]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/blk-core.c
mm: kmemleak: take a full lowmem check in kmemleak_*_phys()
[mirror_ubuntu-jammy-kernel.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
52abca64 20#include <linux/blk-pm.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
eea8f41c 37#include <linux/blk-cgroup.h>
54d4e6ab 38#include <linux/t10-pi.h>
18fbda91 39#include <linux/debugfs.h>
30abb3a6 40#include <linux/bpf.h>
b8e24a93 41#include <linux/psi.h>
71ac860a 42#include <linux/sched/sysctl.h>
a892c8d5 43#include <linux/blk-crypto.h>
55782138
LZ
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
1da177e4 47
8324aa91 48#include "blk.h"
43a5e4e2 49#include "blk-mq.h"
bd166ef1 50#include "blk-mq-sched.h"
bca6b067 51#include "blk-pm.h"
8abf92ce 52#include "blk-rq-qos.h"
8324aa91 53
18fbda91 54struct dentry *blk_debugfs_root;
18fbda91 55
d07335e5 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 62
a73f730d
TH
63DEFINE_IDA(blk_queue_ida);
64
1da177e4
LT
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
57d74df9 82 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
83}
84EXPORT_SYMBOL(blk_queue_flag_set);
85
86/**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92{
57d74df9 93 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
94}
95EXPORT_SYMBOL(blk_queue_flag_clear);
96
97/**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106{
57d74df9 107 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
108}
109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
2a4aa30c 111void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 112{
1afb20f3
FT
113 memset(rq, 0, sizeof(*rq));
114
1da177e4 115 INIT_LIST_HEAD(&rq->queuelist);
63a71386 116 rq->q = q;
a2dec7b3 117 rq->__sector = (sector_t) -1;
2e662b65
JA
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
e44a6a23
XT
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
522a7775 122 rq->start_time_ns = ktime_get_ns();
09e099d4 123 rq->part = NULL;
a892c8d5 124 blk_crypto_rq_set_defaults(rq);
1da177e4 125}
2a4aa30c 126EXPORT_SYMBOL(blk_rq_init);
1da177e4 127
e47bc4ed
CK
128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129static const char *const blk_op_name[] = {
130 REQ_OP_NAME(READ),
131 REQ_OP_NAME(WRITE),
132 REQ_OP_NAME(FLUSH),
133 REQ_OP_NAME(DISCARD),
134 REQ_OP_NAME(SECURE_ERASE),
135 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 136 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
137 REQ_OP_NAME(ZONE_OPEN),
138 REQ_OP_NAME(ZONE_CLOSE),
139 REQ_OP_NAME(ZONE_FINISH),
0512a75b 140 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed
CK
141 REQ_OP_NAME(WRITE_SAME),
142 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
143 REQ_OP_NAME(DRV_IN),
144 REQ_OP_NAME(DRV_OUT),
145};
146#undef REQ_OP_NAME
147
148/**
149 * blk_op_str - Return string XXX in the REQ_OP_XXX.
150 * @op: REQ_OP_XXX.
151 *
152 * Description: Centralize block layer function to convert REQ_OP_XXX into
153 * string format. Useful in the debugging and tracing bio or request. For
154 * invalid REQ_OP_XXX it returns string "UNKNOWN".
155 */
156inline const char *blk_op_str(unsigned int op)
157{
158 const char *op_str = "UNKNOWN";
159
160 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
161 op_str = blk_op_name[op];
162
163 return op_str;
164}
165EXPORT_SYMBOL_GPL(blk_op_str);
166
2a842aca
CH
167static const struct {
168 int errno;
169 const char *name;
170} blk_errors[] = {
171 [BLK_STS_OK] = { 0, "" },
172 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
173 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
174 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
175 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
176 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
177 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
178 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
179 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
180 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 181 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 182 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 183
4e4cbee9
CH
184 /* device mapper special case, should not leak out: */
185 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
186
3b481d91
KB
187 /* zone device specific errors */
188 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
189 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
190
2a842aca
CH
191 /* everything else not covered above: */
192 [BLK_STS_IOERR] = { -EIO, "I/O" },
193};
194
195blk_status_t errno_to_blk_status(int errno)
196{
197 int i;
198
199 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
200 if (blk_errors[i].errno == errno)
201 return (__force blk_status_t)i;
202 }
203
204 return BLK_STS_IOERR;
205}
206EXPORT_SYMBOL_GPL(errno_to_blk_status);
207
208int blk_status_to_errno(blk_status_t status)
209{
210 int idx = (__force int)status;
211
34bd9c1c 212 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
213 return -EIO;
214 return blk_errors[idx].errno;
215}
216EXPORT_SYMBOL_GPL(blk_status_to_errno);
217
178cc590
CH
218static void print_req_error(struct request *req, blk_status_t status,
219 const char *caller)
2a842aca
CH
220{
221 int idx = (__force int)status;
222
34bd9c1c 223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
224 return;
225
178cc590 226 printk_ratelimited(KERN_ERR
b0e5168a
CK
227 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 "phys_seg %u prio class %u\n",
178cc590 229 caller, blk_errors[idx].name,
b0e5168a
CK
230 req->rq_disk ? req->rq_disk->disk_name : "?",
231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 req->cmd_flags & ~REQ_OP_MASK,
233 req->nr_phys_segments,
234 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
235}
236
5bb23a68 237static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 238 unsigned int nbytes, blk_status_t error)
1da177e4 239{
78d8e58a 240 if (error)
4e4cbee9 241 bio->bi_status = error;
797e7dbb 242
e8064021 243 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 244 bio_set_flag(bio, BIO_QUIET);
08bafc03 245
f79ea416 246 bio_advance(bio, nbytes);
7ba1ba12 247
0512a75b
KB
248 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
249 /*
250 * Partial zone append completions cannot be supported as the
251 * BIO fragments may end up not being written sequentially.
252 */
253 if (bio->bi_iter.bi_size)
254 bio->bi_status = BLK_STS_IOERR;
255 else
256 bio->bi_iter.bi_sector = rq->__sector;
257 }
258
143a87f4 259 /* don't actually finish bio if it's part of flush sequence */
e8064021 260 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 261 bio_endio(bio);
1da177e4 262}
1da177e4 263
1da177e4
LT
264void blk_dump_rq_flags(struct request *rq, char *msg)
265{
aebf526b
CH
266 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
267 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 268 (unsigned long long) rq->cmd_flags);
1da177e4 269
83096ebf
TH
270 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
271 (unsigned long long)blk_rq_pos(rq),
272 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
273 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
274 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 275}
1da177e4
LT
276EXPORT_SYMBOL(blk_dump_rq_flags);
277
1da177e4
LT
278/**
279 * blk_sync_queue - cancel any pending callbacks on a queue
280 * @q: the queue
281 *
282 * Description:
283 * The block layer may perform asynchronous callback activity
284 * on a queue, such as calling the unplug function after a timeout.
285 * A block device may call blk_sync_queue to ensure that any
286 * such activity is cancelled, thus allowing it to release resources
59c51591 287 * that the callbacks might use. The caller must already have made sure
c62b37d9 288 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
289 * this function.
