back_merge(struct request *req, struct bio *bio,
603 unsigned int nr_segs)
73c10101 604{
1eff9d32 605 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 606
14ccb66b 607 if (!ll_back_merge_fn(req, bio, nr_segs))
73c10101
JA
608 return false;
609
14ccb66b 610 trace_block_bio_backmerge(req->q, req, bio);
d3e65fff 611 rq_qos_merge(req->q, req, bio);
73c10101
JA
612
613 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
614 blk_rq_set_mixed_merge(req);
615
616 req->biotail->bi_next = bio;
617 req->biotail = bio;
4f024f37 618 req->__data_len += bio->bi_iter.bi_size;
73c10101 619
320ae51f 620 blk_account_io_start(req, false);
73c10101
JA
621 return true;
622}
623
14ccb66b
CH
624bool bio_attempt_front_merge(struct request *req, struct bio *bio,
625 unsigned int nr_segs)
73c10101 626{
1eff9d32 627 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 628
14ccb66b 629 if (!ll_front_merge_fn(req, bio, nr_segs))
73c10101
JA
630 return false;
631
14ccb66b 632 trace_block_bio_frontmerge(req->q, req, bio);
d3e65fff 633 rq_qos_merge(req->q, req, bio);
73c10101
JA
634
635 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
636 blk_rq_set_mixed_merge(req);
637
73c10101
JA
638 bio->bi_next = req->bio;
639 req->bio = bio;
640
4f024f37
KO
641 req->__sector = bio->bi_iter.bi_sector;
642 req->__data_len += bio->bi_iter.bi_size;
73c10101 643
320ae51f 644 blk_account_io_start(req, false);
73c10101
JA
645 return true;
646}
647
1e739730
CH
648bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
649 struct bio *bio)
650{
651 unsigned short segments = blk_rq_nr_discard_segments(req);
652
653 if (segments >= queue_max_discard_segments(q))
654 goto no_merge;
655 if (blk_rq_sectors(req) + bio_sectors(bio) >
656 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
657 goto no_merge;
658
d3e65fff
TH
659 rq_qos_merge(q, req, bio);
660
1e739730
CH
661 req->biotail->bi_next = bio;
662 req->biotail = bio;
663 req->__data_len += bio->bi_iter.bi_size;
1e739730
CH
664 req->nr_phys_segments = segments + 1;
665
666 blk_account_io_start(req, false);
667 return true;
668no_merge:
669 req_set_nomerge(q, req);
670 return false;
671}
672
bd87b589 673/**
320ae51f 674 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
675 * @q: request_queue new bio is being queued at
676 * @bio: new bio being queued
14ccb66b 677 * @nr_segs: number of segments in @bio
ccc2600b
RD
678 * @same_queue_rq: pointer to &struct request that gets filled in when
679 * another request associated with @q is found on the plug list
680 * (optional, may be %NULL)
bd87b589
TH
681 *
682 * Determine whether @bio being queued on @q can be merged with a request
683 * on %current's plugged list. Returns %true if merge was successful,
684 * otherwise %false.
685 *
07c2bd37
TH
686 * Plugging coalesces IOs from the same issuer for the same purpose without
687 * going through @q->queue_lock. As such it's more of an issuing mechanism
688 * than scheduling, and the request, while may have elvpriv data, is not
689 * added on the elevator at this point. In addition, we don't have
690 * reliable access to the elevator outside queue lock. Only check basic
691 * merging parameters without querying the elevator.
da41a589
RE
692 *
693 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 694 */
320ae51f 695bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
14ccb66b 696 unsigned int nr_segs, struct request **same_queue_rq)
73c10101
JA
697{
698 struct blk_plug *plug;
699 struct request *rq;
92f399c7 700 struct list_head *plug_list;
73c10101 701
b49773e7 702 plug = blk_mq_plug(q, bio);
73c10101 703 if (!plug)
34fe7c05 704 return false;
73c10101 705
a1ce35fa 706 plug_list = &plug->mq_list;
92f399c7
SL
707
708 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 709 bool merged = false;
73c10101 710
5f0ed774 711 if (rq->q == q && same_queue_rq) {
5b3f341f
SL
712 /*
713 * Only blk-mq multiple hardware queues case checks the
714 * rq in the same queue, there should be only one such
715 * rq in a queue
716 **/
5f0ed774 717 *same_queue_rq = rq;
5b3f341f 718 }
56ebdaf2 719
07c2bd37 720 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
721 continue;
722
34fe7c05
CH
723 switch (blk_try_merge(rq, bio)) {
724 case ELEVATOR_BACK_MERGE:
14ccb66b 725 merged = bio_attempt_back_merge(rq, bio, nr_segs);
34fe7c05
CH
726 break;
727 case ELEVATOR_FRONT_MERGE:
14ccb66b 728 merged = bio_attempt_front_merge(rq, bio, nr_segs);
34fe7c05 729 break;
1e739730
CH
730 case ELEVATOR_DISCARD_MERGE:
731 merged = bio_attempt_discard_merge(q, rq, bio);
732 break;
34fe7c05
CH
733 default:
734 break;
73c10101 735 }
34fe7c05
CH
736
737 if (merged)
738 return true;
73c10101 739 }
34fe7c05
CH
740
741 return false;
73c10101
JA
742}
743
52c5e62d 744static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
745{
746 char b[BDEVNAME_SIZE];
747
748 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 749 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 750 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 751 (unsigned long long)bio_end_sector(bio),
