]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/blk-core.c
Merge tag 'nios2-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[mirror_ubuntu-jammy-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
bca6b067 45#include "blk-pm.h"
c1c80384 46#include "blk-rq-qos.h"
8324aa91 47
18fbda91
OS
48#ifdef CONFIG_DEBUG_FS
49struct dentry *blk_debugfs_root;
50#endif
51
d07335e5 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 57
a73f730d
TH
58DEFINE_IDA(blk_queue_ida);
59
1da177e4
LT
60/*
61 * For queue allocation
62 */
6728cb0e 63struct kmem_cache *blk_requestq_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4 69
8814ce8a
BVA
70/**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76{
57d74df9 77 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
78}
79EXPORT_SYMBOL(blk_queue_flag_set);
80
81/**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87{
57d74df9 88 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
89}
90EXPORT_SYMBOL(blk_queue_flag_clear);
91
92/**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101{
57d74df9 102 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
103}
104EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
2a4aa30c 106void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 107{
1afb20f3
FT
108 memset(rq, 0, sizeof(*rq));
109
1da177e4 110 INIT_LIST_HEAD(&rq->queuelist);
63a71386 111 rq->q = q;
a2dec7b3 112 rq->__sector = (sector_t) -1;
2e662b65
JA
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
63a71386 115 rq->tag = -1;
bd166ef1 116 rq->internal_tag = -1;
522a7775 117 rq->start_time_ns = ktime_get_ns();
09e099d4 118 rq->part = NULL;
1da177e4 119}
2a4aa30c 120EXPORT_SYMBOL(blk_rq_init);
1da177e4 121
2a842aca
CH
122static const struct {
123 int errno;
124 const char *name;
125} blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 138
4e4cbee9
CH
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
2a842aca
CH
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144};
145
146blk_status_t errno_to_blk_status(int errno)
147{
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156}
157EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159int blk_status_to_errno(blk_status_t status)
160{
161 int idx = (__force int)status;
162
34bd9c1c 163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
164 return -EIO;
165 return blk_errors[idx].errno;
166}
167EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169static void print_req_error(struct request *req, blk_status_t status)
170{
171 int idx = (__force int)status;
172
34bd9c1c 173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
174 return;
175
2149da07
BS
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
177 __func__, blk_errors[idx].name,
178 req->rq_disk ? req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req),
180 req->cmd_flags);
2a842aca
CH
181}
182
5bb23a68 183static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 184 unsigned int nbytes, blk_status_t error)
1da177e4 185{
78d8e58a 186 if (error)
4e4cbee9 187 bio->bi_status = error;
797e7dbb 188
e8064021 189 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 190 bio_set_flag(bio, BIO_QUIET);
08bafc03 191
f79ea416 192 bio_advance(bio, nbytes);
7ba1ba12 193
143a87f4 194 /* don't actually finish bio if it's part of flush sequence */
e8064021 195 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 196 bio_endio(bio);
1da177e4 197}
1da177e4 198
1da177e4
LT
199void blk_dump_rq_flags(struct request *rq, char *msg)
200{
aebf526b
CH
201 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
202 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 203 (unsigned long long) rq->cmd_flags);
1da177e4 204
83096ebf
TH
205 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
206 (unsigned long long)blk_rq_pos(rq),
207 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
208 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
209 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 210}
1da177e4
LT
211EXPORT_SYMBOL(blk_dump_rq_flags);
212
1da177e4
LT
213/**
214 * blk_sync_queue - cancel any pending callbacks on a queue
215 * @q: the queue
216 *
217 * Description:
218 * The block layer may perform asynchronous callback activity
219 * on a queue, such as calling the unplug function after a timeout.
220 * A block device may call blk_sync_queue to ensure that any
221 * such activity is cancelled, thus allowing it to release resources
59c51591 222 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
223 * that its ->make_request_fn will not re-add plugging prior to calling
224 * this function.
225 *
da527770 226 * This function does not cancel any asynchronous activity arising
da3dae54 227 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 228 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 229 *
1da177e4
LT
230 */
231void blk_sync_queue(struct request_queue *q)
232{
70ed28b9 233 del_timer_sync(&q->timeout);
4e9b6f20 234 cancel_work_sync(&q->timeout_work);
f04c1fe7 235
344e9ffc 236 if (queue_is_mq(q)) {
f04c1fe7
ML
237 struct blk_mq_hw_ctx *hctx;
238 int i;
239
aba7afc5 240 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 241 queue_for_each_hw_ctx(q, hctx, i)
9f993737 242 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7 243 }
1da177e4
LT
244}
245EXPORT_SYMBOL(blk_sync_queue);
246
c9254f2d 247/**
cd84a62e 248 * blk_set_pm_only - increment pm_only counter
c9254f2d 249 * @q: request queue pointer
c9254f2d 250 */
cd84a62e 251void blk_set_pm_only(struct request_queue *q)
c9254f2d 252{
cd84a62e 253 atomic_inc(&q->pm_only);
c9254f2d 254}
cd84a62e 255EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 256
cd84a62e 257void blk_clear_pm_only(struct request_queue *q)
c9254f2d 258{
cd84a62e
BVA
259 int pm_only;
260
261 pm_only = atomic_dec_return(&q->pm_only);
262 WARN_ON_ONCE(pm_only < 0);
263 if (pm_only == 0)
264 wake_up_all(&q->mq_freeze_wq);
c9254f2d 265}
cd84a62e 266EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 267
165125e1 268void blk_put_queue(struct request_queue *q)
483f4afc
AV
269{
270 kobject_put(&q->kobj);
271}
d86e0e83 272EXPORT_SYMBOL(blk_put_queue);
483f4afc 273
aed3ea94
JA
274void blk_set_queue_dying(struct request_queue *q)
275{
8814ce8a 276 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 277
d3cfb2a0
ML
278 /*
279 * When queue DYING flag is set, we need to block new req
280 * entering queue, so we call blk_freeze_queue_start() to
281 * prevent I/O from crossing blk_queue_enter().
282 */
283 blk_freeze_queue_start(q);
284
344e9ffc 285 if (queue_is_mq(q))
aed3ea94 286 blk_mq_wake_waiters(q);
055f6e18
ML
287
288 /* Make blk_queue_enter() reexamine the DYING flag. */
289 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
290}
291EXPORT_SYMBOL_GPL(blk_set_queue_dying);
292
4cf6324b
BVA
293/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
294void blk_exit_queue(struct request_queue *q)
295{
296 /*
297 * Since the I/O scheduler exit code may access cgroup information,
298 * perform I/O scheduler exit before disassociating from the block
299 * cgroup controller.
300 */
301 if (q->elevator) {
302 ioc_clear_queue(q);
303 elevator_exit(q, q->elevator);
304 q->elevator = NULL;
305 }
306
307 /*
308 * Remove all references to @q from the block cgroup controller before
309 * restoring @q->queue_lock to avoid that restoring this pointer causes
310 * e.g. blkcg_print_blkgs() to crash.
311 */
312 blkcg_exit_queue(q);
313
314 /*
315 * Since the cgroup code may dereference the @q->backing_dev_info
316 * pointer, only decrease its reference count after having removed the
317 * association with the block cgroup controller.
