]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
block: refactor generic_make_request
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
1da177e4
LT
41/*
42 * For the allocated request tables
43 */
5ece6c52 44static struct kmem_cache *request_cachep;
1da177e4
LT
45
46/*
47 * For queue allocation
48 */
6728cb0e 49struct kmem_cache *blk_requestq_cachep;
1da177e4 50
1da177e4
LT
51/*
52 * Controlling structure to kblockd
53 */
ff856bad 54static struct workqueue_struct *kblockd_workqueue;
1da177e4 55
26b8256e
JA
56static void drive_stat_acct(struct request *rq, int new_io)
57{
28f13702 58 struct hd_struct *part;
26b8256e 59 int rw = rq_data_dir(rq);
c9959059 60 int cpu;
26b8256e 61
c2553b58 62 if (!blk_do_io_stat(rq))
26b8256e
JA
63 return;
64
074a7aca 65 cpu = part_stat_lock();
c9959059 66
09e099d4
JM
67 if (!new_io) {
68 part = rq->part;
074a7aca 69 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
70 } else {
71 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 72 if (!hd_struct_try_get(part)) {
09e099d4
JM
73 /*
74 * The partition is already being removed,
75 * the request will be accounted on the disk only
76 *
77 * We take a reference on disk->part0 although that
78 * partition will never be deleted, so we can treat
79 * it as any other partition.
80 */
81 part = &rq->rq_disk->part0;
6c23a968 82 hd_struct_get(part);
09e099d4 83 }
074a7aca 84 part_round_stats(cpu, part);
316d315b 85 part_inc_in_flight(part, rw);
09e099d4 86 rq->part = part;
26b8256e 87 }
e71bf0d0 88
074a7aca 89 part_stat_unlock();
26b8256e
JA
90}
91
8324aa91 92void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
93{
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105}
106
1da177e4
LT
107/**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info
113 *
114 * Will return NULL if the request queue cannot be located.
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
118 struct backing_dev_info *ret = NULL;
165125e1 119 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
120
121 if (q)
122 ret = &q->backing_dev_info;
123 return ret;
124}
1da177e4
LT
125EXPORT_SYMBOL(blk_get_backing_dev_info);
126
2a4aa30c 127void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 128{
1afb20f3
FT
129 memset(rq, 0, sizeof(*rq));
130
1da177e4 131 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 132 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 133 rq->cpu = -1;
63a71386 134 rq->q = q;
a2dec7b3 135 rq->__sector = (sector_t) -1;
2e662b65
JA
136 INIT_HLIST_NODE(&rq->hash);
137 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 138 rq->cmd = rq->__cmd;
e2494e1b 139 rq->cmd_len = BLK_MAX_CDB;
63a71386 140 rq->tag = -1;
1da177e4 141 rq->ref_count = 1;
b243ddcb 142 rq->start_time = jiffies;
9195291e 143 set_start_time_ns(rq);
09e099d4 144 rq->part = NULL;
1da177e4 145}
2a4aa30c 146EXPORT_SYMBOL(blk_rq_init);
1da177e4 147
5bb23a68
N
148static void req_bio_endio(struct request *rq, struct bio *bio,
149 unsigned int nbytes, int error)
1da177e4 150{
143a87f4
TH
151 if (error)
152 clear_bit(BIO_UPTODATE, &bio->bi_flags);
153 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
154 error = -EIO;
797e7dbb 155
143a87f4
TH
156 if (unlikely(nbytes > bio->bi_size)) {
157 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
158 __func__, nbytes, bio->bi_size);
159 nbytes = bio->bi_size;
5bb23a68 160 }
797e7dbb 161
143a87f4
TH
162 if (unlikely(rq->cmd_flags & REQ_QUIET))
163 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 164
143a87f4
TH
165 bio->bi_size -= nbytes;
166 bio->bi_sector += (nbytes >> 9);
7ba1ba12 167
143a87f4
TH
168 if (bio_integrity(bio))
169 bio_integrity_advance(bio, nbytes);
7ba1ba12 170
143a87f4
TH
171 /* don't actually finish bio if it's part of flush sequence */
172 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
173 bio_endio(bio, error);
1da177e4 174}
1da177e4 175
1da177e4
LT
176void blk_dump_rq_flags(struct request *rq, char *msg)
177{
178 int bit;
179
6728cb0e 180 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
181 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
182 rq->cmd_flags);
1da177e4 183
83096ebf
TH
184 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
185 (unsigned long long)blk_rq_pos(rq),
186 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 187 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 188 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 189
33659ebb 190 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 191 printk(KERN_INFO " cdb: ");
d34c87e4 192 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
193 printk("%02x ", rq->cmd[bit]);
194 printk("\n");
195 }
196}
1da177e4
LT
197EXPORT_SYMBOL(blk_dump_rq_flags);
198
3cca6dc1 199static void blk_delay_work(struct work_struct *work)
1da177e4 200{
3cca6dc1 201 struct request_queue *q;
1da177e4 202
3cca6dc1
JA
203 q = container_of(work, struct request_queue, delay_work.work);
204 spin_lock_irq(q->queue_lock);
24ecfbe2 205 __blk_run_queue(q);
3cca6dc1 206 spin_unlock_irq(q->queue_lock);
1da177e4 207}
1da177e4
LT
208
209/**
3cca6dc1
JA
210 * blk_delay_queue - restart queueing after defined interval
211 * @q: The &struct request_queue in question
212 * @msecs: Delay in msecs
1da177e4
LT
213 *
214 * Description:
3cca6dc1
JA
215 * Sometimes queueing needs to be postponed for a little while, to allow
216 * resources to come back. This function will make sure that queueing is
217 * restarted around the specified time.
218 */
219void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 220{
4521cc4e
JA
221 queue_delayed_work(kblockd_workqueue, &q->delay_work,
222 msecs_to_jiffies(msecs));
2ad8b1ef 223}
3cca6dc1 224EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 225
1da177e4
LT
226/**
227 * blk_start_queue - restart a previously stopped queue
165125e1 228 * @q: The &struct request_queue in question
1da177e4
LT
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
165125e1 235void blk_start_queue(struct request_queue *q)
1da177e4 236{
a038e253
PBG
237 WARN_ON(!irqs_disabled());
238
75ad23bc 239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 240 __blk_run_queue(q);
1da177e4 241}
1da177e4
LT
242EXPORT_SYMBOL(blk_start_queue);
243
244/**
245 * blk_stop_queue - stop a queue
165125e1 246 * @q: The &struct request_queue in question
1da177e4
LT
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
165125e1 258void blk_stop_queue(struct request_queue *q)
1da177e4 259{
ad3d9d7e 260 __cancel_delayed_work(&q->delay_work);
75ad23bc 261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
262}
263EXPORT_SYMBOL(blk_stop_queue);
264
265/**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
59c51591 274 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
da527770
VG
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevaotor_exit()
280 * and blk_throtl_exit() to be called with queue lock initialized.
281 *
1da177e4
LT
282 */
283void blk_sync_queue(struct request_queue *q)
284{
70ed28b9 285 del_timer_sync(&q->timeout);
3cca6dc1 286 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
287}
288EXPORT_SYMBOL(blk_sync_queue);
289
290/**
80a4b58e 291 * __blk_run_queue - run a single device queue
1da177e4 292 * @q: The queue to run
80a4b58e
JA
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 296 * held and interrupts disabled.
1da177e4 297 */
24ecfbe2 298void __blk_run_queue(struct request_queue *q)
1da177e4 299{
a538cd03
TH
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
c21e6beb 303 q->request_fn(q);
75ad23bc
NP
304}
305EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 306
24ecfbe2
CH
307/**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us.
314 */
315void blk_run_queue_async(struct request_queue *q)
316{
3ec717b7
SL
317 if (likely(!blk_queue_stopped(q))) {
318 __cancel_delayed_work(&q->delay_work);
24ecfbe2 319 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 320 }
24ecfbe2 321}
c21e6beb 322EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 323
75ad23bc
NP
324/**
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
80a4b58e
JA
327 *
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 330 * May be used to restart queueing when a request has completed.
75ad23bc
NP
331 */
332void blk_run_queue(struct request_queue *q)
333{
334 unsigned long flags;
335
336 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 337 __blk_run_queue(q);
1da177e4
LT
338 spin_unlock_irqrestore(q->queue_lock, flags);
339}
340EXPORT_SYMBOL(blk_run_queue);
341
165125e1 342void blk_put_queue(struct request_queue *q)
483f4afc
AV
343{
344 kobject_put(&q->kobj);
345}
d86e0e83 346EXPORT_SYMBOL(blk_put_queue);
483f4afc 347
c94a96ac
VG
348/*
349 * Note: If a driver supplied the queue lock, it should not zap that lock
350 * unexpectedly as some queue cleanup components like elevator_exit() and
351 * blk_throtl_exit() need queue lock.
352 */
6728cb0e 353void blk_cleanup_queue(struct request_queue *q)
483f4afc 354{
e3335de9
JA
355 /*
356 * We know we have process context here, so we can be a little
357 * cautious and ensure that pending block actions on this device
358 * are done before moving on. Going into this function, we should
359 * not have processes doing IO to this device.
360 */
361 blk_sync_queue(q);
362
31373d09 363 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 364 mutex_lock(&q->sysfs_lock);
75ad23bc 365 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
366 mutex_unlock(&q->sysfs_lock);
367
368 if (q->elevator)
369 elevator_exit(q->elevator);
370
da527770
VG
371 blk_throtl_exit(q);
372
483f4afc
AV
373 blk_put_queue(q);
374}
1da177e4
LT
375EXPORT_SYMBOL(blk_cleanup_queue);
376
165125e1 377static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
378{
379 struct request_list *rl = &q->rq;
380
1abec4fd
MS
381 if (unlikely(rl->rq_pool))
382 return 0;
383
1faa16d2
JA
384 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
385 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 386 rl->elvpriv = 0;
1faa16d2
JA
387 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
388 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 389
1946089a
CL
390 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
391 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
392
393 if (!rl->rq_pool)
394 return -ENOMEM;
395
396 return 0;
397}
398
165125e1 399struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 400{
1946089a
CL
401 return blk_alloc_queue_node(gfp_mask, -1);
402}
403EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 404
165125e1 405struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 406{
165125e1 407 struct request_queue *q;
e0bf68dd 408 int err;
1946089a 409
8324aa91 410 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 411 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
412 if (!q)
413 return NULL;
414
0989a025
JA
415 q->backing_dev_info.ra_pages =
416 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
417 q->backing_dev_info.state = 0;
418 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 419 q->backing_dev_info.name = "block";
0989a025 420
e0bf68dd
PZ
421 err = bdi_init(&q->backing_dev_info);
422 if (err) {
8324aa91 423 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
424 return NULL;
425 }
426
e43473b7
VG
427 if (blk_throtl_init(q)) {
428 kmem_cache_free(blk_requestq_cachep, q);
429 return NULL;
430 }
431
31373d09
MG
432 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
433 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
434 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
435 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
436 INIT_LIST_HEAD(&q->flush_queue[0]);
437 INIT_LIST_HEAD(&q->flush_queue[1]);
438 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 439 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 440
8324aa91 441 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 442
483f4afc 443 mutex_init(&q->sysfs_lock);
e7e72bf6 444 spin_lock_init(&q->__queue_lock);
483f4afc 445
c94a96ac
VG
446 /*
447 * By default initialize queue_lock to internal lock and driver can
448 * override it later if need be.
