]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
blktrace: pass zfcp driver data
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
1da177e4 31
8324aa91
JA
32#include "blk.h"
33
165125e1 34static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
35
36/*
37 * For the allocated request tables
38 */
5ece6c52 39static struct kmem_cache *request_cachep;
1da177e4
LT
40
41/*
42 * For queue allocation
43 */
6728cb0e 44struct kmem_cache *blk_requestq_cachep;
1da177e4 45
1da177e4
LT
46/*
47 * Controlling structure to kblockd
48 */
ff856bad 49static struct workqueue_struct *kblockd_workqueue;
1da177e4 50
26b8256e
JA
51static void drive_stat_acct(struct request *rq, int new_io)
52{
28f13702 53 struct hd_struct *part;
26b8256e 54 int rw = rq_data_dir(rq);
c9959059 55 int cpu;
26b8256e
JA
56
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
59
074a7aca 60 cpu = part_stat_lock();
e71bf0d0 61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 62
28f13702 63 if (!new_io)
074a7aca 64 part_stat_inc(cpu, part, merges[rw]);
28f13702 65 else {
074a7aca
TH
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
26b8256e 68 }
e71bf0d0 69
074a7aca 70 part_stat_unlock();
26b8256e
JA
71}
72
8324aa91 73void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
74{
75 int nr;
76
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
86}
87
1da177e4
LT
88/**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
91 *
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
94 *
95 * Will return NULL if the request queue cannot be located.
96 */
97struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98{
99 struct backing_dev_info *ret = NULL;
165125e1 100 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
101
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
105}
1da177e4
LT
106EXPORT_SYMBOL(blk_get_backing_dev_info);
107
2a4aa30c 108void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 109{
1afb20f3
FT
110 memset(rq, 0, sizeof(*rq));
111
1da177e4 112 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 113 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 114 rq->cpu = -1;
63a71386
JA
115 rq->q = q;
116 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 119 rq->cmd = rq->__cmd;
63a71386 120 rq->tag = -1;
1da177e4 121 rq->ref_count = 1;
1da177e4 122}
2a4aa30c 123EXPORT_SYMBOL(blk_rq_init);
1da177e4 124
5bb23a68
N
125static void req_bio_endio(struct request *rq, struct bio *bio,
126 unsigned int nbytes, int error)
1da177e4 127{
165125e1 128 struct request_queue *q = rq->q;
797e7dbb 129
5bb23a68
N
130 if (&q->bar_rq != rq) {
131 if (error)
132 clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 error = -EIO;
797e7dbb 135
5bb23a68 136 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 137 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 138 __func__, nbytes, bio->bi_size);
5bb23a68
N
139 nbytes = bio->bi_size;
140 }
797e7dbb 141
5bb23a68
N
142 bio->bi_size -= nbytes;
143 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
144
145 if (bio_integrity(bio))
146 bio_integrity_advance(bio, nbytes);
147
5bb23a68 148 if (bio->bi_size == 0)
6712ecf8 149 bio_endio(bio, error);
5bb23a68
N
150 } else {
151
152 /*
153 * Okay, this is the barrier request in progress, just
154 * record the error;
155 */
156 if (error && !q->orderr)
157 q->orderr = error;
158 }
1da177e4 159}
1da177e4 160
1da177e4
LT
161void blk_dump_rq_flags(struct request *rq, char *msg)
162{
163 int bit;
164
6728cb0e 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 rq->cmd_flags);
1da177e4 168
6728cb0e
JA
169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq->sector,
171 rq->nr_sectors,
172 rq->current_nr_sectors);
173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq->bio, rq->biotail,
175 rq->buffer, rq->data,
176 rq->data_len);
1da177e4 177
4aff5e23 178 if (blk_pc_request(rq)) {
6728cb0e 179 printk(KERN_INFO " cdb: ");
d34c87e4 180 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
181 printk("%02x ", rq->cmd[bit]);
182 printk("\n");
183 }
184}
1da177e4
LT
185EXPORT_SYMBOL(blk_dump_rq_flags);
186
1da177e4
LT
187/*
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
190 * on the list.
191 *
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
194 */
165125e1 195void blk_plug_device(struct request_queue *q)
1da177e4
LT
196{
197 WARN_ON(!irqs_disabled());
198
199 /*
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
202 */
7daac490 203 if (blk_queue_stopped(q))
1da177e4
LT
204 return;
205
e48ec690 206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 }
1da177e4 210}
1da177e4
LT
211EXPORT_SYMBOL(blk_plug_device);
212
6c5e0c4d
JA
213/**
214 * blk_plug_device_unlocked - plug a device without queue lock held
215 * @q: The &struct request_queue to plug
216 *
217 * Description:
218 * Like @blk_plug_device(), but grabs the queue lock and disables
219 * interrupts.
220 **/
221void blk_plug_device_unlocked(struct request_queue *q)
222{
223 unsigned long flags;
224
225 spin_lock_irqsave(q->queue_lock, flags);
226 blk_plug_device(q);
227 spin_unlock_irqrestore(q->queue_lock, flags);
228}
229EXPORT_SYMBOL(blk_plug_device_unlocked);
230
1da177e4
LT
231/*
232 * remove the queue from the plugged list, if present. called with
233 * queue lock held and interrupts disabled.
234 */
165125e1 235int blk_remove_plug(struct request_queue *q)
1da177e4
LT
236{
237 WARN_ON(!irqs_disabled());
238
e48ec690 239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
240 return 0;
241
242 del_timer(&q->unplug_timer);
243 return 1;
244}
1da177e4
LT
245EXPORT_SYMBOL(blk_remove_plug);
246
247/*
248 * remove the plug and let it rip..
249 */
165125e1 250void __generic_unplug_device(struct request_queue *q)
1da177e4 251{
7daac490 252 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
253 return;
254
255 if (!blk_remove_plug(q))
256 return;
257
22e2c507 258 q->request_fn(q);
1da177e4
LT
259}
260EXPORT_SYMBOL(__generic_unplug_device);
261
262/**
263 * generic_unplug_device - fire a request queue
165125e1 264 * @q: The &struct request_queue in question
1da177e4
LT
265 *
266 * Description:
267 * Linux uses plugging to build bigger requests queues before letting
268 * the device have at them. If a queue is plugged, the I/O scheduler
269 * is still adding and merging requests on the queue. Once the queue
270 * gets unplugged, the request_fn defined for the queue is invoked and
271 * transfers started.
272 **/
165125e1 273void generic_unplug_device(struct request_queue *q)
1da177e4 274{
dbaf2c00
JA
275 if (blk_queue_plugged(q)) {
276 spin_lock_irq(q->queue_lock);
277 __generic_unplug_device(q);
278 spin_unlock_irq(q->queue_lock);
279 }
1da177e4
LT
280}
281EXPORT_SYMBOL(generic_unplug_device);
282
283static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 struct page *page)
285{
165125e1 286 struct request_queue *q = bdi->unplug_io_data;
1da177e4 287
2ad8b1ef 288 blk_unplug(q);
1da177e4
LT
289}
290
86db1e29 291void blk_unplug_work(struct work_struct *work)
1da177e4 292{
165125e1
JA
293 struct request_queue *q =
294 container_of(work, struct request_queue, unplug_work);
1da177e4 295
2056a782
JA
296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 q->rq.count[READ] + q->rq.count[WRITE]);
298
1da177e4
LT
299 q->unplug_fn(q);
300}
301
86db1e29 302void blk_unplug_timeout(unsigned long data)
1da177e4 303{
165125e1 304 struct request_queue *q = (struct request_queue *)data;
1da177e4 305
2056a782
JA
306 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
307 q->rq.count[READ] + q->rq.count[WRITE]);
308
18887ad9 309 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
310}
311
2ad8b1ef
AB
312void blk_unplug(struct request_queue *q)
313{
314 /*
315 * devices don't necessarily have an ->unplug_fn defined
316 */
317 if (q->unplug_fn) {
318 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
319 q->rq.count[READ] + q->rq.count[WRITE]);
320
321 q->unplug_fn(q);
322 }
323}
324EXPORT_SYMBOL(blk_unplug);
325
c7c22e4d
JA
326static void blk_invoke_request_fn(struct request_queue *q)
327{
80a4b58e
JA
328 if (unlikely(blk_queue_stopped(q)))
329 return;
330
c7c22e4d
JA
331 /*
332 * one level of recursion is ok and is much faster than kicking
333 * the unplug handling
334 */
335 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
336 q->request_fn(q);
337 queue_flag_clear(QUEUE_FLAG_REENTER, q);
338 } else {
339 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
340 kblockd_schedule_work(q, &q->unplug_work);
341 }
342}
343
1da177e4
LT
344/**
345 * blk_start_queue - restart a previously stopped queue
165125e1 346 * @q: The &struct request_queue in question
1da177e4
LT
347 *
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue(). Queue lock must be held.
