]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
block: collapse blk_alloc_request() into get_request()
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91 36#include "blk.h"
5efd6113 37#include "blk-cgroup.h"
8324aa91 38
d07335e5 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 42
a73f730d
TH
43DEFINE_IDA(blk_queue_ida);
44
1da177e4
LT
45/*
46 * For the allocated request tables
47 */
5ece6c52 48static struct kmem_cache *request_cachep;
1da177e4
LT
49
50/*
51 * For queue allocation
52 */
6728cb0e 53struct kmem_cache *blk_requestq_cachep;
1da177e4 54
1da177e4
LT
55/*
56 * Controlling structure to kblockd
57 */
ff856bad 58static struct workqueue_struct *kblockd_workqueue;
1da177e4 59
26b8256e
JA
60static void drive_stat_acct(struct request *rq, int new_io)
61{
28f13702 62 struct hd_struct *part;
26b8256e 63 int rw = rq_data_dir(rq);
c9959059 64 int cpu;
26b8256e 65
c2553b58 66 if (!blk_do_io_stat(rq))
26b8256e
JA
67 return;
68
074a7aca 69 cpu = part_stat_lock();
c9959059 70
09e099d4
JM
71 if (!new_io) {
72 part = rq->part;
074a7aca 73 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
74 } else {
75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 76 if (!hd_struct_try_get(part)) {
09e099d4
JM
77 /*
78 * The partition is already being removed,
79 * the request will be accounted on the disk only
80 *
81 * We take a reference on disk->part0 although that
82 * partition will never be deleted, so we can treat
83 * it as any other partition.
84 */
85 part = &rq->rq_disk->part0;
6c23a968 86 hd_struct_get(part);
09e099d4 87 }
074a7aca 88 part_round_stats(cpu, part);
316d315b 89 part_inc_in_flight(part, rw);
09e099d4 90 rq->part = part;
26b8256e 91 }
e71bf0d0 92
074a7aca 93 part_stat_unlock();
26b8256e
JA
94}
95
8324aa91 96void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
1da177e4
LT
111/**
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * @bdev: device
114 *
115 * Locates the passed device's request queue and returns the address of its
116 * backing_dev_info
117 *
118 * Will return NULL if the request queue cannot be located.
119 */
120struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
121{
122 struct backing_dev_info *ret = NULL;
165125e1 123 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
124
125 if (q)
126 ret = &q->backing_dev_info;
127 return ret;
128}
1da177e4
LT
129EXPORT_SYMBOL(blk_get_backing_dev_info);
130
2a4aa30c 131void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 132{
1afb20f3
FT
133 memset(rq, 0, sizeof(*rq));
134
1da177e4 135 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 136 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 137 rq->cpu = -1;
63a71386 138 rq->q = q;
a2dec7b3 139 rq->__sector = (sector_t) -1;
2e662b65
JA
140 INIT_HLIST_NODE(&rq->hash);
141 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 142 rq->cmd = rq->__cmd;
e2494e1b 143 rq->cmd_len = BLK_MAX_CDB;
63a71386 144 rq->tag = -1;
1da177e4 145 rq->ref_count = 1;
b243ddcb 146 rq->start_time = jiffies;
9195291e 147 set_start_time_ns(rq);
09e099d4 148 rq->part = NULL;
1da177e4 149}
2a4aa30c 150EXPORT_SYMBOL(blk_rq_init);
1da177e4 151
5bb23a68
N
152static void req_bio_endio(struct request *rq, struct bio *bio,
153 unsigned int nbytes, int error)
1da177e4 154{
143a87f4
TH
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
797e7dbb 159
143a87f4
TH
160 if (unlikely(nbytes > bio->bi_size)) {
161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 __func__, nbytes, bio->bi_size);
163 nbytes = bio->bi_size;
5bb23a68 164 }
797e7dbb 165
143a87f4
TH
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 168
143a87f4
TH
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
7ba1ba12 171
143a87f4
TH
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
7ba1ba12 174
143a87f4
TH
175 /* don't actually finish bio if it's part of flush sequence */
176 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
177 bio_endio(bio, error);
1da177e4 178}
1da177e4 179
1da177e4
LT
180void blk_dump_rq_flags(struct request *rq, char *msg)
181{
182 int bit;
183
6728cb0e 184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
1da177e4 187
83096ebf
TH
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 192 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 193
33659ebb 194 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 195 printk(KERN_INFO " cdb: ");
d34c87e4 196 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
197 printk("%02x ", rq->cmd[bit]);
198 printk("\n");
199 }
200}
1da177e4
LT
201EXPORT_SYMBOL(blk_dump_rq_flags);
202
3cca6dc1 203static void blk_delay_work(struct work_struct *work)
1da177e4 204{
3cca6dc1 205 struct request_queue *q;
1da177e4 206
3cca6dc1
JA
207 q = container_of(work, struct request_queue, delay_work.work);
208 spin_lock_irq(q->queue_lock);
24ecfbe2 209 __blk_run_queue(q);
3cca6dc1 210 spin_unlock_irq(q->queue_lock);
1da177e4 211}
1da177e4
LT
212
213/**
3cca6dc1
JA
214 * blk_delay_queue - restart queueing after defined interval
215 * @q: The &struct request_queue in question
216 * @msecs: Delay in msecs
1da177e4
LT
217 *
218 * Description:
3cca6dc1
JA
219 * Sometimes queueing needs to be postponed for a little while, to allow
220 * resources to come back. This function will make sure that queueing is
221 * restarted around the specified time.
222 */
223void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 224{
4521cc4e
JA
225 queue_delayed_work(kblockd_workqueue, &q->delay_work,
226 msecs_to_jiffies(msecs));
2ad8b1ef 227}
3cca6dc1 228EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 229
1da177e4
LT
230/**
231 * blk_start_queue - restart a previously stopped queue
165125e1 232 * @q: The &struct request_queue in question
1da177e4
LT
233 *
234 * Description:
235 * blk_start_queue() will clear the stop flag on the queue, and call
236 * the request_fn for the queue if it was in a stopped state when
237 * entered. Also see blk_stop_queue(). Queue lock must be held.
238 **/
165125e1 239void blk_start_queue(struct request_queue *q)
1da177e4 240{
a038e253
PBG
241 WARN_ON(!irqs_disabled());
242
75ad23bc 243 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 244 __blk_run_queue(q);
1da177e4 245}
1da177e4
LT
246EXPORT_SYMBOL(blk_start_queue);
247
248/**
249 * blk_stop_queue - stop a queue
165125e1 250 * @q: The &struct request_queue in question
1da177e4
LT
251 *
252 * Description:
253 * The Linux block layer assumes that a block driver will consume all
254 * entries on the request queue when the request_fn strategy is called.
255 * Often this will not happen, because of hardware limitations (queue
256 * depth settings). If a device driver gets a 'queue full' response,
257 * or if it simply chooses not to queue more I/O at one point, it can
258 * call this function to prevent the request_fn from being called until
259 * the driver has signalled it's ready to go again. This happens by calling
260 * blk_start_queue() to restart queue operations. Queue lock must be held.
261 **/
165125e1 262void blk_stop_queue(struct request_queue *q)
1da177e4 263{
ad3d9d7e 264 __cancel_delayed_work(&q->delay_work);
75ad23bc 265 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
266}
267EXPORT_SYMBOL(blk_stop_queue);
268
269/**
270 * blk_sync_queue - cancel any pending callbacks on a queue
271 * @q: the queue
272 *
273 * Description:
274 * The block layer may perform asynchronous callback activity
275 * on a queue, such as calling the unplug function after a timeout.
276 * A block device may call blk_sync_queue to ensure that any
277 * such activity is cancelled, thus allowing it to release resources
59c51591 278 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
279 * that its ->make_request_fn will not re-add plugging prior to calling
280 * this function.
281 *
da527770
VG
282 * This function does not cancel any asynchronous activity arising
283 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 284 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 285 *
1da177e4
LT
286 */
287void blk_sync_queue(struct request_queue *q)
288{
70ed28b9 289 del_timer_sync(&q->timeout);
3cca6dc1 290 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
291}
292EXPORT_SYMBOL(blk_sync_queue);
293
294/**
80a4b58e 295 * __blk_run_queue - run a single device queue
1da177e4 296 * @q: The queue to run
80a4b58e
JA
297 *
298 * Description:
299 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 300 * held and interrupts disabled.
1da177e4 301 */
24ecfbe2 302void __blk_run_queue(struct request_queue *q)
1da177e4 303{
a538cd03
TH
304 if (unlikely(blk_queue_stopped(q)))
305 return;
306
c21e6beb 307 q->request_fn(q);
75ad23bc
NP
308}
309EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 310
24ecfbe2
CH
311/**
312 * blk_run_queue_async - run a single device queue in workqueue context
313 * @q: The queue to run
314 *
315 * Description:
316 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 * of us.
318 */
319void blk_run_queue_async(struct request_queue *q)
320{
3ec717b7
SL
321 if (likely(!blk_queue_stopped(q))) {
322 __cancel_delayed_work(&q->delay_work);
24ecfbe2 323 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 324 }
24ecfbe2 325}
c21e6beb 326EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 327
75ad23bc
NP
328/**
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
80a4b58e
JA
331 *
332 * Description:
333 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 334 * May be used to restart queueing when a request has completed.
75ad23bc
NP
335 */
336void blk_run_queue(struct request_queue *q)
337{
338 unsigned long flags;
339
340 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 341 __blk_run_queue(q);
1da177e4
LT
342 spin_unlock_irqrestore(q->queue_lock, flags);
343}
344EXPORT_SYMBOL(blk_run_queue);
345
165125e1 346void blk_put_queue(struct request_queue *q)
483f4afc
AV
347{
348 kobject_put(&q->kobj);
349}
d86e0e83 350EXPORT_SYMBOL(blk_put_queue);
483f4afc 351
e3c78ca5
TH
352/**
353 * blk_drain_queue - drain requests from request_queue
354 * @q: queue to drain
c9a929dd 355 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 356 *
c9a929dd
TH
357 * Drain requests from @q. If @drain_all is set, all requests are drained.
358 * If not, only ELVPRIV requests are drained. The caller is responsible
359 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 360 */
c9a929dd 361void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
362{
363 while (true) {
481a7d64
TH
364 bool drain = false;
365 int i;
e3c78ca5
TH
366
367 spin_lock_irq(q->queue_lock);
368
b855b04a
TH
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
5efd6113 376 blkcg_drain_queue(q);
e3c78ca5 377
4eabc941
TH
378 /*
379 * This function might be called on a queue which failed
b855b04a
TH
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
4eabc941 384 */
b855b04a 385 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 386 __blk_run_queue(q);
c9a929dd 387
481a7d64
TH
388 drain |= q->rq.elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->rq.count[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
e3c78ca5
TH
403
404 spin_unlock_irq(q->queue_lock);
405
481a7d64 406 if (!drain)
e3c78ca5
TH
407 break;
408 msleep(10);
409 }
410}
411
d732580b
TH
412/**
413 * blk_queue_bypass_start - enter queue bypass mode
414 * @q: queue of interest
415 *
416 * In bypass mode, only the dispatch FIFO queue of @q is used. This
417 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 418 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
419 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
420 * inside queue or RCU read lock.
d732580b
TH
421 */
422void blk_queue_bypass_start(struct request_queue *q)
423{
b82d4b19
TH
424 bool drain;
425
d732580b 426 spin_lock_irq(q->queue_lock);
b82d4b19 427 drain = !q->bypass_depth++;
d732580b
TH
428 queue_flag_set(QUEUE_FLAG_BYPASS, q);
429 spin_unlock_irq(q->queue_lock);
430
b82d4b19
TH
431 if (drain) {
432 blk_drain_queue(q, false);
433 /* ensure blk_queue_bypass() is %true inside RCU read lock */
434 synchronize_rcu();
435 }
d732580b
TH
436}
437EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
438
439/**
440 * blk_queue_bypass_end - leave queue bypass mode
441 * @q: queue of interest
442 *
443 * Leave bypass mode and restore the normal queueing behavior.