52c5e62d 752 (long long)maxsector);
1da177e4
LT
753}
754
c17bb495
AM
755#ifdef CONFIG_FAIL_MAKE_REQUEST
756
757static DECLARE_FAULT_ATTR(fail_make_request);
758
759static int __init setup_fail_make_request(char *str)
760{
761 return setup_fault_attr(&fail_make_request, str);
762}
763__setup("fail_make_request=", setup_fail_make_request);
764
b2c9cd37 765static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 766{
b2c9cd37 767 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
768}
769
770static int __init fail_make_request_debugfs(void)
771{
dd48c085
AM
772 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
773 NULL, &fail_make_request);
774
21f9fcd8 775 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
776}
777
778late_initcall(fail_make_request_debugfs);
779
780#else /* CONFIG_FAIL_MAKE_REQUEST */
781
b2c9cd37
AM
782static inline bool should_fail_request(struct hd_struct *part,
783 unsigned int bytes)
c17bb495 784{
b2c9cd37 785 return false;
c17bb495
AM
786}
787
788#endif /* CONFIG_FAIL_MAKE_REQUEST */
789
721c7fc7
ID
790static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
791{
b089cfd9
JA
792 const int op = bio_op(bio);
793
8b2ded1c 794 if (part->policy && op_is_write(op)) {
721c7fc7
ID
795 char b[BDEVNAME_SIZE];
796
8b2ded1c
MP
797 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
798 return false;
799
a32e236e 800 WARN_ONCE(1,
721c7fc7
ID
801 "generic_make_request: Trying to write "
802 "to read-only block-device %s (partno %d)\n",
803 bio_devname(bio, b), part->partno);
a32e236e
LT
804 /* Older lvm-tools actually trigger this */
805 return false;
721c7fc7
ID
806 }
807
808 return false;
809}
810
30abb3a6
HM
811static noinline int should_fail_bio(struct bio *bio)
812{
813 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
814 return -EIO;
815 return 0;
816}
817ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
818
52c5e62d
CH
819/*
820 * Check whether this bio extends beyond the end of the device or partition.
821 * This may well happen - the kernel calls bread() without checking the size of
822 * the device, e.g., when mounting a file system.
823 */
824static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
825{
826 unsigned int nr_sectors = bio_sectors(bio);
827
828 if (nr_sectors && maxsector &&
829 (nr_sectors > maxsector ||
830 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
831 handle_bad_sector(bio, maxsector);
832 return -EIO;
833 }
834 return 0;
835}
836
74d46992
CH
837/*
838 * Remap block n of partition p to block n+start(p) of the disk.
839 */
840static inline int blk_partition_remap(struct bio *bio)
841{
842 struct hd_struct *p;
52c5e62d 843 int ret = -EIO;
74d46992 844
721c7fc7
ID
845 rcu_read_lock();
846 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
847 if (unlikely(!p))
848 goto out;
849 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
850 goto out;
851 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 852 goto out;
721c7fc7 853
5eac3eb3 854 if (bio_sectors(bio)) {
52c5e62d
CH
855 if (bio_check_eod(bio, part_nr_sects_read(p)))
856 goto out;
857 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
858 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
859 bio->bi_iter.bi_sector - p->start_sect);
860 }
c04fa44b 861 bio->bi_partno = 0;
52c5e62d 862 ret = 0;
721c7fc7
ID
863out:
864 rcu_read_unlock();
74d46992
CH
865 return ret;
866}
867
27a84d54
CH
868static noinline_for_stack bool
869generic_make_request_checks(struct bio *bio)
1da177e4 870{
165125e1 871 struct request_queue *q;
5a7bbad2 872 int nr_sectors = bio_sectors(bio);
4e4cbee9 873 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 874 char b[BDEVNAME_SIZE];
1da177e4
LT
875
876 might_sleep();
1da177e4 877
74d46992 878 q = bio->bi_disk->queue;
5a7bbad2
CH
879 if (unlikely(!q)) {
880 printk(KERN_ERR
881 "generic_make_request: Trying to access "
882 "nonexistent block-device %s (%Lu)\n",
74d46992 883 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
884 goto end_io;
885 }
c17bb495 886
03a07c92 887 /*
c58c1f83
RP
888 * Non-mq queues do not honor REQ_NOWAIT, so complete a bio
889 * with BLK_STS_AGAIN status in order to catch -EAGAIN and
890 * to give a chance to the caller to repeat request gracefully.
03a07c92 891 */
c58c1f83
RP
892 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) {
893 status = BLK_STS_AGAIN;
894 goto end_io;
895 }
03a07c92 896
30abb3a6 897 if (should_fail_bio(bio))
5a7bbad2 898 goto end_io;
2056a782 899
52c5e62d
CH
900 if (bio->bi_partno) {
901 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
902 goto end_io;
903 } else {
52c5e62d
CH
904 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
905 goto end_io;
906 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
907 goto end_io;
908 }
2056a782 909
5a7bbad2
CH
910 /*
911 * Filter flush bio's early so that make_request based
912 * drivers without flush support don't have to worry
913 * about them.