318 */
319 bdi_put(q->backing_dev_info);
320}
321
c9a929dd
TH
322/**
323 * blk_cleanup_queue - shutdown a request queue
324 * @q: request queue to shutdown
325 *
c246e80d
BVA
326 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
327 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 328 */
6728cb0e 329void blk_cleanup_queue(struct request_queue *q)
483f4afc 330{
3f3299d5 331 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 332 mutex_lock(&q->sysfs_lock);
aed3ea94 333 blk_set_queue_dying(q);
6ecf23af 334
57d74df9
CH
335 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
336 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
337 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
338 mutex_unlock(&q->sysfs_lock);
339
c246e80d
BVA
340 /*
341 * Drain all requests queued before DYING marking. Set DEAD flag to
342 * prevent that q->request_fn() gets invoked after draining finished.
343 */
3ef28e83 344 blk_freeze_queue(q);
c57cdf7a
ML
345
346 rq_qos_exit(q);
347
57d74df9 348 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 349
c2856ae2
ML
350 /*
351 * make sure all in-progress dispatch are completed because
352 * blk_freeze_queue() can only complete all requests, and
353 * dispatch may still be in-progress since we dispatch requests
1311326c
ML
354 * from more than one contexts.
355 *
8dc765d4
ML
356 * We rely on driver to deal with the race in case that queue
357 * initialization isn't done.
c2856ae2 358 */
344e9ffc 359 if (queue_is_mq(q) && blk_queue_init_done(q))
c2856ae2
ML
360 blk_mq_quiesce_queue(q);
361
5a48fc14
DW
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
364
c9a929dd 365 /* @q won't process any more request, flush async actions */
dc3b17cc 366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
367 blk_sync_queue(q);
368
a063057d
BVA
369 /*
370 * I/O scheduler exit is only safe after the sysfs scheduler attribute
371 * has been removed.
372 */
373 WARN_ON_ONCE(q->kobj.state_in_sysfs);
374
4cf6324b 375 blk_exit_queue(q);
a063057d 376
344e9ffc 377 if (queue_is_mq(q))
45a9c9d9 378 blk_mq_free_queue(q);
a1ce35fa 379
3ef28e83 380 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 381
c9a929dd 382 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
383 blk_put_queue(q);
384}
1da177e4
LT
385EXPORT_SYMBOL(blk_cleanup_queue);
386
165125e1 387struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 388{
6d469642 389 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
390}
391EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 392
3a0a5299
BVA
393/**
394 * blk_queue_enter() - try to increase q->q_usage_counter
395 * @q: request queue pointer
396 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
397 */
9a95e4ef 398int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 399{
cd84a62e 400 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 401
3ef28e83 402 while (true) {
3a0a5299 403 bool success = false;
3ef28e83 404
818e0fa2 405 rcu_read_lock();
3a0a5299
BVA
406 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
407 /*
cd84a62e
BVA
408 * The code that increments the pm_only counter is
409 * responsible for ensuring that that counter is
410 * globally visible before the queue is unfrozen.
3a0a5299 411 */
cd84a62e 412 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
413 success = true;
414 } else {
415 percpu_ref_put(&q->q_usage_counter);
416 }
417 }
818e0fa2 418 rcu_read_unlock();
3a0a5299
BVA
419
420 if (success)
3ef28e83
DW
421 return 0;
422
3a0a5299 423 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
424 return -EBUSY;
425
5ed61d3f 426 /*
1671d522 427 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 428 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
429 * .q_usage_counter and reading .mq_freeze_depth or
430 * queue dying flag, otherwise the following wait may
431 * never return if the two reads are reordered.
5ed61d3f
ML
432 */
433 smp_rmb();
434
1dc3039b
AJ
435 wait_event(q->mq_freeze_wq,
436 (atomic_read(&q->mq_freeze_depth) == 0 &&
0d25bd07
BVA
437 (pm || (blk_pm_request_resume(q),
438 !blk_queue_pm_only(q)))) ||
1dc3039b 439 blk_queue_dying(q));
3ef28e83
DW
440 if (blk_queue_dying(q))
441 return -ENODEV;
3ef28e83
DW
442 }
443}
444
445void blk_queue_exit(struct request_queue *q)
446{
447 percpu_ref_put(&q->q_usage_counter);
448}
449
450static void blk_queue_usage_counter_release(struct percpu_ref *ref)
451{
452 struct request_queue *q =
453 container_of(ref, struct request_queue, q_usage_counter);
454
455 wake_up_all(&q->mq_freeze_wq);
456}
457
bca237a5 458static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 459{
bca237a5 460 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
461
462 kblockd_schedule_work(&q->timeout_work);
463}
464
2e3c18d0
TH
465static void blk_timeout_work(struct work_struct *work)
466{
467}
468
498f6650
BVA
469/**
470 * blk_alloc_queue_node - allocate a request queue
471 * @gfp_mask: memory allocation flags
472 * @node_id: NUMA node to allocate memory from
498f6650 473 */
6d469642 474struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 475{
165125e1 476 struct request_queue *q;
338aa96d 477 int ret;
1946089a 478
8324aa91 479 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 480 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
481 if (!q)
482 return NULL;
483
cbf62af3
CH
484 INIT_LIST_HEAD(&q->queue_head);
485 q->last_merge = NULL;
cbf62af3 486
00380a40 487 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 488 if (q->id < 0)
3d2936f4 489 goto fail_q;
a73f730d 490
338aa96d
KO
491 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
492 if (ret)
54efd50b
KO
493 goto fail_id;
494
d03f6cdc
JK
495 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
496 if (!q->backing_dev_info)
497 goto fail_split;
498
a83b576c
JA
499 q->stats = blk_alloc_queue_stats();
500 if (!q->stats)
501 goto fail_stats;
502
dc3b17cc 503 q->backing_dev_info->ra_pages =
09cbfeaf 504 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
505 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
506 q->backing_dev_info->name = "block";
5151412d 507 q->node = node_id;
0989a025 508
bca237a5
KC
509 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
510 laptop_mode_timer_fn, 0);
511 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 512 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 513 INIT_LIST_HEAD(&q->icq_list);
4eef3049 514#ifdef CONFIG_BLK_CGROUP
e8989fae 515 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 516#endif
483f4afc 517
8324aa91 518 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 519
5acb3cc2
WL
520#ifdef CONFIG_BLK_DEV_IO_TRACE
521 mutex_init(&q->blk_trace_mutex);
522#endif
483f4afc 523 mutex_init(&q->sysfs_lock);
0d945c1f 524 spin_lock_init(&q->queue_lock);
c94a96ac 525
320ae51f
JA
526 init_waitqueue_head(&q->mq_freeze_wq);
527
3ef28e83
DW
528 /*
529 * Init percpu_ref in atomic mode so that it's faster to shutdown.
530 * See blk_register_queue() for details.