444 */
445void blk_queue_bypass_end(struct request_queue *q)
446{
447 spin_lock_irq(q->queue_lock);
448 if (!--q->bypass_depth)
449 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
450 WARN_ON_ONCE(q->bypass_depth < 0);
451 spin_unlock_irq(q->queue_lock);
452}
453EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
454
c9a929dd
TH
455/**
456 * blk_cleanup_queue - shutdown a request queue
457 * @q: request queue to shutdown
458 *
459 * Mark @q DEAD, drain all pending requests, destroy and put it. All
460 * future requests will be failed immediately with -ENODEV.
c94a96ac 461 */
6728cb0e 462void blk_cleanup_queue(struct request_queue *q)
483f4afc 463{
c9a929dd 464 spinlock_t *lock = q->queue_lock;
e3335de9 465
c9a929dd 466 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 467 mutex_lock(&q->sysfs_lock);
75ad23bc 468 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
469
470 spin_lock_irq(lock);
6ecf23af 471
80fd9979
TH
472 /*
473 * Dead queue is permanently in bypass mode till released. Note
474 * that, unlike blk_queue_bypass_start(), we aren't performing
475 * synchronize_rcu() after entering bypass mode to avoid the delay
476 * as some drivers create and destroy a lot of queues while
477 * probing. This is still safe because blk_release_queue() will be
478 * called only after the queue refcnt drops to zero and nothing,
479 * RCU or not, would be traversing the queue by then.
480 */
6ecf23af
TH
481 q->bypass_depth++;
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483
c9a929dd
TH
484 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
485 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
486 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 487
777eb1bf
HR
488 if (q->queue_lock != &q->__queue_lock)
489 q->queue_lock = &q->__queue_lock;
da527770 490
c9a929dd
TH
491 spin_unlock_irq(lock);
492 mutex_unlock(&q->sysfs_lock);
493
b855b04a
TH
494 /* drain all requests queued before DEAD marking */
495 blk_drain_queue(q, true);
c9a929dd
TH
496
497 /* @q won't process any more request, flush async actions */
498 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
499 blk_sync_queue(q);
500
501 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
502 blk_put_queue(q);
503}
1da177e4
LT
504EXPORT_SYMBOL(blk_cleanup_queue);
505
165125e1 506static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
507{
508 struct request_list *rl = &q->rq;
509
1abec4fd
MS
510 if (unlikely(rl->rq_pool))
511 return 0;
512
1faa16d2
JA
513 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
514 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 515 rl->elvpriv = 0;
1faa16d2
JA
516 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
517 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 518
1946089a
CL
519 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
520 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
521
522 if (!rl->rq_pool)
523 return -ENOMEM;
524
525 return 0;
526}
527
165125e1 528struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 529{
1946089a
CL
530 return blk_alloc_queue_node(gfp_mask, -1);
531}
532EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 533
165125e1 534struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 535{
165125e1 536 struct request_queue *q;
e0bf68dd 537 int err;
1946089a 538
8324aa91 539 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 540 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
541 if (!q)
542 return NULL;
543
a73f730d
TH
544 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
545 if (q->id < 0)
546 goto fail_q;
547
0989a025
JA
548 q->backing_dev_info.ra_pages =
549 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
550 q->backing_dev_info.state = 0;
551 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 552 q->backing_dev_info.name = "block";
5151412d 553 q->node = node_id;
0989a025 554
e0bf68dd 555 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
556 if (err)
557 goto fail_id;
e0bf68dd 558
31373d09
MG
559 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
560 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 561 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 562 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 563 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 564 INIT_LIST_HEAD(&q->icq_list);
4eef3049 565#ifdef CONFIG_BLK_CGROUP
e8989fae 566 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 567#endif
ae1b1539
TH
568 INIT_LIST_HEAD(&q->flush_queue[0]);
569 INIT_LIST_HEAD(&q->flush_queue[1]);
570 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 571 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 572
8324aa91 573 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 574
483f4afc 575 mutex_init(&q->sysfs_lock);
e7e72bf6 576 spin_lock_init(&q->__queue_lock);
483f4afc 577
c94a96ac
VG
578 /*
579 * By default initialize queue_lock to internal lock and driver can
580 * override it later if need be.
581 */
582 q->queue_lock = &q->__queue_lock;
583
b82d4b19
TH
584 /*
585 * A queue starts its life with bypass turned on to avoid
586 * unnecessary bypass on/off overhead and nasty surprises during
587 * init. The initial bypass will be finished at the end of
588 * blk_init_allocated_queue().
589 */
590 q->bypass_depth = 1;
591 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
592
5efd6113 593 if (blkcg_init_queue(q))
f51b802c
TH
594 goto fail_id;
595
1da177e4 596 return q;
a73f730d
TH
597
598fail_id:
599 ida_simple_remove(&blk_queue_ida, q->id);
600fail_q:
601 kmem_cache_free(blk_requestq_cachep, q);
602 return NULL;
1da177e4 603}
1946089a 604EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
605
606/**
607 * blk_init_queue - prepare a request queue for use with a block device
608 * @rfn: The function to be called to process requests that have been
609 * placed on the queue.
610 * @lock: Request queue spin lock
611 *
612 * Description:
613 * If a block device wishes to use the standard request handling procedures,
614 * which sorts requests and coalesces adjacent requests, then it must
615 * call blk_init_queue(). The function @rfn will be called when there
616 * are requests on the queue that need to be processed. If the device
617 * supports plugging, then @rfn may not be called immediately when requests
618 * are available on the queue, but may be called at some time later instead.
619 * Plugged queues are generally unplugged when a buffer belonging to one
620 * of the requests on the queue is needed, or due to memory pressure.
621 *
622 * @rfn is not required, or even expected, to remove all requests off the
623 * queue, but only as many as it can handle at a time. If it does leave
624 * requests on the queue, it is responsible for arranging that the requests
625 * get dealt with eventually.
626 *
627 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
628 * request queue; this lock will be taken also from interrupt context, so irq
629 * disabling is needed for it.
1da177e4 630 *
710027a4 631 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
632 * it didn't succeed.
633 *
634 * Note:
635 * blk_init_queue() must be paired with a blk_cleanup_queue() call
636 * when the block device is deactivated (such as at module unload).
637 **/
1946089a 638
165125e1 639struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 640{
1946089a
CL
641 return blk_init_queue_node(rfn, lock, -1);
642}
643EXPORT_SYMBOL(blk_init_queue);
644
165125e1 645struct request_queue *
1946089a
CL
646blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
647{
c86d1b8a 648 struct request_queue *uninit_q, *q;
1da177e4 649
c86d1b8a
MS
650 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
651 if (!uninit_q)
652 return NULL;
653
5151412d 654 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
655 if (!q)
656 blk_cleanup_queue(uninit_q);
657
658 return q;
01effb0d
MS
659}
660EXPORT_SYMBOL(blk_init_queue_node);
661
662struct request_queue *
663blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
664 spinlock_t *lock)
01effb0d 665{
1da177e4
LT
666 if (!q)
667 return NULL;
668
c86d1b8a 669 if (blk_init_free_list(q))
8669aafd 670 return NULL;
1da177e4
LT
671
672 q->request_fn = rfn;
1da177e4 673 q->prep_rq_fn = NULL;
28018c24 674 q->unprep_rq_fn = NULL;
bc58ba94 675 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
676
677 /* Override internal queue lock with supplied lock pointer */
678 if (lock)
679 q->queue_lock = lock;
1da177e4 680
f3b144aa
JA
681 /*
682 * This also sets hw/phys segments, boundary and size
683 */
c20e8de2 684 blk_queue_make_request(q, blk_queue_bio);
1da177e4 685
44ec9542
AS
686 q->sg_reserved_size = INT_MAX;
687
b82d4b19
TH
688 /* init elevator */
689 if (elevator_init(q, NULL))
690 return NULL;
1da177e4 691
b82d4b19
TH
692 blk_queue_congestion_threshold(q);
693
694 /* all done, end the initial bypass */
695 blk_queue_bypass_end(q);
696 return q;
1da177e4 697}
5151412d 698EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 699
09ac46c4 700bool blk_get_queue(struct request_queue *q)
1da177e4 701{
34f6055c 702 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
703 __blk_get_queue(q);
704 return true;
1da177e4
LT
705 }
706
09ac46c4 707 return false;
1da177e4 708}
d86e0e83 709EXPORT_SYMBOL(blk_get_queue);
1da177e4 710
165125e1 711static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 712{
f1f8cc94 713 if (rq->cmd_flags & REQ_ELVPRIV) {
cb98fc8b 714 elv_put_request(q, rq);
f1f8cc94 715 if (rq->elv.icq)
11a3122f 716 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
717 }
718
1da177e4
LT
719 mempool_free(rq, q->rq.rq_pool);
720}
721
1da177e4
LT
722/*
723 * ioc_batching returns true if the ioc is a valid batching request and
724 * should be given priority access to a request.
725 */
165125e1 726static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
727{
728 if (!ioc)
729 return 0;
730
731 /*
732 * Make sure the process is able to allocate at least 1 request
733 * even if the batch times out, otherwise we could theoretically
734 * lose wakeups.
735 */
736 return ioc->nr_batch_requests == q->nr_batching ||
737 (ioc->nr_batch_requests > 0
738 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
739}
740
741/*
742 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
743 * will cause the process to be a "batcher" on all queues in the system. This
744 * is the behaviour we want though - once it gets a wakeup it should be given
745 * a nice run.
746 */
165125e1 747static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
748{
749 if (!ioc || ioc_batching(q, ioc))
750 return;
751
752 ioc->nr_batch_requests = q->nr_batching;
753 ioc->last_waited = jiffies;
754}
755
1faa16d2 756static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
757{
758 struct request_list *rl = &q->rq;
759
1faa16d2
JA
760 if (rl->count[sync] < queue_congestion_off_threshold(q))
761 blk_clear_queue_congested(q, sync);
1da177e4 762
1faa16d2
JA
763 if (rl->count[sync] + 1 <= q->nr_requests) {
764 if (waitqueue_active(&rl->wait[sync]))
765 wake_up(&rl->wait[sync]);
1da177e4 766
1faa16d2 767 blk_clear_queue_full(q, sync);
1da177e4
LT
768 }
769}
770
771/*
772 * A request has just been released. Account for it, update the full and
773 * congestion status, wake up any waiters. Called under q->queue_lock.
774 */
75eb6c37 775static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
776{
777 struct request_list *rl = &q->rq;
75eb6c37 778 int sync = rw_is_sync(flags);
1da177e4 779
1faa16d2 780 rl->count[sync]--;
75eb6c37 781 if (flags & REQ_ELVPRIV)
cb98fc8b 782 rl->elvpriv--;
1da177e4 783
1faa16d2 784 __freed_request(q, sync);
1da177e4 785
1faa16d2
JA
786 if (unlikely(rl->starved[sync ^ 1]))
787 __freed_request(q, sync ^ 1);
1da177e4
LT
788}
789
9d5a4e94
MS
790/*
791 * Determine if elevator data should be initialized when allocating the
792 * request associated with @bio.
793 */
794static bool blk_rq_should_init_elevator(struct bio *bio)
795{
796 if (!bio)
797 return true;
798
799 /*
800 * Flush requests do not use the elevator so skip initialization.
801 * This allows a request to share the flush and elevator data.
802 */
803 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
804 return false;
805
806 return true;
807}
808
852c788f
TH
809/**
810 * rq_ioc - determine io_context for request allocation
811 * @bio: request being allocated is for this bio (can be %NULL)
812 *
813 * Determine io_context to use for request allocation for @bio. May return
814 * %NULL if %current->io_context doesn't exist.