290 *
da527770 291 * This function does not cancel any asynchronous activity arising
da3dae54 292 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 293 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 294 *
1da177e4
LT
295 */
296void blk_sync_queue(struct request_queue *q)
297{
70ed28b9 298 del_timer_sync(&q->timeout);
4e9b6f20 299 cancel_work_sync(&q->timeout_work);
1da177e4
LT
300}
301EXPORT_SYMBOL(blk_sync_queue);
302
c9254f2d 303/**
cd84a62e 304 * blk_set_pm_only - increment pm_only counter
c9254f2d 305 * @q: request queue pointer
c9254f2d 306 */
cd84a62e 307void blk_set_pm_only(struct request_queue *q)
c9254f2d 308{
cd84a62e 309 atomic_inc(&q->pm_only);
c9254f2d 310}
cd84a62e 311EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 312
cd84a62e 313void blk_clear_pm_only(struct request_queue *q)
c9254f2d 314{
cd84a62e
BVA
315 int pm_only;
316
317 pm_only = atomic_dec_return(&q->pm_only);
318 WARN_ON_ONCE(pm_only < 0);
319 if (pm_only == 0)
320 wake_up_all(&q->mq_freeze_wq);
c9254f2d 321}
cd84a62e 322EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 323
b5bd357c
LC
324/**
325 * blk_put_queue - decrement the request_queue refcount
326 * @q: the request_queue structure to decrement the refcount for
327 *
328 * Decrements the refcount of the request_queue kobject. When this reaches 0
329 * we'll have blk_release_queue() called.
e8c7d14a
LC
330 *
331 * Context: Any context, but the last reference must not be dropped from
332 * atomic context.
b5bd357c 333 */
165125e1 334void blk_put_queue(struct request_queue *q)
483f4afc
AV
335{
336 kobject_put(&q->kobj);
337}
d86e0e83 338EXPORT_SYMBOL(blk_put_queue);
483f4afc 339
8e141f9e 340void blk_queue_start_drain(struct request_queue *q)
aed3ea94 341{
d3cfb2a0
ML
342 /*
343 * When queue DYING flag is set, we need to block new req
344 * entering queue, so we call blk_freeze_queue_start() to
345 * prevent I/O from crossing blk_queue_enter().
346 */
347 blk_freeze_queue_start(q);
344e9ffc 348 if (queue_is_mq(q))
aed3ea94 349 blk_mq_wake_waiters(q);
055f6e18
ML
350 /* Make blk_queue_enter() reexamine the DYING flag. */
351 wake_up_all(&q->mq_freeze_wq);
aed3ea94 352}
8e141f9e 353
c9a929dd
TH
354/**
355 * blk_cleanup_queue - shutdown a request queue
356 * @q: request queue to shutdown
357 *
c246e80d
BVA
358 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
359 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
360 *
361 * Context: can sleep
c94a96ac 362 */
6728cb0e 363void blk_cleanup_queue(struct request_queue *q)
483f4afc 364{
e8c7d14a
LC
365 /* cannot be called from atomic context */
366 might_sleep();
367
bae85c15
BVA
368 WARN_ON_ONCE(blk_queue_registered(q));
369
3f3299d5 370 /* mark @q DYING, no new request or merges will be allowed afterwards */
b142c5ae
CH
371 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
372 blk_queue_start_drain(q);
6ecf23af 373
57d74df9
CH
374 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
375 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 376
c246e80d
BVA
377 /*
378 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
379 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
380 * after draining finished.
c246e80d 381 */
3ef28e83 382 blk_freeze_queue(q);
c57cdf7a 383
8abf92ce
ML
384 /* cleanup rq qos structures for queue without disk */
385 rq_qos_exit(q);
386
57d74df9 387 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 388
c9a929dd 389 blk_sync_queue(q);
9a2b5cd4
ML
390 if (queue_is_mq(q)) {
391 blk_mq_cancel_work_sync(q);
c7e2d94b 392 blk_mq_exit_queue(q);
9a2b5cd4 393 }
a1ce35fa 394
c3e22192
ML
395 /*
396 * In theory, request pool of sched_tags belongs to request queue.
397 * However, the current implementation requires tag_set for freeing
398 * requests, so free the pool now.
399 *
400 * Queue has become frozen, there can't be any in-queue requests, so
401 * it is safe to free requests now.
402 */
403 mutex_lock(&q->sysfs_lock);
404 if (q->elevator)
405 blk_mq_sched_free_requests(q);
406 mutex_unlock(&q->sysfs_lock);
407
3ef28e83 408 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 409
c9a929dd 410 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
411 blk_put_queue(q);
412}
1da177e4
LT
413EXPORT_SYMBOL(blk_cleanup_queue);
414
1f14a098
CH
415static bool blk_try_enter_queue(struct request_queue *q, bool pm)
416{
417 rcu_read_lock();
418 if (!percpu_ref_tryget_live(&q->q_usage_counter))
419 goto fail;
420
421 /*
422 * The code that increments the pm_only counter must ensure that the
423 * counter is globally visible before the queue is unfrozen.
424 */
425 if (blk_queue_pm_only(q) &&
426 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
427 goto fail_put;
428
429 rcu_read_unlock();
430 return true;
431
432fail_put:
433 percpu_ref_put(&q->q_usage_counter);
434fail:
435 rcu_read_unlock();
436 return false;
437}
438
3a0a5299
BVA
439/**
440 * blk_queue_enter() - try to increase q->q_usage_counter
441 * @q: request queue pointer
a4d34da7 442 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 443 */
9a95e4ef 444int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 445{
a4d34da7 446 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 447
1f14a098 448 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 449 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
450 return -EBUSY;
451
5ed61d3f 452 /*
1f14a098
CH
453 * read pair of barrier in blk_freeze_queue_start(), we need to
454 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
455 * reading .mq_freeze_depth or queue dying flag, otherwise the
456 * following wait may never return if the two reads are
457 * reordered.
5ed61d3f
ML
458 */
459 smp_rmb();
1dc3039b 460 wait_event(q->mq_freeze_wq,
7996a8b5 461 (!q->mq_freeze_depth &&
52abca64 462 blk_pm_resume_queue(pm, q)) ||
1dc3039b 463 blk_queue_dying(q));
3ef28e83
DW
464 if (blk_queue_dying(q))
465 return -ENODEV;
3ef28e83 466 }
1f14a098
CH
467
468 return 0;
3ef28e83
DW
469}
470
accea322
CH
471static inline int bio_queue_enter(struct bio *bio)
472{
8e141f9e
CH
473 struct gendisk *disk = bio->bi_bdev->bd_disk;
474 struct request_queue *q = disk->queue;
accea322 475
a6741536
CH
476 while (!blk_try_enter_queue(q, false)) {
477 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 478 if (test_bit(GD_DEAD, &disk->state))
a6741536 479 goto dead;
accea322 480 bio_wouldblock_error(bio);
a6741536
CH
481 return -EBUSY;
482 }
483
484 /*
485 * read pair of barrier in blk_freeze_queue_start(), we need to
486 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
487 * reading .mq_freeze_depth or queue dying flag, otherwise the
488 * following wait may never return if the two reads are
489 * reordered.