531 */
532 if (percpu_ref_init(&q->q_usage_counter,
533 blk_queue_usage_counter_release,
534 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 535 goto fail_bdi;
f51b802c 536
3ef28e83
DW
537 if (blkcg_init_queue(q))
538 goto fail_ref;
539
1da177e4 540 return q;
a73f730d 541
3ef28e83
DW
542fail_ref:
543 percpu_ref_exit(&q->q_usage_counter);
fff4996b 544fail_bdi:
a83b576c
JA
545 blk_free_queue_stats(q->stats);
546fail_stats:
d03f6cdc 547 bdi_put(q->backing_dev_info);
54efd50b 548fail_split:
338aa96d 549 bioset_exit(&q->bio_split);
a73f730d
TH
550fail_id:
551 ida_simple_remove(&blk_queue_ida, q->id);
552fail_q:
553 kmem_cache_free(blk_requestq_cachep, q);
554 return NULL;
1da177e4 555}
1946089a 556EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4 557
09ac46c4 558bool blk_get_queue(struct request_queue *q)
1da177e4 559{
3f3299d5 560 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
561 __blk_get_queue(q);
562 return true;
1da177e4
LT
563 }
564
09ac46c4 565 return false;
1da177e4 566}
d86e0e83 567EXPORT_SYMBOL(blk_get_queue);
1da177e4 568
a1ce35fa
JA
569/**
570 * blk_get_request - allocate a request
571 * @q: request queue to allocate a request for
572 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
573 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 574 */
a1ce35fa
JA
575struct request *blk_get_request(struct request_queue *q, unsigned int op,
576 blk_mq_req_flags_t flags)
1da177e4 577{
a1ce35fa 578 struct request *req;
1da177e4 579
a1ce35fa
JA
580 WARN_ON_ONCE(op & REQ_NOWAIT);
581 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1da177e4 582
a1ce35fa
JA
583 req = blk_mq_alloc_request(q, op, flags);
584 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
585 q->mq_ops->initialize_rq_fn(req);
1da177e4 586
a1ce35fa 587 return req;
1da177e4 588}
a1ce35fa 589EXPORT_SYMBOL(blk_get_request);
1da177e4 590
1da177e4
LT
591void blk_put_request(struct request *req)
592{
a1ce35fa 593 blk_mq_free_request(req);
1da177e4 594}
1da177e4
LT
595EXPORT_SYMBOL(blk_put_request);
596
320ae51f
JA
597bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
598 struct bio *bio)
73c10101 599{
1eff9d32 600 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 601
73c10101
JA
602 if (!ll_back_merge_fn(q, req, bio))
603 return false;
604
8c1cf6bb 605 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
606
607 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
608 blk_rq_set_mixed_merge(req);
609
610 req->biotail->bi_next = bio;
611 req->biotail = bio;
4f024f37 612 req->__data_len += bio->bi_iter.bi_size;
73c10101 613
320ae51f 614 blk_account_io_start(req, false);
73c10101
JA
615 return true;
616}
617
320ae51f
JA
618bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
619 struct bio *bio)
73c10101 620{
1eff9d32 621 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 622
73c10101
JA
623 if (!ll_front_merge_fn(q, req, bio))
624 return false;
625
8c1cf6bb 626 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
627
628 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
629 blk_rq_set_mixed_merge(req);
630
73c10101
JA
631 bio->bi_next = req->bio;
632 req->bio = bio;
633
4f024f37
KO
634 req->__sector = bio->bi_iter.bi_sector;
635 req->__data_len += bio->bi_iter.bi_size;
73c10101 636
320ae51f 637 blk_account_io_start(req, false);
73c10101
JA
638 return true;
639}
640
1e739730
CH
641bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
642 struct bio *bio)
643{
644 unsigned short segments = blk_rq_nr_discard_segments(req);
645
646 if (segments >= queue_max_discard_segments(q))
647 goto no_merge;
648 if (blk_rq_sectors(req) + bio_sectors(bio) >
649 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
650 goto no_merge;
651
652 req->biotail->bi_next = bio;
653 req->biotail = bio;
654 req->__data_len += bio->bi_iter.bi_size;
1e739730
CH
655 req->nr_phys_segments = segments + 1;
656
657 blk_account_io_start(req, false);
658 return true;
659no_merge:
660 req_set_nomerge(q, req);
661 return false;
662}
663
bd87b589 664/**
320ae51f 665 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
666 * @q: request_queue new bio is being queued at
667 * @bio: new bio being queued
ccc2600b
RD
668 * @same_queue_rq: pointer to &struct request that gets filled in when
669 * another request associated with @q is found on the plug list
670 * (optional, may be %NULL)
bd87b589
TH
671 *
672 * Determine whether @bio being queued on @q can be merged with a request
673 * on %current's plugged list. Returns %true if merge was successful,
674 * otherwise %false.
675 *
07c2bd37
TH
676 * Plugging coalesces IOs from the same issuer for the same purpose without
677 * going through @q->queue_lock. As such it's more of an issuing mechanism
678 * than scheduling, and the request, while may have elvpriv data, is not
679 * added on the elevator at this point. In addition, we don't have
680 * reliable access to the elevator outside queue lock. Only check basic
681 * merging parameters without querying the elevator.
da41a589
RE
682 *
683 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 684 */
320ae51f 685bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f 686 struct request **same_queue_rq)
73c10101
JA
687{
688 struct blk_plug *plug;
689 struct request *rq;
92f399c7 690 struct list_head *plug_list;
73c10101 691
bd87b589 692 plug = current->plug;
73c10101 693 if (!plug)
34fe7c05 694 return false;
73c10101 695
a1ce35fa 696 plug_list = &plug->mq_list;
92f399c7
SL
697
698 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 699 bool merged = false;
73c10101 700
5f0ed774 701 if (rq->q == q && same_queue_rq) {
5b3f341f
SL
702 /*
703 * Only blk-mq multiple hardware queues case checks the
704 * rq in the same queue, there should be only one such
705 * rq in a queue
706 **/
5f0ed774 707 *same_queue_rq = rq;
5b3f341f 708 }
56ebdaf2 709
07c2bd37 710 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
711 continue;
712
34fe7c05
CH
713 switch (blk_try_merge(rq, bio)) {
714 case ELEVATOR_BACK_MERGE:
715 merged = bio_attempt_back_merge(q, rq, bio);
716 break;
717 case ELEVATOR_FRONT_MERGE:
718 merged = bio_attempt_front_merge(q, rq, bio);
719 break;
1e739730
CH
720 case ELEVATOR_DISCARD_MERGE:
721 merged = bio_attempt_discard_merge(q, rq, bio);
722 break;
34fe7c05
CH
723 default:
724 break;
73c10101 725 }
34fe7c05
CH
726
727 if (merged)
728 return true;
73c10101 729 }
34fe7c05
CH
730
731 return false;
73c10101
JA
732}
733
da8d7f07 734void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 735{
1eff9d32 736 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 737 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 738
4f024f37 739 req->__sector = bio->bi_iter.bi_sector;
20578bdf 740 req->ioprio = bio_prio(bio);
cb6934f8 741 req->write_hint = bio->bi_write_hint;
bc1c56fd 742 blk_rq_bio_prep(req->q, req, bio);
52d9e675 743}
da8d7f07 744EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 745
52c5e62d 746static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
747{
748 char b[BDEVNAME_SIZE];
749
750 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 751 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 752 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 753 (unsigned long long)bio_end_sector(bio),
52c5e62d 754 (long long)maxsector);
1da177e4
LT
755}
756
c17bb495
AM
757#ifdef CONFIG_FAIL_MAKE_REQUEST
758
759static DECLARE_FAULT_ATTR(fail_make_request);
760
761static int __init setup_fail_make_request(char *str)
762{
763 return setup_fault_attr(&fail_make_request, str);
764}
765__setup("fail_make_request=", setup_fail_make_request);
766
b2c9cd37 767static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 768{
b2c9cd37 769 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
770}
771
772static int __init fail_make_request_debugfs(void)
773{
dd48c085
AM
774 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
775 NULL, &fail_make_request);
776
21f9fcd8 777 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
778}
779
780late_initcall(fail_make_request_debugfs);
781
782#else /* CONFIG_FAIL_MAKE_REQUEST */
783
b2c9cd37
AM
784static inline bool should_fail_request(struct hd_struct *part,
785 unsigned int bytes)
c17bb495 786{
b2c9cd37 787 return false;
c17bb495
AM
788}
789
790#endif /* CONFIG_FAIL_MAKE_REQUEST */
791
721c7fc7
ID
792static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
793{
b089cfd9
JA
794 const int op = bio_op(bio);
795
8b2ded1c 796 if (part->policy && op_is_write(op)) {
721c7fc7
ID
797 char b[BDEVNAME_SIZE];
798
8b2ded1c
MP
799 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
800 return false;
801
a32e236e 802 WARN_ONCE(1,
721c7fc7
ID
803 "generic_make_request: Trying to write "
804 "to read-only block-device %s (partno %d)\n",
805 bio_devname(bio, b), part->partno);
a32e236e
LT
806 /* Older lvm-tools actually trigger this */
807 return false;
721c7fc7
ID
808 }
809
810 return false;
811}
812
30abb3a6
HM
813static noinline int should_fail_bio(struct bio *bio)
814{
815 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
816 return -EIO;
817 return 0;
818}
819ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
820
52c5e62d
CH
821/*
822 * Check whether this bio extends beyond the end of the device or partition.