815 */
816static struct io_context *rq_ioc(struct bio *bio)
817{
818#ifdef CONFIG_BLK_CGROUP
819 if (bio && bio->bi_ioc)
820 return bio->bi_ioc;
821#endif
822 return current->io_context;
823}
824
da8303c6
TH
825/**
826 * get_request - get a free request
827 * @q: request_queue to allocate request from
828 * @rw_flags: RW and SYNC flags
829 * @bio: bio to allocate request for (can be %NULL)
830 * @gfp_mask: allocation mask
831 *
832 * Get a free request from @q. This function may fail under memory
833 * pressure or if @q is dead.
834 *
835 * Must be callled with @q->queue_lock held and,
836 * Returns %NULL on failure, with @q->queue_lock held.
837 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 838 */
165125e1 839static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 840 struct bio *bio, gfp_t gfp_mask)
1da177e4 841{
b679281a 842 struct request *rq;
1da177e4 843 struct request_list *rl = &q->rq;
f1f8cc94 844 struct elevator_type *et;
f2dbd76a 845 struct io_context *ioc;
f1f8cc94 846 struct io_cq *icq = NULL;
1faa16d2 847 const bool is_sync = rw_is_sync(rw_flags) != 0;
f2dbd76a 848 bool retried = false;
75eb6c37 849 int may_queue;
f2dbd76a 850retry:
f1f8cc94 851 et = q->elevator->type;
852c788f 852 ioc = rq_ioc(bio);
88ee5ef1 853
34f6055c 854 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
855 return NULL;
856
7749a8d4 857 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
858 if (may_queue == ELV_MQUEUE_NO)
859 goto rq_starved;
860
1faa16d2
JA
861 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
862 if (rl->count[is_sync]+1 >= q->nr_requests) {
f2dbd76a
TH
863 /*
864 * We want ioc to record batching state. If it's
865 * not already there, creating a new one requires
866 * dropping queue_lock, which in turn requires
867 * retesting conditions to avoid queue hang.
868 */
869 if (!ioc && !retried) {
870 spin_unlock_irq(q->queue_lock);
24acfc34 871 create_io_context(gfp_mask, q->node);
f2dbd76a
TH
872 spin_lock_irq(q->queue_lock);
873 retried = true;
874 goto retry;
875 }
876
88ee5ef1
JA
877 /*
878 * The queue will fill after this allocation, so set
879 * it as full, and mark this process as "batching".
880 * This process will be allowed to complete a batch of
881 * requests, others will be blocked.
882 */
1faa16d2 883 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 884 ioc_set_batching(q, ioc);
1faa16d2 885 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
886 } else {
887 if (may_queue != ELV_MQUEUE_MUST
888 && !ioc_batching(q, ioc)) {
889 /*
890 * The queue is full and the allocating
891 * process is not a "batcher", and not
892 * exempted by the IO scheduler
893 */
b679281a 894 return NULL;
88ee5ef1
JA
895 }
896 }
1da177e4 897 }
1faa16d2 898 blk_set_queue_congested(q, is_sync);
1da177e4
LT
899 }
900
082cf69e
JA
901 /*
902 * Only allow batching queuers to allocate up to 50% over the defined
903 * limit of requests, otherwise we could have thousands of requests
904 * allocated with any setting of ->nr_requests
905 */
1faa16d2 906 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 907 return NULL;
fd782a4a 908
1faa16d2
JA
909 rl->count[is_sync]++;
910 rl->starved[is_sync] = 0;
cb98fc8b 911
f1f8cc94
TH
912 /*
913 * Decide whether the new request will be managed by elevator. If
914 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
915 * prevent the current elevator from being destroyed until the new
916 * request is freed. This guarantees icq's won't be destroyed and
917 * makes creating new ones safe.
918 *
919 * Also, lookup icq while holding queue_lock. If it doesn't exist,
920 * it will be created after releasing queue_lock.
921 */
d732580b 922 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37
TH
923 rw_flags |= REQ_ELVPRIV;
924 rl->elvpriv++;
f1f8cc94
TH
925 if (et->icq_cache && ioc)
926 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 927 }
cb98fc8b 928
f253b86b
JA
929 if (blk_queue_io_stat(q))
930 rw_flags |= REQ_IO_STAT;
1da177e4
LT
931 spin_unlock_irq(q->queue_lock);
932
f1f8cc94 933 /* create icq if missing */
05c30b95 934 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
852c788f
TH
935 create_io_context(gfp_mask, q->node);
936 ioc = rq_ioc(bio);
937 if (!ioc)
938 goto fail_alloc;
939 icq = ioc_create_icq(ioc, q, gfp_mask);
05c30b95 940 if (!icq)
b679281a 941 goto fail_alloc;
05c30b95 942 }
f1f8cc94 943
29e2b09a
TH
944 /* allocate and init request */
945 rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
946 if (!rq)
b679281a 947 goto fail_alloc;
1da177e4 948
29e2b09a
TH
949 blk_rq_init(q, rq);
950 rq->cmd_flags = rw_flags | REQ_ALLOCED;
951
952 if (rw_flags & REQ_ELVPRIV) {
953 rq->elv.icq = icq;
954 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
955 mempool_free(rq, q->rq.rq_pool);
956 goto fail_alloc;
957 }
958 /* @rq->elv.icq holds on to io_context until @rq is freed */
959 if (icq)
960 get_io_context(icq->ioc);
961 }
962
88ee5ef1
JA
963 /*
964 * ioc may be NULL here, and ioc_batching will be false. That's
965 * OK, if the queue is under the request limit then requests need
966 * not count toward the nr_batch_requests limit. There will always
967 * be some limit enforced by BLK_BATCH_TIME.
968 */
1da177e4
LT
969 if (ioc_batching(q, ioc))
970 ioc->nr_batch_requests--;
6728cb0e 971
1faa16d2 972 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 973 return rq;
b679281a
TH
974
975fail_alloc:
976 /*
977 * Allocation failed presumably due to memory. Undo anything we
978 * might have messed up.
979 *
980 * Allocating task should really be put onto the front of the wait
981 * queue, but this is pretty rare.
982 */
983 spin_lock_irq(q->queue_lock);
984 freed_request(q, rw_flags);
985
986 /*
987 * in the very unlikely event that allocation failed and no
988 * requests for this direction was pending, mark us starved so that
989 * freeing of a request in the other direction will notice
990 * us. another possible fix would be to split the rq mempool into
991 * READ and WRITE
992 */
993rq_starved:
994 if (unlikely(rl->count[is_sync] == 0))
995 rl->starved[is_sync] = 1;
996 return NULL;
1da177e4
LT
997}
998
da8303c6
TH
999/**
1000 * get_request_wait - get a free request with retry
1001 * @q: request_queue to allocate request from
1002 * @rw_flags: RW and SYNC flags
1003 * @bio: bio to allocate request for (can be %NULL)
1004 *
1005 * Get a free request from @q. This function keeps retrying under memory
1006 * pressure and fails iff @q is dead.
d6344532 1007 *
da8303c6
TH
1008 * Must be callled with @q->queue_lock held and,
1009 * Returns %NULL on failure, with @q->queue_lock held.
1010 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1011 */
165125e1 1012static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 1013 struct bio *bio)
1da177e4 1014{
1faa16d2 1015 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
1016 struct request *rq;
1017
7749a8d4 1018 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
1019 while (!rq) {
1020 DEFINE_WAIT(wait);
1da177e4
LT
1021 struct request_list *rl = &q->rq;
1022
34f6055c 1023 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
1024 return NULL;
1025
1faa16d2 1026 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
1027 TASK_UNINTERRUPTIBLE);
1028
1faa16d2 1029 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1030
05caf8db
ZY
1031 spin_unlock_irq(q->queue_lock);
1032 io_schedule();
1da177e4 1033
05caf8db
ZY
1034 /*
1035 * After sleeping, we become a "batching" process and
1036 * will be able to allocate at least one request, and
1037 * up to a big batch of them for a small period time.
1038 * See ioc_batching, ioc_set_batching
1039 */
24acfc34 1040 create_io_context(GFP_NOIO, q->node);
f2dbd76a 1041 ioc_set_batching(q, current->io_context);
d6344532 1042
05caf8db 1043 spin_lock_irq(q->queue_lock);
1faa16d2 1044 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
1045
1046 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1047 };
1da177e4
LT
1048
1049 return rq;
1050}
1051
165125e1 1052struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1053{
1054 struct request *rq;
1055
1056 BUG_ON(rw != READ && rw != WRITE);
1057
d6344532 1058 spin_lock_irq(q->queue_lock);
da8303c6 1059 if (gfp_mask & __GFP_WAIT)
22e2c507 1060 rq = get_request_wait(q, rw, NULL);
da8303c6 1061 else
22e2c507 1062 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1063 if (!rq)
1064 spin_unlock_irq(q->queue_lock);
d6344532 1065 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1066
1067 return rq;
1068}
1da177e4
LT
1069EXPORT_SYMBOL(blk_get_request);
1070
dc72ef4a 1071/**
79eb63e9 1072 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1073 * @q: target request queue
79eb63e9
BH
1074 * @bio: The bio describing the memory mappings that will be submitted for IO.
1075 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1076 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1077 *
79eb63e9
BH
1078 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1079 * type commands. Where the struct request needs to be farther initialized by
1080 * the caller. It is passed a &struct bio, which describes the memory info of
1081 * the I/O transfer.
dc72ef4a 1082 *
79eb63e9
BH
1083 * The caller of blk_make_request must make sure that bi_io_vec
1084 * are set to describe the memory buffers. That bio_data_dir() will return
1085 * the needed direction of the request. (And all bio's in the passed bio-chain
1086 * are properly set accordingly)
1087 *
1088 * If called under none-sleepable conditions, mapped bio buffers must not
1089 * need bouncing, by calling the appropriate masked or flagged allocator,
1090 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1091 * BUG.
53674ac5
JA
1092 *
1093 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1094 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1095 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1096 * completion of a bio that hasn't been submitted yet, thus resulting in a
1097 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1098 * of bio_alloc(), as that avoids the mempool deadlock.
1099 * If possible a big IO should be split into smaller parts when allocation
1100 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1101 */
79eb63e9
BH
1102struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1103 gfp_t gfp_mask)
dc72ef4a 1104{
79eb63e9
BH
1105 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1106
1107 if (unlikely(!rq))
1108 return ERR_PTR(-ENOMEM);
1109
1110 for_each_bio(bio) {
1111 struct bio *bounce_bio = bio;
1112 int ret;
1113
1114 blk_queue_bounce(q, &bounce_bio);
1115 ret = blk_rq_append_bio(q, rq, bounce_bio);
1116 if (unlikely(ret)) {
1117 blk_put_request(rq);
1118 return ERR_PTR(ret);
1119 }
1120 }
1121
1122 return rq;
dc72ef4a 1123}
79eb63e9 1124EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1125
1da177e4
LT
1126/**
1127 * blk_requeue_request - put a request back on queue
1128 * @q: request queue where request should be inserted
1129 * @rq: request to be inserted
1130 *
1131 * Description:
1132 * Drivers often keep queueing requests until the hardware cannot accept
1133 * more, when that condition happens we need to put the request back
1134 * on the queue. Must be called with queue lock held.
1135 */
165125e1 1136void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1137{
242f9dcb
JA
1138 blk_delete_timer(rq);
1139 blk_clear_rq_complete(rq);
5f3ea37c 1140 trace_block_rq_requeue(q, rq);
2056a782 1141
1da177e4
LT
1142 if (blk_rq_tagged(rq))
1143 blk_queue_end_tag(q, rq);
1144
ba396a6c
JB
1145 BUG_ON(blk_queued_rq(rq));
1146
1da177e4
LT
1147 elv_requeue_request(q, rq);
1148}
1da177e4
LT
1149EXPORT_SYMBOL(blk_requeue_request);
1150
73c10101
JA
1151static void add_acct_request(struct request_queue *q, struct request *rq,
1152 int where)
1153{
1154 drive_stat_acct(rq, 1);
7eaceacc 1155 __elv_add_request(q, rq, where);
73c10101
JA
1156}
1157
074a7aca
TH
1158static void part_round_stats_single(int cpu, struct hd_struct *part,
1159 unsigned long now)
1160{
1161 if (now == part->stamp)
1162 return;
1163
316d315b 1164 if (part_in_flight(part)) {
074a7aca 1165 __part_stat_add(cpu, part, time_in_queue,
316d315b 1166 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1167 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1168 }
1169 part->stamp = now;
1170}
1171
1172/**
496aa8a9
RD
1173 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1174 * @cpu: cpu number for stats access
1175 * @part: target partition
1da177e4
LT
1176 *
1177 * The average IO queue length and utilisation statistics are maintained
1178 * by observing the current state of the queue length and the amount of
1179 * time it has been in this state for.