449 */
450 q->queue_lock = &q->__queue_lock;
451
1da177e4
LT
452 return q;
453}
1946089a 454EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
455
456/**
457 * blk_init_queue - prepare a request queue for use with a block device
458 * @rfn: The function to be called to process requests that have been
459 * placed on the queue.
460 * @lock: Request queue spin lock
461 *
462 * Description:
463 * If a block device wishes to use the standard request handling procedures,
464 * which sorts requests and coalesces adjacent requests, then it must
465 * call blk_init_queue(). The function @rfn will be called when there
466 * are requests on the queue that need to be processed. If the device
467 * supports plugging, then @rfn may not be called immediately when requests
468 * are available on the queue, but may be called at some time later instead.
469 * Plugged queues are generally unplugged when a buffer belonging to one
470 * of the requests on the queue is needed, or due to memory pressure.
471 *
472 * @rfn is not required, or even expected, to remove all requests off the
473 * queue, but only as many as it can handle at a time. If it does leave
474 * requests on the queue, it is responsible for arranging that the requests
475 * get dealt with eventually.
476 *
477 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
478 * request queue; this lock will be taken also from interrupt context, so irq
479 * disabling is needed for it.
1da177e4 480 *
710027a4 481 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
482 * it didn't succeed.
483 *
484 * Note:
485 * blk_init_queue() must be paired with a blk_cleanup_queue() call
486 * when the block device is deactivated (such as at module unload).
487 **/
1946089a 488
165125e1 489struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 490{
1946089a
CL
491 return blk_init_queue_node(rfn, lock, -1);
492}
493EXPORT_SYMBOL(blk_init_queue);
494
165125e1 495struct request_queue *
1946089a
CL
496blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
497{
c86d1b8a 498 struct request_queue *uninit_q, *q;
1da177e4 499
c86d1b8a
MS
500 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
501 if (!uninit_q)
502 return NULL;
503
504 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
505 if (!q)
506 blk_cleanup_queue(uninit_q);
507
508 return q;
01effb0d
MS
509}
510EXPORT_SYMBOL(blk_init_queue_node);
511
512struct request_queue *
513blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
514 spinlock_t *lock)
515{
516 return blk_init_allocated_queue_node(q, rfn, lock, -1);
517}
518EXPORT_SYMBOL(blk_init_allocated_queue);
519
520struct request_queue *
521blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
522 spinlock_t *lock, int node_id)
523{
1da177e4
LT
524 if (!q)
525 return NULL;
526
1946089a 527 q->node = node_id;
c86d1b8a 528 if (blk_init_free_list(q))
8669aafd 529 return NULL;
1da177e4
LT
530
531 q->request_fn = rfn;
1da177e4 532 q->prep_rq_fn = NULL;
28018c24 533 q->unprep_rq_fn = NULL;
bc58ba94 534 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
535
536 /* Override internal queue lock with supplied lock pointer */
537 if (lock)
538 q->queue_lock = lock;
1da177e4 539
f3b144aa
JA
540 /*
541 * This also sets hw/phys segments, boundary and size
542 */
c20e8de2 543 blk_queue_make_request(q, blk_queue_bio);
1da177e4 544
44ec9542
AS
545 q->sg_reserved_size = INT_MAX;
546
1da177e4
LT
547 /*
548 * all done
549 */
550 if (!elevator_init(q, NULL)) {
551 blk_queue_congestion_threshold(q);
552 return q;
553 }
554
1da177e4
LT
555 return NULL;
556}
01effb0d 557EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 558
165125e1 559int blk_get_queue(struct request_queue *q)
1da177e4 560{
fde6ad22 561 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 562 kobject_get(&q->kobj);
1da177e4
LT
563 return 0;
564 }
565
566 return 1;
567}
d86e0e83 568EXPORT_SYMBOL(blk_get_queue);
1da177e4 569
165125e1 570static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 571{
4aff5e23 572 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 573 elv_put_request(q, rq);
1da177e4
LT
574 mempool_free(rq, q->rq.rq_pool);
575}
576
1ea25ecb 577static struct request *
42dad764 578blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
579{
580 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
581
582 if (!rq)
583 return NULL;
584
2a4aa30c 585 blk_rq_init(q, rq);
1afb20f3 586
42dad764 587 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 588
cb98fc8b 589 if (priv) {
cb78b285 590 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
591 mempool_free(rq, q->rq.rq_pool);
592 return NULL;
593 }
4aff5e23 594 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 595 }
1da177e4 596
cb98fc8b 597 return rq;
1da177e4
LT
598}
599
600/*
601 * ioc_batching returns true if the ioc is a valid batching request and
602 * should be given priority access to a request.
603 */
165125e1 604static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
605{
606 if (!ioc)
607 return 0;
608
609 /*
610 * Make sure the process is able to allocate at least 1 request
611 * even if the batch times out, otherwise we could theoretically
612 * lose wakeups.
613 */
614 return ioc->nr_batch_requests == q->nr_batching ||
615 (ioc->nr_batch_requests > 0
616 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
617}
618
619/*
620 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
621 * will cause the process to be a "batcher" on all queues in the system. This
622 * is the behaviour we want though - once it gets a wakeup it should be given
623 * a nice run.
624 */
165125e1 625static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
626{
627 if (!ioc || ioc_batching(q, ioc))
628 return;
629
630 ioc->nr_batch_requests = q->nr_batching;
631 ioc->last_waited = jiffies;
632}
633
1faa16d2 634static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
635{
636 struct request_list *rl = &q->rq;
637
1faa16d2
JA
638 if (rl->count[sync] < queue_congestion_off_threshold(q))
639 blk_clear_queue_congested(q, sync);
1da177e4 640
1faa16d2
JA
641 if (rl->count[sync] + 1 <= q->nr_requests) {
642 if (waitqueue_active(&rl->wait[sync]))
643 wake_up(&rl->wait[sync]);
1da177e4 644
1faa16d2 645 blk_clear_queue_full(q, sync);
1da177e4
LT
646 }
647}
648
649/*
650 * A request has just been released. Account for it, update the full and
651 * congestion status, wake up any waiters. Called under q->queue_lock.
652 */
1faa16d2 653static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
654{
655 struct request_list *rl = &q->rq;
656
1faa16d2 657 rl->count[sync]--;
cb98fc8b
TH
658 if (priv)
659 rl->elvpriv--;
1da177e4 660
1faa16d2 661 __freed_request(q, sync);
1da177e4 662
1faa16d2
JA
663 if (unlikely(rl->starved[sync ^ 1]))
664 __freed_request(q, sync ^ 1);
1da177e4
LT
665}
666
9d5a4e94
MS
667/*
668 * Determine if elevator data should be initialized when allocating the
669 * request associated with @bio.
670 */
671static bool blk_rq_should_init_elevator(struct bio *bio)
672{
673 if (!bio)
674 return true;
675
676 /*
677 * Flush requests do not use the elevator so skip initialization.
678 * This allows a request to share the flush and elevator data.
679 */
680 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
681 return false;
682
683 return true;
684}
685
1da177e4 686/*
d6344532
NP
687 * Get a free request, queue_lock must be held.
688 * Returns NULL on failure, with queue_lock held.
689 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 690 */
165125e1 691static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 692 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
693{
694 struct request *rq = NULL;
695 struct request_list *rl = &q->rq;
88ee5ef1 696 struct io_context *ioc = NULL;
1faa16d2 697 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 698 int may_queue, priv = 0;
88ee5ef1 699
7749a8d4 700 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
701 if (may_queue == ELV_MQUEUE_NO)
702 goto rq_starved;
703
1faa16d2
JA
704 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
705 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 706 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
707 /*
708 * The queue will fill after this allocation, so set
709 * it as full, and mark this process as "batching".
710 * This process will be allowed to complete a batch of
711 * requests, others will be blocked.
712 */
1faa16d2 713 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 714 ioc_set_batching(q, ioc);
1faa16d2 715 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
716 } else {
717 if (may_queue != ELV_MQUEUE_MUST
718 && !ioc_batching(q, ioc)) {
719 /*
720 * The queue is full and the allocating
721 * process is not a "batcher", and not
722 * exempted by the IO scheduler
723 */
724 goto out;
725 }
726 }
1da177e4 727 }
1faa16d2 728 blk_set_queue_congested(q, is_sync);
1da177e4
LT
729 }
730
082cf69e
JA
731 /*
732 * Only allow batching queuers to allocate up to 50% over the defined
733 * limit of requests, otherwise we could have thousands of requests
734 * allocated with any setting of ->nr_requests
735 */
1faa16d2 736 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 737 goto out;
fd782a4a 738
1faa16d2
JA
739 rl->count[is_sync]++;
740 rl->starved[is_sync] = 0;
cb98fc8b 741
9d5a4e94
MS
742 if (blk_rq_should_init_elevator(bio)) {
743 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
744 if (priv)
745 rl->elvpriv++;
746 }
cb98fc8b 747
f253b86b
JA
748 if (blk_queue_io_stat(q))
749 rw_flags |= REQ_IO_STAT;
1da177e4
LT
750 spin_unlock_irq(q->queue_lock);
751
7749a8d4 752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 753 if (unlikely(!rq)) {
1da177e4
LT
754 /*
755 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up.
757 *
758 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare.
760 */
761 spin_lock_irq(q->queue_lock);
1faa16d2 762 freed_request(q, is_sync, priv);
1da177e4
LT
763
764 /*
765 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE
770 */
771rq_starved:
1faa16d2
JA
772 if (unlikely(rl->count[is_sync] == 0))
773 rl->starved[is_sync] = 1;
1da177e4 774
1da177e4
LT
775 goto out;
776 }
777
88ee5ef1
JA
778 /*
779 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME.