823 * This may well happen - the kernel calls bread() without checking the size of
824 * the device, e.g., when mounting a file system.
825 */
826static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
827{
828 unsigned int nr_sectors = bio_sectors(bio);
829
830 if (nr_sectors && maxsector &&
831 (nr_sectors > maxsector ||
832 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
833 handle_bad_sector(bio, maxsector);
834 return -EIO;
835 }
836 return 0;
837}
838
74d46992
CH
839/*
840 * Remap block n of partition p to block n+start(p) of the disk.
841 */
842static inline int blk_partition_remap(struct bio *bio)
843{
844 struct hd_struct *p;
52c5e62d 845 int ret = -EIO;
74d46992 846
721c7fc7
ID
847 rcu_read_lock();
848 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
849 if (unlikely(!p))
850 goto out;
851 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
852 goto out;
853 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 854 goto out;
721c7fc7 855
74d46992
CH
856 /*
857 * Zone reset does not include bi_size so bio_sectors() is always 0.
858 * Include a test for the reset op code and perform the remap if needed.
859 */
52c5e62d
CH
860 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
861 if (bio_check_eod(bio, part_nr_sects_read(p)))
862 goto out;
863 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
864 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
865 bio->bi_iter.bi_sector - p->start_sect);
866 }
c04fa44b 867 bio->bi_partno = 0;
52c5e62d 868 ret = 0;
721c7fc7
ID
869out:
870 rcu_read_unlock();
74d46992
CH
871 return ret;
872}
873
27a84d54
CH
874static noinline_for_stack bool
875generic_make_request_checks(struct bio *bio)
1da177e4 876{
165125e1 877 struct request_queue *q;
5a7bbad2 878 int nr_sectors = bio_sectors(bio);
4e4cbee9 879 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 880 char b[BDEVNAME_SIZE];
1da177e4
LT
881
882 might_sleep();
1da177e4 883
74d46992 884 q = bio->bi_disk->queue;
5a7bbad2
CH
885 if (unlikely(!q)) {
886 printk(KERN_ERR
887 "generic_make_request: Trying to access "
888 "nonexistent block-device %s (%Lu)\n",
74d46992 889 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
890 goto end_io;
891 }
c17bb495 892
03a07c92
GR
893 /*
894 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
895 * if queue is not a request based queue.
896 */
344e9ffc 897 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
03a07c92
GR
898 goto not_supported;
899
30abb3a6 900 if (should_fail_bio(bio))
5a7bbad2 901 goto end_io;
2056a782 902
52c5e62d
CH
903 if (bio->bi_partno) {
904 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
905 goto end_io;
906 } else {
52c5e62d
CH
907 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
908 goto end_io;
909 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
910 goto end_io;
911 }
2056a782 912
5a7bbad2
CH
913 /*
914 * Filter flush bio's early so that make_request based
915 * drivers without flush support don't have to worry
916 * about them.
917 */
f3a8ab7d 918 if (op_is_flush(bio->bi_opf) &&
c888a8f9 919 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 920 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 921 if (!nr_sectors) {
4e4cbee9 922 status = BLK_STS_OK;
51fd77bd
JA
923 goto end_io;
924 }
5a7bbad2 925 }
5ddfe969 926
d04c406f
CH
927 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
928 bio->bi_opf &= ~REQ_HIPRI;
929
288dab8a
CH
930 switch (bio_op(bio)) {
931 case REQ_OP_DISCARD:
932 if (!blk_queue_discard(q))
933 goto not_supported;
934 break;
935 case REQ_OP_SECURE_ERASE:
936 if (!blk_queue_secure_erase(q))
937 goto not_supported;
938 break;
939 case REQ_OP_WRITE_SAME:
74d46992 940 if (!q->limits.max_write_same_sectors)
288dab8a 941 goto not_supported;
58886785 942 break;
2d253440 943 case REQ_OP_ZONE_RESET:
74d46992 944 if (!blk_queue_is_zoned(q))
2d253440 945 goto not_supported;
288dab8a 946 break;
a6f0788e 947 case REQ_OP_WRITE_ZEROES:
74d46992 948 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
949 goto not_supported;
950 break;
288dab8a
CH
951 default:
952 break;
5a7bbad2 953 }
01edede4 954
7f4b35d1
TH
955 /*
956 * Various block parts want %current->io_context and lazy ioc
957 * allocation ends up trading a lot of pain for a small amount of
958 * memory. Just allocate it upfront. This may fail and block
959 * layer knows how to live with it.
960 */
961 create_io_context(GFP_ATOMIC, q->node);
962
ae118896
TH
963 if (!blkcg_bio_issue_check(q, bio))
964 return false;
27a84d54 965
fbbaf700
N
966 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
967 trace_block_bio_queue(q, bio);
968 /* Now that enqueuing has been traced, we need to trace
969 * completion as well.
970 */
971 bio_set_flag(bio, BIO_TRACE_COMPLETION);
972 }
27a84d54 973 return true;
a7384677 974
288dab8a 975not_supported:
4e4cbee9 976 status = BLK_STS_NOTSUPP;
a7384677 977end_io:
4e4cbee9 978 bio->bi_status = status;
4246a0b6 979 bio_endio(bio);
27a84d54 980 return false;
1da177e4
LT
981}
982
27a84d54
CH
983/**
984 * generic_make_request - hand a buffer to its device driver for I/O
985 * @bio: The bio describing the location in memory and on the device.