914 */
f3a8ab7d 915 if (op_is_flush(bio->bi_opf) &&
c888a8f9 916 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 917 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 918 if (!nr_sectors) {
4e4cbee9 919 status = BLK_STS_OK;
51fd77bd
JA
920 goto end_io;
921 }
5a7bbad2 922 }
5ddfe969 923
d04c406f
CH
924 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
925 bio->bi_opf &= ~REQ_HIPRI;
926
288dab8a
CH
927 switch (bio_op(bio)) {
928 case REQ_OP_DISCARD:
929 if (!blk_queue_discard(q))
930 goto not_supported;
931 break;
932 case REQ_OP_SECURE_ERASE:
933 if (!blk_queue_secure_erase(q))
934 goto not_supported;
935 break;
936 case REQ_OP_WRITE_SAME:
74d46992 937 if (!q->limits.max_write_same_sectors)
288dab8a 938 goto not_supported;
58886785 939 break;
2d253440 940 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
941 case REQ_OP_ZONE_OPEN:
942 case REQ_OP_ZONE_CLOSE:
943 case REQ_OP_ZONE_FINISH:
74d46992 944 if (!blk_queue_is_zoned(q))
2d253440 945 goto not_supported;
288dab8a 946 break;
6e33dbf2
CK
947 case REQ_OP_ZONE_RESET_ALL:
948 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
949 goto not_supported;
950 break;
a6f0788e 951 case REQ_OP_WRITE_ZEROES:
74d46992 952 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
953 goto not_supported;
954 break;
288dab8a
CH
955 default:
956 break;
5a7bbad2 957 }
01edede4 958
7f4b35d1
TH
959 /*
960 * Various block parts want %current->io_context and lazy ioc
961 * allocation ends up trading a lot of pain for a small amount of
962 * memory. Just allocate it upfront. This may fail and block
963 * layer knows how to live with it.
964 */
965 create_io_context(GFP_ATOMIC, q->node);
966
ae118896
TH
967 if (!blkcg_bio_issue_check(q, bio))
968 return false;
27a84d54 969
fbbaf700
N
970 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
971 trace_block_bio_queue(q, bio);
972 /* Now that enqueuing has been traced, we need to trace
973 * completion as well.
974 */
975 bio_set_flag(bio, BIO_TRACE_COMPLETION);
976 }
27a84d54 977 return true;
a7384677 978
288dab8a 979not_supported:
4e4cbee9 980 status = BLK_STS_NOTSUPP;
a7384677 981end_io:
4e4cbee9 982 bio->bi_status = status;
4246a0b6 983 bio_endio(bio);
27a84d54 984 return false;
1da177e4
LT
985}
986
27a84d54
CH
987/**
988 * generic_make_request - hand a buffer to its device driver for I/O
989 * @bio: The bio describing the location in memory and on the device.
990 *
991 * generic_make_request() is used to make I/O requests of block
992 * devices. It is passed a &struct bio, which describes the I/O that needs
993 * to be done.
994 *
995 * generic_make_request() does not return any status. The
996 * success/failure status of the request, along with notification of
997 * completion, is delivered asynchronously through the bio->bi_end_io
998 * function described (one day) else where.
999 *
1000 * The caller of generic_make_request must make sure that bi_io_vec
1001 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1002 * set to describe the device address, and the
1003 * bi_end_io and optionally bi_private are set to describe how
1004 * completion notification should be signaled.
1005 *
1006 * generic_make_request and the drivers it calls may use bi_next if this
1007 * bio happens to be merged with someone else, and may resubmit the bio to
1008 * a lower device by calling into generic_make_request recursively, which
1009 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1010 */
dece1635 1011blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1012{
f5fe1b51
N
1013 /*
1014 * bio_list_on_stack[0] contains bios submitted by the current
1015 * make_request_fn.
1016 * bio_list_on_stack[1] contains bios that were submitted before
1017 * the current make_request_fn, but that haven't been processed
1018 * yet.
1019 */
1020 struct bio_list bio_list_on_stack[2];
dece1635 1021 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1022
27a84d54 1023 if (!generic_make_request_checks(bio))
dece1635 1024 goto out;
27a84d54
CH
1025
1026 /*
1027 * We only want one ->make_request_fn to be active at a time, else
1028 * stack usage with stacked devices could be a problem. So use
1029 * current->bio_list to keep a list of requests submited by a
1030 * make_request_fn function. current->bio_list is also used as a
1031 * flag to say if generic_make_request is currently active in this
1032 * task or not. If it is NULL, then no make_request is active. If
1033 * it is non-NULL, then a make_request is active, and new requests
1034 * should be added at the tail
1035 */
bddd87c7 1036 if (current->bio_list) {
f5fe1b51 1037 bio_list_add(&current->bio_list[0], bio);
dece1635 1038 goto out;
d89d8796 1039 }
27a84d54 1040
d89d8796
NB
1041 /* following loop may be a bit non-obvious, and so deserves some
1042 * explanation.
1043 * Before entering the loop, bio->bi_next is NULL (as all callers
1044 * ensure that) so we have a list with a single bio.
