]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - block/blk-core.c
block: move blk_stat_add() to __blk_mq_end_request()
[mirror_ubuntu-eoan-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
87760e5e 45#include "blk-wbt.h"
8324aa91 46
18fbda91
OS
47#ifdef CONFIG_DEBUG_FS
48struct dentry *blk_debugfs_root;
49#endif
50
d07335e5 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 56
a73f730d
TH
57DEFINE_IDA(blk_queue_ida);
58
1da177e4
LT
59/*
60 * For the allocated request tables
61 */
d674d414 62struct kmem_cache *request_cachep;
1da177e4
LT
63
64/*
65 * For queue allocation
66 */
6728cb0e 67struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86}
87EXPORT_SYMBOL(blk_queue_flag_set);
88
89/**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95{
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101}
102EXPORT_SYMBOL(blk_queue_flag_clear);
103
104/**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113{
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122}
123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125/**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134{
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143}
144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
d40f75a0
TH
146static void blk_clear_congested(struct request_list *rl, int sync)
147{
d40f75a0
TH
148#ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150#else
482cf79c
TH
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
dc3b17cc 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
157#endif
158}
159
160static void blk_set_congested(struct request_list *rl, int sync)
161{
d40f75a0
TH
162#ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164#else
482cf79c
TH
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
dc3b17cc 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
168#endif
169}
170
8324aa91 171void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
172{
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184}
185
2a4aa30c 186void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 187{
1afb20f3
FT
188 memset(rq, 0, sizeof(*rq));
189
1da177e4 190 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 191 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 192 rq->cpu = -1;
63a71386 193 rq->q = q;
a2dec7b3 194 rq->__sector = (sector_t) -1;
2e662b65
JA
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
63a71386 197 rq->tag = -1;
bd166ef1 198 rq->internal_tag = -1;
b243ddcb 199 rq->start_time = jiffies;
9195291e 200 set_start_time_ns(rq);
09e099d4 201 rq->part = NULL;
1d9bd516
TH
202 seqcount_init(&rq->gstate_seq);
203 u64_stats_init(&rq->aborted_gstate_sync);
f4560231
JW
204 /*
205 * See comment of blk_mq_init_request
206 */
207 WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
1da177e4 208}
2a4aa30c 209EXPORT_SYMBOL(blk_rq_init);
1da177e4 210
2a842aca
CH
211static const struct {
212 int errno;
213 const char *name;
214} blk_errors[] = {
215 [BLK_STS_OK] = { 0, "" },
216 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
217 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
218 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
219 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
220 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
221 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
222 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
223 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
224 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 225 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 226 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 227
4e4cbee9
CH
228 /* device mapper special case, should not leak out: */
229 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
230
2a842aca
CH
231 /* everything else not covered above: */
232 [BLK_STS_IOERR] = { -EIO, "I/O" },
233};
234
235blk_status_t errno_to_blk_status(int errno)
236{
237 int i;
238
239 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
240 if (blk_errors[i].errno == errno)
241 return (__force blk_status_t)i;
242 }
243
244 return BLK_STS_IOERR;
245}
246EXPORT_SYMBOL_GPL(errno_to_blk_status);
247
248int blk_status_to_errno(blk_status_t status)
249{
250 int idx = (__force int)status;
251
34bd9c1c 252 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
253 return -EIO;
254 return blk_errors[idx].errno;
255}
256EXPORT_SYMBOL_GPL(blk_status_to_errno);
257
258static void print_req_error(struct request *req, blk_status_t status)
259{
260 int idx = (__force int)status;
261
34bd9c1c 262 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
263 return;
264
265 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
266 __func__, blk_errors[idx].name, req->rq_disk ?
267 req->rq_disk->disk_name : "?",
268 (unsigned long long)blk_rq_pos(req));
269}
270
5bb23a68 271static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 272 unsigned int nbytes, blk_status_t error)
1da177e4 273{
78d8e58a 274 if (error)
4e4cbee9 275 bio->bi_status = error;
797e7dbb 276
e8064021 277 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 278 bio_set_flag(bio, BIO_QUIET);
08bafc03 279
f79ea416 280 bio_advance(bio, nbytes);
7ba1ba12 281
143a87f4 282 /* don't actually finish bio if it's part of flush sequence */
e8064021 283 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 284 bio_endio(bio);
1da177e4 285}
1da177e4 286
1da177e4
LT
287void blk_dump_rq_flags(struct request *rq, char *msg)
288{
aebf526b
CH
289 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
290 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 291 (unsigned long long) rq->cmd_flags);
1da177e4 292
83096ebf
TH
293 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
294 (unsigned long long)blk_rq_pos(rq),
295 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
296 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
297 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 298}
1da177e4
LT
299EXPORT_SYMBOL(blk_dump_rq_flags);
300
3cca6dc1 301static void blk_delay_work(struct work_struct *work)
1da177e4 302{
3cca6dc1 303 struct request_queue *q;
1da177e4 304
3cca6dc1
JA
305 q = container_of(work, struct request_queue, delay_work.work);
306 spin_lock_irq(q->queue_lock);
24ecfbe2 307 __blk_run_queue(q);
3cca6dc1 308 spin_unlock_irq(q->queue_lock);
1da177e4 309}
1da177e4
LT
310
311/**
3cca6dc1
JA
312 * blk_delay_queue - restart queueing after defined interval
313 * @q: The &struct request_queue in question
314 * @msecs: Delay in msecs
1da177e4
LT
315 *
316 * Description:
3cca6dc1
JA
317 * Sometimes queueing needs to be postponed for a little while, to allow
318 * resources to come back. This function will make sure that queueing is
2fff8a92 319 * restarted around the specified time.