783 */
1da177e4
LT
784 if (ioc_batching(q, ioc))
785 ioc->nr_batch_requests--;
6728cb0e 786
1faa16d2 787 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 788out:
1da177e4
LT
789 return rq;
790}
791
792/*
7eaceacc
JA
793 * No available requests for this queue, wait for some requests to become
794 * available.
d6344532
NP
795 *
796 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 797 */
165125e1 798static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 799 struct bio *bio)
1da177e4 800{
1faa16d2 801 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
802 struct request *rq;
803
7749a8d4 804 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
805 while (!rq) {
806 DEFINE_WAIT(wait);
05caf8db 807 struct io_context *ioc;
1da177e4
LT
808 struct request_list *rl = &q->rq;
809
1faa16d2 810 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
811 TASK_UNINTERRUPTIBLE);
812
1faa16d2 813 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 814
05caf8db
ZY
815 spin_unlock_irq(q->queue_lock);
816 io_schedule();
1da177e4 817
05caf8db
ZY
818 /*
819 * After sleeping, we become a "batching" process and
820 * will be able to allocate at least one request, and
821 * up to a big batch of them for a small period time.
822 * See ioc_batching, ioc_set_batching
823 */
824 ioc = current_io_context(GFP_NOIO, q->node);
825 ioc_set_batching(q, ioc);
d6344532 826
05caf8db 827 spin_lock_irq(q->queue_lock);
1faa16d2 828 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
829
830 rq = get_request(q, rw_flags, bio, GFP_NOIO);
831 };
1da177e4
LT
832
833 return rq;
834}
835
165125e1 836struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
837{
838 struct request *rq;
839
bfe159a5
JB
840 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
841 return NULL;
842
1da177e4
LT
843 BUG_ON(rw != READ && rw != WRITE);
844
d6344532
NP
845 spin_lock_irq(q->queue_lock);
846 if (gfp_mask & __GFP_WAIT) {
22e2c507 847 rq = get_request_wait(q, rw, NULL);
d6344532 848 } else {
22e2c507 849 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
850 if (!rq)
851 spin_unlock_irq(q->queue_lock);
852 }
853 /* q->queue_lock is unlocked at this point */
1da177e4
LT
854
855 return rq;
856}
1da177e4
LT
857EXPORT_SYMBOL(blk_get_request);
858
dc72ef4a 859/**
79eb63e9 860 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 861 * @q: target request queue
79eb63e9
BH
862 * @bio: The bio describing the memory mappings that will be submitted for IO.
863 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 864 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 865 *
79eb63e9
BH
866 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
867 * type commands. Where the struct request needs to be farther initialized by
868 * the caller. It is passed a &struct bio, which describes the memory info of
869 * the I/O transfer.
dc72ef4a 870 *
79eb63e9
BH
871 * The caller of blk_make_request must make sure that bi_io_vec
872 * are set to describe the memory buffers. That bio_data_dir() will return
873 * the needed direction of the request. (And all bio's in the passed bio-chain
874 * are properly set accordingly)
875 *
876 * If called under none-sleepable conditions, mapped bio buffers must not
877 * need bouncing, by calling the appropriate masked or flagged allocator,
878 * suitable for the target device. Otherwise the call to blk_queue_bounce will
879 * BUG.
53674ac5
JA
880 *
881 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
882 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
883 * anything but the first bio in the chain. Otherwise you risk waiting for IO
884 * completion of a bio that hasn't been submitted yet, thus resulting in a
885 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
886 * of bio_alloc(), as that avoids the mempool deadlock.
887 * If possible a big IO should be split into smaller parts when allocation
888 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 889 */
79eb63e9
BH
890struct request *blk_make_request(struct request_queue *q, struct bio *bio,
891 gfp_t gfp_mask)
dc72ef4a 892{
79eb63e9
BH
893 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
894
895 if (unlikely(!rq))
896 return ERR_PTR(-ENOMEM);
897
898 for_each_bio(bio) {
899 struct bio *bounce_bio = bio;
900 int ret;
901
902 blk_queue_bounce(q, &bounce_bio);
903 ret = blk_rq_append_bio(q, rq, bounce_bio);
904 if (unlikely(ret)) {
905 blk_put_request(rq);
906 return ERR_PTR(ret);
907 }
908 }
909
910 return rq;
dc72ef4a 911}
79eb63e9 912EXPORT_SYMBOL(blk_make_request);
dc72ef4a 913
1da177e4
LT
914/**
915 * blk_requeue_request - put a request back on queue
916 * @q: request queue where request should be inserted
917 * @rq: request to be inserted
918 *
919 * Description:
920 * Drivers often keep queueing requests until the hardware cannot accept
921 * more, when that condition happens we need to put the request back
922 * on the queue. Must be called with queue lock held.
923 */
165125e1 924void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 925{
242f9dcb
JA
926 blk_delete_timer(rq);
927 blk_clear_rq_complete(rq);
5f3ea37c 928 trace_block_rq_requeue(q, rq);
2056a782 929
1da177e4
LT
930 if (blk_rq_tagged(rq))
931 blk_queue_end_tag(q, rq);
932
ba396a6c
JB
933 BUG_ON(blk_queued_rq(rq));
934
1da177e4
LT
935 elv_requeue_request(q, rq);
936}
1da177e4
LT
937EXPORT_SYMBOL(blk_requeue_request);
938
73c10101
JA
939static void add_acct_request(struct request_queue *q, struct request *rq,
940 int where)
941{
942 drive_stat_acct(rq, 1);
7eaceacc 943 __elv_add_request(q, rq, where);
73c10101
JA
944}
945
1da177e4 946/**
710027a4 947 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
948 * @q: request queue where request should be inserted
949 * @rq: request to be inserted
950 * @at_head: insert request at head or tail of queue
951 * @data: private data
1da177e4
LT
952 *
953 * Description:
954 * Many block devices need to execute commands asynchronously, so they don't
955 * block the whole kernel from preemption during request execution. This is
956 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
957 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
958 * be scheduled for actual execution by the request queue.
1da177e4
LT
959 *
960 * We have the option of inserting the head or the tail of the queue.
961 * Typically we use the tail for new ioctls and so forth. We use the head
962 * of the queue for things like a QUEUE_FULL message from a device, or a
963 * host that is unable to accept a particular command.
964 */
165125e1 965void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 966 int at_head, void *data)
1da177e4 967{
867d1191 968 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
969 unsigned long flags;
970
971 /*
972 * tell I/O scheduler that this isn't a regular read/write (ie it
973 * must not attempt merges on this) and that it acts as a soft
974 * barrier
975 */
4aff5e23 976 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
977
978 rq->special = data;
979
980 spin_lock_irqsave(q->queue_lock, flags);
981
982 /*
983 * If command is tagged, release the tag
984 */
867d1191
TH
985 if (blk_rq_tagged(rq))
986 blk_queue_end_tag(q, rq);
1da177e4 987
73c10101 988 add_acct_request(q, rq, where);
24ecfbe2 989 __blk_run_queue(q);
1da177e4
LT
990 spin_unlock_irqrestore(q->queue_lock, flags);
991}
1da177e4
LT
992EXPORT_SYMBOL(blk_insert_request);
993
074a7aca
TH
994static void part_round_stats_single(int cpu, struct hd_struct *part,
995 unsigned long now)
996{
997 if (now == part->stamp)
998 return;
999
316d315b 1000 if (part_in_flight(part)) {
074a7aca 1001 __part_stat_add(cpu, part, time_in_queue,
316d315b 1002 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1003 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1004 }
1005 part->stamp = now;
1006}
1007
1008/**
496aa8a9
RD
1009 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1010 * @cpu: cpu number for stats access
1011 * @part: target partition
1da177e4
LT
1012 *
1013 * The average IO queue length and utilisation statistics are maintained
1014 * by observing the current state of the queue length and the amount of
1015 * time it has been in this state for.
1016 *
1017 * Normally, that accounting is done on IO completion, but that can result
1018 * in more than a second's worth of IO being accounted for within any one
1019 * second, leading to >100% utilisation. To deal with that, we call this
1020 * function to do a round-off before returning the results when reading
1021 * /proc/diskstats. This accounts immediately for all queue usage up to
1022 * the current jiffies and restarts the counters again.
1023 */
c9959059 1024void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1025{
1026 unsigned long now = jiffies;
1027
074a7aca
TH
1028 if (part->partno)
1029 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1030 part_round_stats_single(cpu, part, now);
6f2576af 1031}
074a7aca 1032EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1033
1da177e4
LT
1034/*
1035 * queue lock must be held
1036 */
165125e1 1037void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1038{
1da177e4
LT
1039 if (unlikely(!q))
1040 return;
1041 if (unlikely(--req->ref_count))
1042 return;
1043
8922e16c
TH
1044 elv_completed_request(q, req);
1045
1cd96c24
BH
1046 /* this is a bio leak */
1047 WARN_ON(req->bio != NULL);
1048
1da177e4
LT
1049 /*
1050 * Request may not have originated from ll_rw_blk. if not,
1051 * it didn't come out of our reserved rq pools
1052 */
49171e5c 1053 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1054 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1055 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1056
1da177e4 1057 BUG_ON(!list_empty(&req->queuelist));
9817064b 1058 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1059
1060 blk_free_request(q, req);
1faa16d2 1061 freed_request(q, is_sync, priv);
1da177e4
LT
1062 }
1063}
6e39b69e
MC
1064EXPORT_SYMBOL_GPL(__blk_put_request);
1065
1da177e4
LT
1066void blk_put_request(struct request *req)
1067{
8922e16c 1068 unsigned long flags;
165125e1 1069 struct request_queue *q = req->q;
8922e16c 1070
52a93ba8
FT
1071 spin_lock_irqsave(q->queue_lock, flags);
1072 __blk_put_request(q, req);
1073 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1074}
1da177e4
LT
1075EXPORT_SYMBOL(blk_put_request);
1076
66ac0280
CH
1077/**
1078 * blk_add_request_payload - add a payload to a request
1079 * @rq: request to update
1080 * @page: page backing the payload
1081 * @len: length of the payload.
1082 *
1083 * This allows to later add a payload to an already submitted request by
1084 * a block driver. The driver needs to take care of freeing the payload
1085 * itself.
1086 *
1087 * Note that this is a quite horrible hack and nothing but handling of
1088 * discard requests should ever use it.