1045 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1046 * we assign bio_list to a pointer to the bio_list_on_stack,
1047 * thus initialising the bio_list of new bios to be
27a84d54 1048 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1049 * through a recursive call to generic_make_request. If it
1050 * did, we find a non-NULL value in bio_list and re-enter the loop
1051 * from the top. In this case we really did just take the bio
bddd87c7 1052 * of the top of the list (no pretending) and so remove it from
27a84d54 1053 * bio_list, and call into ->make_request() again.
d89d8796
NB
1054 */
1055 BUG_ON(bio->bi_next);
f5fe1b51
N
1056 bio_list_init(&bio_list_on_stack[0]);
1057 current->bio_list = bio_list_on_stack;
d89d8796 1058 do {
fe200864
ML
1059 struct request_queue *q = bio->bi_disk->queue;
1060 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1061 BLK_MQ_REQ_NOWAIT : 0;
27a84d54 1062
fe200864 1063 if (likely(blk_queue_enter(q, flags) == 0)) {
79bd9959
N
1064 struct bio_list lower, same;
1065
1066 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
1067 bio_list_on_stack[1] = bio_list_on_stack[0];
1068 bio_list_init(&bio_list_on_stack[0]);
dece1635 1069 ret = q->make_request_fn(q, bio);
3ef28e83 1070
fe200864
ML
1071 blk_queue_exit(q);
1072
79bd9959
N
1073 /* sort new bios into those for a lower level
1074 * and those for the same level
1075 */
1076 bio_list_init(&lower);
1077 bio_list_init(&same);
f5fe1b51 1078 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 1079 if (q == bio->bi_disk->queue)
79bd9959
N
1080 bio_list_add(&same, bio);
1081 else
1082 bio_list_add(&lower, bio);
1083 /* now assemble so we handle the lowest level first */
f5fe1b51
N
1084 bio_list_merge(&bio_list_on_stack[0], &lower);
1085 bio_list_merge(&bio_list_on_stack[0], &same);
1086 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 1087 } else {
03a07c92
GR
1088 if (unlikely(!blk_queue_dying(q) &&
1089 (bio->bi_opf & REQ_NOWAIT)))
1090 bio_wouldblock_error(bio);
1091 else
1092 bio_io_error(bio);
3ef28e83 1093 }
f5fe1b51 1094 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 1095 } while (bio);
bddd87c7 1096 current->bio_list = NULL; /* deactivate */
dece1635
JA
1097
1098out:
1099 return ret;
d89d8796 1100}
1da177e4
LT
1101EXPORT_SYMBOL(generic_make_request);
1102
f421e1d9
CH
1103/**
1104 * direct_make_request - hand a buffer directly to its device driver for I/O
1105 * @bio: The bio describing the location in memory and on the device.
1106 *
1107 * This function behaves like generic_make_request(), but does not protect
1108 * against recursion. Must only be used if the called driver is known
1109 * to not call generic_make_request (or direct_make_request) again from
1110 * its make_request function. (Calling direct_make_request again from
1111 * a workqueue is perfectly fine as that doesn't recurse).
1112 */
1113blk_qc_t direct_make_request(struct bio *bio)
1114{
1115 struct request_queue *q = bio->bi_disk->queue;
1116 bool nowait = bio->bi_opf & REQ_NOWAIT;
1117 blk_qc_t ret;
1118
1119 if (!generic_make_request_checks(bio))
1120 return BLK_QC_T_NONE;
1121
3a0a5299 1122 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
1123 if (nowait && !blk_queue_dying(q))
1124 bio->bi_status = BLK_STS_AGAIN;
1125 else
1126 bio->bi_status = BLK_STS_IOERR;
1127 bio_endio(bio);
1128 return BLK_QC_T_NONE;
1129 }
1130
1131 ret = q->make_request_fn(q, bio);
1132 blk_queue_exit(q);
1133 return ret;
1134}
1135EXPORT_SYMBOL_GPL(direct_make_request);
1136
1da177e4 1137/**
710027a4 1138 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1139 * @bio: The &struct bio which describes the I/O
1140 *
1141 * submit_bio() is very similar in purpose to generic_make_request(), and
1142 * uses that function to do most of the work. Both are fairly rough
710027a4 1143 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1144 *
1145 */
4e49ea4a 1146blk_qc_t submit_bio(struct bio *bio)
1da177e4 1147{
b8e24a93
JW
1148 bool workingset_read = false;
1149 unsigned long pflags;
1150 blk_qc_t ret;
1151
d3f77dfd
TH
1152 if (blkcg_punt_bio_submit(bio))
1153 return BLK_QC_T_NONE;
1154
bf2de6f5
JA
1155 /*
1156 * If it's a regular read/write or a barrier with data attached,
1157 * go through the normal accounting stuff before submission.
1158 */
e2a60da7 1159 if (bio_has_data(bio)) {
4363ac7c
MP
1160 unsigned int count;
1161
95fe6c1a 1162 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1163 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1164 else
1165 count = bio_sectors(bio);
1166
a8ebb056 1167 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1168 count_vm_events(PGPGOUT, count);
1169 } else {
b8e24a93
JW
1170 if (bio_flagged(bio, BIO_WORKINGSET))
1171 workingset_read = true;
4f024f37 1172 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1173 count_vm_events(PGPGIN, count);
1174 }
1175
1176 if (unlikely(block_dump)) {
1177 char b[BDEVNAME_SIZE];
8dcbdc74 1178 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1179 current->comm, task_pid_nr(current),
a8ebb056 1180 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1181 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1182 bio_devname(bio, b), count);
bf2de6f5 1183 }
1da177e4
LT
1184 }
1185
b8e24a93
JW
1186 /*
1187 * If we're reading data that is part of the userspace
1188 * workingset, count submission time as memory stall. When the
1189 * device is congested, or the submitting cgroup IO-throttled,
1190 * submission can be a significant part of overall IO time.