1180 *
1181 * Normally, that accounting is done on IO completion, but that can result
1182 * in more than a second's worth of IO being accounted for within any one
1183 * second, leading to >100% utilisation. To deal with that, we call this
1184 * function to do a round-off before returning the results when reading
1185 * /proc/diskstats. This accounts immediately for all queue usage up to
1186 * the current jiffies and restarts the counters again.
1187 */
c9959059 1188void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1189{
1190 unsigned long now = jiffies;
1191
074a7aca
TH
1192 if (part->partno)
1193 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1194 part_round_stats_single(cpu, part, now);
6f2576af 1195}
074a7aca 1196EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1197
1da177e4
LT
1198/*
1199 * queue lock must be held
1200 */
165125e1 1201void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1202{
1da177e4
LT
1203 if (unlikely(!q))
1204 return;
1205 if (unlikely(--req->ref_count))
1206 return;
1207
8922e16c
TH
1208 elv_completed_request(q, req);
1209
1cd96c24
BH
1210 /* this is a bio leak */
1211 WARN_ON(req->bio != NULL);
1212
1da177e4
LT
1213 /*
1214 * Request may not have originated from ll_rw_blk. if not,
1215 * it didn't come out of our reserved rq pools
1216 */
49171e5c 1217 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1218 unsigned int flags = req->cmd_flags;
1da177e4 1219
1da177e4 1220 BUG_ON(!list_empty(&req->queuelist));
9817064b 1221 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1222
1223 blk_free_request(q, req);
75eb6c37 1224 freed_request(q, flags);
1da177e4
LT
1225 }
1226}
6e39b69e
MC
1227EXPORT_SYMBOL_GPL(__blk_put_request);
1228
1da177e4
LT
1229void blk_put_request(struct request *req)
1230{
8922e16c 1231 unsigned long flags;
165125e1 1232 struct request_queue *q = req->q;
8922e16c 1233
52a93ba8
FT
1234 spin_lock_irqsave(q->queue_lock, flags);
1235 __blk_put_request(q, req);
1236 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1237}
1da177e4
LT
1238EXPORT_SYMBOL(blk_put_request);
1239
66ac0280
CH
1240/**
1241 * blk_add_request_payload - add a payload to a request
1242 * @rq: request to update
1243 * @page: page backing the payload
1244 * @len: length of the payload.
1245 *
1246 * This allows to later add a payload to an already submitted request by
1247 * a block driver. The driver needs to take care of freeing the payload
1248 * itself.
1249 *
1250 * Note that this is a quite horrible hack and nothing but handling of
1251 * discard requests should ever use it.
1252 */
1253void blk_add_request_payload(struct request *rq, struct page *page,
1254 unsigned int len)
1255{
1256 struct bio *bio = rq->bio;
1257
1258 bio->bi_io_vec->bv_page = page;
1259 bio->bi_io_vec->bv_offset = 0;
1260 bio->bi_io_vec->bv_len = len;
1261
1262 bio->bi_size = len;
1263 bio->bi_vcnt = 1;
1264 bio->bi_phys_segments = 1;
1265
1266 rq->__data_len = rq->resid_len = len;
1267 rq->nr_phys_segments = 1;
1268 rq->buffer = bio_data(bio);
1269}
1270EXPORT_SYMBOL_GPL(blk_add_request_payload);
1271
73c10101
JA
1272static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1273 struct bio *bio)
1274{
1275 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1276
73c10101
JA
1277 if (!ll_back_merge_fn(q, req, bio))
1278 return false;
1279
1280 trace_block_bio_backmerge(q, bio);
1281
1282 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1283 blk_rq_set_mixed_merge(req);
1284
1285 req->biotail->bi_next = bio;
1286 req->biotail = bio;
1287 req->__data_len += bio->bi_size;
1288 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1289
1290 drive_stat_acct(req, 0);
1291 return true;
1292}
1293
1294static bool bio_attempt_front_merge(struct request_queue *q,
1295 struct request *req, struct bio *bio)
1296{
1297 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1298
73c10101
JA
1299 if (!ll_front_merge_fn(q, req, bio))
1300 return false;
1301
1302 trace_block_bio_frontmerge(q, bio);
1303
1304 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1305 blk_rq_set_mixed_merge(req);
1306
73c10101
JA
1307 bio->bi_next = req->bio;
1308 req->bio = bio;
1309
1310 /*
1311 * may not be valid. if the low level driver said
1312 * it didn't need a bounce buffer then it better
1313 * not touch req->buffer either...
1314 */
1315 req->buffer = bio_data(bio);
1316 req->__sector = bio->bi_sector;
1317 req->__data_len += bio->bi_size;
1318 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1319
1320 drive_stat_acct(req, 0);
1321 return true;
1322}
1323
bd87b589
TH
1324/**
1325 * attempt_plug_merge - try to merge with %current's plugged list
1326 * @q: request_queue new bio is being queued at
1327 * @bio: new bio being queued
1328 * @request_count: out parameter for number of traversed plugged requests
1329 *
1330 * Determine whether @bio being queued on @q can be merged with a request
1331 * on %current's plugged list. Returns %true if merge was successful,
1332 * otherwise %false.
1333 *
07c2bd37
TH
1334 * Plugging coalesces IOs from the same issuer for the same purpose without
1335 * going through @q->queue_lock. As such it's more of an issuing mechanism
1336 * than scheduling, and the request, while may have elvpriv data, is not
1337 * added on the elevator at this point. In addition, we don't have
1338 * reliable access to the elevator outside queue lock. Only check basic
1339 * merging parameters without querying the elevator.
73c10101 1340 */
bd87b589
TH
1341static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1342 unsigned int *request_count)
73c10101
JA
1343{
1344 struct blk_plug *plug;
1345 struct request *rq;
1346 bool ret = false;
1347
bd87b589 1348 plug = current->plug;
73c10101
JA
1349 if (!plug)
1350 goto out;
56ebdaf2 1351 *request_count = 0;
73c10101
JA
1352
1353 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1354 int el_ret;
1355
56ebdaf2
SL
1356 (*request_count)++;
1357
07c2bd37 1358 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1359 continue;
1360
050c8ea8 1361 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1362 if (el_ret == ELEVATOR_BACK_MERGE) {
1363 ret = bio_attempt_back_merge(q, rq, bio);
1364 if (ret)
1365 break;
1366 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1367 ret = bio_attempt_front_merge(q, rq, bio);
1368 if (ret)
1369 break;
1370 }
1371 }
1372out:
1373 return ret;
1374}
1375
86db1e29 1376void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1377{
4aff5e23 1378 req->cmd_type = REQ_TYPE_FS;
52d9e675 1379
7b6d91da
CH
1380 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1381 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1382 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1383
52d9e675 1384 req->errors = 0;
a2dec7b3 1385 req->__sector = bio->bi_sector;
52d9e675 1386 req->ioprio = bio_prio(bio);
bc1c56fd 1387 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1388}
1389
5a7bbad2 1390void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1391{
5e00d1b5 1392 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1393 struct blk_plug *plug;
1394 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1395 struct request *req;
56ebdaf2 1396 unsigned int request_count = 0;
1da177e4 1397
1da177e4
LT
1398 /*
1399 * low level driver can indicate that it wants pages above a
1400 * certain limit bounced to low memory (ie for highmem, or even
1401 * ISA dma in theory)
1402 */
1403 blk_queue_bounce(q, &bio);
1404
4fed947c 1405 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1406 spin_lock_irq(q->queue_lock);
ae1b1539 1407 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1408 goto get_rq;
1409 }
1410
73c10101
JA
1411 /*
1412 * Check if we can merge with the plugged list before grabbing
1413 * any locks.
1414 */
bd87b589 1415 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1416 return;
1da177e4 1417
73c10101 1418 spin_lock_irq(q->queue_lock);
2056a782 1419
73c10101
JA
1420 el_ret = elv_merge(q, &req, bio);
1421 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1422 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1423 elv_bio_merged(q, req, bio);
73c10101
JA
1424 if (!attempt_back_merge(q, req))
1425 elv_merged_request(q, req, el_ret);
1426 goto out_unlock;
1427 }
1428 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1429 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1430 elv_bio_merged(q, req, bio);
73c10101
JA
1431 if (!attempt_front_merge(q, req))
1432 elv_merged_request(q, req, el_ret);
1433 goto out_unlock;
80a761fd 1434 }
1da177e4
LT
1435 }
1436
450991bc 1437get_rq:
7749a8d4
JA
1438 /*
1439 * This sync check and mask will be re-done in init_request_from_bio(),
1440 * but we need to set it earlier to expose the sync flag to the
1441 * rq allocator and io schedulers.
1442 */
1443 rw_flags = bio_data_dir(bio);
1444 if (sync)
7b6d91da 1445 rw_flags |= REQ_SYNC;
7749a8d4 1446
1da177e4 1447 /*
450991bc 1448 * Grab a free request. This is might sleep but can not fail.
d6344532 1449 * Returns with the queue unlocked.
450991bc 1450 */
7749a8d4 1451 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1452 if (unlikely(!req)) {
1453 bio_endio(bio, -ENODEV); /* @q is dead */
1454 goto out_unlock;
1455 }
d6344532 1456
450991bc
NP
1457 /*
1458 * After dropping the lock and possibly sleeping here, our request
1459 * may now be mergeable after it had proven unmergeable (above).
1460 * We don't worry about that case for efficiency. It won't happen
1461 * often, and the elevators are able to handle it.
1da177e4 1462 */
52d9e675 1463 init_request_from_bio(req, bio);
1da177e4 1464
9562ad9a 1465 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1466 req->cpu = raw_smp_processor_id();
73c10101
JA
1467
1468 plug = current->plug;
721a9602 1469 if (plug) {
dc6d36c9
JA
1470 /*
1471 * If this is the first request added after a plug, fire
1472 * of a plug trace. If others have been added before, check
1473 * if we have multiple devices in this plug. If so, make a
1474 * note to sort the list before dispatch.