1089 */
1090void blk_add_request_payload(struct request *rq, struct page *page,
1091 unsigned int len)
1092{
1093 struct bio *bio = rq->bio;
1094
1095 bio->bi_io_vec->bv_page = page;
1096 bio->bi_io_vec->bv_offset = 0;
1097 bio->bi_io_vec->bv_len = len;
1098
1099 bio->bi_size = len;
1100 bio->bi_vcnt = 1;
1101 bio->bi_phys_segments = 1;
1102
1103 rq->__data_len = rq->resid_len = len;
1104 rq->nr_phys_segments = 1;
1105 rq->buffer = bio_data(bio);
1106}
1107EXPORT_SYMBOL_GPL(blk_add_request_payload);
1108
73c10101
JA
1109static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1110 struct bio *bio)
1111{
1112 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1113
73c10101
JA
1114 if (!ll_back_merge_fn(q, req, bio))
1115 return false;
1116
1117 trace_block_bio_backmerge(q, bio);
1118
1119 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1120 blk_rq_set_mixed_merge(req);
1121
1122 req->biotail->bi_next = bio;
1123 req->biotail = bio;
1124 req->__data_len += bio->bi_size;
1125 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1126
1127 drive_stat_acct(req, 0);
95cf3dd9 1128 elv_bio_merged(q, req, bio);
73c10101
JA
1129 return true;
1130}
1131
1132static bool bio_attempt_front_merge(struct request_queue *q,
1133 struct request *req, struct bio *bio)
1134{
1135 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1136
73c10101
JA
1137 if (!ll_front_merge_fn(q, req, bio))
1138 return false;
1139
1140 trace_block_bio_frontmerge(q, bio);
1141
1142 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1143 blk_rq_set_mixed_merge(req);
1144
73c10101
JA
1145 bio->bi_next = req->bio;
1146 req->bio = bio;
1147
1148 /*
1149 * may not be valid. if the low level driver said
1150 * it didn't need a bounce buffer then it better
1151 * not touch req->buffer either...
1152 */
1153 req->buffer = bio_data(bio);
1154 req->__sector = bio->bi_sector;
1155 req->__data_len += bio->bi_size;
1156 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1157
1158 drive_stat_acct(req, 0);
95cf3dd9 1159 elv_bio_merged(q, req, bio);
73c10101
JA
1160 return true;
1161}
1162
1163/*
1164 * Attempts to merge with the plugged list in the current process. Returns
25985edc 1165 * true if merge was successful, otherwise false.
73c10101
JA
1166 */
1167static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1168 struct bio *bio)
1169{
1170 struct blk_plug *plug;
1171 struct request *rq;
1172 bool ret = false;
1173
1174 plug = tsk->plug;
1175 if (!plug)
1176 goto out;
1177
1178 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1179 int el_ret;
1180
1181 if (rq->q != q)
1182 continue;
1183
1184 el_ret = elv_try_merge(rq, bio);
1185 if (el_ret == ELEVATOR_BACK_MERGE) {
1186 ret = bio_attempt_back_merge(q, rq, bio);
1187 if (ret)
1188 break;
1189 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1190 ret = bio_attempt_front_merge(q, rq, bio);
1191 if (ret)
1192 break;
1193 }
1194 }
1195out:
1196 return ret;
1197}
1198
86db1e29 1199void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1200{
c7c22e4d 1201 req->cpu = bio->bi_comp_cpu;
4aff5e23 1202 req->cmd_type = REQ_TYPE_FS;
52d9e675 1203
7b6d91da
CH
1204 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1205 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1206 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1207
52d9e675 1208 req->errors = 0;
a2dec7b3 1209 req->__sector = bio->bi_sector;
52d9e675 1210 req->ioprio = bio_prio(bio);
bc1c56fd 1211 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1212}
1213
5a7bbad2 1214void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1215{
5e00d1b5 1216 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1217 struct blk_plug *plug;
1218 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1219 struct request *req;
1da177e4 1220
1da177e4
LT
1221 /*
1222 * low level driver can indicate that it wants pages above a
1223 * certain limit bounced to low memory (ie for highmem, or even
1224 * ISA dma in theory)
1225 */
1226 blk_queue_bounce(q, &bio);
1227
4fed947c 1228 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1229 spin_lock_irq(q->queue_lock);
ae1b1539 1230 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1231 goto get_rq;
1232 }
1233
73c10101
JA
1234 /*
1235 * Check if we can merge with the plugged list before grabbing
1236 * any locks.
1237 */
1238 if (attempt_plug_merge(current, q, bio))
5a7bbad2 1239 return;
1da177e4 1240
73c10101 1241 spin_lock_irq(q->queue_lock);
2056a782 1242
73c10101
JA
1243 el_ret = elv_merge(q, &req, bio);
1244 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1245 if (bio_attempt_back_merge(q, req, bio)) {
1246 if (!attempt_back_merge(q, req))
1247 elv_merged_request(q, req, el_ret);
1248 goto out_unlock;
1249 }
1250 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1251 if (bio_attempt_front_merge(q, req, bio)) {
1252 if (!attempt_front_merge(q, req))
1253 elv_merged_request(q, req, el_ret);
1254 goto out_unlock;
80a761fd 1255 }
1da177e4
LT
1256 }
1257
450991bc 1258get_rq:
7749a8d4
JA
1259 /*
1260 * This sync check and mask will be re-done in init_request_from_bio(),
1261 * but we need to set it earlier to expose the sync flag to the
1262 * rq allocator and io schedulers.
1263 */
1264 rw_flags = bio_data_dir(bio);
1265 if (sync)
7b6d91da 1266 rw_flags |= REQ_SYNC;
7749a8d4 1267
1da177e4 1268 /*
450991bc 1269 * Grab a free request. This is might sleep but can not fail.
d6344532 1270 * Returns with the queue unlocked.
450991bc 1271 */
7749a8d4 1272 req = get_request_wait(q, rw_flags, bio);
d6344532 1273
450991bc
NP
1274 /*
1275 * After dropping the lock and possibly sleeping here, our request
1276 * may now be mergeable after it had proven unmergeable (above).
1277 * We don't worry about that case for efficiency. It won't happen
1278 * often, and the elevators are able to handle it.
1da177e4 1279 */
52d9e675 1280 init_request_from_bio(req, bio);
1da177e4 1281
c7c22e4d 1282 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
5757a6d7 1283 bio_flagged(bio, BIO_CPU_AFFINE))
11ccf116 1284 req->cpu = raw_smp_processor_id();
73c10101
JA
1285
1286 plug = current->plug;
721a9602 1287 if (plug) {
dc6d36c9
JA
1288 /*
1289 * If this is the first request added after a plug, fire
1290 * of a plug trace. If others have been added before, check
1291 * if we have multiple devices in this plug. If so, make a
1292 * note to sort the list before dispatch.
1293 */
1294 if (list_empty(&plug->list))
1295 trace_block_plug(q);
1296 else if (!plug->should_sort) {
73c10101
JA
1297 struct request *__rq;
1298
1299 __rq = list_entry_rq(plug->list.prev);
1300 if (__rq->q != q)
1301 plug->should_sort = 1;
1302 }
73c10101 1303 list_add_tail(&req->queuelist, &plug->list);
55c022bb 1304 plug->count++;
73c10101 1305 drive_stat_acct(req, 1);
55c022bb
SL
1306 if (plug->count >= BLK_MAX_REQUEST_COUNT)
1307 blk_flush_plug_list(plug, false);
73c10101
JA
1308 } else {
1309 spin_lock_irq(q->queue_lock);
1310 add_acct_request(q, req, where);
24ecfbe2 1311 __blk_run_queue(q);
73c10101
JA
1312out_unlock:
1313 spin_unlock_irq(q->queue_lock);
1314 }
1da177e4 1315}
c20e8de2 1316EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1317
1318/*
1319 * If bio->bi_dev is a partition, remap the location
1320 */
1321static inline void blk_partition_remap(struct bio *bio)
1322{
1323 struct block_device *bdev = bio->bi_bdev;
1324
bf2de6f5 1325 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1326 struct hd_struct *p = bdev->bd_part;
1327
1da177e4
LT
1328 bio->bi_sector += p->start_sect;
1329 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1330
d07335e5
MS
1331 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1332 bdev->bd_dev,
1333 bio->bi_sector - p->start_sect);
1da177e4
LT
1334 }
1335}
1336
1da177e4
LT
1337static void handle_bad_sector(struct bio *bio)
1338{
1339 char b[BDEVNAME_SIZE];
1340
1341 printk(KERN_INFO "attempt to access beyond end of device\n");
1342 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1343 bdevname(bio->bi_bdev, b),
1344 bio->bi_rw,
1345 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1346 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1347
1348 set_bit(BIO_EOF, &bio->bi_flags);
1349}
1350
c17bb495
AM
1351#ifdef CONFIG_FAIL_MAKE_REQUEST
1352
1353static DECLARE_FAULT_ATTR(fail_make_request);
1354
1355static int __init setup_fail_make_request(char *str)
1356{
1357 return setup_fault_attr(&fail_make_request, str);
1358}
1359__setup("fail_make_request=", setup_fail_make_request);
1360
b2c9cd37 1361static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1362{
b2c9cd37 1363 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1364}
1365
1366static int __init fail_make_request_debugfs(void)
1367{
dd48c085
AM
1368 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1369 NULL, &fail_make_request);
1370
1371 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1372}
1373
1374late_initcall(fail_make_request_debugfs);
1375
1376#else /* CONFIG_FAIL_MAKE_REQUEST */
1377
b2c9cd37
AM
1378static inline bool should_fail_request(struct hd_struct *part,
1379 unsigned int bytes)
c17bb495 1380{
b2c9cd37 1381 return false;
c17bb495
AM
1382}
1383
1384#endif /* CONFIG_FAIL_MAKE_REQUEST */
1385
c07e2b41
JA
1386/*
1387 * Check whether this bio extends beyond the end of the device.
1388 */
1389static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1390{
1391 sector_t maxsector;
1392
1393 if (!nr_sectors)
1394 return 0;
1395
1396 /* Test device or partition size, when known. */
77304d2a 1397 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1398 if (maxsector) {
1399 sector_t sector = bio->bi_sector;
1400
1401 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1402 /*
1403 * This may well happen - the kernel calls bread()
1404 * without checking the size of the device, e.g., when
1405 * mounting a device.
1406 */
1407 handle_bad_sector(bio);
1408 return 1;
1409 }
1410 }
1411
1412 return 0;
1413}
1414
27a84d54
CH
1415static noinline_for_stack bool
1416generic_make_request_checks(struct bio *bio)
1da177e4 1417{
165125e1 1418 struct request_queue *q;
5a7bbad2 1419 int nr_sectors = bio_sectors(bio);
51fd77bd 1420 int err = -EIO;
5a7bbad2
CH
1421 char b[BDEVNAME_SIZE];
1422 struct hd_struct *part;
1da177e4
LT
1423
1424 might_sleep();
1da177e4 1425
c07e2b41
JA
1426 if (bio_check_eod(bio, nr_sectors))
1427 goto end_io;
1da177e4 1428
5a7bbad2
CH
1429 q = bdev_get_queue(bio->bi_bdev);
1430 if (unlikely(!q)) {
1431 printk(KERN_ERR
1432 "generic_make_request: Trying to access "
1433 "nonexistent block-device %s (%Lu)\n",
1434 bdevname(bio->bi_bdev, b),
1435 (long long) bio->bi_sector);
1436 goto end_io;
1437 }
c17bb495 1438
5a7bbad2
CH
1439 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1440 nr_sectors > queue_max_hw_sectors(q))) {
1441 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1442 bdevname(bio->bi_bdev, b),
1443 bio_sectors(bio),
1444 queue_max_hw_sectors(q));
1445 goto end_io;
1446 }
1da177e4 1447
5a7bbad2
CH
1448 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1449 goto end_io;
7ba1ba12 1450
5a7bbad2
CH
1451 part = bio->bi_bdev->bd_part;
1452 if (should_fail_request(part, bio->bi_size) ||
1453 should_fail_request(&part_to_disk(part)->part0,
1454 bio->bi_size))
1455 goto end_io;
2056a782 1456
5a7bbad2
CH
1457 /*
1458 * If this device has partitions, remap block n
1459 * of partition p to block n+start(p) of the disk.