3cca6dc1
JA
320 */
321void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 322{
2fff8a92 323 lockdep_assert_held(q->queue_lock);
332ebbf7 324 WARN_ON_ONCE(q->mq_ops);
2fff8a92 325
70460571
BVA
326 if (likely(!blk_queue_dead(q)))
327 queue_delayed_work(kblockd_workqueue, &q->delay_work,
328 msecs_to_jiffies(msecs));
2ad8b1ef 329}
3cca6dc1 330EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 331
21491412
JA
332/**
333 * blk_start_queue_async - asynchronously restart a previously stopped queue
334 * @q: The &struct request_queue in question
335 *
336 * Description:
337 * blk_start_queue_async() will clear the stop flag on the queue, and
338 * ensure that the request_fn for the queue is run from an async
339 * context.
340 **/
341void blk_start_queue_async(struct request_queue *q)
342{
2fff8a92 343 lockdep_assert_held(q->queue_lock);
332ebbf7 344 WARN_ON_ONCE(q->mq_ops);
2fff8a92 345
21491412
JA
346 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
347 blk_run_queue_async(q);
348}
349EXPORT_SYMBOL(blk_start_queue_async);
350
1da177e4
LT
351/**
352 * blk_start_queue - restart a previously stopped queue
165125e1 353 * @q: The &struct request_queue in question
1da177e4
LT
354 *
355 * Description:
356 * blk_start_queue() will clear the stop flag on the queue, and call
357 * the request_fn for the queue if it was in a stopped state when
2fff8a92 358 * entered. Also see blk_stop_queue().
1da177e4 359 **/
165125e1 360void blk_start_queue(struct request_queue *q)
1da177e4 361{
2fff8a92 362 lockdep_assert_held(q->queue_lock);
332ebbf7 363 WARN_ON_ONCE(q->mq_ops);
a038e253 364
75ad23bc 365 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 366 __blk_run_queue(q);
1da177e4 367}
1da177e4
LT
368EXPORT_SYMBOL(blk_start_queue);
369
370/**
371 * blk_stop_queue - stop a queue
165125e1 372 * @q: The &struct request_queue in question
1da177e4
LT
373 *
374 * Description:
375 * The Linux block layer assumes that a block driver will consume all
376 * entries on the request queue when the request_fn strategy is called.
377 * Often this will not happen, because of hardware limitations (queue
378 * depth settings). If a device driver gets a 'queue full' response,
379 * or if it simply chooses not to queue more I/O at one point, it can
380 * call this function to prevent the request_fn from being called until
381 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 382 * blk_start_queue() to restart queue operations.
1da177e4 383 **/
165125e1 384void blk_stop_queue(struct request_queue *q)
1da177e4 385{
2fff8a92 386 lockdep_assert_held(q->queue_lock);
332ebbf7 387 WARN_ON_ONCE(q->mq_ops);
2fff8a92 388
136b5721 389 cancel_delayed_work(&q->delay_work);
75ad23bc 390 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
391}
392EXPORT_SYMBOL(blk_stop_queue);
393
394/**
395 * blk_sync_queue - cancel any pending callbacks on a queue
396 * @q: the queue
397 *
398 * Description:
399 * The block layer may perform asynchronous callback activity
400 * on a queue, such as calling the unplug function after a timeout.
401 * A block device may call blk_sync_queue to ensure that any
402 * such activity is cancelled, thus allowing it to release resources
59c51591 403 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
404 * that its ->make_request_fn will not re-add plugging prior to calling
405 * this function.
406 *
da527770 407 * This function does not cancel any asynchronous activity arising
da3dae54 408 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 409 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 410 *
1da177e4
LT
411 */
412void blk_sync_queue(struct request_queue *q)
413{
70ed28b9 414 del_timer_sync(&q->timeout);
4e9b6f20 415 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
416
417 if (q->mq_ops) {
418 struct blk_mq_hw_ctx *hctx;
419 int i;
420
aba7afc5 421 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 422 queue_for_each_hw_ctx(q, hctx, i)
9f993737 423 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
424 } else {
425 cancel_delayed_work_sync(&q->delay_work);
426 }
1da177e4
LT
427}
428EXPORT_SYMBOL(blk_sync_queue);
429
c9254f2d
BVA
430/**
431 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
432 * @q: request queue pointer
433 *
434 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
435 * set and 1 if the flag was already set.