1191 */
1192 if (workingset_read)
1193 psi_memstall_enter(&pflags);
1194
1195 ret = generic_make_request(bio);
1196
1197 if (workingset_read)
1198 psi_memstall_leave(&pflags);
1199
1200 return ret;
1da177e4 1201}
1da177e4
LT
1202EXPORT_SYMBOL(submit_bio);
1203
82124d60 1204/**
bf4e6b4e
HR
1205 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1206 * for new the queue limits
82124d60
KU
1207 * @q: the queue
1208 * @rq: the request being checked
1209 *
1210 * Description:
1211 * @rq may have been made based on weaker limitations of upper-level queues
1212 * in request stacking drivers, and it may violate the limitation of @q.
1213 * Since the block layer and the underlying device driver trust @rq
1214 * after it is inserted to @q, it should be checked against @q before
1215 * the insertion using this generic function.
1216 *
82124d60 1217 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1218 * limits when retrying requests on other queues. Those requests need
1219 * to be checked against the new queue limits again during dispatch.
82124d60 1220 */
bf4e6b4e
HR
1221static int blk_cloned_rq_check_limits(struct request_queue *q,
1222 struct request *rq)
82124d60 1223{
8fe0d473 1224 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
61939b12
JP
1225 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1226 __func__, blk_rq_sectors(rq),
1227 blk_queue_get_max_sectors(q, req_op(rq)));
82124d60
KU
1228 return -EIO;
1229 }
1230
1231 /*
1232 * queue's settings related to segment counting like q->bounce_pfn
1233 * may differ from that of other stacking queues.
1234 * Recalculate it to check the request correctly on this queue's
1235 * limitation.
1236 */
e9cd19c0 1237 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1238 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1239 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1240 __func__, rq->nr_phys_segments, queue_max_segments(q));
82124d60
KU
1241 return -EIO;
1242 }
1243
1244 return 0;
1245}
82124d60
KU
1246
1247/**
1248 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1249 * @q: the queue to submit the request
1250 * @rq: the request being queued
1251 */
2a842aca 1252blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1253{
bf4e6b4e 1254 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 1255 return BLK_STS_IOERR;
82124d60 1256
b2c9cd37
AM
1257 if (rq->rq_disk &&
1258 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1259 return BLK_STS_IOERR;
82124d60 1260
a1ce35fa
JA
1261 if (blk_queue_io_stat(q))
1262 blk_account_io_start(rq, true);
82124d60
KU
1263
1264 /*
a1ce35fa
JA
1265 * Since we have a scheduler attached on the top device,
1266 * bypass a potential scheduler on the bottom device for
1267 * insert.
82124d60 1268 */
fd9c40f6 1269 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1270}
1271EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1272
80a761fd
TH
1273/**
1274 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1275 * @rq: request to examine
1276 *
1277 * Description:
1278 * A request could be merge of IOs which require different failure
1279 * handling. This function determines the number of bytes which
1280 * can be failed from the beginning of the request without
1281 * crossing into area which need to be retried further.
1282 *
1283 * Return:
1284 * The number of bytes to fail.
80a761fd
TH
1285 */
1286unsigned int blk_rq_err_bytes(const struct request *rq)
1287{
1288 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1289 unsigned int bytes = 0;
1290 struct bio *bio;
1291
e8064021 1292 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1293 return blk_rq_bytes(rq);
1294
1295 /*
1296 * Currently the only 'mixing' which can happen is between
1297 * different fastfail types. We can safely fail portions
1298 * which have all the failfast bits that the first one has -
1299 * the ones which are at least as eager to fail as the first
1300 * one.
1301 */
1302 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1303 if ((bio->bi_opf & ff) != ff)
80a761fd 1304 break;
4f024f37 1305 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1306 }
1307
1308 /* this could lead to infinite loop */
1309 BUG_ON(blk_rq_bytes(rq) && !bytes);
1310 return bytes;
1311}
1312EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1313
320ae51f 1314void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1315{
ecb6186c 1316 if (req->part && blk_do_io_stat(req)) {
ddcf35d3 1317 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1318 struct hd_struct *part;
bc58ba94 1319
112f158f 1320 part_stat_lock();
09e099d4 1321 part = req->part;
112f158f 1322 part_stat_add(part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1323 part_stat_unlock();
1324 }
1325}
1326
522a7775 1327void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1328{
bc58ba94 1329 /*
dd4c133f
TH
1330 * Account IO completion. flush_rq isn't accounted as a
1331 * normal IO on queueing nor completion. Accounting the
1332 * containing request is enough.