1460 */
1461 blk_partition_remap(bio);
2056a782 1462
5a7bbad2
CH
1463 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1464 goto end_io;
a7384677 1465
5a7bbad2
CH
1466 if (bio_check_eod(bio, nr_sectors))
1467 goto end_io;
1e87901e 1468
5a7bbad2
CH
1469 /*
1470 * Filter flush bio's early so that make_request based
1471 * drivers without flush support don't have to worry
1472 * about them.
1473 */
1474 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1475 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1476 if (!nr_sectors) {
1477 err = 0;
51fd77bd
JA
1478 goto end_io;
1479 }
5a7bbad2 1480 }
5ddfe969 1481
5a7bbad2
CH
1482 if ((bio->bi_rw & REQ_DISCARD) &&
1483 (!blk_queue_discard(q) ||
1484 ((bio->bi_rw & REQ_SECURE) &&
1485 !blk_queue_secdiscard(q)))) {
1486 err = -EOPNOTSUPP;
1487 goto end_io;
1488 }
01edede4 1489
5a7bbad2
CH
1490 if (blk_throtl_bio(q, &bio))
1491 goto end_io;
a7384677 1492
5a7bbad2
CH
1493 /* if bio = NULL, bio has been throttled and will be submitted later. */
1494 if (!bio)
27a84d54
CH
1495 return false;
1496
5a7bbad2 1497 trace_block_bio_queue(q, bio);
27a84d54 1498 return true;
a7384677
TH
1499
1500end_io:
1501 bio_endio(bio, err);
27a84d54 1502 return false;
1da177e4
LT
1503}
1504
27a84d54
CH
1505/**
1506 * generic_make_request - hand a buffer to its device driver for I/O
1507 * @bio: The bio describing the location in memory and on the device.
1508 *
1509 * generic_make_request() is used to make I/O requests of block
1510 * devices. It is passed a &struct bio, which describes the I/O that needs
1511 * to be done.
1512 *
1513 * generic_make_request() does not return any status. The
1514 * success/failure status of the request, along with notification of
1515 * completion, is delivered asynchronously through the bio->bi_end_io
1516 * function described (one day) else where.
1517 *
1518 * The caller of generic_make_request must make sure that bi_io_vec
1519 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1520 * set to describe the device address, and the
1521 * bi_end_io and optionally bi_private are set to describe how
1522 * completion notification should be signaled.
1523 *
1524 * generic_make_request and the drivers it calls may use bi_next if this
1525 * bio happens to be merged with someone else, and may resubmit the bio to
1526 * a lower device by calling into generic_make_request recursively, which
1527 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1528 */
1529void generic_make_request(struct bio *bio)
1530{
bddd87c7
AM
1531 struct bio_list bio_list_on_stack;
1532
27a84d54
CH
1533 if (!generic_make_request_checks(bio))
1534 return;
1535
1536 /*
1537 * We only want one ->make_request_fn to be active at a time, else
1538 * stack usage with stacked devices could be a problem. So use
1539 * current->bio_list to keep a list of requests submited by a
1540 * make_request_fn function. current->bio_list is also used as a
1541 * flag to say if generic_make_request is currently active in this
1542 * task or not. If it is NULL, then no make_request is active. If
1543 * it is non-NULL, then a make_request is active, and new requests
1544 * should be added at the tail
1545 */
bddd87c7 1546 if (current->bio_list) {
bddd87c7 1547 bio_list_add(current->bio_list, bio);
d89d8796
NB
1548 return;
1549 }
27a84d54 1550
d89d8796
NB
1551 /* following loop may be a bit non-obvious, and so deserves some
1552 * explanation.
1553 * Before entering the loop, bio->bi_next is NULL (as all callers
1554 * ensure that) so we have a list with a single bio.
1555 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1556 * we assign bio_list to a pointer to the bio_list_on_stack,
1557 * thus initialising the bio_list of new bios to be
27a84d54 1558 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1559 * through a recursive call to generic_make_request. If it
1560 * did, we find a non-NULL value in bio_list and re-enter the loop
1561 * from the top. In this case we really did just take the bio
bddd87c7 1562 * of the top of the list (no pretending) and so remove it from
27a84d54 1563 * bio_list, and call into ->make_request() again.
d89d8796
NB
1564 */
1565 BUG_ON(bio->bi_next);
bddd87c7
AM
1566 bio_list_init(&bio_list_on_stack);
1567 current->bio_list = &bio_list_on_stack;
d89d8796 1568 do {
27a84d54
CH
1569 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1570
1571 q->make_request_fn(q, bio);
1572
bddd87c7 1573 bio = bio_list_pop(current->bio_list);
d89d8796 1574 } while (bio);
bddd87c7 1575 current->bio_list = NULL; /* deactivate */
d89d8796 1576}
1da177e4
LT
1577EXPORT_SYMBOL(generic_make_request);
1578
1579/**
710027a4 1580 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1581 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1582 * @bio: The &struct bio which describes the I/O
1583 *
1584 * submit_bio() is very similar in purpose to generic_make_request(), and
1585 * uses that function to do most of the work. Both are fairly rough
710027a4 1586 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1587 *
1588 */
1589void submit_bio(int rw, struct bio *bio)
1590{
1591 int count = bio_sectors(bio);
1592
22e2c507 1593 bio->bi_rw |= rw;
1da177e4 1594
bf2de6f5
JA
1595 /*
1596 * If it's a regular read/write or a barrier with data attached,
1597 * go through the normal accounting stuff before submission.
1598 */
3ffb52e7 1599 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1600 if (rw & WRITE) {
1601 count_vm_events(PGPGOUT, count);
1602 } else {
1603 task_io_account_read(bio->bi_size);
1604 count_vm_events(PGPGIN, count);
1605 }
1606
1607 if (unlikely(block_dump)) {
1608 char b[BDEVNAME_SIZE];
8dcbdc74 1609 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1610 current->comm, task_pid_nr(current),
bf2de6f5
JA
1611 (rw & WRITE) ? "WRITE" : "READ",
1612 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1613 bdevname(bio->bi_bdev, b),
1614 count);
bf2de6f5 1615 }
1da177e4
LT
1616 }
1617
1618 generic_make_request(bio);
1619}
1da177e4
LT
1620EXPORT_SYMBOL(submit_bio);
1621
82124d60
KU
1622/**
1623 * blk_rq_check_limits - Helper function to check a request for the queue limit
1624 * @q: the queue
1625 * @rq: the request being checked
1626 *
1627 * Description:
1628 * @rq may have been made based on weaker limitations of upper-level queues
1629 * in request stacking drivers, and it may violate the limitation of @q.
1630 * Since the block layer and the underlying device driver trust @rq
1631 * after it is inserted to @q, it should be checked against @q before
1632 * the insertion using this generic function.
1633 *
1634 * This function should also be useful for request stacking drivers
eef35c2d 1635 * in some cases below, so export this function.
82124d60
KU
1636 * Request stacking drivers like request-based dm may change the queue
1637 * limits while requests are in the queue (e.g. dm's table swapping).
1638 * Such request stacking drivers should check those requests agaist
1639 * the new queue limits again when they dispatch those requests,
1640 * although such checkings are also done against the old queue limits
1641 * when submitting requests.
1642 */
1643int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1644{
3383977f
S
1645 if (rq->cmd_flags & REQ_DISCARD)
1646 return 0;
1647
ae03bf63
MP
1648 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1649 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1650 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1651 return -EIO;
1652 }
1653
1654 /*
1655 * queue's settings related to segment counting like q->bounce_pfn
1656 * may differ from that of other stacking queues.
1657 * Recalculate it to check the request correctly on this queue's
1658 * limitation.
1659 */
1660 blk_recalc_rq_segments(rq);
8a78362c 1661 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1662 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1663 return -EIO;
1664 }
1665
1666 return 0;
1667}
1668EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1669
1670/**
1671 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1672 * @q: the queue to submit the request
1673 * @rq: the request being queued
1674 */
1675int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1676{
1677 unsigned long flags;
1678
1679 if (blk_rq_check_limits(q, rq))
1680 return -EIO;
1681
b2c9cd37
AM
1682 if (rq->rq_disk &&
1683 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1684 return -EIO;
82124d60
KU
1685
1686 spin_lock_irqsave(q->queue_lock, flags);
1687
1688 /*
1689 * Submitting request must be dequeued before calling this function
1690 * because it will be linked to another request_queue
1691 */
1692 BUG_ON(blk_queued_rq(rq));
1693
73c10101 1694 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
82124d60
KU
1695 spin_unlock_irqrestore(q->queue_lock, flags);
1696
1697 return 0;
1698}
1699EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1700
80a761fd
TH
1701/**
1702 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1703 * @rq: request to examine
1704 *
1705 * Description:
1706 * A request could be merge of IOs which require different failure
1707 * handling. This function determines the number of bytes which
1708 * can be failed from the beginning of the request without
1709 * crossing into area which need to be retried further.
1710 *
1711 * Return:
1712 * The number of bytes to fail.
1713 *
1714 * Context:
1715 * queue_lock must be held.
1716 */
1717unsigned int blk_rq_err_bytes(const struct request *rq)
1718{
1719 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1720 unsigned int bytes = 0;
1721 struct bio *bio;
1722
1723 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1724 return blk_rq_bytes(rq);
1725
1726 /*
1727 * Currently the only 'mixing' which can happen is between
1728 * different fastfail types. We can safely fail portions
1729 * which have all the failfast bits that the first one has -
1730 * the ones which are at least as eager to fail as the first
1731 * one.