352 **/
165125e1 353void blk_start_queue(struct request_queue *q)
1da177e4 354{
a038e253
PBG
355 WARN_ON(!irqs_disabled());
356
75ad23bc 357 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 358 blk_invoke_request_fn(q);
1da177e4 359}
1da177e4
LT
360EXPORT_SYMBOL(blk_start_queue);
361
362/**
363 * blk_stop_queue - stop a queue
165125e1 364 * @q: The &struct request_queue in question
1da177e4
LT
365 *
366 * Description:
367 * The Linux block layer assumes that a block driver will consume all
368 * entries on the request queue when the request_fn strategy is called.
369 * Often this will not happen, because of hardware limitations (queue
370 * depth settings). If a device driver gets a 'queue full' response,
371 * or if it simply chooses not to queue more I/O at one point, it can
372 * call this function to prevent the request_fn from being called until
373 * the driver has signalled it's ready to go again. This happens by calling
374 * blk_start_queue() to restart queue operations. Queue lock must be held.
375 **/
165125e1 376void blk_stop_queue(struct request_queue *q)
1da177e4
LT
377{
378 blk_remove_plug(q);
75ad23bc 379 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
380}
381EXPORT_SYMBOL(blk_stop_queue);
382
383/**
384 * blk_sync_queue - cancel any pending callbacks on a queue
385 * @q: the queue
386 *
387 * Description:
388 * The block layer may perform asynchronous callback activity
389 * on a queue, such as calling the unplug function after a timeout.
390 * A block device may call blk_sync_queue to ensure that any
391 * such activity is cancelled, thus allowing it to release resources
59c51591 392 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
393 * that its ->make_request_fn will not re-add plugging prior to calling
394 * this function.
395 *
396 */
397void blk_sync_queue(struct request_queue *q)
398{
399 del_timer_sync(&q->unplug_timer);
abbeb88d 400 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
401}
402EXPORT_SYMBOL(blk_sync_queue);
403
404/**
80a4b58e 405 * __blk_run_queue - run a single device queue
1da177e4 406 * @q: The queue to run
80a4b58e
JA
407 *
408 * Description:
409 * See @blk_run_queue. This variant must be called with the queue lock
410 * held and interrupts disabled.
411 *
1da177e4 412 */
75ad23bc 413void __blk_run_queue(struct request_queue *q)
1da177e4 414{
1da177e4 415 blk_remove_plug(q);
dac07ec1
JA
416
417 /*
418 * Only recurse once to avoid overrunning the stack, let the unplug
419 * handling reinvoke the handler shortly if we already got there.
420 */
c7c22e4d
JA
421 if (!elv_queue_empty(q))
422 blk_invoke_request_fn(q);
75ad23bc
NP
423}
424EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 425
75ad23bc
NP
426/**
427 * blk_run_queue - run a single device queue
428 * @q: The queue to run
80a4b58e
JA
429 *
430 * Description:
431 * Invoke request handling on this queue, if it has pending work to do.
432 * May be used to restart queueing when a request has completed. Also
433 * See @blk_start_queueing.
434 *
75ad23bc
NP
435 */
436void blk_run_queue(struct request_queue *q)
437{
438 unsigned long flags;
439
440 spin_lock_irqsave(q->queue_lock, flags);
441 __blk_run_queue(q);
1da177e4
LT
442 spin_unlock_irqrestore(q->queue_lock, flags);
443}
444EXPORT_SYMBOL(blk_run_queue);
445
165125e1 446void blk_put_queue(struct request_queue *q)
483f4afc
AV
447{
448 kobject_put(&q->kobj);
449}
483f4afc 450
6728cb0e 451void blk_cleanup_queue(struct request_queue *q)
483f4afc 452{
e3335de9
JA
453 /*
454 * We know we have process context here, so we can be a little
455 * cautious and ensure that pending block actions on this device
456 * are done before moving on. Going into this function, we should
457 * not have processes doing IO to this device.
458 */
459 blk_sync_queue(q);
460
483f4afc 461 mutex_lock(&q->sysfs_lock);
75ad23bc 462 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
463 mutex_unlock(&q->sysfs_lock);
464
465 if (q->elevator)
466 elevator_exit(q->elevator);
467
468 blk_put_queue(q);
469}
1da177e4
LT
470EXPORT_SYMBOL(blk_cleanup_queue);
471
165125e1 472static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
473{
474 struct request_list *rl = &q->rq;
475
476 rl->count[READ] = rl->count[WRITE] = 0;
477 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 478 rl->elvpriv = 0;
1da177e4
LT
479 init_waitqueue_head(&rl->wait[READ]);
480 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 481
1946089a
CL
482 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
483 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
484
485 if (!rl->rq_pool)
486 return -ENOMEM;
487
488 return 0;
489}
490
165125e1 491struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 492{
1946089a
CL
493 return blk_alloc_queue_node(gfp_mask, -1);
494}
495EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 496
165125e1 497struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 498{
165125e1 499 struct request_queue *q;
e0bf68dd 500 int err;
1946089a 501
8324aa91 502 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 503 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
504 if (!q)
505 return NULL;
506
e0bf68dd
PZ
507 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
508 q->backing_dev_info.unplug_io_data = q;
509 err = bdi_init(&q->backing_dev_info);
510 if (err) {
8324aa91 511 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
512 return NULL;
513 }
514
1da177e4 515 init_timer(&q->unplug_timer);
242f9dcb
JA
516 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
517 INIT_LIST_HEAD(&q->timeout_list);
483f4afc 518
8324aa91 519 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 520
483f4afc 521 mutex_init(&q->sysfs_lock);
e7e72bf6 522 spin_lock_init(&q->__queue_lock);
483f4afc 523
1da177e4
LT
524 return q;
525}
1946089a 526EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
527
528/**
529 * blk_init_queue - prepare a request queue for use with a block device
530 * @rfn: The function to be called to process requests that have been
531 * placed on the queue.
532 * @lock: Request queue spin lock
533 *
534 * Description:
535 * If a block device wishes to use the standard request handling procedures,
536 * which sorts requests and coalesces adjacent requests, then it must
537 * call blk_init_queue(). The function @rfn will be called when there
538 * are requests on the queue that need to be processed. If the device
539 * supports plugging, then @rfn may not be called immediately when requests
540 * are available on the queue, but may be called at some time later instead.
541 * Plugged queues are generally unplugged when a buffer belonging to one
542 * of the requests on the queue is needed, or due to memory pressure.
543 *
544 * @rfn is not required, or even expected, to remove all requests off the
545 * queue, but only as many as it can handle at a time. If it does leave
546 * requests on the queue, it is responsible for arranging that the requests
547 * get dealt with eventually.
548 *
549 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
550 * request queue; this lock will be taken also from interrupt context, so irq
551 * disabling is needed for it.
1da177e4 552 *
710027a4 553 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
554 * it didn't succeed.
555 *
556 * Note:
557 * blk_init_queue() must be paired with a blk_cleanup_queue() call
558 * when the block device is deactivated (such as at module unload).