bc58ba94 1333 */
ecb6186c
LG
1334 if (req->part && blk_do_io_stat(req) &&
1335 !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1336 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1337 struct hd_struct *part;
bc58ba94 1338
112f158f 1339 part_stat_lock();
09e099d4 1340 part = req->part;
bc58ba94 1341
5b18b5a7 1342 update_io_ticks(part, jiffies);
112f158f
MS
1343 part_stat_inc(part, ios[sgrp]);
1344 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
5b18b5a7 1345 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
ddcf35d3 1346 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 1347
6c23a968 1348 hd_struct_put(part);
bc58ba94
JA
1349 part_stat_unlock();
1350 }
1351}
1352
320ae51f
JA
1353void blk_account_io_start(struct request *rq, bool new_io)
1354{
1355 struct hd_struct *part;
1356 int rw = rq_data_dir(rq);
320ae51f
JA
1357
1358 if (!blk_do_io_stat(rq))
1359 return;
1360
112f158f 1361 part_stat_lock();
320ae51f
JA
1362
1363 if (!new_io) {
1364 part = rq->part;
112f158f 1365 part_stat_inc(part, merges[rw]);
320ae51f
JA
1366 } else {
1367 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1368 if (!hd_struct_try_get(part)) {
1369 /*
1370 * The partition is already being removed,
1371 * the request will be accounted on the disk only
1372 *
1373 * We take a reference on disk->part0 although that
1374 * partition will never be deleted, so we can treat
1375 * it as any other partition.
1376 */
1377 part = &rq->rq_disk->part0;
1378 hd_struct_get(part);
1379 }
d62e26b3 1380 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
1381 rq->part = part;
1382 }
1383
5b18b5a7
MP
1384 update_io_ticks(part, jiffies);
1385
320ae51f
JA
1386 part_stat_unlock();
1387}
1388
ef71de8b
CH
1389/*
1390 * Steal bios from a request and add them to a bio list.
1391 * The request must not have been partially completed before.
1392 */
1393void blk_steal_bios(struct bio_list *list, struct request *rq)
1394{
1395 if (rq->bio) {
1396 if (list->tail)
1397 list->tail->bi_next = rq->bio;
1398 else
1399 list->head = rq->bio;
1400 list->tail = rq->biotail;
1401
1402 rq->bio = NULL;
1403 rq->biotail = NULL;
1404 }
1405
1406 rq->__data_len = 0;
1407}
1408EXPORT_SYMBOL_GPL(blk_steal_bios);
1409
3bcddeac 1410/**
2e60e022 1411 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1412 * @req: the request being processed
2a842aca 1413 * @error: block status code
8ebf9756 1414 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1415 *
1416 * Description:
8ebf9756
RD
1417 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1418 * the request structure even if @req doesn't have leftover.
1419 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1420 *
1421 * This special helper function is only for request stacking drivers
1422 * (e.g. request-based dm) so that they can handle partial completion.
3a211b71 1423 * Actual device drivers should use blk_mq_end_request instead.
2e60e022
TH
1424 *
1425 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1426 * %false return from this function.
3bcddeac 1427 *
1954e9a9
BVA
1428 * Note:
1429 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1430 * blk_rq_bytes() and in blk_update_request().
1431 *
3bcddeac 1432 * Return:
2e60e022
TH
1433 * %false - this request doesn't have any more data
1434 * %true - this request has more data
3bcddeac 1435 **/
2a842aca
CH
1436bool blk_update_request(struct request *req, blk_status_t error,
1437 unsigned int nr_bytes)
1da177e4 1438{
f79ea416 1439 int total_bytes;
1da177e4 1440
2a842aca 1441 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1442
2e60e022
TH
1443 if (!req->bio)
1444 return false;
1445
54d4e6ab
MG
1446#ifdef CONFIG_BLK_DEV_INTEGRITY
1447 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1448 error == BLK_STS_OK)
1449 req->q->integrity.profile->complete_fn(req, nr_bytes);
1450#endif
1451
2a842aca
CH
1452 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1453 !(req->rq_flags & RQF_QUIET)))
178cc590 1454 print_req_error(req, error, __func__);
1da177e4 1455
bc58ba94 1456 blk_account_io_completion(req, nr_bytes);
d72d904a 1457
f79ea416
KO
1458 total_bytes = 0;
1459 while (req->bio) {
1460 struct bio *bio = req->bio;
4f024f37 1461 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1462
9c24c10a 1463 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1464 req->bio = bio->bi_next;
1da177e4 1465
fbbaf700
N
1466 /* Completion has already been traced */
1467 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1468 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1469
f79ea416
KO
1470 total_bytes += bio_bytes;
1471 nr_bytes -= bio_bytes;
1da177e4 1472
f79ea416
KO
1473 if (!nr_bytes)
1474 break;
1da177e4
LT
1475 }
1476
1477 /*
1478 * completely done
1479 */
2e60e022
TH
1480 if (!req->bio) {
1481 /*
1482 * Reset counters so that the request stacking driver
1483 * can find how many bytes remain in the request
1484 * later.
1485 */
a2dec7b3 1486 req->__data_len = 0;
2e60e022
TH
1487 return false;
1488 }
1da177e4 1489
a2dec7b3 1490 req->__data_len -= total_bytes;
2e46e8b2
TH
1491
1492 /* update sector only for requests with clear definition of sector */
57292b58 1493 if (!blk_rq_is_passthrough(req))
a2dec7b3 1494 req->__sector += total_bytes >> 9;
2e46e8b2 1495
80a761fd 1496 /* mixed attributes always follow the first bio */
e8064021 1497 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1498 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1499 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1500 }
1501
ed6565e7
CH
1502 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1503 /*
1504 * If total number of sectors is less than the first segment
1505 * size, something has gone terribly wrong.