490 */
491 smp_rmb();
492 wait_event(q->mq_freeze_wq,
493 (!q->mq_freeze_depth &&
494 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
495 test_bit(GD_DEAD, &disk->state));
496 if (test_bit(GD_DEAD, &disk->state))
a6741536 497 goto dead;
accea322
CH
498 }
499
a6741536
CH
500 return 0;
501dead:
502 bio_io_error(bio);
503 return -ENODEV;
accea322
CH
504}
505
3ef28e83
DW
506void blk_queue_exit(struct request_queue *q)
507{
508 percpu_ref_put(&q->q_usage_counter);
509}
510
511static void blk_queue_usage_counter_release(struct percpu_ref *ref)
512{
513 struct request_queue *q =
514 container_of(ref, struct request_queue, q_usage_counter);
515
516 wake_up_all(&q->mq_freeze_wq);
517}
518
bca237a5 519static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 520{
bca237a5 521 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
522
523 kblockd_schedule_work(&q->timeout_work);
524}
525
2e3c18d0
TH
526static void blk_timeout_work(struct work_struct *work)
527{
528}
529
c62b37d9 530struct request_queue *blk_alloc_queue(int node_id)
1946089a 531{
165125e1 532 struct request_queue *q;
338aa96d 533 int ret;
1946089a 534
8324aa91 535 q = kmem_cache_alloc_node(blk_requestq_cachep,
3d745ea5 536 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
537 if (!q)
538 return NULL;
539
cbf62af3 540 q->last_merge = NULL;
cbf62af3 541
3d745ea5 542 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 543 if (q->id < 0)
3d2936f4 544 goto fail_q;
a73f730d 545
c495a176 546 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
338aa96d 547 if (ret)
54efd50b
KO
548 goto fail_id;
549
a83b576c
JA
550 q->stats = blk_alloc_queue_stats();
551 if (!q->stats)
edb0872f 552 goto fail_split;
a83b576c 553
5151412d 554 q->node = node_id;
0989a025 555
bccf5e26
JG
556 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
557
bca237a5 558 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 559 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 560 INIT_LIST_HEAD(&q->icq_list);
4eef3049 561#ifdef CONFIG_BLK_CGROUP
e8989fae 562 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 563#endif
483f4afc 564
8324aa91 565 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 566
85e0cbbb 567 mutex_init(&q->debugfs_mutex);
483f4afc 568 mutex_init(&q->sysfs_lock);
cecf5d87 569 mutex_init(&q->sysfs_dir_lock);
0d945c1f 570 spin_lock_init(&q->queue_lock);
c94a96ac 571
320ae51f 572 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 573 mutex_init(&q->mq_freeze_lock);
320ae51f 574
3ef28e83
DW
575 /*
576 * Init percpu_ref in atomic mode so that it's faster to shutdown.
577 * See blk_register_queue() for details.
578 */
579 if (percpu_ref_init(&q->q_usage_counter,
580 blk_queue_usage_counter_release,
581 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 582 goto fail_stats;
f51b802c 583
3ef28e83
DW
584 if (blkcg_init_queue(q))
585 goto fail_ref;
586
3d745ea5
CH
587 blk_queue_dma_alignment(q, 511);
588 blk_set_default_limits(&q->limits);
c62b37d9 589 q->nr_requests = BLKDEV_MAX_RQ;
3d745ea5 590
1da177e4 591 return q;
a73f730d 592
3ef28e83
DW
593fail_ref:
594 percpu_ref_exit(&q->q_usage_counter);
a83b576c 595fail_stats:
edb0872f 596 blk_free_queue_stats(q->stats);
54efd50b 597fail_split:
338aa96d 598 bioset_exit(&q->bio_split);
a73f730d
TH
599fail_id:
600 ida_simple_remove(&blk_queue_ida, q->id);
601fail_q:
602 kmem_cache_free(blk_requestq_cachep, q);
603 return NULL;
1da177e4 604}
1da177e4 605
b5bd357c
LC
606/**
607 * blk_get_queue - increment the request_queue refcount
608 * @q: the request_queue structure to increment the refcount for
609 *
610 * Increment the refcount of the request_queue kobject.
763b5892
LC
611 *
612 * Context: Any context.
b5bd357c 613 */
09ac46c4 614bool blk_get_queue(struct request_queue *q)
1da177e4 615{
3f3299d5 616 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
617 __blk_get_queue(q);
618 return true;
1da177e4
LT
619 }
620
09ac46c4 621 return false;
1da177e4 622}
d86e0e83 623EXPORT_SYMBOL(blk_get_queue);
1da177e4 624
a1ce35fa
JA
625/**
626 * blk_get_request - allocate a request
627 * @q: request queue to allocate a request for
628 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
629 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 630 */
a1ce35fa
JA
631struct request *blk_get_request(struct request_queue *q, unsigned int op,
632 blk_mq_req_flags_t flags)
1da177e4 633{
a1ce35fa 634 struct request *req;
1da177e4 635
a1ce35fa 636 WARN_ON_ONCE(op & REQ_NOWAIT);
a4d34da7 637 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
1da177e4 638
a1ce35fa
JA
639 req = blk_mq_alloc_request(q, op, flags);
640 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
641 q->mq_ops->initialize_rq_fn(req);
1da177e4 642
a1ce35fa 643 return req;
1da177e4 644}
a1ce35fa 645EXPORT_SYMBOL(blk_get_request);
1da177e4 646
1da177e4
LT
647void blk_put_request(struct request *req)
648{
a1ce35fa 649 blk_mq_free_request(req);
1da177e4 650}
1da177e4
LT
651EXPORT_SYMBOL(blk_put_request);
652
52c5e62d 653static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
654{
655 char b[BDEVNAME_SIZE];
656
f4ac712e
TH
657 pr_info_ratelimited("attempt to access beyond end of device\n"
658 "%s: rw=%d, want=%llu, limit=%llu\n",
659 bio_devname(bio, b), bio->bi_opf,
660 bio_end_sector(bio), maxsector);
1da177e4
LT
661}
662
c17bb495
AM
663#ifdef CONFIG_FAIL_MAKE_REQUEST
664
665static DECLARE_FAULT_ATTR(fail_make_request);
666
667static int __init setup_fail_make_request(char *str)
668{
669 return setup_fault_attr(&fail_make_request, str);
670}
671__setup("fail_make_request=", setup_fail_make_request);
672
8446fe92 673static bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 674{
8446fe92 675 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
676}
677
678static int __init fail_make_request_debugfs(void)
679{
dd48c085
AM
680 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
681 NULL, &fail_make_request);
682
21f9fcd8 683 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
684}
685
686late_initcall(fail_make_request_debugfs);
687
688#else /* CONFIG_FAIL_MAKE_REQUEST */
689
8446fe92 690static inline bool should_fail_request(struct block_device *part,
b2c9cd37 691 unsigned int bytes)
c17bb495 692{
b2c9cd37 693 return false;
c17bb495
AM
694}
695
696#endif /* CONFIG_FAIL_MAKE_REQUEST */
697
2f9f6221 698static inline bool bio_check_ro(struct bio *bio)
721c7fc7 699{
2f9f6221 700 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
721c7fc7
ID
701 char b[BDEVNAME_SIZE];
702
8b2ded1c
MP
703 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
704 return false;
705
a32e236e 706 WARN_ONCE(1,
c8178674 707 "Trying to write to read-only block-device %s (partno %d)\n",
2f9f6221 708 bio_devname(bio, b), bio->bi_bdev->bd_partno);
a32e236e
LT
709 /* Older lvm-tools actually trigger this */
710 return false;
721c7fc7
ID
711 }
712
713 return false;
714}
715
30abb3a6
HM
716static noinline int should_fail_bio(struct bio *bio)
717{
309dca30 718 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
719 return -EIO;
720 return 0;
721}
722ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
723
52c5e62d
CH
724/*
725 * Check whether this bio extends beyond the end of the device or partition.
726 * This may well happen - the kernel calls bread() without checking the size of
727 * the device, e.g., when mounting a file system.