1475 */
1476 if (list_empty(&plug->list))
1477 trace_block_plug(q);
3540d5e8
SL
1478 else {
1479 if (!plug->should_sort) {
1480 struct request *__rq;
73c10101 1481
3540d5e8
SL
1482 __rq = list_entry_rq(plug->list.prev);
1483 if (__rq->q != q)
1484 plug->should_sort = 1;
1485 }
019ceb7d 1486 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1487 blk_flush_plug_list(plug, false);
019ceb7d
SL
1488 trace_block_plug(q);
1489 }
73c10101 1490 }
73c10101
JA
1491 list_add_tail(&req->queuelist, &plug->list);
1492 drive_stat_acct(req, 1);
1493 } else {
1494 spin_lock_irq(q->queue_lock);
1495 add_acct_request(q, req, where);
24ecfbe2 1496 __blk_run_queue(q);
73c10101
JA
1497out_unlock:
1498 spin_unlock_irq(q->queue_lock);
1499 }
1da177e4 1500}
c20e8de2 1501EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1502
1503/*
1504 * If bio->bi_dev is a partition, remap the location
1505 */
1506static inline void blk_partition_remap(struct bio *bio)
1507{
1508 struct block_device *bdev = bio->bi_bdev;
1509
bf2de6f5 1510 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1511 struct hd_struct *p = bdev->bd_part;
1512
1da177e4
LT
1513 bio->bi_sector += p->start_sect;
1514 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1515
d07335e5
MS
1516 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1517 bdev->bd_dev,
1518 bio->bi_sector - p->start_sect);
1da177e4
LT
1519 }
1520}
1521
1da177e4
LT
1522static void handle_bad_sector(struct bio *bio)
1523{
1524 char b[BDEVNAME_SIZE];
1525
1526 printk(KERN_INFO "attempt to access beyond end of device\n");
1527 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1528 bdevname(bio->bi_bdev, b),
1529 bio->bi_rw,
1530 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1531 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1532
1533 set_bit(BIO_EOF, &bio->bi_flags);
1534}
1535
c17bb495
AM
1536#ifdef CONFIG_FAIL_MAKE_REQUEST
1537
1538static DECLARE_FAULT_ATTR(fail_make_request);
1539
1540static int __init setup_fail_make_request(char *str)
1541{
1542 return setup_fault_attr(&fail_make_request, str);
1543}
1544__setup("fail_make_request=", setup_fail_make_request);
1545
b2c9cd37 1546static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1547{
b2c9cd37 1548 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1549}
1550
1551static int __init fail_make_request_debugfs(void)
1552{
dd48c085
AM
1553 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1554 NULL, &fail_make_request);
1555
1556 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1557}
1558
1559late_initcall(fail_make_request_debugfs);
1560
1561#else /* CONFIG_FAIL_MAKE_REQUEST */
1562
b2c9cd37
AM
1563static inline bool should_fail_request(struct hd_struct *part,
1564 unsigned int bytes)
c17bb495 1565{
b2c9cd37 1566 return false;
c17bb495
AM
1567}
1568
1569#endif /* CONFIG_FAIL_MAKE_REQUEST */
1570
c07e2b41
JA
1571/*
1572 * Check whether this bio extends beyond the end of the device.
1573 */
1574static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1575{
1576 sector_t maxsector;
1577
1578 if (!nr_sectors)
1579 return 0;
1580
1581 /* Test device or partition size, when known. */
77304d2a 1582 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1583 if (maxsector) {
1584 sector_t sector = bio->bi_sector;
1585
1586 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1587 /*
1588 * This may well happen - the kernel calls bread()
1589 * without checking the size of the device, e.g., when
1590 * mounting a device.
1591 */
1592 handle_bad_sector(bio);
1593 return 1;
1594 }
1595 }
1596
1597 return 0;
1598}
1599
27a84d54
CH
1600static noinline_for_stack bool
1601generic_make_request_checks(struct bio *bio)
1da177e4 1602{
165125e1 1603 struct request_queue *q;
5a7bbad2 1604 int nr_sectors = bio_sectors(bio);
51fd77bd 1605 int err = -EIO;
5a7bbad2
CH
1606 char b[BDEVNAME_SIZE];
1607 struct hd_struct *part;
1da177e4
LT
1608
1609 might_sleep();
1da177e4 1610
c07e2b41
JA
1611 if (bio_check_eod(bio, nr_sectors))
1612 goto end_io;
1da177e4 1613
5a7bbad2
CH
1614 q = bdev_get_queue(bio->bi_bdev);
1615 if (unlikely(!q)) {
1616 printk(KERN_ERR
1617 "generic_make_request: Trying to access "
1618 "nonexistent block-device %s (%Lu)\n",
1619 bdevname(bio->bi_bdev, b),
1620 (long long) bio->bi_sector);
1621 goto end_io;
1622 }
c17bb495 1623
5a7bbad2
CH
1624 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1625 nr_sectors > queue_max_hw_sectors(q))) {
1626 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1627 bdevname(bio->bi_bdev, b),
1628 bio_sectors(bio),
1629 queue_max_hw_sectors(q));
1630 goto end_io;
1631 }
1da177e4 1632
5a7bbad2
CH
1633 part = bio->bi_bdev->bd_part;
1634 if (should_fail_request(part, bio->bi_size) ||
1635 should_fail_request(&part_to_disk(part)->part0,
1636 bio->bi_size))
1637 goto end_io;
2056a782 1638
5a7bbad2
CH
1639 /*
1640 * If this device has partitions, remap block n
1641 * of partition p to block n+start(p) of the disk.
1642 */
1643 blk_partition_remap(bio);
2056a782 1644
5a7bbad2
CH
1645 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1646 goto end_io;
a7384677 1647
5a7bbad2
CH
1648 if (bio_check_eod(bio, nr_sectors))
1649 goto end_io;
1e87901e 1650
5a7bbad2
CH
1651 /*
1652 * Filter flush bio's early so that make_request based
1653 * drivers without flush support don't have to worry
1654 * about them.
1655 */
1656 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1657 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1658 if (!nr_sectors) {
1659 err = 0;
51fd77bd
JA
1660 goto end_io;
1661 }
5a7bbad2 1662 }
5ddfe969 1663
5a7bbad2
CH
1664 if ((bio->bi_rw & REQ_DISCARD) &&
1665 (!blk_queue_discard(q) ||
1666 ((bio->bi_rw & REQ_SECURE) &&
1667 !blk_queue_secdiscard(q)))) {
1668 err = -EOPNOTSUPP;
1669 goto end_io;
1670 }
01edede4 1671
bc16a4f9
TH
1672 if (blk_throtl_bio(q, bio))
1673 return false; /* throttled, will be resubmitted later */
27a84d54 1674
5a7bbad2 1675 trace_block_bio_queue(q, bio);
27a84d54 1676 return true;
a7384677
TH
1677
1678end_io:
1679 bio_endio(bio, err);
27a84d54 1680 return false;
1da177e4
LT
1681}
1682
27a84d54
CH
1683/**
1684 * generic_make_request - hand a buffer to its device driver for I/O
1685 * @bio: The bio describing the location in memory and on the device.
1686 *
1687 * generic_make_request() is used to make I/O requests of block
1688 * devices. It is passed a &struct bio, which describes the I/O that needs
1689 * to be done.
1690 *
1691 * generic_make_request() does not return any status. The
1692 * success/failure status of the request, along with notification of
1693 * completion, is delivered asynchronously through the bio->bi_end_io
1694 * function described (one day) else where.
1695 *
1696 * The caller of generic_make_request must make sure that bi_io_vec
1697 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1698 * set to describe the device address, and the
1699 * bi_end_io and optionally bi_private are set to describe how
1700 * completion notification should be signaled.
1701 *
1702 * generic_make_request and the drivers it calls may use bi_next if this
1703 * bio happens to be merged with someone else, and may resubmit the bio to
1704 * a lower device by calling into generic_make_request recursively, which
1705 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1706 */
1707void generic_make_request(struct bio *bio)
1708{
bddd87c7
AM
1709 struct bio_list bio_list_on_stack;
1710
27a84d54
CH
1711 if (!generic_make_request_checks(bio))
1712 return;
1713
1714 /*
1715 * We only want one ->make_request_fn to be active at a time, else
1716 * stack usage with stacked devices could be a problem. So use
1717 * current->bio_list to keep a list of requests submited by a
1718 * make_request_fn function. current->bio_list is also used as a
1719 * flag to say if generic_make_request is currently active in this
1720 * task or not. If it is NULL, then no make_request is active. If
1721 * it is non-NULL, then a make_request is active, and new requests
1722 * should be added at the tail
1723 */
bddd87c7 1724 if (current->bio_list) {
bddd87c7 1725 bio_list_add(current->bio_list, bio);
d89d8796
NB
1726 return;
1727 }
27a84d54 1728
d89d8796
NB
1729 /* following loop may be a bit non-obvious, and so deserves some
1730 * explanation.
1731 * Before entering the loop, bio->bi_next is NULL (as all callers
1732 * ensure that) so we have a list with a single bio.
1733 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1734 * we assign bio_list to a pointer to the bio_list_on_stack,
1735 * thus initialising the bio_list of new bios to be
27a84d54 1736 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1737 * through a recursive call to generic_make_request. If it
1738 * did, we find a non-NULL value in bio_list and re-enter the loop
1739 * from the top. In this case we really did just take the bio
bddd87c7 1740 * of the top of the list (no pretending) and so remove it from
27a84d54 1741 * bio_list, and call into ->make_request() again.
d89d8796
NB
1742 */
1743 BUG_ON(bio->bi_next);
bddd87c7
AM
1744 bio_list_init(&bio_list_on_stack);
1745 current->bio_list = &bio_list_on_stack;
d89d8796 1746 do {
27a84d54
CH
1747 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1748
1749 q->make_request_fn(q, bio);
1750
bddd87c7 1751 bio = bio_list_pop(current->bio_list);
d89d8796 1752 } while (bio);
bddd87c7 1753 current->bio_list = NULL; /* deactivate */
d89d8796 1754}
1da177e4
LT
1755EXPORT_SYMBOL(generic_make_request);
1756
1757/**
710027a4 1758 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1759 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1760 * @bio: The &struct bio which describes the I/O
1761 *
1762 * submit_bio() is very similar in purpose to generic_make_request(), and
1763 * uses that function to do most of the work. Both are fairly rough
710027a4 1764 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1765 *
1766 */
1767void submit_bio(int rw, struct bio *bio)
1768{
1769 int count = bio_sectors(bio);
1770
22e2c507 1771 bio->bi_rw |= rw;
1da177e4 1772
bf2de6f5
JA
1773 /*
1774 * If it's a regular read/write or a barrier with data attached,
1775 * go through the normal accounting stuff before submission.
1776 */
3ffb52e7 1777 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1778 if (rw & WRITE) {
1779 count_vm_events(PGPGOUT, count);
1780 } else {
1781 task_io_account_read(bio->bi_size);
1782 count_vm_events(PGPGIN, count);
1783 }
1784
1785 if (unlikely(block_dump)) {
1786 char b[BDEVNAME_SIZE];
8dcbdc74 1787 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1788 current->comm, task_pid_nr(current),
bf2de6f5
JA
1789 (rw & WRITE) ? "WRITE" : "READ",
1790 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1791 bdevname(bio->bi_bdev, b),
1792 count);
bf2de6f5 1793 }
1da177e4
LT
1794 }
1795
1796 generic_make_request(bio);
1797}
1da177e4
LT
1798EXPORT_SYMBOL(submit_bio);
1799
82124d60
KU
1800/**
1801 * blk_rq_check_limits - Helper function to check a request for the queue limit
1802 * @q: the queue
1803 * @rq: the request being checked
1804 *
1805 * Description:
1806 * @rq may have been made based on weaker limitations of upper-level queues
1807 * in request stacking drivers, and it may violate the limitation of @q.
1808 * Since the block layer and the underlying device driver trust @rq
1809 * after it is inserted to @q, it should be checked against @q before
1810 * the insertion using this generic function.
1811 *
1812 * This function should also be useful for request stacking drivers
eef35c2d 1813 * in some cases below, so export this function.
82124d60
KU
1814 * Request stacking drivers like request-based dm may change the queue
1815 * limits while requests are in the queue (e.g. dm's table swapping).
1816 * Such request stacking drivers should check those requests agaist
1817 * the new queue limits again when they dispatch those requests,
1818 * although such checkings are also done against the old queue limits
1819 * when submitting requests.
1820 */
1821int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1822{
3383977f
S
1823 if (rq->cmd_flags & REQ_DISCARD)
1824 return 0;
1825
ae03bf63
MP
1826 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1827 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1828 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1829 return -EIO;
1830 }
1831
1832 /*
1833 * queue's settings related to segment counting like q->bounce_pfn
1834 * may differ from that of other stacking queues.
1835 * Recalculate it to check the request correctly on this queue's
1836 * limitation.