559 **/
1946089a 560
165125e1 561struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 562{
1946089a
CL
563 return blk_init_queue_node(rfn, lock, -1);
564}
565EXPORT_SYMBOL(blk_init_queue);
566
165125e1 567struct request_queue *
1946089a
CL
568blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
569{
165125e1 570 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
571
572 if (!q)
573 return NULL;
574
1946089a 575 q->node = node_id;
8669aafd 576 if (blk_init_free_list(q)) {
8324aa91 577 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
578 return NULL;
579 }
1da177e4 580
152587de
JA
581 /*
582 * if caller didn't supply a lock, they get per-queue locking with
583 * our embedded lock
584 */
e7e72bf6 585 if (!lock)
152587de 586 lock = &q->__queue_lock;
152587de 587
1da177e4 588 q->request_fn = rfn;
1da177e4
LT
589 q->prep_rq_fn = NULL;
590 q->unplug_fn = generic_unplug_device;
4ee5eaf4
KU
591 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
592 1 << QUEUE_FLAG_STACKABLE);
1da177e4
LT
593 q->queue_lock = lock;
594
595 blk_queue_segment_boundary(q, 0xffffffff);
596
597 blk_queue_make_request(q, __make_request);
598 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
599
600 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
601 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
602
44ec9542
AS
603 q->sg_reserved_size = INT_MAX;
604
abf54393
FT
605 blk_set_cmd_filter_defaults(&q->cmd_filter);
606
1da177e4
LT
607 /*
608 * all done
609 */
610 if (!elevator_init(q, NULL)) {
611 blk_queue_congestion_threshold(q);
612 return q;
613 }
614
8669aafd 615 blk_put_queue(q);
1da177e4
LT
616 return NULL;
617}
1946089a 618EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 619
165125e1 620int blk_get_queue(struct request_queue *q)
1da177e4 621{
fde6ad22 622 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 623 kobject_get(&q->kobj);
1da177e4
LT
624 return 0;
625 }
626
627 return 1;
628}
1da177e4 629
165125e1 630static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 631{
4aff5e23 632 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 633 elv_put_request(q, rq);
1da177e4
LT
634 mempool_free(rq, q->rq.rq_pool);
635}
636
1ea25ecb 637static struct request *
165125e1 638blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
639{
640 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
641
642 if (!rq)
643 return NULL;
644
2a4aa30c 645 blk_rq_init(q, rq);
1afb20f3 646
49171e5c 647 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 648
cb98fc8b 649 if (priv) {
cb78b285 650 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
651 mempool_free(rq, q->rq.rq_pool);
652 return NULL;
653 }
4aff5e23 654 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 655 }
1da177e4 656
cb98fc8b 657 return rq;
1da177e4
LT
658}
659
660/*
661 * ioc_batching returns true if the ioc is a valid batching request and
662 * should be given priority access to a request.
663 */
165125e1 664static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
665{
666 if (!ioc)
667 return 0;
668
669 /*
670 * Make sure the process is able to allocate at least 1 request
671 * even if the batch times out, otherwise we could theoretically
672 * lose wakeups.
673 */
674 return ioc->nr_batch_requests == q->nr_batching ||
675 (ioc->nr_batch_requests > 0
676 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
677}
678
679/*
680 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
681 * will cause the process to be a "batcher" on all queues in the system. This
682 * is the behaviour we want though - once it gets a wakeup it should be given
683 * a nice run.
684 */
165125e1 685static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
686{
687 if (!ioc || ioc_batching(q, ioc))
688 return;
689
690 ioc->nr_batch_requests = q->nr_batching;
691 ioc->last_waited = jiffies;
692}
693
165125e1 694static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
695{
696 struct request_list *rl = &q->rq;
697
698 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 699 blk_clear_queue_congested(q, rw);
1da177e4
LT
700
701 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
702 if (waitqueue_active(&rl->wait[rw]))
703 wake_up(&rl->wait[rw]);
704
705 blk_clear_queue_full(q, rw);
706 }
707}
708
709/*
710 * A request has just been released. Account for it, update the full and
711 * congestion status, wake up any waiters. Called under q->queue_lock.
712 */
165125e1 713static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
714{
715 struct request_list *rl = &q->rq;
716
717 rl->count[rw]--;
cb98fc8b
TH
718 if (priv)
719 rl->elvpriv--;
1da177e4
LT
720
721 __freed_request(q, rw);
722
723 if (unlikely(rl->starved[rw ^ 1]))
724 __freed_request(q, rw ^ 1);
1da177e4
LT
725}
726
727#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
728/*
d6344532
NP
729 * Get a free request, queue_lock must be held.
730 * Returns NULL on failure, with queue_lock held.
731 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 732 */
165125e1 733static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 734 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
735{
736 struct request *rq = NULL;
737 struct request_list *rl = &q->rq;
88ee5ef1 738 struct io_context *ioc = NULL;
7749a8d4 739 const int rw = rw_flags & 0x01;
88ee5ef1
JA
740 int may_queue, priv;
741
7749a8d4 742 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
743 if (may_queue == ELV_MQUEUE_NO)
744 goto rq_starved;
745
746 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
747 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 748 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
749 /*
750 * The queue will fill after this allocation, so set
751 * it as full, and mark this process as "batching".
752 * This process will be allowed to complete a batch of
753 * requests, others will be blocked.
754 */
755 if (!blk_queue_full(q, rw)) {
756 ioc_set_batching(q, ioc);
757 blk_set_queue_full(q, rw);
758 } else {
759 if (may_queue != ELV_MQUEUE_MUST
760 && !ioc_batching(q, ioc)) {
761 /*
762 * The queue is full and the allocating
763 * process is not a "batcher", and not
764 * exempted by the IO scheduler
765 */
766 goto out;
767 }
768 }
1da177e4 769 }
79e2de4b 770 blk_set_queue_congested(q, rw);
1da177e4
LT
771 }
772
082cf69e
JA
773 /*
774 * Only allow batching queuers to allocate up to 50% over the defined
775 * limit of requests, otherwise we could have thousands of requests
776 * allocated with any setting of ->nr_requests
777 */
fd782a4a 778 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 779 goto out;
fd782a4a 780
1da177e4
LT
781 rl->count[rw]++;
782 rl->starved[rw] = 0;
cb98fc8b 783
64521d1a 784 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
785 if (priv)
786 rl->elvpriv++;
787
1da177e4
LT
788 spin_unlock_irq(q->queue_lock);
789
7749a8d4 790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 791 if (unlikely(!rq)) {
1da177e4
LT
792 /*
793 * Allocation failed presumably due to memory. Undo anything
794 * we might have messed up.
795 *
796 * Allocating task should really be put onto the front of the
797 * wait queue, but this is pretty rare.
798 */
799 spin_lock_irq(q->queue_lock);
cb98fc8b 800 freed_request(q, rw, priv);
1da177e4
LT
801
802 /*
803 * in the very unlikely event that allocation failed and no
804 * requests for this direction was pending, mark us starved
805 * so that freeing of a request in the other direction will
806 * notice us. another possible fix would be to split the
807 * rq mempool into READ and WRITE
808 */
809rq_starved:
810 if (unlikely(rl->count[rw] == 0))
811 rl->starved[rw] = 1;
812
1da177e4
LT
813 goto out;
814 }
815
88ee5ef1
JA
816 /*
817 * ioc may be NULL here, and ioc_batching will be false. That's
818 * OK, if the queue is under the request limit then requests need
819 * not count toward the nr_batch_requests limit. There will always
820 * be some limit enforced by BLK_BATCH_TIME.
821 */
1da177e4
LT
822 if (ioc_batching(q, ioc))
823 ioc->nr_batch_requests--;
6728cb0e 824
2056a782 825 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 826out:
1da177e4
LT
827 return rq;
828}
829
830/*
831 * No available requests for this queue, unplug the device and wait for some
832 * requests to become available.
d6344532
NP
833 *
834 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 835 */
165125e1 836static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 837 struct bio *bio)
1da177e4 838{
7749a8d4 839 const int rw = rw_flags & 0x01;
1da177e4
LT
840 struct request *rq;
841
7749a8d4 842 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
843 while (!rq) {
844 DEFINE_WAIT(wait);
05caf8db 845 struct io_context *ioc;
1da177e4
LT
846 struct request_list *rl = &q->rq;
847
848 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
849 TASK_UNINTERRUPTIBLE);
850
05caf8db 851 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
1da177e4 852
05caf8db
ZY
853 __generic_unplug_device(q);
854 spin_unlock_irq(q->queue_lock);
855 io_schedule();
1da177e4 856
05caf8db
ZY
857 /*
858 * After sleeping, we become a "batching" process and
859 * will be able to allocate at least one request, and
860 * up to a big batch of them for a small period time.
861 * See ioc_batching, ioc_set_batching
862 */
863 ioc = current_io_context(GFP_NOIO, q->node);
864 ioc_set_batching(q, ioc);
d6344532 865
05caf8db 866 spin_lock_irq(q->queue_lock);
1da177e4 867 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
868
869 rq = get_request(q, rw_flags, bio, GFP_NOIO);
870 };
1da177e4
LT
871
872 return rq;
873}
874
165125e1 875struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
876{
877 struct request *rq;
878
879 BUG_ON(rw != READ && rw != WRITE);
880
d6344532
NP
881 spin_lock_irq(q->queue_lock);
882 if (gfp_mask & __GFP_WAIT) {
22e2c507 883 rq = get_request_wait(q, rw, NULL);
d6344532 884 } else {
22e2c507 885 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
886 if (!rq)
887 spin_unlock_irq(q->queue_lock);
888 }
889 /* q->queue_lock is unlocked at this point */
1da177e4
LT
890
891 return rq;
892}
1da177e4
LT
893EXPORT_SYMBOL(blk_get_request);
894
dc72ef4a
JA
895/**
896 * blk_start_queueing - initiate dispatch of requests to device
897 * @q: request queue to kick into gear
898 *
899 * This is basically a helper to remove the need to know whether a queue
900 * is plugged or not if someone just wants to initiate dispatch of requests
80a4b58e
JA
901 * for this queue. Should be used to start queueing on a device outside
902 * of ->request_fn() context. Also see @blk_run_queue.
dc72ef4a
JA
903 *
904 * The queue lock must be held with interrupts disabled.