986 *
987 * generic_make_request() is used to make I/O requests of block
988 * devices. It is passed a &struct bio, which describes the I/O that needs
989 * to be done.
990 *
991 * generic_make_request() does not return any status. The
992 * success/failure status of the request, along with notification of
993 * completion, is delivered asynchronously through the bio->bi_end_io
994 * function described (one day) else where.
995 *
996 * The caller of generic_make_request must make sure that bi_io_vec
997 * are set to describe the memory buffer, and that bi_dev and bi_sector are
998 * set to describe the device address, and the
999 * bi_end_io and optionally bi_private are set to describe how
1000 * completion notification should be signaled.
1001 *
1002 * generic_make_request and the drivers it calls may use bi_next if this
1003 * bio happens to be merged with someone else, and may resubmit the bio to
1004 * a lower device by calling into generic_make_request recursively, which
1005 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1006 */
dece1635 1007blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1008{
f5fe1b51
N
1009 /*
1010 * bio_list_on_stack[0] contains bios submitted by the current
1011 * make_request_fn.
1012 * bio_list_on_stack[1] contains bios that were submitted before
1013 * the current make_request_fn, but that haven't been processed
1014 * yet.
1015 */
1016 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
1017 blk_mq_req_flags_t flags = 0;
1018 struct request_queue *q = bio->bi_disk->queue;
dece1635 1019 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1020
37f9579f
BVA
1021 if (bio->bi_opf & REQ_NOWAIT)
1022 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
1023 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1024 blk_queue_enter_live(q);
1025 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
1026 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1027 bio_wouldblock_error(bio);
1028 else
1029 bio_io_error(bio);
1030 return ret;
1031 }
1032
27a84d54 1033 if (!generic_make_request_checks(bio))
dece1635 1034 goto out;
27a84d54
CH
1035
1036 /*
1037 * We only want one ->make_request_fn to be active at a time, else
1038 * stack usage with stacked devices could be a problem. So use
1039 * current->bio_list to keep a list of requests submited by a
1040 * make_request_fn function. current->bio_list is also used as a
1041 * flag to say if generic_make_request is currently active in this
1042 * task or not. If it is NULL, then no make_request is active. If
1043 * it is non-NULL, then a make_request is active, and new requests
1044 * should be added at the tail
1045 */
bddd87c7 1046 if (current->bio_list) {
f5fe1b51 1047 bio_list_add(&current->bio_list[0], bio);
dece1635 1048 goto out;
d89d8796 1049 }
27a84d54 1050
d89d8796
NB
1051 /* following loop may be a bit non-obvious, and so deserves some
1052 * explanation.
1053 * Before entering the loop, bio->bi_next is NULL (as all callers
1054 * ensure that) so we have a list with a single bio.
1055 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1056 * we assign bio_list to a pointer to the bio_list_on_stack,
1057 * thus initialising the bio_list of new bios to be
27a84d54 1058 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1059 * through a recursive call to generic_make_request. If it
1060 * did, we find a non-NULL value in bio_list and re-enter the loop
1061 * from the top. In this case we really did just take the bio
bddd87c7 1062 * of the top of the list (no pretending) and so remove it from
27a84d54 1063 * bio_list, and call into ->make_request() again.
d89d8796
NB
1064 */
1065 BUG_ON(bio->bi_next);
f5fe1b51
N
1066 bio_list_init(&bio_list_on_stack[0]);
1067 current->bio_list = bio_list_on_stack;
d89d8796 1068 do {
37f9579f
BVA
1069 bool enter_succeeded = true;
1070
1071 if (unlikely(q != bio->bi_disk->queue)) {
1072 if (q)
1073 blk_queue_exit(q);
1074 q = bio->bi_disk->queue;
1075 flags = 0;
1076 if (bio->bi_opf & REQ_NOWAIT)
1077 flags = BLK_MQ_REQ_NOWAIT;
1078 if (blk_queue_enter(q, flags) < 0) {
1079 enter_succeeded = false;
1080 q = NULL;
1081 }
1082 }
27a84d54 1083
37f9579f 1084 if (enter_succeeded) {
79bd9959
N
1085 struct bio_list lower, same;
1086
1087 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
1088 bio_list_on_stack[1] = bio_list_on_stack[0];
1089 bio_list_init(&bio_list_on_stack[0]);
dece1635 1090 ret = q->make_request_fn(q, bio);
3ef28e83 1091
79bd9959
N
1092 /* sort new bios into those for a lower level
1093 * and those for the same level
1094 */
1095 bio_list_init(&lower);
1096 bio_list_init(&same);
f5fe1b51 1097 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 1098 if (q == bio->bi_disk->queue)
79bd9959
N
1099 bio_list_add(&same, bio);
1100 else
1101 bio_list_add(&lower, bio);
1102 /* now assemble so we handle the lowest level first */
f5fe1b51
N
1103 bio_list_merge(&bio_list_on_stack[0], &lower);
1104 bio_list_merge(&bio_list_on_stack[0], &same);
1105 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 1106 } else {
03a07c92
GR
1107 if (unlikely(!blk_queue_dying(q) &&
1108 (bio->bi_opf & REQ_NOWAIT)))
1109 bio_wouldblock_error(bio);
1110 else
1111 bio_io_error(bio);
3ef28e83 1112 }
f5fe1b51 1113 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 1114 } while (bio);
bddd87c7 1115 current->bio_list = NULL; /* deactivate */
dece1635
JA
1116
1117out:
37f9579f
BVA
1118 if (q)
1119 blk_queue_exit(q);
dece1635 1120 return ret;
d89d8796 1121}
1da177e4
LT
1122EXPORT_SYMBOL(generic_make_request);
1123
f421e1d9
CH
1124/**
1125 * direct_make_request - hand a buffer directly to its device driver for I/O
1126 * @bio: The bio describing the location in memory and on the device.
1127 *
1128 * This function behaves like generic_make_request(), but does not protect
1129 * against recursion. Must only be used if the called driver is known
1130 * to not call generic_make_request (or direct_make_request) again from
1131 * its make_request function. (Calling direct_make_request again from
1132 * a workqueue is perfectly fine as that doesn't recurse).
1133 */
1134blk_qc_t direct_make_request(struct bio *bio)
1135{
1136 struct request_queue *q = bio->bi_disk->queue;
1137 bool nowait = bio->bi_opf & REQ_NOWAIT;
1138 blk_qc_t ret;
1139
1140 if (!generic_make_request_checks(bio))
1141 return BLK_QC_T_NONE;
1142
3a0a5299 1143 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
1144 if (nowait && !blk_queue_dying(q))
1145 bio->bi_status = BLK_STS_AGAIN;
1146 else
1147 bio->bi_status = BLK_STS_IOERR;
1148 bio_endio(bio);
1149 return BLK_QC_T_NONE;
1150 }
1151
1152 ret = q->make_request_fn(q, bio);
1153 blk_queue_exit(q);
1154 return ret;
1155}
1156EXPORT_SYMBOL_GPL(direct_make_request);
1157
1da177e4 1158/**
710027a4 1159 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1160 * @bio: The &struct bio which describes the I/O
1161 *
1162 * submit_bio() is very similar in purpose to generic_make_request(), and
1163 * uses that function to do most of the work. Both are fairly rough
710027a4 1164 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1165 *
1166 */
4e49ea4a 1167blk_qc_t submit_bio(struct bio *bio)
1da177e4 1168{
bf2de6f5
JA
1169 /*
1170 * If it's a regular read/write or a barrier with data attached,
1171 * go through the normal accounting stuff before submission.