728 */
2f9f6221 729static inline int bio_check_eod(struct bio *bio)
52c5e62d 730{
2f9f6221 731 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
732 unsigned int nr_sectors = bio_sectors(bio);
733
734 if (nr_sectors && maxsector &&
735 (nr_sectors > maxsector ||
736 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
737 handle_bad_sector(bio, maxsector);
738 return -EIO;
739 }
740 return 0;
741}
742
74d46992
CH
743/*
744 * Remap block n of partition p to block n+start(p) of the disk.
745 */
2f9f6221 746static int blk_partition_remap(struct bio *bio)
74d46992 747{
309dca30 748 struct block_device *p = bio->bi_bdev;
74d46992 749
52c5e62d 750 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 751 return -EIO;
5eac3eb3 752 if (bio_sectors(bio)) {
8446fe92 753 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 754 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 755 bio->bi_iter.bi_sector -
8446fe92 756 p->bd_start_sect);
52c5e62d 757 }
30c5d345 758 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 759 return 0;
74d46992
CH
760}
761
0512a75b
KB
762/*
763 * Check write append to a zoned block device.
764 */
765static inline blk_status_t blk_check_zone_append(struct request_queue *q,
766 struct bio *bio)
767{
768 sector_t pos = bio->bi_iter.bi_sector;
769 int nr_sectors = bio_sectors(bio);
770
771 /* Only applicable to zoned block devices */
772 if (!blk_queue_is_zoned(q))
773 return BLK_STS_NOTSUPP;
774
775 /* The bio sector must point to the start of a sequential zone */
776 if (pos & (blk_queue_zone_sectors(q) - 1) ||
777 !blk_queue_zone_is_seq(q, pos))
778 return BLK_STS_IOERR;
779
780 /*
781 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
782 * split and could result in non-contiguous sectors being written in
783 * different zones.
784 */
785 if (nr_sectors > q->limits.chunk_sectors)
786 return BLK_STS_IOERR;
787
788 /* Make sure the BIO is small enough and will not get split */
789 if (nr_sectors > q->limits.max_zone_append_sectors)
790 return BLK_STS_IOERR;
791
792 bio->bi_opf |= REQ_NOMERGE;
793
794 return BLK_STS_OK;
795}
796
ed00aabd 797static noinline_for_stack bool submit_bio_checks(struct bio *bio)
1da177e4 798{
309dca30
CH
799 struct block_device *bdev = bio->bi_bdev;
800 struct request_queue *q = bdev->bd_disk->queue;
4e4cbee9 801 blk_status_t status = BLK_STS_IOERR;
5a473e83 802 struct blk_plug *plug;
1da177e4
LT
803
804 might_sleep();
1da177e4 805
5a473e83
JA
806 plug = blk_mq_plug(q, bio);
807 if (plug && plug->nowait)
808 bio->bi_opf |= REQ_NOWAIT;
809
03a07c92 810 /*
b0beb280 811 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 812 * if queue does not support NOWAIT.
03a07c92 813 */
021a2446 814 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 815 goto not_supported;
03a07c92 816
30abb3a6 817 if (should_fail_bio(bio))
5a7bbad2 818 goto end_io;
2f9f6221
CH
819 if (unlikely(bio_check_ro(bio)))
820 goto end_io;
3a905c37
CH
821 if (!bio_flagged(bio, BIO_REMAPPED)) {
822 if (unlikely(bio_check_eod(bio)))
823 goto end_io;
824 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
825 goto end_io;
826 }
2056a782 827
5a7bbad2 828 /*
ed00aabd
CH
829 * Filter flush bio's early so that bio based drivers without flush
830 * support don't have to worry about them.
5a7bbad2 831 */
f3a8ab7d 832 if (op_is_flush(bio->bi_opf) &&
c888a8f9 833 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 834 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 835 if (!bio_sectors(bio)) {
4e4cbee9 836 status = BLK_STS_OK;
51fd77bd
JA
837 goto end_io;
838 }
5a7bbad2 839 }
5ddfe969 840
d04c406f 841 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
270a1c91 842 bio_clear_hipri(bio);
d04c406f 843
288dab8a
CH
844 switch (bio_op(bio)) {
845 case REQ_OP_DISCARD:
846 if (!blk_queue_discard(q))
847 goto not_supported;
848 break;
849 case REQ_OP_SECURE_ERASE:
850 if (!blk_queue_secure_erase(q))
851 goto not_supported;
852 break;
853 case REQ_OP_WRITE_SAME:
74d46992 854 if (!q->limits.max_write_same_sectors)
288dab8a 855 goto not_supported;
58886785 856 break;
0512a75b
KB
857 case REQ_OP_ZONE_APPEND:
858 status = blk_check_zone_append(q, bio);
859 if (status != BLK_STS_OK)
860 goto end_io;
861 break;
2d253440 862 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
863 case REQ_OP_ZONE_OPEN:
864 case REQ_OP_ZONE_CLOSE:
865 case REQ_OP_ZONE_FINISH:
74d46992 866 if (!blk_queue_is_zoned(q))
2d253440 867 goto not_supported;
288dab8a 868 break;
6e33dbf2
CK
869 case REQ_OP_ZONE_RESET_ALL:
870 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
871 goto not_supported;
872 break;
a6f0788e 873 case REQ_OP_WRITE_ZEROES:
74d46992 874 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
875 goto not_supported;
876 break;
288dab8a
CH
877 default:
878 break;
5a7bbad2 879 }
01edede4 880
7f4b35d1 881 /*
3e82c348
CH
882 * Various block parts want %current->io_context, so allocate it up
883 * front rather than dealing with lots of pain to allocate it only
884 * where needed. This may fail and the block layer knows how to live
885 * with it.
7f4b35d1 886 */
3e82c348
CH
887 if (unlikely(!current->io_context))
888 create_task_io_context(current, GFP_ATOMIC, q->node);
7f4b35d1 889
33d2ad67 890 if (blk_throtl_bio(bio))
ae118896 891 return false;
db18a53e
CH
892
893 blk_cgroup_bio_start(bio);
894 blkcg_bio_issue_init(bio);
27a84d54 895
fbbaf700 896 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 897 trace_block_bio_queue(bio);
fbbaf700
N
898 /* Now that enqueuing has been traced, we need to trace
899 * completion as well.
900 */
901 bio_set_flag(bio, BIO_TRACE_COMPLETION);
902 }
27a84d54 903 return true;
a7384677 904
288dab8a 905not_supported:
4e4cbee9 906 status = BLK_STS_NOTSUPP;
a7384677 907end_io:
4e4cbee9 908 bio->bi_status = status;
4246a0b6 909 bio_endio(bio);
27a84d54 910 return false;
1da177e4
LT
911}
912
ed00aabd 913static blk_qc_t __submit_bio(struct bio *bio)
ac7c5675 914{
309dca30 915 struct gendisk *disk = bio->bi_bdev->bd_disk;
ac7c5675
CH
916 blk_qc_t ret = BLK_QC_T_NONE;
917
cc9c884d
CH
918 if (unlikely(bio_queue_enter(bio) != 0))
919 return BLK_QC_T_NONE;
920
921 if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
922 goto queue_exit;
923 if (disk->fops->submit_bio) {
c62b37d9 924 ret = disk->fops->submit_bio(bio);
cc9c884d 925 goto queue_exit;
ac7c5675 926 }
cc9c884d
CH
927 return blk_mq_submit_bio(bio);
928
929queue_exit:
c62b37d9 930 blk_queue_exit(disk->queue);
ac7c5675
CH
931 return ret;
932}
933
566acf2d
CH
934/*
935 * The loop in this function may be a bit non-obvious, and so deserves some
936 * explanation:
937 *
938 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
939 * that), so we have a list with a single bio.