1732 */
1733 for (bio = rq->bio; bio; bio = bio->bi_next) {
1734 if ((bio->bi_rw & ff) != ff)
1735 break;
1736 bytes += bio->bi_size;
1737 }
1738
1739 /* this could lead to infinite loop */
1740 BUG_ON(blk_rq_bytes(rq) && !bytes);
1741 return bytes;
1742}
1743EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1744
bc58ba94
JA
1745static void blk_account_io_completion(struct request *req, unsigned int bytes)
1746{
c2553b58 1747 if (blk_do_io_stat(req)) {
bc58ba94
JA
1748 const int rw = rq_data_dir(req);
1749 struct hd_struct *part;
1750 int cpu;
1751
1752 cpu = part_stat_lock();
09e099d4 1753 part = req->part;
bc58ba94
JA
1754 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1755 part_stat_unlock();
1756 }
1757}
1758
1759static void blk_account_io_done(struct request *req)
1760{
bc58ba94 1761 /*
dd4c133f
TH
1762 * Account IO completion. flush_rq isn't accounted as a
1763 * normal IO on queueing nor completion. Accounting the
1764 * containing request is enough.
bc58ba94 1765 */
414b4ff5 1766 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1767 unsigned long duration = jiffies - req->start_time;
1768 const int rw = rq_data_dir(req);
1769 struct hd_struct *part;
1770 int cpu;
1771
1772 cpu = part_stat_lock();
09e099d4 1773 part = req->part;
bc58ba94
JA
1774
1775 part_stat_inc(cpu, part, ios[rw]);
1776 part_stat_add(cpu, part, ticks[rw], duration);
1777 part_round_stats(cpu, part);
316d315b 1778 part_dec_in_flight(part, rw);
bc58ba94 1779
6c23a968 1780 hd_struct_put(part);
bc58ba94
JA
1781 part_stat_unlock();
1782 }
1783}
1784
3bcddeac 1785/**
9934c8c0
TH
1786 * blk_peek_request - peek at the top of a request queue
1787 * @q: request queue to peek at
1788 *
1789 * Description:
1790 * Return the request at the top of @q. The returned request
1791 * should be started using blk_start_request() before LLD starts
1792 * processing it.
1793 *
1794 * Return:
1795 * Pointer to the request at the top of @q if available. Null
1796 * otherwise.
1797 *
1798 * Context:
1799 * queue_lock must be held.
1800 */
1801struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1802{
1803 struct request *rq;
1804 int ret;
1805
1806 while ((rq = __elv_next_request(q)) != NULL) {
1807 if (!(rq->cmd_flags & REQ_STARTED)) {
1808 /*
1809 * This is the first time the device driver
1810 * sees this request (possibly after
1811 * requeueing). Notify IO scheduler.
1812 */
33659ebb 1813 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1814 elv_activate_rq(q, rq);
1815
1816 /*
1817 * just mark as started even if we don't start
1818 * it, a request that has been delayed should
1819 * not be passed by new incoming requests
1820 */
1821 rq->cmd_flags |= REQ_STARTED;
1822 trace_block_rq_issue(q, rq);
1823 }
1824
1825 if (!q->boundary_rq || q->boundary_rq == rq) {
1826 q->end_sector = rq_end_sector(rq);
1827 q->boundary_rq = NULL;
1828 }
1829
1830 if (rq->cmd_flags & REQ_DONTPREP)
1831 break;
1832
2e46e8b2 1833 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1834 /*
1835 * make sure space for the drain appears we
1836 * know we can do this because max_hw_segments
1837 * has been adjusted to be one fewer than the
1838 * device can handle
1839 */
1840 rq->nr_phys_segments++;
1841 }
1842
1843 if (!q->prep_rq_fn)
1844 break;
1845
1846 ret = q->prep_rq_fn(q, rq);
1847 if (ret == BLKPREP_OK) {
1848 break;
1849 } else if (ret == BLKPREP_DEFER) {
1850 /*
1851 * the request may have been (partially) prepped.
1852 * we need to keep this request in the front to
1853 * avoid resource deadlock. REQ_STARTED will
1854 * prevent other fs requests from passing this one.
1855 */
2e46e8b2 1856 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1857 !(rq->cmd_flags & REQ_DONTPREP)) {
1858 /*
1859 * remove the space for the drain we added
1860 * so that we don't add it again
1861 */
1862 --rq->nr_phys_segments;
1863 }
1864
1865 rq = NULL;
1866 break;
1867 } else if (ret == BLKPREP_KILL) {
1868 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1869 /*
1870 * Mark this request as started so we don't trigger
1871 * any debug logic in the end I/O path.
1872 */
1873 blk_start_request(rq);
40cbbb78 1874 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1875 } else {
1876 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1877 break;
1878 }
1879 }
1880
1881 return rq;
1882}
9934c8c0 1883EXPORT_SYMBOL(blk_peek_request);
158dbda0 1884
9934c8c0 1885void blk_dequeue_request(struct request *rq)
158dbda0 1886{
9934c8c0
TH
1887 struct request_queue *q = rq->q;
1888
158dbda0
TH
1889 BUG_ON(list_empty(&rq->queuelist));
1890 BUG_ON(ELV_ON_HASH(rq));
1891
1892 list_del_init(&rq->queuelist);
1893
1894 /*
1895 * the time frame between a request being removed from the lists
1896 * and to it is freed is accounted as io that is in progress at
1897 * the driver side.
1898 */
9195291e 1899 if (blk_account_rq(rq)) {
0a7ae2ff 1900 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1901 set_io_start_time_ns(rq);
1902 }
158dbda0
TH
1903}
1904
9934c8c0
TH
1905/**
1906 * blk_start_request - start request processing on the driver
1907 * @req: request to dequeue
1908 *
1909 * Description:
1910 * Dequeue @req and start timeout timer on it. This hands off the
1911 * request to the driver.
1912 *
1913 * Block internal functions which don't want to start timer should
1914 * call blk_dequeue_request().
1915 *
1916 * Context:
1917 * queue_lock must be held.
1918 */
1919void blk_start_request(struct request *req)
1920{
1921 blk_dequeue_request(req);
1922
1923 /*
5f49f631
TH
1924 * We are now handing the request to the hardware, initialize
1925 * resid_len to full count and add the timeout handler.
9934c8c0 1926 */
5f49f631 1927 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1928 if (unlikely(blk_bidi_rq(req)))
1929 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1930
9934c8c0
TH
1931 blk_add_timer(req);
1932}
1933EXPORT_SYMBOL(blk_start_request);
1934
1935/**
1936 * blk_fetch_request - fetch a request from a request queue
1937 * @q: request queue to fetch a request from
1938 *
1939 * Description:
1940 * Return the request at the top of @q. The request is started on
1941 * return and LLD can start processing it immediately.
1942 *
1943 * Return:
1944 * Pointer to the request at the top of @q if available. Null
1945 * otherwise.
1946 *
1947 * Context:
1948 * queue_lock must be held.
1949 */
1950struct request *blk_fetch_request(struct request_queue *q)
1951{
1952 struct request *rq;
1953
1954 rq = blk_peek_request(q);
1955 if (rq)
1956 blk_start_request(rq);
1957 return rq;
1958}
1959EXPORT_SYMBOL(blk_fetch_request);
1960
3bcddeac 1961/**
2e60e022 1962 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1963 * @req: the request being processed
710027a4 1964 * @error: %0 for success, < %0 for error
8ebf9756 1965 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1966 *
1967 * Description:
8ebf9756
RD
1968 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1969 * the request structure even if @req doesn't have leftover.
1970 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1971 *
1972 * This special helper function is only for request stacking drivers
1973 * (e.g. request-based dm) so that they can handle partial completion.
1974 * Actual device drivers should use blk_end_request instead.
1975 *
1976 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1977 * %false return from this function.
3bcddeac
KU
1978 *
1979 * Return:
2e60e022
TH
1980 * %false - this request doesn't have any more data
1981 * %true - this request has more data
3bcddeac 1982 **/
2e60e022 1983bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1984{
5450d3e1 1985 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1986 struct bio *bio;
1987
2e60e022
TH
1988 if (!req->bio)
1989 return false;
1990
5f3ea37c 1991 trace_block_rq_complete(req->q, req);
2056a782 1992
1da177e4 1993 /*
6f41469c
TH
1994 * For fs requests, rq is just carrier of independent bio's
1995 * and each partial completion should be handled separately.
1996 * Reset per-request error on each partial completion.
1997 *
1998 * TODO: tj: This is too subtle. It would be better to let
1999 * low level drivers do what they see fit.
1da177e4 2000 */
33659ebb 2001 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2002 req->errors = 0;
2003
33659ebb
CH
2004 if (error && req->cmd_type == REQ_TYPE_FS &&
2005 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2006 char *error_type;
2007
2008 switch (error) {
2009 case -ENOLINK:
2010 error_type = "recoverable transport";
2011 break;
2012 case -EREMOTEIO:
2013 error_type = "critical target";
2014 break;
2015 case -EBADE:
2016 error_type = "critical nexus";
2017 break;
2018 case -EIO:
2019 default:
2020 error_type = "I/O";
2021 break;
2022 }
2023 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2024 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2025 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2026 }
2027
bc58ba94 2028 blk_account_io_completion(req, nr_bytes);
d72d904a 2029
1da177e4
LT
2030 total_bytes = bio_nbytes = 0;
2031 while ((bio = req->bio) != NULL) {
2032 int nbytes;
2033
2034 if (nr_bytes >= bio->bi_size) {
2035 req->bio = bio->bi_next;
2036 nbytes = bio->bi_size;
5bb23a68 2037 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2038 next_idx = 0;
2039 bio_nbytes = 0;
2040 } else {
2041 int idx = bio->bi_idx + next_idx;
2042
af498d7f 2043 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2044 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2045 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2046 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2047 break;
2048 }
2049
2050 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2051 BIO_BUG_ON(nbytes > bio->bi_size);
2052
2053 /*
2054 * not a complete bvec done
2055 */
2056 if (unlikely(nbytes > nr_bytes)) {
2057 bio_nbytes += nr_bytes;
2058 total_bytes += nr_bytes;
2059 break;
2060 }
2061
2062 /*
2063 * advance to the next vector
2064 */
2065 next_idx++;
2066 bio_nbytes += nbytes;
2067 }
2068
2069 total_bytes += nbytes;
2070 nr_bytes -= nbytes;
2071
6728cb0e
JA
2072 bio = req->bio;
2073 if (bio) {
1da177e4
LT
2074 /*
2075 * end more in this run, or just return 'not-done'
2076 */
2077 if (unlikely(nr_bytes <= 0))
2078 break;
2079 }
2080 }
2081
2082 /*
2083 * completely done
2084 */
2e60e022
TH
2085 if (!req->bio) {
2086 /*
2087 * Reset counters so that the request stacking driver
2088 * can find how many bytes remain in the request
2089 * later.
2090 */
a2dec7b3 2091 req->__data_len = 0;
2e60e022
TH
2092 return false;
2093 }
1da177e4
LT
2094
2095 /*
2096 * if the request wasn't completed, update state
2097 */
2098 if (bio_nbytes) {
5bb23a68 2099 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2100 bio->bi_idx += next_idx;
2101 bio_iovec(bio)->bv_offset += nr_bytes;
2102 bio_iovec(bio)->bv_len -= nr_bytes;
2103 }
2104
a2dec7b3 2105 req->__data_len -= total_bytes;
2e46e8b2
TH
2106 req->buffer = bio_data(req->bio);
2107
2108 /* update sector only for requests with clear definition of sector */
33659ebb 2109 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2110 req->__sector += total_bytes >> 9;
2e46e8b2 2111
80a761fd
TH
2112 /* mixed attributes always follow the first bio */
2113 if (req->cmd_flags & REQ_MIXED_MERGE) {
2114 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2115 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2116 }
2117
2e46e8b2
TH
2118 /*
2119 * If total number of sectors is less than the first segment
2120 * size, something has gone terribly wrong.