905 */
165125e1 906void blk_start_queueing(struct request_queue *q)
dc72ef4a 907{
336c3d8c
EO
908 if (!blk_queue_plugged(q)) {
909 if (unlikely(blk_queue_stopped(q)))
910 return;
dc72ef4a 911 q->request_fn(q);
336c3d8c 912 } else
dc72ef4a
JA
913 __generic_unplug_device(q);
914}
915EXPORT_SYMBOL(blk_start_queueing);
916
1da177e4
LT
917/**
918 * blk_requeue_request - put a request back on queue
919 * @q: request queue where request should be inserted
920 * @rq: request to be inserted
921 *
922 * Description:
923 * Drivers often keep queueing requests until the hardware cannot accept
924 * more, when that condition happens we need to put the request back
925 * on the queue. Must be called with queue lock held.
926 */
165125e1 927void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 928{
242f9dcb
JA
929 blk_delete_timer(rq);
930 blk_clear_rq_complete(rq);
2056a782
JA
931 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
932
1da177e4
LT
933 if (blk_rq_tagged(rq))
934 blk_queue_end_tag(q, rq);
935
936 elv_requeue_request(q, rq);
937}
1da177e4
LT
938EXPORT_SYMBOL(blk_requeue_request);
939
940/**
710027a4 941 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
942 * @q: request queue where request should be inserted
943 * @rq: request to be inserted
944 * @at_head: insert request at head or tail of queue
945 * @data: private data
1da177e4
LT
946 *
947 * Description:
948 * Many block devices need to execute commands asynchronously, so they don't
949 * block the whole kernel from preemption during request execution. This is
950 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
951 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
952 * be scheduled for actual execution by the request queue.
1da177e4
LT
953 *
954 * We have the option of inserting the head or the tail of the queue.
955 * Typically we use the tail for new ioctls and so forth. We use the head
956 * of the queue for things like a QUEUE_FULL message from a device, or a
957 * host that is unable to accept a particular command.
958 */
165125e1 959void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 960 int at_head, void *data)
1da177e4 961{
867d1191 962 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
963 unsigned long flags;
964
965 /*
966 * tell I/O scheduler that this isn't a regular read/write (ie it
967 * must not attempt merges on this) and that it acts as a soft
968 * barrier
969 */
4aff5e23
JA
970 rq->cmd_type = REQ_TYPE_SPECIAL;
971 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
972
973 rq->special = data;
974
975 spin_lock_irqsave(q->queue_lock, flags);
976
977 /*
978 * If command is tagged, release the tag
979 */
867d1191
TH
980 if (blk_rq_tagged(rq))
981 blk_queue_end_tag(q, rq);
1da177e4 982
b238b3d4 983 drive_stat_acct(rq, 1);
867d1191 984 __elv_add_request(q, rq, where, 0);
dc72ef4a 985 blk_start_queueing(q);
1da177e4
LT
986 spin_unlock_irqrestore(q->queue_lock, flags);
987}
1da177e4
LT
988EXPORT_SYMBOL(blk_insert_request);
989
1da177e4
LT
990/*
991 * add-request adds a request to the linked list.
992 * queue lock is held and interrupts disabled, as we muck with the
993 * request queue list.
994 */
6728cb0e 995static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 996{
b238b3d4 997 drive_stat_acct(req, 1);
1da177e4 998
1da177e4
LT
999 /*
1000 * elevator indicated where it wants this request to be
1001 * inserted at elevator_merge time
1002 */
1003 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1004}
6728cb0e 1005
074a7aca
TH
1006static void part_round_stats_single(int cpu, struct hd_struct *part,
1007 unsigned long now)
1008{
1009 if (now == part->stamp)
1010 return;
1011
1012 if (part->in_flight) {
1013 __part_stat_add(cpu, part, time_in_queue,
1014 part->in_flight * (now - part->stamp));
1015 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1016 }
1017 part->stamp = now;
1018}
1019
1020/**
496aa8a9
RD
1021 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1022 * @cpu: cpu number for stats access
1023 * @part: target partition
1da177e4
LT
1024 *
1025 * The average IO queue length and utilisation statistics are maintained
1026 * by observing the current state of the queue length and the amount of
1027 * time it has been in this state for.
1028 *
1029 * Normally, that accounting is done on IO completion, but that can result
1030 * in more than a second's worth of IO being accounted for within any one
1031 * second, leading to >100% utilisation. To deal with that, we call this
1032 * function to do a round-off before returning the results when reading
1033 * /proc/diskstats. This accounts immediately for all queue usage up to
1034 * the current jiffies and restarts the counters again.
1035 */
c9959059 1036void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1037{
1038 unsigned long now = jiffies;
1039
074a7aca
TH
1040 if (part->partno)
1041 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1042 part_round_stats_single(cpu, part, now);
6f2576af 1043}
074a7aca 1044EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1045
1da177e4
LT
1046/*
1047 * queue lock must be held
1048 */
165125e1 1049void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1050{
1da177e4
LT
1051 if (unlikely(!q))
1052 return;
1053 if (unlikely(--req->ref_count))
1054 return;
1055
8922e16c
TH
1056 elv_completed_request(q, req);
1057
1da177e4
LT
1058 /*
1059 * Request may not have originated from ll_rw_blk. if not,
1060 * it didn't come out of our reserved rq pools
1061 */
49171e5c 1062 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1063 int rw = rq_data_dir(req);
4aff5e23 1064 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1065
1da177e4 1066 BUG_ON(!list_empty(&req->queuelist));
9817064b 1067 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1068
1069 blk_free_request(q, req);
cb98fc8b 1070 freed_request(q, rw, priv);
1da177e4
LT
1071 }
1072}
6e39b69e
MC
1073EXPORT_SYMBOL_GPL(__blk_put_request);
1074
1da177e4
LT
1075void blk_put_request(struct request *req)
1076{
8922e16c 1077 unsigned long flags;
165125e1 1078 struct request_queue *q = req->q;
8922e16c 1079
52a93ba8
FT
1080 spin_lock_irqsave(q->queue_lock, flags);
1081 __blk_put_request(q, req);
1082 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1083}
1da177e4
LT
1084EXPORT_SYMBOL(blk_put_request);
1085
86db1e29 1086void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1087{
c7c22e4d 1088 req->cpu = bio->bi_comp_cpu;
4aff5e23 1089 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1090
1091 /*
1092 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1093 */
1094 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1095 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1096
1097 /*
1098 * REQ_BARRIER implies no merging, but lets make it explicit
1099 */
fb2dce86 1100 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1101 req->cmd_flags |= REQ_DISCARD;
1102 if (bio_barrier(bio))
1103 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1104 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1105 } else if (unlikely(bio_barrier(bio)))
1106 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1107
b31dc66a 1108 if (bio_sync(bio))
4aff5e23 1109 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1110 if (bio_rw_meta(bio))
1111 req->cmd_flags |= REQ_RW_META;
b31dc66a 1112
52d9e675
TH
1113 req->errors = 0;
1114 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1115 req->ioprio = bio_prio(bio);
52d9e675 1116 req->start_time = jiffies;
bc1c56fd 1117 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1118}
1119
165125e1 1120static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1121{
450991bc 1122 struct request *req;
fb2dce86 1123 int el_ret, nr_sectors, barrier, discard, err;
51da90fc
JA
1124 const unsigned short prio = bio_prio(bio);
1125 const int sync = bio_sync(bio);
7749a8d4 1126 int rw_flags;
1da177e4 1127
1da177e4 1128 nr_sectors = bio_sectors(bio);
1da177e4
LT
1129
1130 /*
1131 * low level driver can indicate that it wants pages above a
1132 * certain limit bounced to low memory (ie for highmem, or even
1133 * ISA dma in theory)
1134 */
1135 blk_queue_bounce(q, &bio);
1136
1da177e4 1137 barrier = bio_barrier(bio);
e17fc0a1
DW
1138 if (unlikely(barrier) && bio_has_data(bio) &&
1139 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1140 err = -EOPNOTSUPP;
1141 goto end_io;
1142 }
1143
fb2dce86
DW
1144 discard = bio_discard(bio);
1145 if (unlikely(discard) && !q->prepare_discard_fn) {
1146 err = -EOPNOTSUPP;
1147 goto end_io;
1148 }
1149
1da177e4
LT
1150 spin_lock_irq(q->queue_lock);
1151
450991bc 1152 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1153 goto get_rq;
1154
1155 el_ret = elv_merge(q, &req, bio);
1156 switch (el_ret) {
6728cb0e
JA
1157 case ELEVATOR_BACK_MERGE:
1158 BUG_ON(!rq_mergeable(req));
1da177e4 1159
6728cb0e
JA
1160 if (!ll_back_merge_fn(q, req, bio))
1161 break;
1da177e4 1162
6728cb0e 1163 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1164
6728cb0e
JA
1165 req->biotail->bi_next = bio;
1166 req->biotail = bio;
1167 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1168 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1169 if (!blk_rq_cpu_valid(req))
1170 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1171 drive_stat_acct(req, 0);
1172 if (!attempt_back_merge(q, req))
1173 elv_merged_request(q, req, el_ret);
1174 goto out;
1da177e4 1175
6728cb0e
JA
1176 case ELEVATOR_FRONT_MERGE:
1177 BUG_ON(!rq_mergeable(req));
1da177e4 1178
6728cb0e
JA
1179 if (!ll_front_merge_fn(q, req, bio))
1180 break;
1da177e4 1181
6728cb0e 1182 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1183
6728cb0e
JA
1184 bio->bi_next = req->bio;
1185 req->bio = bio;
1da177e4 1186
6728cb0e
JA
1187 /*
1188 * may not be valid. if the low level driver said
1189 * it didn't need a bounce buffer then it better
1190 * not touch req->buffer either...