1837 */
1838 blk_recalc_rq_segments(rq);
8a78362c 1839 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1840 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1841 return -EIO;
1842 }
1843
1844 return 0;
1845}
1846EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1847
1848/**
1849 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1850 * @q: the queue to submit the request
1851 * @rq: the request being queued
1852 */
1853int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1854{
1855 unsigned long flags;
4853abaa 1856 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1857
1858 if (blk_rq_check_limits(q, rq))
1859 return -EIO;
1860
b2c9cd37
AM
1861 if (rq->rq_disk &&
1862 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1863 return -EIO;
82124d60
KU
1864
1865 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1866 if (unlikely(blk_queue_dead(q))) {
1867 spin_unlock_irqrestore(q->queue_lock, flags);
1868 return -ENODEV;
1869 }
82124d60
KU
1870
1871 /*
1872 * Submitting request must be dequeued before calling this function
1873 * because it will be linked to another request_queue
1874 */
1875 BUG_ON(blk_queued_rq(rq));
1876
4853abaa
JM
1877 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1878 where = ELEVATOR_INSERT_FLUSH;
1879
1880 add_acct_request(q, rq, where);
e67b77c7
JM
1881 if (where == ELEVATOR_INSERT_FLUSH)
1882 __blk_run_queue(q);
82124d60
KU
1883 spin_unlock_irqrestore(q->queue_lock, flags);
1884
1885 return 0;
1886}
1887EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1888
80a761fd
TH
1889/**
1890 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1891 * @rq: request to examine
1892 *
1893 * Description:
1894 * A request could be merge of IOs which require different failure
1895 * handling. This function determines the number of bytes which
1896 * can be failed from the beginning of the request without
1897 * crossing into area which need to be retried further.
1898 *
1899 * Return:
1900 * The number of bytes to fail.
1901 *
1902 * Context:
1903 * queue_lock must be held.
1904 */
1905unsigned int blk_rq_err_bytes(const struct request *rq)
1906{
1907 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1908 unsigned int bytes = 0;
1909 struct bio *bio;
1910
1911 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1912 return blk_rq_bytes(rq);
1913
1914 /*
1915 * Currently the only 'mixing' which can happen is between
1916 * different fastfail types. We can safely fail portions
1917 * which have all the failfast bits that the first one has -
1918 * the ones which are at least as eager to fail as the first
1919 * one.
1920 */
1921 for (bio = rq->bio; bio; bio = bio->bi_next) {
1922 if ((bio->bi_rw & ff) != ff)
1923 break;
1924 bytes += bio->bi_size;
1925 }
1926
1927 /* this could lead to infinite loop */
1928 BUG_ON(blk_rq_bytes(rq) && !bytes);
1929 return bytes;
1930}
1931EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1932
bc58ba94
JA
1933static void blk_account_io_completion(struct request *req, unsigned int bytes)
1934{
c2553b58 1935 if (blk_do_io_stat(req)) {
bc58ba94
JA
1936 const int rw = rq_data_dir(req);
1937 struct hd_struct *part;
1938 int cpu;
1939
1940 cpu = part_stat_lock();
09e099d4 1941 part = req->part;
bc58ba94
JA
1942 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1943 part_stat_unlock();
1944 }
1945}
1946
1947static void blk_account_io_done(struct request *req)
1948{
bc58ba94 1949 /*
dd4c133f
TH
1950 * Account IO completion. flush_rq isn't accounted as a
1951 * normal IO on queueing nor completion. Accounting the
1952 * containing request is enough.
bc58ba94 1953 */
414b4ff5 1954 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1955 unsigned long duration = jiffies - req->start_time;
1956 const int rw = rq_data_dir(req);
1957 struct hd_struct *part;
1958 int cpu;
1959
1960 cpu = part_stat_lock();
09e099d4 1961 part = req->part;
bc58ba94
JA
1962
1963 part_stat_inc(cpu, part, ios[rw]);
1964 part_stat_add(cpu, part, ticks[rw], duration);
1965 part_round_stats(cpu, part);
316d315b 1966 part_dec_in_flight(part, rw);
bc58ba94 1967
6c23a968 1968 hd_struct_put(part);
bc58ba94
JA
1969 part_stat_unlock();
1970 }
1971}
1972
3bcddeac 1973/**
9934c8c0
TH
1974 * blk_peek_request - peek at the top of a request queue
1975 * @q: request queue to peek at
1976 *
1977 * Description:
1978 * Return the request at the top of @q. The returned request
1979 * should be started using blk_start_request() before LLD starts
1980 * processing it.
1981 *
1982 * Return:
1983 * Pointer to the request at the top of @q if available. Null
1984 * otherwise.
1985 *
1986 * Context:
1987 * queue_lock must be held.
1988 */
1989struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1990{
1991 struct request *rq;
1992 int ret;
1993
1994 while ((rq = __elv_next_request(q)) != NULL) {
1995 if (!(rq->cmd_flags & REQ_STARTED)) {
1996 /*
1997 * This is the first time the device driver
1998 * sees this request (possibly after
1999 * requeueing). Notify IO scheduler.
2000 */
33659ebb 2001 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2002 elv_activate_rq(q, rq);
2003
2004 /*
2005 * just mark as started even if we don't start
2006 * it, a request that has been delayed should
2007 * not be passed by new incoming requests
2008 */
2009 rq->cmd_flags |= REQ_STARTED;
2010 trace_block_rq_issue(q, rq);
2011 }
2012
2013 if (!q->boundary_rq || q->boundary_rq == rq) {
2014 q->end_sector = rq_end_sector(rq);
2015 q->boundary_rq = NULL;
2016 }
2017
2018 if (rq->cmd_flags & REQ_DONTPREP)
2019 break;
2020
2e46e8b2 2021 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2022 /*
2023 * make sure space for the drain appears we
2024 * know we can do this because max_hw_segments
2025 * has been adjusted to be one fewer than the
2026 * device can handle
2027 */
2028 rq->nr_phys_segments++;
2029 }
2030
2031 if (!q->prep_rq_fn)
2032 break;
2033
2034 ret = q->prep_rq_fn(q, rq);
2035 if (ret == BLKPREP_OK) {
2036 break;
2037 } else if (ret == BLKPREP_DEFER) {
2038 /*
2039 * the request may have been (partially) prepped.
2040 * we need to keep this request in the front to
2041 * avoid resource deadlock. REQ_STARTED will
2042 * prevent other fs requests from passing this one.
2043 */
2e46e8b2 2044 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2045 !(rq->cmd_flags & REQ_DONTPREP)) {
2046 /*
2047 * remove the space for the drain we added
2048 * so that we don't add it again
2049 */
2050 --rq->nr_phys_segments;
2051 }
2052
2053 rq = NULL;
2054 break;
2055 } else if (ret == BLKPREP_KILL) {
2056 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2057 /*
2058 * Mark this request as started so we don't trigger
2059 * any debug logic in the end I/O path.
2060 */
2061 blk_start_request(rq);
40cbbb78 2062 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2063 } else {
2064 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2065 break;
2066 }
2067 }
2068
2069 return rq;
2070}
9934c8c0 2071EXPORT_SYMBOL(blk_peek_request);
158dbda0 2072
9934c8c0 2073void blk_dequeue_request(struct request *rq)
158dbda0 2074{
9934c8c0
TH
2075 struct request_queue *q = rq->q;
2076
158dbda0
TH
2077 BUG_ON(list_empty(&rq->queuelist));
2078 BUG_ON(ELV_ON_HASH(rq));
2079
2080 list_del_init(&rq->queuelist);
2081
2082 /*
2083 * the time frame between a request being removed from the lists
2084 * and to it is freed is accounted as io that is in progress at
2085 * the driver side.
2086 */
9195291e 2087 if (blk_account_rq(rq)) {
0a7ae2ff 2088 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2089 set_io_start_time_ns(rq);
2090 }
158dbda0
TH
2091}
2092
9934c8c0
TH
2093/**
2094 * blk_start_request - start request processing on the driver
2095 * @req: request to dequeue
2096 *
2097 * Description:
2098 * Dequeue @req and start timeout timer on it. This hands off the
2099 * request to the driver.
2100 *
2101 * Block internal functions which don't want to start timer should
2102 * call blk_dequeue_request().
2103 *
2104 * Context:
2105 * queue_lock must be held.
2106 */
2107void blk_start_request(struct request *req)
2108{
2109 blk_dequeue_request(req);
2110
2111 /*
5f49f631
TH
2112 * We are now handing the request to the hardware, initialize
2113 * resid_len to full count and add the timeout handler.
9934c8c0 2114 */
5f49f631 2115 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2116 if (unlikely(blk_bidi_rq(req)))
2117 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2118
9934c8c0
TH
2119 blk_add_timer(req);
2120}
2121EXPORT_SYMBOL(blk_start_request);
2122
2123/**
2124 * blk_fetch_request - fetch a request from a request queue
2125 * @q: request queue to fetch a request from
2126 *
2127 * Description:
2128 * Return the request at the top of @q. The request is started on
2129 * return and LLD can start processing it immediately.
2130 *
2131 * Return:
2132 * Pointer to the request at the top of @q if available. Null
2133 * otherwise.
2134 *
2135 * Context:
2136 * queue_lock must be held.
2137 */
2138struct request *blk_fetch_request(struct request_queue *q)
2139{
2140 struct request *rq;
2141
2142 rq = blk_peek_request(q);
2143 if (rq)
2144 blk_start_request(rq);
2145 return rq;
2146}
2147EXPORT_SYMBOL(blk_fetch_request);
2148
3bcddeac 2149/**
2e60e022 2150 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2151 * @req: the request being processed
710027a4 2152 * @error: %0 for success, < %0 for error
8ebf9756 2153 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2154 *
2155 * Description:
8ebf9756
RD
2156 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2157 * the request structure even if @req doesn't have leftover.
2158 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2159 *
2160 * This special helper function is only for request stacking drivers
2161 * (e.g. request-based dm) so that they can handle partial completion.
2162 * Actual device drivers should use blk_end_request instead.
2163 *
2164 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2165 * %false return from this function.
3bcddeac
KU
2166 *
2167 * Return:
2e60e022
TH
2168 * %false - this request doesn't have any more data
2169 * %true - this request has more data
3bcddeac 2170 **/
2e60e022 2171bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2172{
5450d3e1 2173 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2174 struct bio *bio;
2175
2e60e022
TH
2176 if (!req->bio)
2177 return false;
2178
5f3ea37c 2179 trace_block_rq_complete(req->q, req);
2056a782 2180
1da177e4 2181 /*
6f41469c
TH
2182 * For fs requests, rq is just carrier of independent bio's
2183 * and each partial completion should be handled separately.
2184 * Reset per-request error on each partial completion.
2185 *
2186 * TODO: tj: This is too subtle. It would be better to let
2187 * low level drivers do what they see fit.
1da177e4 2188 */
33659ebb 2189 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2190 req->errors = 0;
2191
33659ebb
CH
2192 if (error && req->cmd_type == REQ_TYPE_FS &&
2193 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2194 char *error_type;
2195
2196 switch (error) {
2197 case -ENOLINK:
2198 error_type = "recoverable transport";
2199 break;
2200 case -EREMOTEIO:
2201 error_type = "critical target";
2202 break;
2203 case -EBADE:
2204 error_type = "critical nexus";
2205 break;
2206 case -EIO:
2207 default:
2208 error_type = "I/O";
2209 break;
2210 }
2211 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2212 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2213 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2214 }
2215
bc58ba94 2216 blk_account_io_completion(req, nr_bytes);
d72d904a 2217
1da177e4
LT
2218 total_bytes = bio_nbytes = 0;
2219 while ((bio = req->bio) != NULL) {
2220 int nbytes;
2221
2222 if (nr_bytes >= bio->bi_size) {
2223 req->bio = bio->bi_next;
2224 nbytes = bio->bi_size;
5bb23a68 2225 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2226 next_idx = 0;
2227 bio_nbytes = 0;
2228 } else {
2229 int idx = bio->bi_idx + next_idx;
2230
af498d7f 2231 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2232 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2233 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2234 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2235 break;
2236 }
2237
2238 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2239 BIO_BUG_ON(nbytes > bio->bi_size);
2240
2241 /*
2242 * not a complete bvec done
2243 */
2244 if (unlikely(nbytes > nr_bytes)) {
2245 bio_nbytes += nr_bytes;
2246 total_bytes += nr_bytes;
2247 break;
2248 }
2249
2250 /*
2251 * advance to the next vector
2252 */
2253 next_idx++;
2254 bio_nbytes += nbytes;
2255 }
2256
2257 total_bytes += nbytes;
2258 nr_bytes -= nbytes;
2259
6728cb0e
JA
2260 bio = req->bio;
2261 if (bio) {
1da177e4
LT
2262 /*
2263 * end more in this run, or just return 'not-done'
2264 */
2265 if (unlikely(nr_bytes <= 0))
2266 break;
2267 }
2268 }
2269
2270 /*
2271 * completely done
2272 */
2e60e022
TH
2273 if (!req->bio) {
2274 /*
2275 * Reset counters so that the request stacking driver
2276 * can find how many bytes remain in the request
2277 * later.