1506 */
1507 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1508 blk_dump_rq_flags(req, "request botched");
1509 req->__data_len = blk_rq_cur_bytes(req);
1510 }
2e46e8b2 1511
ed6565e7 1512 /* recalculate the number of segments */
e9cd19c0 1513 req->nr_phys_segments = blk_recalc_rq_segments(req);
ed6565e7 1514 }
2e46e8b2 1515
2e60e022 1516 return true;
1da177e4 1517}
2e60e022 1518EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1519
2d4dc890
IL
1520#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1521/**
1522 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1523 * @rq: the request to be flushed
1524 *
1525 * Description:
1526 * Flush all pages in @rq.
1527 */
1528void rq_flush_dcache_pages(struct request *rq)
1529{
1530 struct req_iterator iter;
7988613b 1531 struct bio_vec bvec;
2d4dc890
IL
1532
1533 rq_for_each_segment(bvec, rq, iter)
7988613b 1534 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1535}
1536EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1537#endif
1538
ef9e3fac
KU
1539/**
1540 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1541 * @q : the queue of the device being checked
1542 *
1543 * Description:
1544 * Check if underlying low-level drivers of a device are busy.
1545 * If the drivers want to export their busy state, they must set own
1546 * exporting function using blk_queue_lld_busy() first.
1547 *
1548 * Basically, this function is used only by request stacking drivers
1549 * to stop dispatching requests to underlying devices when underlying
1550 * devices are busy. This behavior helps more I/O merging on the queue
1551 * of the request stacking driver and prevents I/O throughput regression
1552 * on burst I/O load.
1553 *
1554 * Return:
1555 * 0 - Not busy (The request stacking driver should dispatch request)
1556 * 1 - Busy (The request stacking driver should stop dispatching request)
1557 */
1558int blk_lld_busy(struct request_queue *q)
1559{
344e9ffc 1560 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1561 return q->mq_ops->busy(q);
ef9e3fac
KU
1562
1563 return 0;
1564}
1565EXPORT_SYMBOL_GPL(blk_lld_busy);
1566
78d8e58a
MS
1567/**
1568 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1569 * @rq: the clone request to be cleaned up
1570 *
1571 * Description:
1572 * Free all bios in @rq for a cloned request.
1573 */
1574void blk_rq_unprep_clone(struct request *rq)
1575{
1576 struct bio *bio;
1577
1578 while ((bio = rq->bio) != NULL) {
1579 rq->bio = bio->bi_next;
1580
1581 bio_put(bio);
1582 }
1583}
1584EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1585
1586/*
1587 * Copy attributes of the original request to the clone request.
1588 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1589 */
1590static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d 1591{
b0fd271d
KU
1592 dst->__sector = blk_rq_pos(src);
1593 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
1594 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1595 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1596 dst->special_vec = src->special_vec;
1597 }
b0fd271d
KU
1598 dst->nr_phys_segments = src->nr_phys_segments;
1599 dst->ioprio = src->ioprio;
1600 dst->extra_len = src->extra_len;
78d8e58a
MS
1601}
1602
1603/**
1604 * blk_rq_prep_clone - Helper function to setup clone request
1605 * @rq: the request to be setup
1606 * @rq_src: original request to be cloned
1607 * @bs: bio_set that bios for clone are allocated from
1608 * @gfp_mask: memory allocation mask for bio
1609 * @bio_ctr: setup function to be called for each clone bio.
1610 * Returns %0 for success, non %0 for failure.
1611 * @data: private data to be passed to @bio_ctr
1612 *
1613 * Description:
1614 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1615 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1616 * are not copied, and copying such parts is the caller's responsibility.
1617 * Also, pages which the original bios are pointing to are not copied
1618 * and the cloned bios just point same pages.
1619 * So cloned bios must be completed before original bios, which means
1620 * the caller must complete @rq before @rq_src.
1621 */
1622int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1623 struct bio_set *bs, gfp_t gfp_mask,
1624 int (*bio_ctr)(struct bio *, struct bio *, void *),
1625 void *data)
1626{
1627 struct bio *bio, *bio_src;
1628
1629 if (!bs)
f4f8154a 1630 bs = &fs_bio_set;
78d8e58a
MS
1631
1632 __rq_for_each_bio(bio_src, rq_src) {
1633 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1634 if (!bio)
1635 goto free_and_out;
1636
1637 if (bio_ctr && bio_ctr(bio, bio_src, data))
1638 goto free_and_out;
1639
1640 if (rq->bio) {
1641 rq->biotail->bi_next = bio;
1642 rq->biotail = bio;
1643 } else
1644 rq->bio = rq->biotail = bio;
1645 }
1646
1647 __blk_rq_prep_clone(rq, rq_src);
1648
1649 return 0;
1650
1651free_and_out:
1652 if (bio)
1653 bio_put(bio);
1654 blk_rq_unprep_clone(rq);
1655
1656 return -ENOMEM;
b0fd271d
KU
1657}
1658EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1659
59c3d45e 1660int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1661{
1662 return queue_work(kblockd_workqueue, work);
1663}
1da177e4
LT
1664EXPORT_SYMBOL(kblockd_schedule_work);
1665
ee63cfa7
JA
1666int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1667{
1668 return queue_work_on(cpu, kblockd_workqueue, work);
1669}
1670EXPORT_SYMBOL(kblockd_schedule_work_on);
1671
818cd1cb
JA
1672int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1673 unsigned long delay)
1674{
1675 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1676}
1677EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1678
75df7136
SJ
1679/**
1680 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1681 * @plug: The &struct blk_plug that needs to be initialized
1682 *
1683 * Description:
40405851
JM
1684 * blk_start_plug() indicates to the block layer an intent by the caller
1685 * to submit multiple I/O requests in a batch. The block layer may use
1686 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1687 * is called. However, the block layer may choose to submit requests
1688 * before a call to blk_finish_plug() if the number of queued I/Os
1689 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1690 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1691 * the task schedules (see below).