1191 */
1192 req->buffer = bio_data(bio);
1193 req->current_nr_sectors = bio_cur_sectors(bio);
1194 req->hard_cur_sectors = req->current_nr_sectors;
1195 req->sector = req->hard_sector = bio->bi_sector;
1196 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1197 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1198 if (!blk_rq_cpu_valid(req))
1199 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1200 drive_stat_acct(req, 0);
1201 if (!attempt_front_merge(q, req))
1202 elv_merged_request(q, req, el_ret);
1203 goto out;
1204
1205 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1206 default:
1207 ;
1da177e4
LT
1208 }
1209
450991bc 1210get_rq:
7749a8d4
JA
1211 /*
1212 * This sync check and mask will be re-done in init_request_from_bio(),
1213 * but we need to set it earlier to expose the sync flag to the
1214 * rq allocator and io schedulers.
1215 */
1216 rw_flags = bio_data_dir(bio);
1217 if (sync)
1218 rw_flags |= REQ_RW_SYNC;
1219
1da177e4 1220 /*
450991bc 1221 * Grab a free request. This is might sleep but can not fail.
d6344532 1222 * Returns with the queue unlocked.
450991bc 1223 */
7749a8d4 1224 req = get_request_wait(q, rw_flags, bio);
d6344532 1225
450991bc
NP
1226 /*
1227 * After dropping the lock and possibly sleeping here, our request
1228 * may now be mergeable after it had proven unmergeable (above).
1229 * We don't worry about that case for efficiency. It won't happen
1230 * often, and the elevators are able to handle it.
1da177e4 1231 */
52d9e675 1232 init_request_from_bio(req, bio);
1da177e4 1233
450991bc 1234 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1235 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1236 bio_flagged(bio, BIO_CPU_AFFINE))
1237 req->cpu = blk_cpu_to_group(smp_processor_id());
450991bc
NP
1238 if (elv_queue_empty(q))
1239 blk_plug_device(q);
1da177e4
LT
1240 add_request(q, req);
1241out:
4a534f93 1242 if (sync)
1da177e4 1243 __generic_unplug_device(q);
1da177e4
LT
1244 spin_unlock_irq(q->queue_lock);
1245 return 0;
1246
1247end_io:
6712ecf8 1248 bio_endio(bio, err);
1da177e4
LT
1249 return 0;
1250}
1251
1252/*
1253 * If bio->bi_dev is a partition, remap the location
1254 */
1255static inline void blk_partition_remap(struct bio *bio)
1256{
1257 struct block_device *bdev = bio->bi_bdev;
1258
bf2de6f5 1259 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1260 struct hd_struct *p = bdev->bd_part;
1261
1da177e4
LT
1262 bio->bi_sector += p->start_sect;
1263 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1264
1265 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1266 bdev->bd_dev, bio->bi_sector,
1267 bio->bi_sector - p->start_sect);
1da177e4
LT
1268 }
1269}
1270
1da177e4
LT
1271static void handle_bad_sector(struct bio *bio)
1272{
1273 char b[BDEVNAME_SIZE];
1274
1275 printk(KERN_INFO "attempt to access beyond end of device\n");
1276 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1277 bdevname(bio->bi_bdev, b),
1278 bio->bi_rw,
1279 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1280 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1281
1282 set_bit(BIO_EOF, &bio->bi_flags);
1283}
1284
c17bb495
AM
1285#ifdef CONFIG_FAIL_MAKE_REQUEST
1286
1287static DECLARE_FAULT_ATTR(fail_make_request);
1288
1289static int __init setup_fail_make_request(char *str)
1290{
1291 return setup_fault_attr(&fail_make_request, str);
1292}
1293__setup("fail_make_request=", setup_fail_make_request);
1294
1295static int should_fail_request(struct bio *bio)
1296{
eddb2e26
TH
1297 struct hd_struct *part = bio->bi_bdev->bd_part;
1298
1299 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1300 return should_fail(&fail_make_request, bio->bi_size);
1301
1302 return 0;
1303}
1304
1305static int __init fail_make_request_debugfs(void)
1306{
1307 return init_fault_attr_dentries(&fail_make_request,
1308 "fail_make_request");
1309}
1310
1311late_initcall(fail_make_request_debugfs);
1312
1313#else /* CONFIG_FAIL_MAKE_REQUEST */
1314
1315static inline int should_fail_request(struct bio *bio)
1316{
1317 return 0;
1318}
1319
1320#endif /* CONFIG_FAIL_MAKE_REQUEST */
1321
c07e2b41
JA
1322/*
1323 * Check whether this bio extends beyond the end of the device.
1324 */
1325static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1326{
1327 sector_t maxsector;
1328
1329 if (!nr_sectors)
1330 return 0;
1331
1332 /* Test device or partition size, when known. */
1333 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1334 if (maxsector) {
1335 sector_t sector = bio->bi_sector;
1336
1337 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1338 /*
1339 * This may well happen - the kernel calls bread()
1340 * without checking the size of the device, e.g., when
1341 * mounting a device.
1342 */
1343 handle_bad_sector(bio);
1344 return 1;
1345 }
1346 }
1347
1348 return 0;
1349}
1350
1da177e4 1351/**
710027a4 1352 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1353 * @bio: The bio describing the location in memory and on the device.
1354 *
1355 * generic_make_request() is used to make I/O requests of block
1356 * devices. It is passed a &struct bio, which describes the I/O that needs
1357 * to be done.
1358 *
1359 * generic_make_request() does not return any status. The
1360 * success/failure status of the request, along with notification of
1361 * completion, is delivered asynchronously through the bio->bi_end_io
1362 * function described (one day) else where.
1363 *
1364 * The caller of generic_make_request must make sure that bi_io_vec
1365 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1366 * set to describe the device address, and the
1367 * bi_end_io and optionally bi_private are set to describe how
1368 * completion notification should be signaled.
1369 *
1370 * generic_make_request and the drivers it calls may use bi_next if this
1371 * bio happens to be merged with someone else, and may change bi_dev and
1372 * bi_sector for remaps as it sees fit. So the values of these fields
1373 * should NOT be depended on after the call to generic_make_request.
1374 */
d89d8796 1375static inline void __generic_make_request(struct bio *bio)
1da177e4 1376{
165125e1 1377 struct request_queue *q;
5ddfe969 1378 sector_t old_sector;
1da177e4 1379 int ret, nr_sectors = bio_sectors(bio);
2056a782 1380 dev_t old_dev;
51fd77bd 1381 int err = -EIO;
1da177e4
LT
1382
1383 might_sleep();
1da177e4 1384
c07e2b41
JA
1385 if (bio_check_eod(bio, nr_sectors))
1386 goto end_io;
1da177e4
LT
1387
1388 /*
1389 * Resolve the mapping until finished. (drivers are
1390 * still free to implement/resolve their own stacking
1391 * by explicitly returning 0)
1392 *
1393 * NOTE: we don't repeat the blk_size check for each new device.