2278 */
a2dec7b3 2279 req->__data_len = 0;
2e60e022
TH
2280 return false;
2281 }
1da177e4
LT
2282
2283 /*
2284 * if the request wasn't completed, update state
2285 */
2286 if (bio_nbytes) {
5bb23a68 2287 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2288 bio->bi_idx += next_idx;
2289 bio_iovec(bio)->bv_offset += nr_bytes;
2290 bio_iovec(bio)->bv_len -= nr_bytes;
2291 }
2292
a2dec7b3 2293 req->__data_len -= total_bytes;
2e46e8b2
TH
2294 req->buffer = bio_data(req->bio);
2295
2296 /* update sector only for requests with clear definition of sector */
33659ebb 2297 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2298 req->__sector += total_bytes >> 9;
2e46e8b2 2299
80a761fd
TH
2300 /* mixed attributes always follow the first bio */
2301 if (req->cmd_flags & REQ_MIXED_MERGE) {
2302 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2303 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2304 }
2305
2e46e8b2
TH
2306 /*
2307 * If total number of sectors is less than the first segment
2308 * size, something has gone terribly wrong.
2309 */
2310 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2311 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2312 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2313 }
2314
2315 /* recalculate the number of segments */
1da177e4 2316 blk_recalc_rq_segments(req);
2e46e8b2 2317
2e60e022 2318 return true;
1da177e4 2319}
2e60e022 2320EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2321
2e60e022
TH
2322static bool blk_update_bidi_request(struct request *rq, int error,
2323 unsigned int nr_bytes,
2324 unsigned int bidi_bytes)
5efccd17 2325{
2e60e022
TH
2326 if (blk_update_request(rq, error, nr_bytes))
2327 return true;
5efccd17 2328
2e60e022
TH
2329 /* Bidi request must be completed as a whole */
2330 if (unlikely(blk_bidi_rq(rq)) &&
2331 blk_update_request(rq->next_rq, error, bidi_bytes))
2332 return true;
5efccd17 2333
e2e1a148
JA
2334 if (blk_queue_add_random(rq->q))
2335 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2336
2337 return false;
1da177e4
LT
2338}
2339
28018c24
JB
2340/**
2341 * blk_unprep_request - unprepare a request
2342 * @req: the request
2343 *
2344 * This function makes a request ready for complete resubmission (or
2345 * completion). It happens only after all error handling is complete,
2346 * so represents the appropriate moment to deallocate any resources
2347 * that were allocated to the request in the prep_rq_fn. The queue
2348 * lock is held when calling this.
2349 */
2350void blk_unprep_request(struct request *req)
2351{
2352 struct request_queue *q = req->q;
2353
2354 req->cmd_flags &= ~REQ_DONTPREP;
2355 if (q->unprep_rq_fn)
2356 q->unprep_rq_fn(q, req);
2357}
2358EXPORT_SYMBOL_GPL(blk_unprep_request);
2359
1da177e4
LT
2360/*
2361 * queue lock must be held
2362 */
2e60e022 2363static void blk_finish_request(struct request *req, int error)
1da177e4 2364{
b8286239
KU
2365 if (blk_rq_tagged(req))
2366 blk_queue_end_tag(req->q, req);
2367
ba396a6c 2368 BUG_ON(blk_queued_rq(req));
1da177e4 2369
33659ebb 2370 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2371 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2372
e78042e5
MA
2373 blk_delete_timer(req);
2374
28018c24
JB
2375 if (req->cmd_flags & REQ_DONTPREP)
2376 blk_unprep_request(req);
2377
2378
bc58ba94 2379 blk_account_io_done(req);
b8286239 2380
1da177e4 2381 if (req->end_io)
8ffdc655 2382 req->end_io(req, error);
b8286239
KU
2383 else {
2384 if (blk_bidi_rq(req))
2385 __blk_put_request(req->next_rq->q, req->next_rq);
2386
1da177e4 2387 __blk_put_request(req->q, req);
b8286239 2388 }
1da177e4
LT
2389}
2390
3b11313a 2391/**
2e60e022
TH
2392 * blk_end_bidi_request - Complete a bidi request
2393 * @rq: the request to complete
2394 * @error: %0 for success, < %0 for error
2395 * @nr_bytes: number of bytes to complete @rq
2396 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2397 *
2398 * Description:
e3a04fe3 2399 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2400 * Drivers that supports bidi can safely call this member for any
2401 * type of request, bidi or uni. In the later case @bidi_bytes is
2402 * just ignored.
336cdb40
KU
2403 *
2404 * Return:
2e60e022
TH
2405 * %false - we are done with this request
2406 * %true - still buffers pending for this request
a0cd1285 2407 **/
b1f74493 2408static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2409 unsigned int nr_bytes, unsigned int bidi_bytes)
2410{
336cdb40 2411 struct request_queue *q = rq->q;
2e60e022 2412 unsigned long flags;
32fab448 2413
2e60e022
TH
2414 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2415 return true;
32fab448 2416
336cdb40 2417 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2418 blk_finish_request(rq, error);
336cdb40
KU
2419 spin_unlock_irqrestore(q->queue_lock, flags);
2420
2e60e022 2421 return false;
32fab448
KU
2422}
2423
336cdb40 2424/**
2e60e022
TH
2425 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2426 * @rq: the request to complete
710027a4 2427 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2428 * @nr_bytes: number of bytes to complete @rq
2429 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2430 *
2431 * Description:
2e60e022
TH
2432 * Identical to blk_end_bidi_request() except that queue lock is
2433 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2434 *
2435 * Return:
2e60e022
TH
2436 * %false - we are done with this request
2437 * %true - still buffers pending for this request
336cdb40 2438 **/
4853abaa 2439bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2440 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2441{
2e60e022
TH
2442 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2443 return true;
336cdb40 2444
2e60e022 2445 blk_finish_request(rq, error);
336cdb40 2446
2e60e022 2447 return false;
336cdb40 2448}
e19a3ab0
KU
2449
2450/**
2451 * blk_end_request - Helper function for drivers to complete the request.
2452 * @rq: the request being processed
710027a4 2453 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2454 * @nr_bytes: number of bytes to complete
2455 *
2456 * Description:
2457 * Ends I/O on a number of bytes attached to @rq.
2458 * If @rq has leftover, sets it up for the next range of segments.
2459 *
2460 * Return:
b1f74493
FT
2461 * %false - we are done with this request
2462 * %true - still buffers pending for this request
e19a3ab0 2463 **/
b1f74493 2464bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2465{
b1f74493 2466 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2467}
56ad1740 2468EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2469
2470/**
b1f74493
FT
2471 * blk_end_request_all - Helper function for drives to finish the request.
2472 * @rq: the request to finish
8ebf9756 2473 * @error: %0 for success, < %0 for error
336cdb40
KU
2474 *
2475 * Description:
b1f74493
FT
2476 * Completely finish @rq.
2477 */
2478void blk_end_request_all(struct request *rq, int error)
336cdb40 2479{
b1f74493
FT
2480 bool pending;
2481 unsigned int bidi_bytes = 0;
336cdb40 2482
b1f74493
FT
2483 if (unlikely(blk_bidi_rq(rq)))
2484 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2485
b1f74493
FT
2486 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2487 BUG_ON(pending);
2488}
56ad1740 2489EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2490
b1f74493
FT
2491/**
2492 * blk_end_request_cur - Helper function to finish the current request chunk.
2493 * @rq: the request to finish the current chunk for
8ebf9756 2494 * @error: %0 for success, < %0 for error
b1f74493
FT
2495 *
2496 * Description:
2497 * Complete the current consecutively mapped chunk from @rq.
2498 *
2499 * Return:
2500 * %false - we are done with this request
2501 * %true - still buffers pending for this request
2502 */
2503bool blk_end_request_cur(struct request *rq, int error)
2504{
2505 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2506}
56ad1740 2507EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2508
80a761fd
TH
2509/**
2510 * blk_end_request_err - Finish a request till the next failure boundary.
2511 * @rq: the request to finish till the next failure boundary for
2512 * @error: must be negative errno
2513 *
2514 * Description:
2515 * Complete @rq till the next failure boundary.
2516 *
2517 * Return:
2518 * %false - we are done with this request
2519 * %true - still buffers pending for this request
2520 */
2521bool blk_end_request_err(struct request *rq, int error)
2522{
2523 WARN_ON(error >= 0);
2524 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2525}
2526EXPORT_SYMBOL_GPL(blk_end_request_err);
2527
e3a04fe3 2528/**
b1f74493
FT
2529 * __blk_end_request - Helper function for drivers to complete the request.
2530 * @rq: the request being processed
2531 * @error: %0 for success, < %0 for error
2532 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2533 *
2534 * Description:
b1f74493 2535 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2536 *
2537 * Return:
b1f74493
FT
2538 * %false - we are done with this request
2539 * %true - still buffers pending for this request
e3a04fe3 2540 **/
b1f74493 2541bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2542{
b1f74493 2543 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2544}
56ad1740 2545EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2546
32fab448 2547/**
b1f74493
FT
2548 * __blk_end_request_all - Helper function for drives to finish the request.
2549 * @rq: the request to finish
8ebf9756 2550 * @error: %0 for success, < %0 for error
32fab448
KU
2551 *
2552 * Description:
b1f74493 2553 * Completely finish @rq. Must be called with queue lock held.
32fab448 2554 */
b1f74493 2555void __blk_end_request_all(struct request *rq, int error)
32fab448 2556{
b1f74493
FT
2557 bool pending;
2558 unsigned int bidi_bytes = 0;
2559
2560 if (unlikely(blk_bidi_rq(rq)))
2561 bidi_bytes = blk_rq_bytes(rq->next_rq);
2562
2563 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2564 BUG_ON(pending);
32fab448 2565}
56ad1740 2566EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2567
e19a3ab0 2568/**
b1f74493
FT
2569 * __blk_end_request_cur - Helper function to finish the current request chunk.
2570 * @rq: the request to finish the current chunk for
8ebf9756 2571 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2572 *
2573 * Description:
b1f74493
FT
2574 * Complete the current consecutively mapped chunk from @rq. Must
2575 * be called with queue lock held.
e19a3ab0
KU
2576 *
2577 * Return:
b1f74493
FT
2578 * %false - we are done with this request
2579 * %true - still buffers pending for this request
2580 */
2581bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2582{
b1f74493 2583 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2584}
56ad1740 2585EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2586
80a761fd
TH
2587/**
2588 * __blk_end_request_err - Finish a request till the next failure boundary.
2589 * @rq: the request to finish till the next failure boundary for
2590 * @error: must be negative errno
2591 *
2592 * Description:
2593 * Complete @rq till the next failure boundary. Must be called
2594 * with queue lock held.