940 * - We pretend that we have just taken it off a longer list, so we assign
941 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
942 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
943 * bios through a recursive call to submit_bio_noacct. If it did, we find a
944 * non-NULL value in bio_list and re-enter the loop from the top.
945 * - In this case we really did just take the bio of the top of the list (no
946 * pretending) and so remove it from bio_list, and call into ->submit_bio()
947 * again.
948 *
949 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
950 * bio_list_on_stack[1] contains bios that were submitted before the current
951 * ->submit_bio_bio, but that haven't been processed yet.
952 */
953static blk_qc_t __submit_bio_noacct(struct bio *bio)
954{
955 struct bio_list bio_list_on_stack[2];
956 blk_qc_t ret = BLK_QC_T_NONE;
957
958 BUG_ON(bio->bi_next);
959
960 bio_list_init(&bio_list_on_stack[0]);
961 current->bio_list = bio_list_on_stack;
962
963 do {
309dca30 964 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
566acf2d
CH
965 struct bio_list lower, same;
966
566acf2d
CH
967 /*
968 * Create a fresh bio_list for all subordinate requests.
969 */
970 bio_list_on_stack[1] = bio_list_on_stack[0];
971 bio_list_init(&bio_list_on_stack[0]);
972
973 ret = __submit_bio(bio);
974
975 /*
976 * Sort new bios into those for a lower level and those for the
977 * same level.
978 */
979 bio_list_init(&lower);
980 bio_list_init(&same);
981 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
309dca30 982 if (q == bio->bi_bdev->bd_disk->queue)
566acf2d
CH
983 bio_list_add(&same, bio);
984 else
985 bio_list_add(&lower, bio);
986
987 /*
988 * Now assemble so we handle the lowest level first.
989 */
990 bio_list_merge(&bio_list_on_stack[0], &lower);
991 bio_list_merge(&bio_list_on_stack[0], &same);
992 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
993 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
994
995 current->bio_list = NULL;
996 return ret;
997}
998
ff93ea0c
CH
999static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1000{
7c792f33 1001 struct bio_list bio_list[2] = { };
cc9c884d 1002 blk_qc_t ret;
ff93ea0c 1003
7c792f33 1004 current->bio_list = bio_list;
ff93ea0c
CH
1005
1006 do {
cc9c884d 1007 ret = __submit_bio(bio);
7c792f33 1008 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
1009
1010 current->bio_list = NULL;
1011 return ret;
1012}
1013
27a84d54 1014/**
ed00aabd 1015 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
27a84d54
CH
1016 * @bio: The bio describing the location in memory and on the device.
1017 *
3fdd4086
CH
1018 * This is a version of submit_bio() that shall only be used for I/O that is
1019 * resubmitted to lower level drivers by stacking block drivers. All file
1020 * systems and other upper level users of the block layer should use
1021 * submit_bio() instead.
d89d8796 1022 */
ed00aabd 1023blk_qc_t submit_bio_noacct(struct bio *bio)
d89d8796 1024{
27a84d54 1025 /*
566acf2d
CH
1026 * We only want one ->submit_bio to be active at a time, else stack
1027 * usage with stacked devices could be a problem. Use current->bio_list
1028 * to collect a list of requests submited by a ->submit_bio method while
1029 * it is active, and then process them after it returned.
27a84d54 1030 */
bddd87c7 1031 if (current->bio_list) {
f5fe1b51 1032 bio_list_add(&current->bio_list[0], bio);
566acf2d 1033 return BLK_QC_T_NONE;
d89d8796 1034 }
27a84d54 1035
309dca30 1036 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
ff93ea0c 1037 return __submit_bio_noacct_mq(bio);
566acf2d 1038 return __submit_bio_noacct(bio);
d89d8796 1039}
ed00aabd 1040EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
1041
1042/**
710027a4 1043 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1044 * @bio: The &struct bio which describes the I/O
1045 *
3fdd4086
CH
1046 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1047 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 1048 * bio will be send to the device described by the bi_bdev field.
1da177e4 1049 *
3fdd4086
CH
1050 * The success/failure status of the request, along with notification of
1051 * completion, is delivered asynchronously through the ->bi_end_io() callback
1052 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1053 * been called.
1da177e4 1054 */
4e49ea4a 1055blk_qc_t submit_bio(struct bio *bio)
1da177e4 1056{
d3f77dfd
TH
1057 if (blkcg_punt_bio_submit(bio))
1058 return BLK_QC_T_NONE;
1059
bf2de6f5
JA
1060 /*
1061 * If it's a regular read/write or a barrier with data attached,
1062 * go through the normal accounting stuff before submission.
1063 */
e2a60da7 1064 if (bio_has_data(bio)) {
4363ac7c
MP
1065 unsigned int count;
1066
95fe6c1a 1067 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
309dca30
CH
1068 count = queue_logical_block_size(
1069 bio->bi_bdev->bd_disk->queue) >> 9;
4363ac7c
MP
1070 else
1071 count = bio_sectors(bio);
1072
a8ebb056 1073 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1074 count_vm_events(PGPGOUT, count);
1075 } else {
4f024f37 1076 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1077 count_vm_events(PGPGIN, count);
1078 }
1da177e4
LT
1079 }
1080
b8e24a93 1081 /*
760f83ea
CH
1082 * If we're reading data that is part of the userspace workingset, count
1083 * submission time as memory stall. When the device is congested, or
1084 * the submitting cgroup IO-throttled, submission can be a significant
1085 * part of overall IO time.
b8e24a93 1086 */
760f83ea
CH
1087 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1088 bio_flagged(bio, BIO_WORKINGSET))) {
1089 unsigned long pflags;
1090 blk_qc_t ret;
b8e24a93 1091
760f83ea 1092 psi_memstall_enter(&pflags);
ed00aabd 1093 ret = submit_bio_noacct(bio);
b8e24a93
JW
1094 psi_memstall_leave(&pflags);
1095
760f83ea
CH
1096 return ret;
1097 }
1098
ed00aabd 1099 return submit_bio_noacct(bio);
1da177e4 1100}
1da177e4
LT
1101EXPORT_SYMBOL(submit_bio);
1102
82124d60 1103/**
bf4e6b4e 1104 * blk_cloned_rq_check_limits - Helper function to check a cloned request
0d720318 1105 * for the new queue limits
82124d60
KU
1106 * @q: the queue
1107 * @rq: the request being checked
1108 *
1109 * Description:
1110 * @rq may have been made based on weaker limitations of upper-level queues
1111 * in request stacking drivers, and it may violate the limitation of @q.
1112 * Since the block layer and the underlying device driver trust @rq
1113 * after it is inserted to @q, it should be checked against @q before
1114 * the insertion using this generic function.
1115 *
82124d60 1116 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1117 * limits when retrying requests on other queues. Those requests need
1118 * to be checked against the new queue limits again during dispatch.