1394 * Stacking drivers are expected to know what they are doing.
1395 */
5ddfe969 1396 old_sector = -1;
2056a782 1397 old_dev = 0;
1da177e4
LT
1398 do {
1399 char b[BDEVNAME_SIZE];
1400
1401 q = bdev_get_queue(bio->bi_bdev);
1402 if (!q) {
1403 printk(KERN_ERR
1404 "generic_make_request: Trying to access "
1405 "nonexistent block-device %s (%Lu)\n",
1406 bdevname(bio->bi_bdev, b),
1407 (long long) bio->bi_sector);
1408end_io:
51fd77bd 1409 bio_endio(bio, err);
1da177e4
LT
1410 break;
1411 }
1412
4fa253f3 1413 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1414 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1415 bdevname(bio->bi_bdev, b),
1416 bio_sectors(bio),
1417 q->max_hw_sectors);
1418 goto end_io;
1419 }
1420
fde6ad22 1421 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1422 goto end_io;
1423
c17bb495
AM
1424 if (should_fail_request(bio))
1425 goto end_io;
1426
1da177e4
LT
1427 /*
1428 * If this device has partitions, remap block n
1429 * of partition p to block n+start(p) of the disk.
1430 */
1431 blk_partition_remap(bio);
1432
7ba1ba12
MP
1433 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1434 goto end_io;
1435
5ddfe969 1436 if (old_sector != -1)
4fa253f3 1437 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1438 old_sector);
2056a782
JA
1439
1440 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1441
5ddfe969 1442 old_sector = bio->bi_sector;
2056a782
JA
1443 old_dev = bio->bi_bdev->bd_dev;
1444
c07e2b41
JA
1445 if (bio_check_eod(bio, nr_sectors))
1446 goto end_io;
fb2dce86
DW
1447 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1448 (bio_discard(bio) && !q->prepare_discard_fn)) {
51fd77bd
JA
1449 err = -EOPNOTSUPP;
1450 goto end_io;
1451 }
5ddfe969 1452
1da177e4
LT
1453 ret = q->make_request_fn(q, bio);
1454 } while (ret);
1455}
1456
d89d8796
NB
1457/*
1458 * We only want one ->make_request_fn to be active at a time,
1459 * else stack usage with stacked devices could be a problem.
1460 * So use current->bio_{list,tail} to keep a list of requests
1461 * submited by a make_request_fn function.
1462 * current->bio_tail is also used as a flag to say if
1463 * generic_make_request is currently active in this task or not.
1464 * If it is NULL, then no make_request is active. If it is non-NULL,
1465 * then a make_request is active, and new requests should be added
1466 * at the tail
1467 */
1468void generic_make_request(struct bio *bio)
1469{
1470 if (current->bio_tail) {
1471 /* make_request is active */
1472 *(current->bio_tail) = bio;
1473 bio->bi_next = NULL;
1474 current->bio_tail = &bio->bi_next;
1475 return;
1476 }
1477 /* following loop may be a bit non-obvious, and so deserves some
1478 * explanation.
1479 * Before entering the loop, bio->bi_next is NULL (as all callers
1480 * ensure that) so we have a list with a single bio.
1481 * We pretend that we have just taken it off a longer list, so
1482 * we assign bio_list to the next (which is NULL) and bio_tail
1483 * to &bio_list, thus initialising the bio_list of new bios to be
1484 * added. __generic_make_request may indeed add some more bios
1485 * through a recursive call to generic_make_request. If it
1486 * did, we find a non-NULL value in bio_list and re-enter the loop
1487 * from the top. In this case we really did just take the bio
1488 * of the top of the list (no pretending) and so fixup bio_list and
1489 * bio_tail or bi_next, and call into __generic_make_request again.
1490 *
1491 * The loop was structured like this to make only one call to
1492 * __generic_make_request (which is important as it is large and
1493 * inlined) and to keep the structure simple.
1494 */
1495 BUG_ON(bio->bi_next);
1496 do {
1497 current->bio_list = bio->bi_next;
1498 if (bio->bi_next == NULL)
1499 current->bio_tail = &current->bio_list;
1500 else
1501 bio->bi_next = NULL;
1502 __generic_make_request(bio);
1503 bio = current->bio_list;
1504 } while (bio);
1505 current->bio_tail = NULL; /* deactivate */
1506}
1da177e4
LT
1507EXPORT_SYMBOL(generic_make_request);
1508
1509/**
710027a4 1510 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1511 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1512 * @bio: The &struct bio which describes the I/O
1513 *
1514 * submit_bio() is very similar in purpose to generic_make_request(), and
1515 * uses that function to do most of the work. Both are fairly rough
710027a4 1516 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1517 *
1518 */
1519void submit_bio(int rw, struct bio *bio)
1520{
1521 int count = bio_sectors(bio);
1522
22e2c507 1523 bio->bi_rw |= rw;
1da177e4 1524
bf2de6f5
JA
1525 /*
1526 * If it's a regular read/write or a barrier with data attached,
1527 * go through the normal accounting stuff before submission.
1528 */
a9c701e5 1529 if (bio_has_data(bio)) {
bf2de6f5
JA
1530 if (rw & WRITE) {
1531 count_vm_events(PGPGOUT, count);
1532 } else {
1533 task_io_account_read(bio->bi_size);
1534 count_vm_events(PGPGIN, count);
1535 }
1536
1537 if (unlikely(block_dump)) {
1538 char b[BDEVNAME_SIZE];
1539 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1540 current->comm, task_pid_nr(current),
bf2de6f5
JA
1541 (rw & WRITE) ? "WRITE" : "READ",
1542 (unsigned long long)bio->bi_sector,
6728cb0e 1543 bdevname(bio->bi_bdev, b));
bf2de6f5 1544 }
1da177e4
LT
1545 }
1546
1547 generic_make_request(bio);
1548}
1da177e4
LT
1549EXPORT_SYMBOL(submit_bio);
1550
82124d60
KU
1551/**
1552 * blk_rq_check_limits - Helper function to check a request for the queue limit
1553 * @q: the queue
1554 * @rq: the request being checked
1555 *
1556 * Description:
1557 * @rq may have been made based on weaker limitations of upper-level queues
1558 * in request stacking drivers, and it may violate the limitation of @q.
1559 * Since the block layer and the underlying device driver trust @rq
1560 * after it is inserted to @q, it should be checked against @q before
1561 * the insertion using this generic function.
1562 *
1563 * This function should also be useful for request stacking drivers
1564 * in some cases below, so export this fuction.
1565 * Request stacking drivers like request-based dm may change the queue
1566 * limits while requests are in the queue (e.g. dm's table swapping).
1567 * Such request stacking drivers should check those requests agaist
1568 * the new queue limits again when they dispatch those requests,
1569 * although such checkings are also done against the old queue limits
1570 * when submitting requests.
1571 */
1572int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1573{
1574 if (rq->nr_sectors > q->max_sectors ||
1575 rq->data_len > q->max_hw_sectors << 9) {
1576 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1577 return -EIO;
1578 }
1579
1580 /*
1581 * queue's settings related to segment counting like q->bounce_pfn
1582 * may differ from that of other stacking queues.
1583 * Recalculate it to check the request correctly on this queue's
1584 * limitation.
1585 */
1586 blk_recalc_rq_segments(rq);
1587 if (rq->nr_phys_segments > q->max_phys_segments ||
1588 rq->nr_phys_segments > q->max_hw_segments) {
1589 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1590 return -EIO;
1591 }
1592
1593 return 0;
1594}
1595EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1596
1597/**
1598 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1599 * @q: the queue to submit the request
1600 * @rq: the request being queued
1601 */
1602int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1603{
1604 unsigned long flags;
1605
1606 if (blk_rq_check_limits(q, rq))
1607 return -EIO;
1608
1609#ifdef CONFIG_FAIL_MAKE_REQUEST
1610 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1611 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1612 return -EIO;
1613#endif
1614
1615 spin_lock_irqsave(q->queue_lock, flags);
1616
1617 /*
1618 * Submitting request must be dequeued before calling this function
1619 * because it will be linked to another request_queue
1620 */
1621 BUG_ON(blk_queued_rq(rq));
1622
1623 drive_stat_acct(rq, 1);
1624 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1625
1626 spin_unlock_irqrestore(q->queue_lock, flags);
1627
1628 return 0;
1629}
1630EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1631
3bcddeac
KU
1632/**
1633 * __end_that_request_first - end I/O on a request
1634 * @req: the request being processed
710027a4 1635 * @error: %0 for success, < %0 for error
3bcddeac
KU
1636 * @nr_bytes: number of bytes to complete
1637 *
1638 * Description:
1639 * Ends I/O on a number of bytes attached to @req, and sets it up
1640 * for the next range of segments (if any) in the cluster.