1692 *
75df7136
SJ
1693 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1694 * pending I/O should the task end up blocking between blk_start_plug() and
1695 * blk_finish_plug(). This is important from a performance perspective, but
1696 * also ensures that we don't deadlock. For instance, if the task is blocking
1697 * for a memory allocation, memory reclaim could end up wanting to free a
1698 * page belonging to that request that is currently residing in our private
1699 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1700 * this kind of deadlock.
1701 */
73c10101
JA
1702void blk_start_plug(struct blk_plug *plug)
1703{
1704 struct task_struct *tsk = current;
1705
dd6cf3e1
SL
1706 /*
1707 * If this is a nested plug, don't actually assign it.
1708 */
1709 if (tsk->plug)
1710 return;
1711
320ae51f 1712 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1713 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1714 plug->rq_count = 0;
ce5b009c 1715 plug->multiple_queues = false;
5f0ed774 1716
73c10101 1717 /*
dd6cf3e1
SL
1718 * Store ordering should not be needed here, since a potential
1719 * preempt will imply a full memory barrier
73c10101 1720 */
dd6cf3e1 1721 tsk->plug = plug;
73c10101
JA
1722}
1723EXPORT_SYMBOL(blk_start_plug);
1724
74018dc3 1725static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1726{
1727 LIST_HEAD(callbacks);
1728
2a7d5559
SL
1729 while (!list_empty(&plug->cb_list)) {
1730 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1731
2a7d5559
SL
1732 while (!list_empty(&callbacks)) {
1733 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1734 struct blk_plug_cb,
1735 list);
2a7d5559 1736 list_del(&cb->list);
74018dc3 1737 cb->callback(cb, from_schedule);
2a7d5559 1738 }
048c9374
N
1739 }
1740}
1741
9cbb1750
N
1742struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1743 int size)
1744{
1745 struct blk_plug *plug = current->plug;
1746 struct blk_plug_cb *cb;
1747
1748 if (!plug)
1749 return NULL;
1750
1751 list_for_each_entry(cb, &plug->cb_list, list)
1752 if (cb->callback == unplug && cb->data == data)
1753 return cb;
1754
1755 /* Not currently on the callback list */
1756 BUG_ON(size < sizeof(*cb));
1757 cb = kzalloc(size, GFP_ATOMIC);
1758 if (cb) {
1759 cb->data = data;
1760 cb->callback = unplug;
1761 list_add(&cb->list, &plug->cb_list);
1762 }
1763 return cb;
1764}
1765EXPORT_SYMBOL(blk_check_plugged);
1766
49cac01e 1767void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1768{
74018dc3 1769 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1770
1771 if (!list_empty(&plug->mq_list))
1772 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1773}
73c10101 1774
40405851
JM
1775/**
1776 * blk_finish_plug - mark the end of a batch of submitted I/O
1777 * @plug: The &struct blk_plug passed to blk_start_plug()
1778 *
1779 * Description:
1780 * Indicate that a batch of I/O submissions is complete. This function
1781 * must be paired with an initial call to blk_start_plug(). The intent
1782 * is to allow the block layer to optimize I/O submission. See the
1783 * documentation for blk_start_plug() for more information.
1784 */
73c10101
JA
1785void blk_finish_plug(struct blk_plug *plug)
1786{
dd6cf3e1
SL
1787 if (plug != current->plug)
1788 return;
f6603783 1789 blk_flush_plug_list(plug, false);
73c10101 1790
dd6cf3e1 1791 current->plug = NULL;
73c10101 1792}
88b996cd 1793EXPORT_SYMBOL(blk_finish_plug);
73c10101 1794
1da177e4
LT
1795int __init blk_dev_init(void)
1796{
ef295ecf
CH
1797 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1798 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1799 sizeof_field(struct request, cmd_flags));
ef295ecf 1800 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1801 sizeof_field(struct bio, bi_opf));
9eb55b03 1802
89b90be2
TH
1803 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1804 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1805 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1806 if (!kblockd_workqueue)
1807 panic("Failed to create kblockd\n");
1808
c2789bd4 1809 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1810 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1811
18fbda91
OS
1812#ifdef CONFIG_DEBUG_FS
1813 blk_debugfs_root = debugfs_create_dir("block", NULL);
1814#endif
1815
d38ecf93 1816 return 0;
1da177e4 1817}