82124d60 1119 */
143d2600 1120static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
bf4e6b4e 1121 struct request *rq)
82124d60 1122{
8327cce5
RS
1123 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1124
1125 if (blk_rq_sectors(rq) > max_sectors) {
1126 /*
1127 * SCSI device does not have a good way to return if
1128 * Write Same/Zero is actually supported. If a device rejects
1129 * a non-read/write command (discard, write same,etc.) the
1130 * low-level device driver will set the relevant queue limit to
1131 * 0 to prevent blk-lib from issuing more of the offending
1132 * operations. Commands queued prior to the queue limit being
1133 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1134 * errors being propagated to upper layers.
1135 */
1136 if (max_sectors == 0)
1137 return BLK_STS_NOTSUPP;
1138
61939b12 1139 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
8327cce5 1140 __func__, blk_rq_sectors(rq), max_sectors);
143d2600 1141 return BLK_STS_IOERR;
82124d60
KU
1142 }
1143
1144 /*
9bb33f24
CH
1145 * The queue settings related to segment counting may differ from the
1146 * original queue.
82124d60 1147 */
e9cd19c0 1148 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1149 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1150 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1151 __func__, rq->nr_phys_segments, queue_max_segments(q));
143d2600 1152 return BLK_STS_IOERR;
82124d60
KU
1153 }
1154
143d2600 1155 return BLK_STS_OK;
82124d60 1156}
82124d60
KU
1157
1158/**
1159 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1160 * @q: the queue to submit the request
1161 * @rq: the request being queued
1162 */
2a842aca 1163blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1164{
8327cce5
RS
1165 blk_status_t ret;
1166
1167 ret = blk_cloned_rq_check_limits(q, rq);
1168 if (ret != BLK_STS_OK)
1169 return ret;
82124d60 1170
b2c9cd37 1171 if (rq->rq_disk &&
8446fe92 1172 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1173 return BLK_STS_IOERR;
82124d60 1174
a892c8d5
ST
1175 if (blk_crypto_insert_cloned_request(rq))
1176 return BLK_STS_IOERR;
1177
a1ce35fa 1178 if (blk_queue_io_stat(q))
b5af37ab 1179 blk_account_io_start(rq);
82124d60
KU
1180
1181 /*
a1ce35fa
JA
1182 * Since we have a scheduler attached on the top device,
1183 * bypass a potential scheduler on the bottom device for
1184 * insert.
82124d60 1185 */
fd9c40f6 1186 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1187}
1188EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1189
80a761fd
TH
1190/**
1191 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1192 * @rq: request to examine
1193 *
1194 * Description:
1195 * A request could be merge of IOs which require different failure
1196 * handling. This function determines the number of bytes which
1197 * can be failed from the beginning of the request without
1198 * crossing into area which need to be retried further.
1199 *
1200 * Return:
1201 * The number of bytes to fail.
80a761fd
TH
1202 */
1203unsigned int blk_rq_err_bytes(const struct request *rq)
1204{
1205 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1206 unsigned int bytes = 0;
1207 struct bio *bio;
1208
e8064021 1209 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1210 return blk_rq_bytes(rq);
1211
1212 /*
1213 * Currently the only 'mixing' which can happen is between
1214 * different fastfail types. We can safely fail portions
1215 * which have all the failfast bits that the first one has -
1216 * the ones which are at least as eager to fail as the first
1217 * one.
1218 */
1219 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1220 if ((bio->bi_opf & ff) != ff)
80a761fd 1221 break;
4f024f37 1222 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1223 }
1224
1225 /* this could lead to infinite loop */
1226 BUG_ON(blk_rq_bytes(rq) && !bytes);
1227 return bytes;
1228}
1229EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1230
8446fe92
CH
1231static void update_io_ticks(struct block_device *part, unsigned long now,
1232 bool end)
9123bf6f
CH
1233{
1234 unsigned long stamp;
1235again:
8446fe92 1236 stamp = READ_ONCE(part->bd_stamp);
d80c228d 1237 if (unlikely(time_after(now, stamp))) {
8446fe92 1238 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1239 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1240 }
8446fe92
CH
1241 if (part->bd_partno) {
1242 part = bdev_whole(part);
9123bf6f
CH
1243 goto again;
1244 }
1245}
1246
f1394b79 1247static void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1248{
ecb6186c 1249 if (req->part && blk_do_io_stat(req)) {
ddcf35d3 1250 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1251
112f158f 1252 part_stat_lock();
8446fe92 1253 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1254 part_stat_unlock();
1255 }
1256}
1257
522a7775 1258void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1259{
bc58ba94 1260 /*
dd4c133f
TH
1261 * Account IO completion. flush_rq isn't accounted as a
1262 * normal IO on queueing nor completion. Accounting the
1263 * containing request is enough.
bc58ba94 1264 */
ecb6186c
LG
1265 if (req->part && blk_do_io_stat(req) &&
1266 !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1267 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1268
112f158f 1269 part_stat_lock();
8446fe92
CH
1270 update_io_ticks(req->part, jiffies, true);
1271 part_stat_inc(req->part, ios[sgrp]);
1272 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
524f9ffd 1273 part_stat_unlock();
bc58ba94
JA
1274 }
1275}
1276
b5af37ab 1277void blk_account_io_start(struct request *rq)
320ae51f 1278{
320ae51f
JA
1279 if (!blk_do_io_stat(rq))
1280 return;
1281
0b6e522c
CH
1282 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1283 if (rq->bio && rq->bio->bi_bdev)
1284 rq->part = rq->bio->bi_bdev;
1285 else
1286 rq->part = rq->rq_disk->part0;
524f9ffd 1287
112f158f 1288 part_stat_lock();
76268f3a 1289 update_io_ticks(rq->part, jiffies, false);
320ae51f
JA
1290 part_stat_unlock();
1291}
320ae51f 1292
8446fe92 1293static unsigned long __part_start_io_acct(struct block_device *part,
118a3f1c
MS
1294 unsigned int sectors, unsigned int op,
1295 unsigned long start_time)
956d510e 1296{
956d510e 1297 const int sgrp = op_stat_group(op);
956d510e
CH
1298
1299 part_stat_lock();
118a3f1c 1300 update_io_ticks(part, start_time, false);
956d510e
CH
1301 part_stat_inc(part, ios[sgrp]);
1302 part_stat_add(part, sectors[sgrp], sectors);
1303 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1304 part_stat_unlock();
320ae51f 1305
118a3f1c
MS
1306 return start_time;
1307}
1308
1309/**
1310 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1311 * @bio: bio to start account for
1312 * @start_time: start time that should be passed back to bio_end_io_acct().
1313 */
1314void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1315{
1316 __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1317 bio_op(bio), start_time);
956d510e 1318}
118a3f1c 1319EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
7b26410b 1320
99dfc43e
CH
1321/**
1322 * bio_start_io_acct - start I/O accounting for bio based drivers
1323 * @bio: bio to start account for
1324 *
1325 * Returns the start time that should be passed back to bio_end_io_acct().