1641 *
1642 * Return:
710027a4
RD
1643 * %0 - we are done with this request, call end_that_request_last()
1644 * %1 - still buffers pending for this request
3bcddeac 1645 **/
5450d3e1 1646static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1647 int nr_bytes)
1648{
5450d3e1 1649 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1650 struct bio *bio;
1651
2056a782
JA
1652 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1653
1da177e4 1654 /*
710027a4 1655 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1656 * sense key with us all the way through
1657 */
1658 if (!blk_pc_request(req))
1659 req->errors = 0;
1660
6728cb0e
JA
1661 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1662 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1663 req->rq_disk ? req->rq_disk->disk_name : "?",
1664 (unsigned long long)req->sector);
1665 }
1666
d72d904a 1667 if (blk_fs_request(req) && req->rq_disk) {
a362357b 1668 const int rw = rq_data_dir(req);
e71bf0d0 1669 struct hd_struct *part;
c9959059 1670 int cpu;
a362357b 1671
074a7aca 1672 cpu = part_stat_lock();
e71bf0d0 1673 part = disk_map_sector_rcu(req->rq_disk, req->sector);
074a7aca
TH
1674 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1675 part_stat_unlock();
d72d904a
JA
1676 }
1677
1da177e4
LT
1678 total_bytes = bio_nbytes = 0;
1679 while ((bio = req->bio) != NULL) {
1680 int nbytes;
1681
bf2de6f5
JA
1682 /*
1683 * For an empty barrier request, the low level driver must
1684 * store a potential error location in ->sector. We pass
1685 * that back up in ->bi_sector.
1686 */
1687 if (blk_empty_barrier(req))
1688 bio->bi_sector = req->sector;
1689
1da177e4
LT
1690 if (nr_bytes >= bio->bi_size) {
1691 req->bio = bio->bi_next;
1692 nbytes = bio->bi_size;
5bb23a68 1693 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1694 next_idx = 0;
1695 bio_nbytes = 0;
1696 } else {
1697 int idx = bio->bi_idx + next_idx;
1698
1699 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1700 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1701 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1702 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1703 break;
1704 }
1705
1706 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1707 BIO_BUG_ON(nbytes > bio->bi_size);
1708
1709 /*
1710 * not a complete bvec done
1711 */
1712 if (unlikely(nbytes > nr_bytes)) {
1713 bio_nbytes += nr_bytes;
1714 total_bytes += nr_bytes;
1715 break;
1716 }
1717
1718 /*
1719 * advance to the next vector
1720 */
1721 next_idx++;
1722 bio_nbytes += nbytes;
1723 }
1724
1725 total_bytes += nbytes;
1726 nr_bytes -= nbytes;
1727
6728cb0e
JA
1728 bio = req->bio;
1729 if (bio) {
1da177e4
LT
1730 /*
1731 * end more in this run, or just return 'not-done'
1732 */
1733 if (unlikely(nr_bytes <= 0))
1734 break;
1735 }
1736 }
1737
1738 /*
1739 * completely done
1740 */
1741 if (!req->bio)
1742 return 0;
1743
1744 /*
1745 * if the request wasn't completed, update state
1746 */
1747 if (bio_nbytes) {
5bb23a68 1748 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1749 bio->bi_idx += next_idx;
1750 bio_iovec(bio)->bv_offset += nr_bytes;
1751 bio_iovec(bio)->bv_len -= nr_bytes;
1752 }
1753
1754 blk_recalc_rq_sectors(req, total_bytes >> 9);
1755 blk_recalc_rq_segments(req);
1756 return 1;
1757}
1758
1da177e4
LT
1759/*
1760 * queue lock must be held
1761 */
5450d3e1 1762static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1763{
1764 struct gendisk *disk = req->rq_disk;
8ffdc655 1765
242f9dcb
JA
1766 blk_delete_timer(req);
1767
b8286239
KU
1768 if (blk_rq_tagged(req))
1769 blk_queue_end_tag(req->q, req);
1770
1771 if (blk_queued_rq(req))
1772 blkdev_dequeue_request(req);
1da177e4
LT
1773
1774 if (unlikely(laptop_mode) && blk_fs_request(req))
1775 laptop_io_completion();
1776
fd0ff8aa
JA
1777 /*
1778 * Account IO completion. bar_rq isn't accounted as a normal
1779 * IO on queueing nor completion. Accounting the containing
1780 * request is enough.
1781 */
1782 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1783 unsigned long duration = jiffies - req->start_time;
a362357b 1784 const int rw = rq_data_dir(req);
e71bf0d0 1785 struct hd_struct *part;
c9959059 1786 int cpu;
e71bf0d0 1787
074a7aca 1788 cpu = part_stat_lock();
e71bf0d0 1789 part = disk_map_sector_rcu(disk, req->sector);
a362357b 1790
074a7aca
TH
1791 part_stat_inc(cpu, part, ios[rw]);
1792 part_stat_add(cpu, part, ticks[rw], duration);
1793 part_round_stats(cpu, part);
1794 part_dec_in_flight(part);
e71bf0d0 1795
074a7aca 1796 part_stat_unlock();
1da177e4 1797 }
b8286239 1798
1da177e4 1799 if (req->end_io)
8ffdc655 1800 req->end_io(req, error);
b8286239
KU
1801 else {
1802 if (blk_bidi_rq(req))
1803 __blk_put_request(req->next_rq->q, req->next_rq);
1804
1da177e4 1805 __blk_put_request(req->q, req);
b8286239 1806 }
1da177e4
LT
1807}
1808
3b11313a
KU
1809/**
1810 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1811 * @rq: the request being processed
3b11313a
KU
1812 **/
1813unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1814{
1815 if (blk_fs_request(rq))
1816 return rq->hard_nr_sectors << 9;
1817
1818 return rq->data_len;
1819}
3b11313a
KU
1820EXPORT_SYMBOL_GPL(blk_rq_bytes);
1821
1822/**
1823 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1824 * @rq: the request being processed
3b11313a
KU
1825 **/
1826unsigned int blk_rq_cur_bytes(struct request *rq)
1827{
1828 if (blk_fs_request(rq))
1829 return rq->current_nr_sectors << 9;
1830
1831 if (rq->bio)
1832 return rq->bio->bi_size;
1833
1834 return rq->data_len;
1835}
1836EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285 1837
a0cd1285
JA
1838/**
1839 * end_request - end I/O on the current segment of the request
8f731f7d 1840 * @req: the request being processed
710027a4 1841 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1842 *
1843 * Description:
1844 * Ends I/O on the current segment of a request. If that is the only
1845 * remaining segment, the request is also completed and freed.
1846 *
710027a4
RD
1847 * This is a remnant of how older block drivers handled I/O completions.
1848 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1849 * they have a residual value to account for. For that case this function
1850 * isn't really useful, unless the residual just happens to be the
1851 * full current segment. In other words, don't use this function in new
d00e29fd 1852 * code. Use blk_end_request() or __blk_end_request() to end a request.
a0cd1285
JA
1853 **/
1854void end_request(struct request *req, int uptodate)
1855{
d00e29fd
KU
1856 int error = 0;
1857
1858 if (uptodate <= 0)
1859 error = uptodate ? uptodate : -EIO;
1860
1861 __blk_end_request(req, error, req->hard_cur_sectors << 9);
a0cd1285 1862}
1da177e4
LT
1863EXPORT_SYMBOL(end_request);
1864
32fab448
KU
1865static int end_that_request_data(struct request *rq, int error,
1866 unsigned int nr_bytes, unsigned int bidi_bytes)
1867{
1868 if (rq->bio) {
1869 if (__end_that_request_first(rq, error, nr_bytes))
1870 return 1;
1871
1872 /* Bidi request must be completed as a whole */
1873 if (blk_bidi_rq(rq) &&
1874 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1875 return 1;
1876 }
1877
1878 return 0;
1879}
1880
336cdb40 1881/**
e19a3ab0
KU
1882 * blk_end_io - Generic end_io function to complete a request.