1172 */
e2a60da7 1173 if (bio_has_data(bio)) {
4363ac7c
MP
1174 unsigned int count;
1175
95fe6c1a 1176 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1177 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1178 else
1179 count = bio_sectors(bio);
1180
a8ebb056 1181 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1182 count_vm_events(PGPGOUT, count);
1183 } else {
4f024f37 1184 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1185 count_vm_events(PGPGIN, count);
1186 }
1187
1188 if (unlikely(block_dump)) {
1189 char b[BDEVNAME_SIZE];
8dcbdc74 1190 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1191 current->comm, task_pid_nr(current),
a8ebb056 1192 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1193 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1194 bio_devname(bio, b), count);
bf2de6f5 1195 }
1da177e4
LT
1196 }
1197
dece1635 1198 return generic_make_request(bio);
1da177e4 1199}
1da177e4
LT
1200EXPORT_SYMBOL(submit_bio);
1201
82124d60 1202/**
bf4e6b4e
HR
1203 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1204 * for new the queue limits
82124d60
KU
1205 * @q: the queue
1206 * @rq: the request being checked
1207 *
1208 * Description:
1209 * @rq may have been made based on weaker limitations of upper-level queues
1210 * in request stacking drivers, and it may violate the limitation of @q.
1211 * Since the block layer and the underlying device driver trust @rq
1212 * after it is inserted to @q, it should be checked against @q before
1213 * the insertion using this generic function.
1214 *
82124d60 1215 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1216 * limits when retrying requests on other queues. Those requests need
1217 * to be checked against the new queue limits again during dispatch.
82124d60 1218 */
bf4e6b4e
HR
1219static int blk_cloned_rq_check_limits(struct request_queue *q,
1220 struct request *rq)
82124d60 1221{
8fe0d473 1222 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
1223 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1224 return -EIO;
1225 }
1226
1227 /*
1228 * queue's settings related to segment counting like q->bounce_pfn
1229 * may differ from that of other stacking queues.
1230 * Recalculate it to check the request correctly on this queue's
1231 * limitation.
1232 */
1233 blk_recalc_rq_segments(rq);
8a78362c 1234 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1235 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1236 return -EIO;
1237 }
1238
1239 return 0;
1240}
82124d60
KU
1241
1242/**
1243 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1244 * @q: the queue to submit the request
1245 * @rq: the request being queued
1246 */
2a842aca 1247blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1248{
d6a51a97
JW
1249 blk_qc_t unused;
1250
bf4e6b4e 1251 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 1252 return BLK_STS_IOERR;
82124d60 1253
b2c9cd37
AM
1254 if (rq->rq_disk &&
1255 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1256 return BLK_STS_IOERR;
82124d60 1257
a1ce35fa
JA
1258 if (blk_queue_io_stat(q))
1259 blk_account_io_start(rq, true);
82124d60
KU
1260
1261 /*
a1ce35fa
JA
1262 * Since we have a scheduler attached on the top device,
1263 * bypass a potential scheduler on the bottom device for
1264 * insert.
82124d60 1265 */
d6a51a97 1266 return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true);
82124d60
KU
1267}
1268EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1269
80a761fd
TH
1270/**
1271 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1272 * @rq: request to examine
1273 *
1274 * Description:
1275 * A request could be merge of IOs which require different failure
1276 * handling. This function determines the number of bytes which
1277 * can be failed from the beginning of the request without
1278 * crossing into area which need to be retried further.
1279 *
1280 * Return:
1281 * The number of bytes to fail.
80a761fd
TH
1282 */
1283unsigned int blk_rq_err_bytes(const struct request *rq)
1284{
1285 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1286 unsigned int bytes = 0;
1287 struct bio *bio;
1288
e8064021 1289 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1290 return blk_rq_bytes(rq);
1291
1292 /*
1293 * Currently the only 'mixing' which can happen is between
1294 * different fastfail types. We can safely fail portions
1295 * which have all the failfast bits that the first one has -
1296 * the ones which are at least as eager to fail as the first
1297 * one.
1298 */
1299 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1300 if ((bio->bi_opf & ff) != ff)
80a761fd 1301 break;
4f024f37 1302 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1303 }
1304
1305 /* this could lead to infinite loop */
1306 BUG_ON(blk_rq_bytes(rq) && !bytes);
1307 return bytes;
1308}
1309EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1310
320ae51f 1311void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1312{
c2553b58 1313 if (blk_do_io_stat(req)) {
ddcf35d3 1314 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1315 struct hd_struct *part;
bc58ba94 1316
112f158f 1317 part_stat_lock();
09e099d4 1318 part = req->part;
112f158f 1319 part_stat_add(part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1320 part_stat_unlock();
1321 }
1322}
1323
522a7775 1324void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1325{
bc58ba94 1326 /*
dd4c133f
TH
1327 * Account IO completion. flush_rq isn't accounted as a
1328 * normal IO on queueing nor completion. Accounting the
1329 * containing request is enough.
bc58ba94 1330 */
e8064021 1331 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1332 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1333 struct hd_struct *part;
bc58ba94 1334
112f158f 1335 part_stat_lock();
09e099d4 1336 part = req->part;
bc58ba94 1337
5b18b5a7 1338 update_io_ticks(part, jiffies);
112f158f
MS
1339 part_stat_inc(part, ios[sgrp]);
1340 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
5b18b5a7 1341 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
ddcf35d3 1342 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 1343
6c23a968 1344 hd_struct_put(part);
bc58ba94
JA
1345 part_stat_unlock();
1346 }
1347}
1348
320ae51f
JA
1349void blk_account_io_start(struct request *rq, bool new_io)
1350{
1351 struct hd_struct *part;
1352 int rw = rq_data_dir(rq);
320ae51f
JA
1353
1354 if (!blk_do_io_stat(rq))
1355 return;
1356
112f158f 1357 part_stat_lock();
320ae51f
JA
1358
1359 if (!new_io) {
1360 part = rq->part;
112f158f 1361 part_stat_inc(part, merges[rw]);
320ae51f
JA
1362 } else {
1363 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1364 if (!hd_struct_try_get(part)) {
1365 /*
1366 * The partition is already being removed,
1367 * the request will be accounted on the disk only
1368 *
1369 * We take a reference on disk->part0 although that
1370 * partition will never be deleted, so we can treat
1371 * it as any other partition.
1372 */
1373 part = &rq->rq_disk->part0;
1374 hd_struct_get(part);
1375 }
d62e26b3 1376 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
1377 rq->part = part;
1378 }
1379
5b18b5a7
MP
1380 update_io_ticks(part, jiffies);
1381
320ae51f
JA
1382 part_stat_unlock();
1383}
1384
ef71de8b
CH
1385/*
1386 * Steal bios from a request and add them to a bio list.