1326 */
1327unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1328{
118a3f1c
MS
1329 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1330 bio_op(bio), jiffies);
7b26410b 1331}
99dfc43e 1332EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b
SL
1333
1334unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1335 unsigned int op)
1336{
118a3f1c 1337 return __part_start_io_acct(disk->part0, sectors, op, jiffies);
7b26410b 1338}
956d510e
CH
1339EXPORT_SYMBOL(disk_start_io_acct);
1340
8446fe92 1341static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1342 unsigned long start_time)
956d510e 1343{
956d510e
CH
1344 const int sgrp = op_stat_group(op);
1345 unsigned long now = READ_ONCE(jiffies);
1346 unsigned long duration = now - start_time;
5b18b5a7 1347
956d510e
CH
1348 part_stat_lock();
1349 update_io_ticks(part, now, true);
1350 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1351 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1352 part_stat_unlock();
1353}
7b26410b 1354
99dfc43e
CH
1355void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1356 struct block_device *orig_bdev)
7b26410b 1357{
99dfc43e 1358 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1359}
99dfc43e 1360EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b
SL
1361
1362void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1363 unsigned long start_time)
1364{
8446fe92 1365 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1366}
956d510e 1367EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1368
ef71de8b
CH
1369/*
1370 * Steal bios from a request and add them to a bio list.
1371 * The request must not have been partially completed before.
1372 */
1373void blk_steal_bios(struct bio_list *list, struct request *rq)
1374{
1375 if (rq->bio) {
1376 if (list->tail)
1377 list->tail->bi_next = rq->bio;
1378 else
1379 list->head = rq->bio;
1380 list->tail = rq->biotail;
1381
1382 rq->bio = NULL;
1383 rq->biotail = NULL;
1384 }
1385
1386 rq->__data_len = 0;
1387}
1388EXPORT_SYMBOL_GPL(blk_steal_bios);
1389
3bcddeac 1390/**
7cc2623d 1391 * blk_update_request - Complete multiple bytes without completing the request
8ebf9756 1392 * @req: the request being processed
2a842aca 1393 * @error: block status code
7cc2623d 1394 * @nr_bytes: number of bytes to complete for @req
3bcddeac
KU
1395 *
1396 * Description:
8ebf9756
RD
1397 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1398 * the request structure even if @req doesn't have leftover.
1399 * If @req has leftover, sets it up for the next range of segments.
2e60e022 1400 *
2e60e022
TH
1401 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1402 * %false return from this function.
3bcddeac 1403 *
1954e9a9 1404 * Note:
7cc2623d
BVA
1405 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1406 * except in the consistency check at the end of this function.
1954e9a9 1407 *
3bcddeac 1408 * Return:
2e60e022
TH
1409 * %false - this request doesn't have any more data
1410 * %true - this request has more data
3bcddeac 1411 **/
2a842aca
CH
1412bool blk_update_request(struct request *req, blk_status_t error,
1413 unsigned int nr_bytes)
1da177e4 1414{
f79ea416 1415 int total_bytes;
1da177e4 1416
2a842aca 1417 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1418
2e60e022
TH
1419 if (!req->bio)
1420 return false;
1421
54d4e6ab
MG
1422#ifdef CONFIG_BLK_DEV_INTEGRITY
1423 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1424 error == BLK_STS_OK)
1425 req->q->integrity.profile->complete_fn(req, nr_bytes);
1426#endif
1427
2a842aca
CH
1428 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1429 !(req->rq_flags & RQF_QUIET)))
178cc590 1430 print_req_error(req, error, __func__);
1da177e4 1431
bc58ba94 1432 blk_account_io_completion(req, nr_bytes);
d72d904a 1433
f79ea416
KO
1434 total_bytes = 0;
1435 while (req->bio) {
1436 struct bio *bio = req->bio;
4f024f37 1437 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1438
9c24c10a 1439 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1440 req->bio = bio->bi_next;
1da177e4 1441
fbbaf700
N
1442 /* Completion has already been traced */
1443 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1444 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1445
f79ea416
KO
1446 total_bytes += bio_bytes;
1447 nr_bytes -= bio_bytes;
1da177e4 1448
f79ea416
KO
1449 if (!nr_bytes)
1450 break;
1da177e4
LT
1451 }
1452
1453 /*
1454 * completely done
1455 */
2e60e022
TH
1456 if (!req->bio) {
1457 /*
1458 * Reset counters so that the request stacking driver
1459 * can find how many bytes remain in the request
1460 * later.
1461 */
a2dec7b3 1462 req->__data_len = 0;
2e60e022
TH
1463 return false;
1464 }
1da177e4 1465
a2dec7b3 1466 req->__data_len -= total_bytes;
2e46e8b2
TH
1467
1468 /* update sector only for requests with clear definition of sector */
57292b58 1469 if (!blk_rq_is_passthrough(req))
a2dec7b3 1470 req->__sector += total_bytes >> 9;
2e46e8b2 1471
80a761fd 1472 /* mixed attributes always follow the first bio */
e8064021 1473 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1474 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1475 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1476 }
1477
ed6565e7
CH
1478 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1479 /*
1480 * If total number of sectors is less than the first segment
1481 * size, something has gone terribly wrong.
1482 */
1483 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1484 blk_dump_rq_flags(req, "request botched");
1485 req->__data_len = blk_rq_cur_bytes(req);
1486 }
2e46e8b2 1487
ed6565e7 1488 /* recalculate the number of segments */
e9cd19c0 1489 req->nr_phys_segments = blk_recalc_rq_segments(req);
ed6565e7 1490 }
2e46e8b2 1491
2e60e022 1492 return true;
1da177e4 1493}
2e60e022 1494EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1495
2d4dc890
IL
1496#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1497/**
1498 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1499 * @rq: the request to be flushed
1500 *
1501 * Description:
1502 * Flush all pages in @rq.
1503 */
1504void rq_flush_dcache_pages(struct request *rq)
1505{
1506 struct req_iterator iter;
7988613b 1507 struct bio_vec bvec;
2d4dc890
IL
1508
1509 rq_for_each_segment(bvec, rq, iter)
7988613b 1510 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1511}
1512EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1513#endif
1514
ef9e3fac
KU
1515/**
1516 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1517 * @q : the queue of the device being checked
1518 *
1519 * Description:
1520 * Check if underlying low-level drivers of a device are busy.
1521 * If the drivers want to export their busy state, they must set own
1522 * exporting function using blk_queue_lld_busy() first.
1523 *
1524 * Basically, this function is used only by request stacking drivers
1525 * to stop dispatching requests to underlying devices when underlying
1526 * devices are busy. This behavior helps more I/O merging on the queue
1527 * of the request stacking driver and prevents I/O throughput regression
1528 * on burst I/O load.
1529 *
1530 * Return:
1531 * 0 - Not busy (The request stacking driver should dispatch request)
1532 * 1 - Busy (The request stacking driver should stop dispatching request)
1533 */
1534int blk_lld_busy(struct request_queue *q)
1535{
344e9ffc 1536 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1537 return q->mq_ops->busy(q);
ef9e3fac
KU
1538
1539 return 0;
1540}
1541EXPORT_SYMBOL_GPL(blk_lld_busy);
1542
78d8e58a
MS
1543/**
1544 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1545 * @rq: the clone request to be cleaned up
1546 *
1547 * Description:
1548 * Free all bios in @rq for a cloned request.
1549 */
1550void blk_rq_unprep_clone(struct request *rq)
1551{
1552 struct bio *bio;
1553
1554 while ((bio = rq->bio) != NULL) {
1555 rq->bio = bio->bi_next;
1556
1557 bio_put(bio);
1558 }
1559}
1560EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1561
78d8e58a
MS
1562/**
1563 * blk_rq_prep_clone - Helper function to setup clone request
1564 * @rq: the request to be setup
1565 * @rq_src: original request to be cloned
1566 * @bs: bio_set that bios for clone are allocated from
1567 * @gfp_mask: memory allocation mask for bio
1568 * @bio_ctr: setup function to be called for each clone bio.