1883 * @rq: the request being processed
710027a4 1884 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1885 * @nr_bytes: number of bytes to complete @rq
1886 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1887 * @drv_callback: function called between completion of bios in the request
1888 * and completion of the request.
710027a4 1889 * If the callback returns non %0, this helper returns without
e19a3ab0 1890 * completion of the request.
336cdb40
KU
1891 *
1892 * Description:
e3a04fe3 1893 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1894 * If @rq has leftover, sets it up for the next range of segments.
1895 *
1896 * Return:
710027a4
RD
1897 * %0 - we are done with this request
1898 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1899 **/
22b13210
JA
1900static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1901 unsigned int bidi_bytes,
1902 int (drv_callback)(struct request *))
336cdb40
KU
1903{
1904 struct request_queue *q = rq->q;
1905 unsigned long flags = 0UL;
336cdb40 1906
32fab448
KU
1907 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1908 return 1;
336cdb40 1909
e19a3ab0
KU
1910 /* Special feature for tricky drivers */
1911 if (drv_callback && drv_callback(rq))
1912 return 1;
1913
336cdb40
KU
1914 add_disk_randomness(rq->rq_disk);
1915
1916 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1917 end_that_request_last(rq, error);
336cdb40
KU
1918 spin_unlock_irqrestore(q->queue_lock, flags);
1919
1920 return 0;
1921}
e19a3ab0
KU
1922
1923/**
1924 * blk_end_request - Helper function for drivers to complete the request.
1925 * @rq: the request being processed
710027a4 1926 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1927 * @nr_bytes: number of bytes to complete
1928 *
1929 * Description:
1930 * Ends I/O on a number of bytes attached to @rq.
1931 * If @rq has leftover, sets it up for the next range of segments.
1932 *
1933 * Return:
710027a4
RD
1934 * %0 - we are done with this request
1935 * %1 - still buffers pending for this request
e19a3ab0 1936 **/
22b13210 1937int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1938{
e3a04fe3 1939 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1940}
336cdb40
KU
1941EXPORT_SYMBOL_GPL(blk_end_request);
1942
1943/**
1944 * __blk_end_request - Helper function for drivers to complete the request.
1945 * @rq: the request being processed
710027a4 1946 * @error: %0 for success, < %0 for error
336cdb40
KU
1947 * @nr_bytes: number of bytes to complete
1948 *
1949 * Description:
1950 * Must be called with queue lock held unlike blk_end_request().
1951 *
1952 * Return:
710027a4
RD
1953 * %0 - we are done with this request
1954 * %1 - still buffers pending for this request
336cdb40 1955 **/
22b13210 1956int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1957{
60540161 1958 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 1959 return 1;
336cdb40
KU
1960
1961 add_disk_randomness(rq->rq_disk);
1962
b8286239 1963 end_that_request_last(rq, error);
336cdb40
KU
1964
1965 return 0;
1966}
1967EXPORT_SYMBOL_GPL(__blk_end_request);
1968
e3a04fe3
KU
1969/**
1970 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1971 * @rq: the bidi request being processed
710027a4 1972 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1973 * @nr_bytes: number of bytes to complete @rq
1974 * @bidi_bytes: number of bytes to complete @rq->next_rq
1975 *
1976 * Description:
1977 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1978 *
1979 * Return:
710027a4
RD
1980 * %0 - we are done with this request
1981 * %1 - still buffers pending for this request
e3a04fe3 1982 **/
22b13210
JA
1983int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1984 unsigned int bidi_bytes)
e3a04fe3
KU
1985{
1986 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1987}
1988EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1989
32fab448
KU
1990/**
1991 * blk_update_request - Special helper function for request stacking drivers
1992 * @rq: the request being processed
1993 * @error: %0 for success, < %0 for error
1994 * @nr_bytes: number of bytes to complete @rq
1995 *
1996 * Description:
1997 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1998 * the request structure even if @rq doesn't have leftover.
1999 * If @rq has leftover, sets it up for the next range of segments.
2000 *
2001 * This special helper function is only for request stacking drivers
2002 * (e.g. request-based dm) so that they can handle partial completion.
2003 * Actual device drivers should use blk_end_request instead.
2004 */
2005void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2006{
2007 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2008 /*
2009 * These members are not updated in end_that_request_data()
2010 * when all bios are completed.
2011 * Update them so that the request stacking driver can find
2012 * how many bytes remain in the request later.
2013 */
2014 rq->nr_sectors = rq->hard_nr_sectors = 0;
2015 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2016 }
2017}
2018EXPORT_SYMBOL_GPL(blk_update_request);
2019
e19a3ab0
KU
2020/**
2021 * blk_end_request_callback - Special helper function for tricky drivers
2022 * @rq: the request being processed
710027a4 2023 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2024 * @nr_bytes: number of bytes to complete
2025 * @drv_callback: function called between completion of bios in the request
2026 * and completion of the request.
710027a4 2027 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2028 * completion of the request.
2029 *
2030 * Description:
2031 * Ends I/O on a number of bytes attached to @rq.
2032 * If @rq has leftover, sets it up for the next range of segments.
2033 *
2034 * This special helper function is used only for existing tricky drivers.
2035 * (e.g. cdrom_newpc_intr() of ide-cd)
2036 * This interface will be removed when such drivers are rewritten.
2037 * Don't use this interface in other places anymore.
2038 *
2039 * Return:
710027a4
RD
2040 * %0 - we are done with this request
2041 * %1 - this request is not freed yet.
2042 * this request still has pending buffers or
2043 * the driver doesn't want to finish this request yet.
e19a3ab0 2044 **/
22b13210
JA
2045int blk_end_request_callback(struct request *rq, int error,
2046 unsigned int nr_bytes,
e19a3ab0
KU
2047 int (drv_callback)(struct request *))
2048{
e3a04fe3 2049 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2050}
2051EXPORT_SYMBOL_GPL(blk_end_request_callback);
2052
86db1e29
JA
2053void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2054 struct bio *bio)
1da177e4 2055{
d628eaef
DW
2056 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2057 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2058 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2059
fb2dce86
DW
2060 if (bio_has_data(bio)) {
2061 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2062 rq->buffer = bio_data(bio);
2063 }
1da177e4
LT
2064 rq->current_nr_sectors = bio_cur_sectors(bio);
2065 rq->hard_cur_sectors = rq->current_nr_sectors;
2066 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2067 rq->data_len = bio->bi_size;
1da177e4
LT
2068
2069 rq->bio = rq->biotail = bio;
1da177e4 2070
66846572
N
2071 if (bio->bi_bdev)
2072 rq->rq_disk = bio->bi_bdev->bd_disk;
2073}
1da177e4 2074
ef9e3fac
KU
2075/**
2076 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2077 * @q : the queue of the device being checked
2078 *
2079 * Description:
2080 * Check if underlying low-level drivers of a device are busy.
2081 * If the drivers want to export their busy state, they must set own
2082 * exporting function using blk_queue_lld_busy() first.
2083 *
2084 * Basically, this function is used only by request stacking drivers
2085 * to stop dispatching requests to underlying devices when underlying
2086 * devices are busy. This behavior helps more I/O merging on the queue
2087 * of the request stacking driver and prevents I/O throughput regression
2088 * on burst I/O load.
2089 *
2090 * Return:
2091 * 0 - Not busy (The request stacking driver should dispatch request)
2092 * 1 - Busy (The request stacking driver should stop dispatching request)
2093 */
2094int blk_lld_busy(struct request_queue *q)
2095{
2096 if (q->lld_busy_fn)
2097 return q->lld_busy_fn(q);
2098
2099 return 0;
2100}
2101EXPORT_SYMBOL_GPL(blk_lld_busy);
2102
18887ad9 2103int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2104{
2105 return queue_work(kblockd_workqueue, work);
2106}
1da177e4
LT
2107EXPORT_SYMBOL(kblockd_schedule_work);
2108
19a75d83 2109void kblockd_flush_work(struct work_struct *work)
1da177e4 2110{
28e53bdd 2111 cancel_work_sync(work);
1da177e4 2112}
19a75d83 2113EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2114
2115int __init blk_dev_init(void)
2116{
2117 kblockd_workqueue = create_workqueue("kblockd");
2118 if (!kblockd_workqueue)
2119 panic("Failed to create kblockd\n");
2120
2121 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2122 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2123
8324aa91 2124 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2125 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2126
d38ecf93 2127 return 0;
1da177e4 2128}
1da177e4 2129