1387 * The request must not have been partially completed before.
1388 */
1389void blk_steal_bios(struct bio_list *list, struct request *rq)
1390{
1391 if (rq->bio) {
1392 if (list->tail)
1393 list->tail->bi_next = rq->bio;
1394 else
1395 list->head = rq->bio;
1396 list->tail = rq->biotail;
1397
1398 rq->bio = NULL;
1399 rq->biotail = NULL;
1400 }
1401
1402 rq->__data_len = 0;
1403}
1404EXPORT_SYMBOL_GPL(blk_steal_bios);
1405
3bcddeac 1406/**
2e60e022 1407 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1408 * @req: the request being processed
2a842aca 1409 * @error: block status code
8ebf9756 1410 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1411 *
1412 * Description:
8ebf9756
RD
1413 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1414 * the request structure even if @req doesn't have leftover.
1415 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1416 *
1417 * This special helper function is only for request stacking drivers
1418 * (e.g. request-based dm) so that they can handle partial completion.
1419 * Actual device drivers should use blk_end_request instead.
1420 *
1421 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1422 * %false return from this function.
3bcddeac 1423 *
1954e9a9
BVA
1424 * Note:
1425 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1426 * blk_rq_bytes() and in blk_update_request().
1427 *
3bcddeac 1428 * Return:
2e60e022
TH
1429 * %false - this request doesn't have any more data
1430 * %true - this request has more data
3bcddeac 1431 **/
2a842aca
CH
1432bool blk_update_request(struct request *req, blk_status_t error,
1433 unsigned int nr_bytes)
1da177e4 1434{
f79ea416 1435 int total_bytes;
1da177e4 1436
2a842aca 1437 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1438
2e60e022
TH
1439 if (!req->bio)
1440 return false;
1441
2a842aca
CH
1442 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1443 !(req->rq_flags & RQF_QUIET)))
1444 print_req_error(req, error);
1da177e4 1445
bc58ba94 1446 blk_account_io_completion(req, nr_bytes);
d72d904a 1447
f79ea416
KO
1448 total_bytes = 0;
1449 while (req->bio) {
1450 struct bio *bio = req->bio;
4f024f37 1451 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1452
9c24c10a 1453 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1454 req->bio = bio->bi_next;
1da177e4 1455
fbbaf700
N
1456 /* Completion has already been traced */
1457 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1458 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1459
f79ea416
KO
1460 total_bytes += bio_bytes;
1461 nr_bytes -= bio_bytes;
1da177e4 1462
f79ea416
KO
1463 if (!nr_bytes)
1464 break;
1da177e4
LT
1465 }
1466
1467 /*
1468 * completely done
1469 */
2e60e022
TH
1470 if (!req->bio) {
1471 /*
1472 * Reset counters so that the request stacking driver
1473 * can find how many bytes remain in the request
1474 * later.
1475 */
a2dec7b3 1476 req->__data_len = 0;
2e60e022
TH
1477 return false;
1478 }
1da177e4 1479
a2dec7b3 1480 req->__data_len -= total_bytes;
2e46e8b2
TH
1481
1482 /* update sector only for requests with clear definition of sector */
57292b58 1483 if (!blk_rq_is_passthrough(req))
a2dec7b3 1484 req->__sector += total_bytes >> 9;
2e46e8b2 1485
80a761fd 1486 /* mixed attributes always follow the first bio */
e8064021 1487 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1488 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1489 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1490 }
1491
ed6565e7
CH
1492 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1493 /*
1494 * If total number of sectors is less than the first segment
1495 * size, something has gone terribly wrong.
1496 */
1497 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1498 blk_dump_rq_flags(req, "request botched");
1499 req->__data_len = blk_rq_cur_bytes(req);
1500 }
2e46e8b2 1501
ed6565e7
CH
1502 /* recalculate the number of segments */
1503 blk_recalc_rq_segments(req);
1504 }
2e46e8b2 1505
2e60e022 1506 return true;
1da177e4 1507}
2e60e022 1508EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1509
86db1e29
JA
1510void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1511 struct bio *bio)
1da177e4 1512{
b4f42e28 1513 if (bio_has_data(bio))
fb2dce86 1514 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
1515 else if (bio_op(bio) == REQ_OP_DISCARD)
1516 rq->nr_phys_segments = 1;
b4f42e28 1517
4f024f37 1518 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 1519 rq->bio = rq->biotail = bio;
1da177e4 1520
74d46992
CH
1521 if (bio->bi_disk)
1522 rq->rq_disk = bio->bi_disk;
66846572 1523}
1da177e4 1524
2d4dc890
IL
1525#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1526/**
1527 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1528 * @rq: the request to be flushed
1529 *
1530 * Description:
1531 * Flush all pages in @rq.
1532 */
1533void rq_flush_dcache_pages(struct request *rq)
1534{
1535 struct req_iterator iter;
7988613b 1536 struct bio_vec bvec;
2d4dc890
IL
1537
1538 rq_for_each_segment(bvec, rq, iter)
7988613b 1539 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1540}
1541EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1542#endif
1543
ef9e3fac
KU
1544/**
1545 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1546 * @q : the queue of the device being checked
1547 *
1548 * Description:
1549 * Check if underlying low-level drivers of a device are busy.
1550 * If the drivers want to export their busy state, they must set own
1551 * exporting function using blk_queue_lld_busy() first.
1552 *
1553 * Basically, this function is used only by request stacking drivers
1554 * to stop dispatching requests to underlying devices when underlying
1555 * devices are busy. This behavior helps more I/O merging on the queue
1556 * of the request stacking driver and prevents I/O throughput regression
1557 * on burst I/O load.
1558 *
1559 * Return:
1560 * 0 - Not busy (The request stacking driver should dispatch request)
1561 * 1 - Busy (The request stacking driver should stop dispatching request)
1562 */
1563int blk_lld_busy(struct request_queue *q)
1564{
344e9ffc 1565 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1566 return q->mq_ops->busy(q);
ef9e3fac
KU
1567
1568 return 0;
1569}
1570EXPORT_SYMBOL_GPL(blk_lld_busy);
1571
78d8e58a
MS
1572/**
1573 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1574 * @rq: the clone request to be cleaned up
1575 *
1576 * Description:
1577 * Free all bios in @rq for a cloned request.
1578 */
1579void blk_rq_unprep_clone(struct request *rq)
1580{
1581 struct bio *bio;
1582
1583 while ((bio = rq->bio) != NULL) {
1584 rq->bio = bio->bi_next;
1585
1586 bio_put(bio);
1587 }
1588}
1589EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1590
1591/*
1592 * Copy attributes of the original request to the clone request.