1569 * Returns %0 for success, non %0 for failure.
1570 * @data: private data to be passed to @bio_ctr
1571 *
1572 * Description:
1573 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
78d8e58a
MS
1574 * Also, pages which the original bios are pointing to are not copied
1575 * and the cloned bios just point same pages.
1576 * So cloned bios must be completed before original bios, which means
1577 * the caller must complete @rq before @rq_src.
1578 */
1579int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1580 struct bio_set *bs, gfp_t gfp_mask,
1581 int (*bio_ctr)(struct bio *, struct bio *, void *),
1582 void *data)
1583{
1584 struct bio *bio, *bio_src;
1585
1586 if (!bs)
f4f8154a 1587 bs = &fs_bio_set;
78d8e58a
MS
1588
1589 __rq_for_each_bio(bio_src, rq_src) {
1590 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1591 if (!bio)
1592 goto free_and_out;
1593
1594 if (bio_ctr && bio_ctr(bio, bio_src, data))
1595 goto free_and_out;
1596
1597 if (rq->bio) {
1598 rq->biotail->bi_next = bio;
1599 rq->biotail = bio;
93f221ae 1600 } else {
78d8e58a 1601 rq->bio = rq->biotail = bio;
93f221ae
EB
1602 }
1603 bio = NULL;
78d8e58a
MS
1604 }
1605
361301a2
GJ
1606 /* Copy attributes of the original request to the clone request. */
1607 rq->__sector = blk_rq_pos(rq_src);
1608 rq->__data_len = blk_rq_bytes(rq_src);
1609 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1610 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1611 rq->special_vec = rq_src->special_vec;
1612 }
1613 rq->nr_phys_segments = rq_src->nr_phys_segments;
1614 rq->ioprio = rq_src->ioprio;
78d8e58a 1615
93f221ae
EB
1616 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1617 goto free_and_out;
78d8e58a
MS
1618
1619 return 0;
1620
1621free_and_out:
1622 if (bio)
1623 bio_put(bio);
1624 blk_rq_unprep_clone(rq);
1625
1626 return -ENOMEM;
b0fd271d
KU
1627}
1628EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1629
59c3d45e 1630int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1631{
1632 return queue_work(kblockd_workqueue, work);
1633}
1da177e4
LT
1634EXPORT_SYMBOL(kblockd_schedule_work);
1635
818cd1cb
JA
1636int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1637 unsigned long delay)
1638{
1639 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1640}
1641EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1642
75df7136
SJ
1643/**
1644 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1645 * @plug: The &struct blk_plug that needs to be initialized
1646 *
1647 * Description:
40405851
JM
1648 * blk_start_plug() indicates to the block layer an intent by the caller
1649 * to submit multiple I/O requests in a batch. The block layer may use
1650 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1651 * is called. However, the block layer may choose to submit requests
1652 * before a call to blk_finish_plug() if the number of queued I/Os
1653 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1654 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1655 * the task schedules (see below).
1656 *
75df7136
SJ
1657 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1658 * pending I/O should the task end up blocking between blk_start_plug() and
1659 * blk_finish_plug(). This is important from a performance perspective, but
1660 * also ensures that we don't deadlock. For instance, if the task is blocking
1661 * for a memory allocation, memory reclaim could end up wanting to free a
1662 * page belonging to that request that is currently residing in our private
1663 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1664 * this kind of deadlock.
1665 */
73c10101
JA
1666void blk_start_plug(struct blk_plug *plug)
1667{
1668 struct task_struct *tsk = current;
1669
dd6cf3e1
SL
1670 /*
1671 * If this is a nested plug, don't actually assign it.
1672 */
1673 if (tsk->plug)
1674 return;
1675
320ae51f 1676 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1677 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1678 plug->rq_count = 0;
ce5b009c 1679 plug->multiple_queues = false;
5a473e83 1680 plug->nowait = false;
5f0ed774 1681
73c10101 1682 /*
dd6cf3e1
SL
1683 * Store ordering should not be needed here, since a potential
1684 * preempt will imply a full memory barrier
73c10101 1685 */
dd6cf3e1 1686 tsk->plug = plug;
73c10101
JA
1687}
1688EXPORT_SYMBOL(blk_start_plug);
1689
74018dc3 1690static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1691{
1692 LIST_HEAD(callbacks);
1693
2a7d5559
SL
1694 while (!list_empty(&plug->cb_list)) {
1695 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1696
2a7d5559
SL
1697 while (!list_empty(&callbacks)) {
1698 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1699 struct blk_plug_cb,
1700 list);
2a7d5559 1701 list_del(&cb->list);
74018dc3 1702 cb->callback(cb, from_schedule);
2a7d5559 1703 }
048c9374
N
1704 }
1705}
1706
9cbb1750
N
1707struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1708 int size)
1709{
1710 struct blk_plug *plug = current->plug;
1711 struct blk_plug_cb *cb;
1712
1713 if (!plug)
1714 return NULL;
1715
1716 list_for_each_entry(cb, &plug->cb_list, list)
1717 if (cb->callback == unplug && cb->data == data)
1718 return cb;
1719
1720 /* Not currently on the callback list */
1721 BUG_ON(size < sizeof(*cb));
1722 cb = kzalloc(size, GFP_ATOMIC);
1723 if (cb) {
1724 cb->data = data;
1725 cb->callback = unplug;
1726 list_add(&cb->list, &plug->cb_list);
1727 }
1728 return cb;
1729}
1730EXPORT_SYMBOL(blk_check_plugged);
1731
49cac01e 1732void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1733{
74018dc3 1734 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1735
1736 if (!list_empty(&plug->mq_list))
1737 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1738}
73c10101 1739
40405851
JM
1740/**
1741 * blk_finish_plug - mark the end of a batch of submitted I/O
1742 * @plug: The &struct blk_plug passed to blk_start_plug()
1743 *
1744 * Description:
1745 * Indicate that a batch of I/O submissions is complete. This function
1746 * must be paired with an initial call to blk_start_plug(). The intent
1747 * is to allow the block layer to optimize I/O submission. See the
1748 * documentation for blk_start_plug() for more information.
1749 */
73c10101
JA
1750void blk_finish_plug(struct blk_plug *plug)
1751{
dd6cf3e1
SL
1752 if (plug != current->plug)
1753 return;
f6603783 1754 blk_flush_plug_list(plug, false);
73c10101 1755
dd6cf3e1 1756 current->plug = NULL;
73c10101 1757}
88b996cd 1758EXPORT_SYMBOL(blk_finish_plug);
73c10101 1759
71ac860a
ML
1760void blk_io_schedule(void)
1761{
1762 /* Prevent hang_check timer from firing at us during very long I/O */
1763 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1764
1765 if (timeout)
1766 io_schedule_timeout(timeout);
1767 else
1768 io_schedule();
1769}
1770EXPORT_SYMBOL_GPL(blk_io_schedule);
1771
1da177e4
LT
1772int __init blk_dev_init(void)
1773{
ef295ecf
CH
1774 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1775 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1776 sizeof_field(struct request, cmd_flags));
ef295ecf 1777 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1778 sizeof_field(struct bio, bi_opf));
9eb55b03 1779
89b90be2
TH
1780 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1781 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1782 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1783 if (!kblockd_workqueue)
1784 panic("Failed to create kblockd\n");
1785
c2789bd4 1786 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1787 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1788
18fbda91 1789 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1790
d38ecf93 1791 return 0;
1da177e4 1792}