2121 */
2122 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2123 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2124 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2125 }
2126
2127 /* recalculate the number of segments */
1da177e4 2128 blk_recalc_rq_segments(req);
2e46e8b2 2129
2e60e022 2130 return true;
1da177e4 2131}
2e60e022 2132EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2133
2e60e022
TH
2134static bool blk_update_bidi_request(struct request *rq, int error,
2135 unsigned int nr_bytes,
2136 unsigned int bidi_bytes)
5efccd17 2137{
2e60e022
TH
2138 if (blk_update_request(rq, error, nr_bytes))
2139 return true;
5efccd17 2140
2e60e022
TH
2141 /* Bidi request must be completed as a whole */
2142 if (unlikely(blk_bidi_rq(rq)) &&
2143 blk_update_request(rq->next_rq, error, bidi_bytes))
2144 return true;
5efccd17 2145
e2e1a148
JA
2146 if (blk_queue_add_random(rq->q))
2147 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2148
2149 return false;
1da177e4
LT
2150}
2151
28018c24
JB
2152/**
2153 * blk_unprep_request - unprepare a request
2154 * @req: the request
2155 *
2156 * This function makes a request ready for complete resubmission (or
2157 * completion). It happens only after all error handling is complete,
2158 * so represents the appropriate moment to deallocate any resources
2159 * that were allocated to the request in the prep_rq_fn. The queue
2160 * lock is held when calling this.
2161 */
2162void blk_unprep_request(struct request *req)
2163{
2164 struct request_queue *q = req->q;
2165
2166 req->cmd_flags &= ~REQ_DONTPREP;
2167 if (q->unprep_rq_fn)
2168 q->unprep_rq_fn(q, req);
2169}
2170EXPORT_SYMBOL_GPL(blk_unprep_request);
2171
1da177e4
LT
2172/*
2173 * queue lock must be held
2174 */
2e60e022 2175static void blk_finish_request(struct request *req, int error)
1da177e4 2176{
b8286239
KU
2177 if (blk_rq_tagged(req))
2178 blk_queue_end_tag(req->q, req);
2179
ba396a6c 2180 BUG_ON(blk_queued_rq(req));
1da177e4 2181
33659ebb 2182 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2183 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2184
e78042e5
MA
2185 blk_delete_timer(req);
2186
28018c24
JB
2187 if (req->cmd_flags & REQ_DONTPREP)
2188 blk_unprep_request(req);
2189
2190
bc58ba94 2191 blk_account_io_done(req);
b8286239 2192
1da177e4 2193 if (req->end_io)
8ffdc655 2194 req->end_io(req, error);
b8286239
KU
2195 else {
2196 if (blk_bidi_rq(req))
2197 __blk_put_request(req->next_rq->q, req->next_rq);
2198
1da177e4 2199 __blk_put_request(req->q, req);
b8286239 2200 }
1da177e4
LT
2201}
2202
3b11313a 2203/**
2e60e022
TH
2204 * blk_end_bidi_request - Complete a bidi request
2205 * @rq: the request to complete
2206 * @error: %0 for success, < %0 for error
2207 * @nr_bytes: number of bytes to complete @rq
2208 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2209 *
2210 * Description:
e3a04fe3 2211 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2212 * Drivers that supports bidi can safely call this member for any
2213 * type of request, bidi or uni. In the later case @bidi_bytes is
2214 * just ignored.
336cdb40
KU
2215 *
2216 * Return:
2e60e022
TH
2217 * %false - we are done with this request
2218 * %true - still buffers pending for this request
a0cd1285 2219 **/
b1f74493 2220static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2221 unsigned int nr_bytes, unsigned int bidi_bytes)
2222{
336cdb40 2223 struct request_queue *q = rq->q;
2e60e022 2224 unsigned long flags;
32fab448 2225
2e60e022
TH
2226 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2227 return true;
32fab448 2228
336cdb40 2229 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2230 blk_finish_request(rq, error);
336cdb40
KU
2231 spin_unlock_irqrestore(q->queue_lock, flags);
2232
2e60e022 2233 return false;
32fab448
KU
2234}
2235
336cdb40 2236/**
2e60e022
TH
2237 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2238 * @rq: the request to complete
710027a4 2239 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2240 * @nr_bytes: number of bytes to complete @rq
2241 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2242 *
2243 * Description:
2e60e022
TH
2244 * Identical to blk_end_bidi_request() except that queue lock is
2245 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2246 *
2247 * Return:
2e60e022
TH
2248 * %false - we are done with this request
2249 * %true - still buffers pending for this request
336cdb40 2250 **/
b1f74493
FT
2251static bool __blk_end_bidi_request(struct request *rq, int error,
2252 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2253{
2e60e022
TH
2254 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2255 return true;
336cdb40 2256
2e60e022 2257 blk_finish_request(rq, error);
336cdb40 2258
2e60e022 2259 return false;
336cdb40 2260}
e19a3ab0
KU
2261
2262/**
2263 * blk_end_request - Helper function for drivers to complete the request.
2264 * @rq: the request being processed
710027a4 2265 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2266 * @nr_bytes: number of bytes to complete
2267 *
2268 * Description:
2269 * Ends I/O on a number of bytes attached to @rq.
2270 * If @rq has leftover, sets it up for the next range of segments.
2271 *
2272 * Return:
b1f74493
FT
2273 * %false - we are done with this request
2274 * %true - still buffers pending for this request
e19a3ab0 2275 **/
b1f74493 2276bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2277{
b1f74493 2278 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2279}
56ad1740 2280EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2281
2282/**
b1f74493
FT
2283 * blk_end_request_all - Helper function for drives to finish the request.
2284 * @rq: the request to finish
8ebf9756 2285 * @error: %0 for success, < %0 for error
336cdb40
KU
2286 *
2287 * Description:
b1f74493
FT
2288 * Completely finish @rq.
2289 */
2290void blk_end_request_all(struct request *rq, int error)
336cdb40 2291{
b1f74493
FT
2292 bool pending;
2293 unsigned int bidi_bytes = 0;
336cdb40 2294
b1f74493
FT
2295 if (unlikely(blk_bidi_rq(rq)))
2296 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2297
b1f74493
FT
2298 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2299 BUG_ON(pending);
2300}
56ad1740 2301EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2302
b1f74493
FT
2303/**
2304 * blk_end_request_cur - Helper function to finish the current request chunk.
2305 * @rq: the request to finish the current chunk for
8ebf9756 2306 * @error: %0 for success, < %0 for error
b1f74493
FT
2307 *
2308 * Description:
2309 * Complete the current consecutively mapped chunk from @rq.
2310 *
2311 * Return:
2312 * %false - we are done with this request
2313 * %true - still buffers pending for this request
2314 */
2315bool blk_end_request_cur(struct request *rq, int error)
2316{
2317 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2318}
56ad1740 2319EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2320
80a761fd
TH
2321/**
2322 * blk_end_request_err - Finish a request till the next failure boundary.
2323 * @rq: the request to finish till the next failure boundary for
2324 * @error: must be negative errno
2325 *
2326 * Description:
2327 * Complete @rq till the next failure boundary.
2328 *
2329 * Return:
2330 * %false - we are done with this request
2331 * %true - still buffers pending for this request
2332 */
2333bool blk_end_request_err(struct request *rq, int error)
2334{
2335 WARN_ON(error >= 0);
2336 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2337}
2338EXPORT_SYMBOL_GPL(blk_end_request_err);
2339
e3a04fe3 2340/**
b1f74493
FT
2341 * __blk_end_request - Helper function for drivers to complete the request.
2342 * @rq: the request being processed
2343 * @error: %0 for success, < %0 for error
2344 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2345 *
2346 * Description:
b1f74493 2347 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2348 *
2349 * Return:
b1f74493
FT
2350 * %false - we are done with this request
2351 * %true - still buffers pending for this request
e3a04fe3 2352 **/
b1f74493 2353bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2354{
b1f74493 2355 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2356}
56ad1740 2357EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2358
32fab448 2359/**
b1f74493
FT
2360 * __blk_end_request_all - Helper function for drives to finish the request.
2361 * @rq: the request to finish
8ebf9756 2362 * @error: %0 for success, < %0 for error
32fab448
KU
2363 *
2364 * Description:
b1f74493 2365 * Completely finish @rq. Must be called with queue lock held.
32fab448 2366 */
b1f74493 2367void __blk_end_request_all(struct request *rq, int error)
32fab448 2368{
b1f74493
FT
2369 bool pending;
2370 unsigned int bidi_bytes = 0;
2371
2372 if (unlikely(blk_bidi_rq(rq)))
2373 bidi_bytes = blk_rq_bytes(rq->next_rq);
2374
2375 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2376 BUG_ON(pending);
32fab448 2377}
56ad1740 2378EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2379
e19a3ab0 2380/**
b1f74493
FT
2381 * __blk_end_request_cur - Helper function to finish the current request chunk.
2382 * @rq: the request to finish the current chunk for
8ebf9756 2383 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2384 *
2385 * Description:
b1f74493
FT
2386 * Complete the current consecutively mapped chunk from @rq. Must
2387 * be called with queue lock held.
e19a3ab0
KU
2388 *
2389 * Return:
b1f74493
FT
2390 * %false - we are done with this request
2391 * %true - still buffers pending for this request
2392 */
2393bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2394{
b1f74493 2395 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2396}
56ad1740 2397EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2398
80a761fd
TH
2399/**
2400 * __blk_end_request_err - Finish a request till the next failure boundary.
2401 * @rq: the request to finish till the next failure boundary for
2402 * @error: must be negative errno
2403 *
2404 * Description:
2405 * Complete @rq till the next failure boundary. Must be called
2406 * with queue lock held.
2407 *
2408 * Return:
2409 * %false - we are done with this request
2410 * %true - still buffers pending for this request
2411 */
2412bool __blk_end_request_err(struct request *rq, int error)
2413{
2414 WARN_ON(error >= 0);
2415 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2416}
2417EXPORT_SYMBOL_GPL(__blk_end_request_err);
2418
86db1e29
JA
2419void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2420 struct bio *bio)
1da177e4 2421{
a82afdfc 2422 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2423 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2424
fb2dce86
DW
2425 if (bio_has_data(bio)) {
2426 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2427 rq->buffer = bio_data(bio);
2428 }
a2dec7b3 2429 rq->__data_len = bio->bi_size;
1da177e4 2430 rq->bio = rq->biotail = bio;
1da177e4 2431
66846572
N
2432 if (bio->bi_bdev)
2433 rq->rq_disk = bio->bi_bdev->bd_disk;
2434}
1da177e4 2435
2d4dc890
IL
2436#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2437/**
2438 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2439 * @rq: the request to be flushed
2440 *
2441 * Description:
2442 * Flush all pages in @rq.