2595 *
2596 * Return:
2597 * %false - we are done with this request
2598 * %true - still buffers pending for this request
2599 */
2600bool __blk_end_request_err(struct request *rq, int error)
2601{
2602 WARN_ON(error >= 0);
2603 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2604}
2605EXPORT_SYMBOL_GPL(__blk_end_request_err);
2606
86db1e29
JA
2607void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2608 struct bio *bio)
1da177e4 2609{
a82afdfc 2610 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2611 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2612
fb2dce86
DW
2613 if (bio_has_data(bio)) {
2614 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2615 rq->buffer = bio_data(bio);
2616 }
a2dec7b3 2617 rq->__data_len = bio->bi_size;
1da177e4 2618 rq->bio = rq->biotail = bio;
1da177e4 2619
66846572
N
2620 if (bio->bi_bdev)
2621 rq->rq_disk = bio->bi_bdev->bd_disk;
2622}
1da177e4 2623
2d4dc890
IL
2624#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2625/**
2626 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2627 * @rq: the request to be flushed
2628 *
2629 * Description:
2630 * Flush all pages in @rq.
2631 */
2632void rq_flush_dcache_pages(struct request *rq)
2633{
2634 struct req_iterator iter;
2635 struct bio_vec *bvec;
2636
2637 rq_for_each_segment(bvec, rq, iter)
2638 flush_dcache_page(bvec->bv_page);
2639}
2640EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2641#endif
2642
ef9e3fac
KU
2643/**
2644 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2645 * @q : the queue of the device being checked
2646 *
2647 * Description:
2648 * Check if underlying low-level drivers of a device are busy.
2649 * If the drivers want to export their busy state, they must set own
2650 * exporting function using blk_queue_lld_busy() first.
2651 *
2652 * Basically, this function is used only by request stacking drivers
2653 * to stop dispatching requests to underlying devices when underlying
2654 * devices are busy. This behavior helps more I/O merging on the queue
2655 * of the request stacking driver and prevents I/O throughput regression
2656 * on burst I/O load.
2657 *
2658 * Return:
2659 * 0 - Not busy (The request stacking driver should dispatch request)
2660 * 1 - Busy (The request stacking driver should stop dispatching request)
2661 */
2662int blk_lld_busy(struct request_queue *q)
2663{
2664 if (q->lld_busy_fn)
2665 return q->lld_busy_fn(q);
2666
2667 return 0;
2668}
2669EXPORT_SYMBOL_GPL(blk_lld_busy);
2670
b0fd271d
KU
2671/**
2672 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2673 * @rq: the clone request to be cleaned up
2674 *
2675 * Description:
2676 * Free all bios in @rq for a cloned request.
2677 */
2678void blk_rq_unprep_clone(struct request *rq)
2679{
2680 struct bio *bio;
2681
2682 while ((bio = rq->bio) != NULL) {
2683 rq->bio = bio->bi_next;
2684
2685 bio_put(bio);
2686 }
2687}
2688EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2689
2690/*
2691 * Copy attributes of the original request to the clone request.
2692 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2693 */
2694static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2695{
2696 dst->cpu = src->cpu;
3a2edd0d 2697 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2698 dst->cmd_type = src->cmd_type;
2699 dst->__sector = blk_rq_pos(src);
2700 dst->__data_len = blk_rq_bytes(src);
2701 dst->nr_phys_segments = src->nr_phys_segments;
2702 dst->ioprio = src->ioprio;
2703 dst->extra_len = src->extra_len;
2704}
2705
2706/**
2707 * blk_rq_prep_clone - Helper function to setup clone request
2708 * @rq: the request to be setup
2709 * @rq_src: original request to be cloned
2710 * @bs: bio_set that bios for clone are allocated from
2711 * @gfp_mask: memory allocation mask for bio
2712 * @bio_ctr: setup function to be called for each clone bio.
2713 * Returns %0 for success, non %0 for failure.
2714 * @data: private data to be passed to @bio_ctr
2715 *
2716 * Description:
2717 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2718 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2719 * are not copied, and copying such parts is the caller's responsibility.
2720 * Also, pages which the original bios are pointing to are not copied
2721 * and the cloned bios just point same pages.
2722 * So cloned bios must be completed before original bios, which means
2723 * the caller must complete @rq before @rq_src.
2724 */
2725int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2726 struct bio_set *bs, gfp_t gfp_mask,
2727 int (*bio_ctr)(struct bio *, struct bio *, void *),
2728 void *data)
2729{
2730 struct bio *bio, *bio_src;
2731
2732 if (!bs)
2733 bs = fs_bio_set;
2734
2735 blk_rq_init(NULL, rq);
2736
2737 __rq_for_each_bio(bio_src, rq_src) {
2738 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2739 if (!bio)
2740 goto free_and_out;
2741
2742 __bio_clone(bio, bio_src);
2743
2744 if (bio_integrity(bio_src) &&
7878cba9 2745 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2746 goto free_and_out;
2747
2748 if (bio_ctr && bio_ctr(bio, bio_src, data))
2749 goto free_and_out;
2750
2751 if (rq->bio) {
2752 rq->biotail->bi_next = bio;
2753 rq->biotail = bio;
2754 } else
2755 rq->bio = rq->biotail = bio;
2756 }
2757
2758 __blk_rq_prep_clone(rq, rq_src);
2759
2760 return 0;
2761
2762free_and_out:
2763 if (bio)
2764 bio_free(bio, bs);
2765 blk_rq_unprep_clone(rq);
2766
2767 return -ENOMEM;
2768}
2769EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2770
18887ad9 2771int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2772{
2773 return queue_work(kblockd_workqueue, work);
2774}
1da177e4
LT
2775EXPORT_SYMBOL(kblockd_schedule_work);
2776
e43473b7
VG
2777int kblockd_schedule_delayed_work(struct request_queue *q,
2778 struct delayed_work *dwork, unsigned long delay)
2779{
2780 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2781}
2782EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2783
73c10101
JA
2784#define PLUG_MAGIC 0x91827364
2785
75df7136
SJ
2786/**
2787 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2788 * @plug: The &struct blk_plug that needs to be initialized
2789 *
2790 * Description:
2791 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2792 * pending I/O should the task end up blocking between blk_start_plug() and
2793 * blk_finish_plug(). This is important from a performance perspective, but
2794 * also ensures that we don't deadlock. For instance, if the task is blocking
2795 * for a memory allocation, memory reclaim could end up wanting to free a
2796 * page belonging to that request that is currently residing in our private
2797 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2798 * this kind of deadlock.
2799 */
73c10101
JA
2800void blk_start_plug(struct blk_plug *plug)
2801{
2802 struct task_struct *tsk = current;
2803
2804 plug->magic = PLUG_MAGIC;
2805 INIT_LIST_HEAD(&plug->list);
048c9374 2806 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2807 plug->should_sort = 0;
2808
2809 /*
2810 * If this is a nested plug, don't actually assign it. It will be
2811 * flushed on its own.
2812 */
2813 if (!tsk->plug) {
2814 /*
2815 * Store ordering should not be needed here, since a potential
2816 * preempt will imply a full memory barrier
2817 */
2818 tsk->plug = plug;
2819 }
2820}
2821EXPORT_SYMBOL(blk_start_plug);
2822
2823static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2824{
2825 struct request *rqa = container_of(a, struct request, queuelist);
2826 struct request *rqb = container_of(b, struct request, queuelist);
2827
f83e8261 2828 return !(rqa->q <= rqb->q);
73c10101
JA
2829}
2830
49cac01e
JA
2831/*
2832 * If 'from_schedule' is true, then postpone the dispatch of requests
2833 * until a safe kblockd context. We due this to avoid accidental big
2834 * additional stack usage in driver dispatch, in places where the originally
2835 * plugger did not intend it.
2836 */
f6603783 2837static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2838 bool from_schedule)
99e22598 2839 __releases(q->queue_lock)
94b5eb28 2840{
49cac01e 2841 trace_block_unplug(q, depth, !from_schedule);
99e22598 2842
8ba61435
TH
2843 /*
2844 * Don't mess with dead queue.
2845 */
2846 if (unlikely(blk_queue_dead(q))) {
2847 spin_unlock(q->queue_lock);
2848 return;
2849 }
2850
99e22598
JA
2851 /*
2852 * If we are punting this to kblockd, then we can safely drop
2853 * the queue_lock before waking kblockd (which needs to take
2854 * this lock).
2855 */
2856 if (from_schedule) {
2857 spin_unlock(q->queue_lock);
24ecfbe2 2858 blk_run_queue_async(q);
99e22598 2859 } else {
24ecfbe2 2860 __blk_run_queue(q);
99e22598
JA
2861 spin_unlock(q->queue_lock);
2862 }
2863
94b5eb28
JA
2864}
2865
048c9374
N
2866static void flush_plug_callbacks(struct blk_plug *plug)
2867{
2868 LIST_HEAD(callbacks);
2869
2870 if (list_empty(&plug->cb_list))
2871 return;
2872
2873 list_splice_init(&plug->cb_list, &callbacks);
2874
2875 while (!list_empty(&callbacks)) {
2876 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2877 struct blk_plug_cb,
2878 list);
2879 list_del(&cb->list);
2880 cb->callback(cb);
2881 }
2882}
2883
49cac01e 2884void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2885{
2886 struct request_queue *q;
2887 unsigned long flags;
2888 struct request *rq;
109b8129 2889 LIST_HEAD(list);
94b5eb28 2890 unsigned int depth;
73c10101
JA
2891
2892 BUG_ON(plug->magic != PLUG_MAGIC);
2893
048c9374 2894 flush_plug_callbacks(plug);
73c10101
JA
2895 if (list_empty(&plug->list))
2896 return;
2897
109b8129
N
2898 list_splice_init(&plug->list, &list);
2899
2900 if (plug->should_sort) {
2901 list_sort(NULL, &list, plug_rq_cmp);
2902 plug->should_sort = 0;
2903 }
73c10101
JA
2904
2905 q = NULL;
94b5eb28 2906 depth = 0;
18811272
JA
2907
2908 /*
2909 * Save and disable interrupts here, to avoid doing it for every
2910 * queue lock we have to take.
2911 */
73c10101 2912 local_irq_save(flags);
109b8129
N
2913 while (!list_empty(&list)) {
2914 rq = list_entry_rq(list.next);
73c10101 2915 list_del_init(&rq->queuelist);
73c10101
JA
2916 BUG_ON(!rq->q);
2917 if (rq->q != q) {
99e22598
JA
2918 /*
2919 * This drops the queue lock
2920 */
2921 if (q)
49cac01e 2922 queue_unplugged(q, depth, from_schedule);
73c10101 2923 q = rq->q;
94b5eb28 2924 depth = 0;
73c10101
JA
2925 spin_lock(q->queue_lock);
2926 }
8ba61435
TH
2927
2928 /*
2929 * Short-circuit if @q is dead
2930 */
2931 if (unlikely(blk_queue_dead(q))) {
2932 __blk_end_request_all(rq, -ENODEV);
2933 continue;
2934 }
2935
73c10101
JA
2936 /*
2937 * rq is already accounted, so use raw insert
2938 */
401a18e9
JA
2939 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2940 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2941 else
2942 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2943
2944 depth++;
73c10101
JA
2945 }
2946
99e22598
JA
2947 /*
2948 * This drops the queue lock
2949 */
2950 if (q)
49cac01e 2951 queue_unplugged(q, depth, from_schedule);
73c10101 2952
73c10101
JA
2953 local_irq_restore(flags);
2954}
73c10101
JA
2955
2956void blk_finish_plug(struct blk_plug *plug)
2957{
f6603783 2958 blk_flush_plug_list(plug, false);
73c10101 2959
88b996cd
CH
2960 if (plug == current->plug)
2961 current->plug = NULL;
73c10101 2962}
88b996cd 2963EXPORT_SYMBOL(blk_finish_plug);
73c10101 2964
1da177e4
LT
2965int __init blk_dev_init(void)
2966{
9eb55b03
NK
2967 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2968 sizeof(((struct request *)0)->cmd_flags));
2969
89b90be2
TH
2970 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2971 kblockd_workqueue = alloc_workqueue("kblockd",
2972 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2973 if (!kblockd_workqueue)
2974 panic("Failed to create kblockd\n");
2975
2976 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2977 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2978
8324aa91 2979 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2980 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2981
d38ecf93 2982 return 0;
1da177e4 2983}