1593 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1594 */
1595static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d 1596{
b0fd271d
KU
1597 dst->__sector = blk_rq_pos(src);
1598 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
1599 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1600 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1601 dst->special_vec = src->special_vec;
1602 }
b0fd271d
KU
1603 dst->nr_phys_segments = src->nr_phys_segments;
1604 dst->ioprio = src->ioprio;
1605 dst->extra_len = src->extra_len;
78d8e58a
MS
1606}
1607
1608/**
1609 * blk_rq_prep_clone - Helper function to setup clone request
1610 * @rq: the request to be setup
1611 * @rq_src: original request to be cloned
1612 * @bs: bio_set that bios for clone are allocated from
1613 * @gfp_mask: memory allocation mask for bio
1614 * @bio_ctr: setup function to be called for each clone bio.
1615 * Returns %0 for success, non %0 for failure.
1616 * @data: private data to be passed to @bio_ctr
1617 *
1618 * Description:
1619 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1620 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1621 * are not copied, and copying such parts is the caller's responsibility.
1622 * Also, pages which the original bios are pointing to are not copied
1623 * and the cloned bios just point same pages.
1624 * So cloned bios must be completed before original bios, which means
1625 * the caller must complete @rq before @rq_src.
1626 */
1627int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1628 struct bio_set *bs, gfp_t gfp_mask,
1629 int (*bio_ctr)(struct bio *, struct bio *, void *),
1630 void *data)
1631{
1632 struct bio *bio, *bio_src;
1633
1634 if (!bs)
f4f8154a 1635 bs = &fs_bio_set;
78d8e58a
MS
1636
1637 __rq_for_each_bio(bio_src, rq_src) {
1638 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1639 if (!bio)
1640 goto free_and_out;
1641
1642 if (bio_ctr && bio_ctr(bio, bio_src, data))
1643 goto free_and_out;
1644
1645 if (rq->bio) {
1646 rq->biotail->bi_next = bio;
1647 rq->biotail = bio;
1648 } else
1649 rq->bio = rq->biotail = bio;
1650 }
1651
1652 __blk_rq_prep_clone(rq, rq_src);
1653
1654 return 0;
1655
1656free_and_out:
1657 if (bio)
1658 bio_put(bio);
1659 blk_rq_unprep_clone(rq);
1660
1661 return -ENOMEM;
b0fd271d
KU
1662}
1663EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1664
59c3d45e 1665int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1666{
1667 return queue_work(kblockd_workqueue, work);
1668}
1da177e4
LT
1669EXPORT_SYMBOL(kblockd_schedule_work);
1670
ee63cfa7
JA
1671int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1672{
1673 return queue_work_on(cpu, kblockd_workqueue, work);
1674}
1675EXPORT_SYMBOL(kblockd_schedule_work_on);
1676
818cd1cb
JA
1677int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1678 unsigned long delay)
1679{
1680 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1681}
1682EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1683
75df7136
SJ
1684/**
1685 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1686 * @plug: The &struct blk_plug that needs to be initialized
1687 *
1688 * Description:
40405851
JM
1689 * blk_start_plug() indicates to the block layer an intent by the caller
1690 * to submit multiple I/O requests in a batch. The block layer may use
1691 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1692 * is called. However, the block layer may choose to submit requests
1693 * before a call to blk_finish_plug() if the number of queued I/Os
1694 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1695 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1696 * the task schedules (see below).
1697 *
75df7136
SJ
1698 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1699 * pending I/O should the task end up blocking between blk_start_plug() and
1700 * blk_finish_plug(). This is important from a performance perspective, but
1701 * also ensures that we don't deadlock. For instance, if the task is blocking
1702 * for a memory allocation, memory reclaim could end up wanting to free a
1703 * page belonging to that request that is currently residing in our private
1704 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1705 * this kind of deadlock.
1706 */
73c10101
JA
1707void blk_start_plug(struct blk_plug *plug)
1708{
1709 struct task_struct *tsk = current;
1710
dd6cf3e1
SL
1711 /*
1712 * If this is a nested plug, don't actually assign it.
1713 */
1714 if (tsk->plug)
1715 return;
1716
320ae51f 1717 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1718 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1719 plug->rq_count = 0;
ce5b009c 1720 plug->multiple_queues = false;
5f0ed774 1721
73c10101 1722 /*
dd6cf3e1
SL
1723 * Store ordering should not be needed here, since a potential
1724 * preempt will imply a full memory barrier
73c10101 1725 */
dd6cf3e1 1726 tsk->plug = plug;
73c10101
JA
1727}
1728EXPORT_SYMBOL(blk_start_plug);
1729
74018dc3 1730static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1731{
1732 LIST_HEAD(callbacks);
1733
2a7d5559
SL
1734 while (!list_empty(&plug->cb_list)) {
1735 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1736
2a7d5559
SL
1737 while (!list_empty(&callbacks)) {
1738 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1739 struct blk_plug_cb,
1740 list);
2a7d5559 1741 list_del(&cb->list);
74018dc3 1742 cb->callback(cb, from_schedule);
2a7d5559 1743 }
048c9374
N
1744 }
1745}
1746
9cbb1750
N
1747struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1748 int size)
1749{
1750 struct blk_plug *plug = current->plug;
1751 struct blk_plug_cb *cb;
1752
1753 if (!plug)
1754 return NULL;
1755
1756 list_for_each_entry(cb, &plug->cb_list, list)
1757 if (cb->callback == unplug && cb->data == data)
1758 return cb;
1759
1760 /* Not currently on the callback list */
1761 BUG_ON(size < sizeof(*cb));
1762 cb = kzalloc(size, GFP_ATOMIC);
1763 if (cb) {
1764 cb->data = data;
1765 cb->callback = unplug;
1766 list_add(&cb->list, &plug->cb_list);
1767 }
1768 return cb;
1769}
1770EXPORT_SYMBOL(blk_check_plugged);
1771
49cac01e 1772void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1773{
74018dc3 1774 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1775
1776 if (!list_empty(&plug->mq_list))
1777 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1778}
73c10101 1779
40405851
JM
1780/**
1781 * blk_finish_plug - mark the end of a batch of submitted I/O
1782 * @plug: The &struct blk_plug passed to blk_start_plug()
1783 *
1784 * Description:
1785 * Indicate that a batch of I/O submissions is complete. This function
1786 * must be paired with an initial call to blk_start_plug(). The intent
1787 * is to allow the block layer to optimize I/O submission. See the
1788 * documentation for blk_start_plug() for more information.
1789 */
73c10101
JA
1790void blk_finish_plug(struct blk_plug *plug)
1791{
dd6cf3e1
SL
1792 if (plug != current->plug)
1793 return;
f6603783 1794 blk_flush_plug_list(plug, false);
73c10101 1795
dd6cf3e1 1796 current->plug = NULL;
73c10101 1797}
88b996cd 1798EXPORT_SYMBOL(blk_finish_plug);
73c10101 1799
1da177e4
LT
1800int __init blk_dev_init(void)
1801{
ef295ecf
CH
1802 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1803 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 1804 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
1805 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1806 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 1807
89b90be2
TH
1808 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1809 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1810 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1811 if (!kblockd_workqueue)
1812 panic("Failed to create kblockd\n");
1813
c2789bd4 1814 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1815 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1816
18fbda91
OS
1817#ifdef CONFIG_DEBUG_FS
1818 blk_debugfs_root = debugfs_create_dir("block", NULL);
1819#endif
1820
d38ecf93 1821 return 0;
1da177e4 1822}