2443 */
2444void rq_flush_dcache_pages(struct request *rq)
2445{
2446 struct req_iterator iter;
2447 struct bio_vec *bvec;
2448
2449 rq_for_each_segment(bvec, rq, iter)
2450 flush_dcache_page(bvec->bv_page);
2451}
2452EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2453#endif
2454
ef9e3fac
KU
2455/**
2456 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2457 * @q : the queue of the device being checked
2458 *
2459 * Description:
2460 * Check if underlying low-level drivers of a device are busy.
2461 * If the drivers want to export their busy state, they must set own
2462 * exporting function using blk_queue_lld_busy() first.
2463 *
2464 * Basically, this function is used only by request stacking drivers
2465 * to stop dispatching requests to underlying devices when underlying
2466 * devices are busy. This behavior helps more I/O merging on the queue
2467 * of the request stacking driver and prevents I/O throughput regression
2468 * on burst I/O load.
2469 *
2470 * Return:
2471 * 0 - Not busy (The request stacking driver should dispatch request)
2472 * 1 - Busy (The request stacking driver should stop dispatching request)
2473 */
2474int blk_lld_busy(struct request_queue *q)
2475{
2476 if (q->lld_busy_fn)
2477 return q->lld_busy_fn(q);
2478
2479 return 0;
2480}
2481EXPORT_SYMBOL_GPL(blk_lld_busy);
2482
b0fd271d
KU
2483/**
2484 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2485 * @rq: the clone request to be cleaned up
2486 *
2487 * Description:
2488 * Free all bios in @rq for a cloned request.
2489 */
2490void blk_rq_unprep_clone(struct request *rq)
2491{
2492 struct bio *bio;
2493
2494 while ((bio = rq->bio) != NULL) {
2495 rq->bio = bio->bi_next;
2496
2497 bio_put(bio);
2498 }
2499}
2500EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2501
2502/*
2503 * Copy attributes of the original request to the clone request.
2504 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2505 */
2506static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2507{
2508 dst->cpu = src->cpu;
3a2edd0d 2509 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2510 dst->cmd_type = src->cmd_type;
2511 dst->__sector = blk_rq_pos(src);
2512 dst->__data_len = blk_rq_bytes(src);
2513 dst->nr_phys_segments = src->nr_phys_segments;
2514 dst->ioprio = src->ioprio;
2515 dst->extra_len = src->extra_len;
2516}
2517
2518/**
2519 * blk_rq_prep_clone - Helper function to setup clone request
2520 * @rq: the request to be setup
2521 * @rq_src: original request to be cloned
2522 * @bs: bio_set that bios for clone are allocated from
2523 * @gfp_mask: memory allocation mask for bio
2524 * @bio_ctr: setup function to be called for each clone bio.
2525 * Returns %0 for success, non %0 for failure.
2526 * @data: private data to be passed to @bio_ctr
2527 *
2528 * Description:
2529 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2530 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2531 * are not copied, and copying such parts is the caller's responsibility.
2532 * Also, pages which the original bios are pointing to are not copied
2533 * and the cloned bios just point same pages.
2534 * So cloned bios must be completed before original bios, which means
2535 * the caller must complete @rq before @rq_src.
2536 */
2537int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2538 struct bio_set *bs, gfp_t gfp_mask,
2539 int (*bio_ctr)(struct bio *, struct bio *, void *),
2540 void *data)
2541{
2542 struct bio *bio, *bio_src;
2543
2544 if (!bs)
2545 bs = fs_bio_set;
2546
2547 blk_rq_init(NULL, rq);
2548
2549 __rq_for_each_bio(bio_src, rq_src) {
2550 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2551 if (!bio)
2552 goto free_and_out;
2553
2554 __bio_clone(bio, bio_src);
2555
2556 if (bio_integrity(bio_src) &&
7878cba9 2557 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2558 goto free_and_out;
2559
2560 if (bio_ctr && bio_ctr(bio, bio_src, data))
2561 goto free_and_out;
2562
2563 if (rq->bio) {
2564 rq->biotail->bi_next = bio;
2565 rq->biotail = bio;
2566 } else
2567 rq->bio = rq->biotail = bio;
2568 }
2569
2570 __blk_rq_prep_clone(rq, rq_src);
2571
2572 return 0;
2573
2574free_and_out:
2575 if (bio)
2576 bio_free(bio, bs);
2577 blk_rq_unprep_clone(rq);
2578
2579 return -ENOMEM;
2580}
2581EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2582
18887ad9 2583int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2584{
2585 return queue_work(kblockd_workqueue, work);
2586}
1da177e4
LT
2587EXPORT_SYMBOL(kblockd_schedule_work);
2588
e43473b7
VG
2589int kblockd_schedule_delayed_work(struct request_queue *q,
2590 struct delayed_work *dwork, unsigned long delay)
2591{
2592 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2593}
2594EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2595
73c10101
JA
2596#define PLUG_MAGIC 0x91827364
2597
2598void blk_start_plug(struct blk_plug *plug)
2599{
2600 struct task_struct *tsk = current;
2601
2602 plug->magic = PLUG_MAGIC;
2603 INIT_LIST_HEAD(&plug->list);
048c9374 2604 INIT_LIST_HEAD(&plug->cb_list);
73c10101 2605 plug->should_sort = 0;
55c022bb 2606 plug->count = 0;
73c10101
JA
2607
2608 /*
2609 * If this is a nested plug, don't actually assign it. It will be
2610 * flushed on its own.
2611 */
2612 if (!tsk->plug) {
2613 /*
2614 * Store ordering should not be needed here, since a potential
2615 * preempt will imply a full memory barrier
2616 */
2617 tsk->plug = plug;
2618 }
2619}
2620EXPORT_SYMBOL(blk_start_plug);
2621
2622static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2623{
2624 struct request *rqa = container_of(a, struct request, queuelist);
2625 struct request *rqb = container_of(b, struct request, queuelist);
2626
f83e8261 2627 return !(rqa->q <= rqb->q);
73c10101
JA
2628}
2629
49cac01e
JA
2630/*
2631 * If 'from_schedule' is true, then postpone the dispatch of requests
2632 * until a safe kblockd context. We due this to avoid accidental big
2633 * additional stack usage in driver dispatch, in places where the originally
2634 * plugger did not intend it.
2635 */
f6603783 2636static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2637 bool from_schedule)
99e22598 2638 __releases(q->queue_lock)
94b5eb28 2639{
49cac01e 2640 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2641
2642 /*
2643 * If we are punting this to kblockd, then we can safely drop
2644 * the queue_lock before waking kblockd (which needs to take
2645 * this lock).
2646 */
2647 if (from_schedule) {
2648 spin_unlock(q->queue_lock);
24ecfbe2 2649 blk_run_queue_async(q);
99e22598 2650 } else {
24ecfbe2 2651 __blk_run_queue(q);
99e22598
JA
2652 spin_unlock(q->queue_lock);
2653 }
2654
94b5eb28
JA
2655}
2656
048c9374
N
2657static void flush_plug_callbacks(struct blk_plug *plug)
2658{
2659 LIST_HEAD(callbacks);
2660
2661 if (list_empty(&plug->cb_list))
2662 return;
2663
2664 list_splice_init(&plug->cb_list, &callbacks);
2665
2666 while (!list_empty(&callbacks)) {
2667 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2668 struct blk_plug_cb,
2669 list);
2670 list_del(&cb->list);
2671 cb->callback(cb);
2672 }
2673}
2674
49cac01e 2675void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2676{
2677 struct request_queue *q;
2678 unsigned long flags;
2679 struct request *rq;
109b8129 2680 LIST_HEAD(list);
94b5eb28 2681 unsigned int depth;
73c10101
JA
2682
2683 BUG_ON(plug->magic != PLUG_MAGIC);
2684
048c9374 2685 flush_plug_callbacks(plug);
73c10101
JA
2686 if (list_empty(&plug->list))
2687 return;
2688
109b8129 2689 list_splice_init(&plug->list, &list);
55c022bb 2690 plug->count = 0;
109b8129
N
2691
2692 if (plug->should_sort) {
2693 list_sort(NULL, &list, plug_rq_cmp);
2694 plug->should_sort = 0;
2695 }
73c10101
JA
2696
2697 q = NULL;
94b5eb28 2698 depth = 0;
18811272
JA
2699
2700 /*
2701 * Save and disable interrupts here, to avoid doing it for every
2702 * queue lock we have to take.
2703 */
73c10101 2704 local_irq_save(flags);
109b8129
N
2705 while (!list_empty(&list)) {
2706 rq = list_entry_rq(list.next);
73c10101 2707 list_del_init(&rq->queuelist);
73c10101
JA
2708 BUG_ON(!rq->q);
2709 if (rq->q != q) {
99e22598
JA
2710 /*
2711 * This drops the queue lock
2712 */
2713 if (q)
49cac01e 2714 queue_unplugged(q, depth, from_schedule);
73c10101 2715 q = rq->q;
94b5eb28 2716 depth = 0;
73c10101
JA
2717 spin_lock(q->queue_lock);
2718 }
73c10101
JA
2719 /*
2720 * rq is already accounted, so use raw insert
2721 */
401a18e9
JA
2722 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2723 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2724 else
2725 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2726
2727 depth++;
73c10101
JA
2728 }
2729
99e22598
JA
2730 /*
2731 * This drops the queue lock
2732 */
2733 if (q)
49cac01e 2734 queue_unplugged(q, depth, from_schedule);
73c10101 2735
73c10101
JA
2736 local_irq_restore(flags);
2737}
73c10101
JA
2738
2739void blk_finish_plug(struct blk_plug *plug)
2740{
f6603783 2741 blk_flush_plug_list(plug, false);
73c10101 2742
88b996cd
CH
2743 if (plug == current->plug)
2744 current->plug = NULL;
73c10101 2745}
88b996cd 2746EXPORT_SYMBOL(blk_finish_plug);
73c10101 2747
1da177e4
LT
2748int __init blk_dev_init(void)
2749{
9eb55b03
NK
2750 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2751 sizeof(((struct request *)0)->cmd_flags));
2752
89b90be2
TH
2753 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2754 kblockd_workqueue = alloc_workqueue("kblockd",
2755 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2756 if (!kblockd_workqueue)
2757 panic("Failed to create kblockd\n");
2758
2759 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2760 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2761
8324aa91 2762 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2763 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2764
d38ecf93 2765 return 0;
1da177e4 2766}