436 */
437int blk_set_preempt_only(struct request_queue *q)
438{
8814ce8a 439 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
c9254f2d
BVA
440}
441EXPORT_SYMBOL_GPL(blk_set_preempt_only);
442
443void blk_clear_preempt_only(struct request_queue *q)
444{
8814ce8a 445 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 446 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
447}
448EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
449
c246e80d
BVA
450/**
451 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
452 * @q: The queue to run
453 *
454 * Description:
455 * Invoke request handling on a queue if there are any pending requests.
456 * May be used to restart request handling after a request has completed.
457 * This variant runs the queue whether or not the queue has been
458 * stopped. Must be called with the queue lock held and interrupts
459 * disabled. See also @blk_run_queue.
460 */
461inline void __blk_run_queue_uncond(struct request_queue *q)
462{
2fff8a92 463 lockdep_assert_held(q->queue_lock);
332ebbf7 464 WARN_ON_ONCE(q->mq_ops);
2fff8a92 465
c246e80d
BVA
466 if (unlikely(blk_queue_dead(q)))
467 return;
468
24faf6f6
BVA
469 /*
470 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
471 * the queue lock internally. As a result multiple threads may be
472 * running such a request function concurrently. Keep track of the
473 * number of active request_fn invocations such that blk_drain_queue()
474 * can wait until all these request_fn calls have finished.
475 */
476 q->request_fn_active++;
c246e80d 477 q->request_fn(q);
24faf6f6 478 q->request_fn_active--;
c246e80d 479}
a7928c15 480EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 481
1da177e4 482/**
80a4b58e 483 * __blk_run_queue - run a single device queue
1da177e4 484 * @q: The queue to run
80a4b58e
JA
485 *
486 * Description:
2fff8a92 487 * See @blk_run_queue.
1da177e4 488 */
24ecfbe2 489void __blk_run_queue(struct request_queue *q)
1da177e4 490{
2fff8a92 491 lockdep_assert_held(q->queue_lock);
332ebbf7 492 WARN_ON_ONCE(q->mq_ops);
2fff8a92 493
a538cd03
TH
494 if (unlikely(blk_queue_stopped(q)))
495 return;
496
c246e80d 497 __blk_run_queue_uncond(q);
75ad23bc
NP
498}
499EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 500
24ecfbe2
CH
501/**
502 * blk_run_queue_async - run a single device queue in workqueue context
503 * @q: The queue to run
504 *
505 * Description:
506 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
507 * of us.
508 *
509 * Note:
510 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
511 * has canceled q->delay_work, callers must hold the queue lock to avoid
512 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
513 */
514void blk_run_queue_async(struct request_queue *q)
515{
2fff8a92 516 lockdep_assert_held(q->queue_lock);
332ebbf7 517 WARN_ON_ONCE(q->mq_ops);
2fff8a92 518
70460571 519 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 520 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 521}
c21e6beb 522EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 523
75ad23bc
NP
524/**
525 * blk_run_queue - run a single device queue
526 * @q: The queue to run
80a4b58e
JA
527 *
528 * Description:
529 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 530 * May be used to restart queueing when a request has completed.
75ad23bc
NP
531 */
532void blk_run_queue(struct request_queue *q)
533{
534 unsigned long flags;
535
332ebbf7
BVA
536 WARN_ON_ONCE(q->mq_ops);
537
75ad23bc 538 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 539 __blk_run_queue(q);
1da177e4
LT
540 spin_unlock_irqrestore(q->queue_lock, flags);
541}
542EXPORT_SYMBOL(blk_run_queue);
543
165125e1 544void blk_put_queue(struct request_queue *q)
483f4afc
AV
545{
546 kobject_put(&q->kobj);
547}
d86e0e83 548EXPORT_SYMBOL(blk_put_queue);
483f4afc 549
e3c78ca5 550/**
807592a4 551 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 552 * @q: queue to drain
c9a929dd 553 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 554 *
c9a929dd
TH
555 * Drain requests from @q. If @drain_all is set, all requests are drained.
556 * If not, only ELVPRIV requests are drained. The caller is responsible
557 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 558 */
807592a4
BVA
559static void __blk_drain_queue(struct request_queue *q, bool drain_all)
560 __releases(q->queue_lock)
561 __acquires(q->queue_lock)
e3c78ca5 562{
458f27a9
AH
563 int i;
564
807592a4 565 lockdep_assert_held(q->queue_lock);
332ebbf7 566 WARN_ON_ONCE(q->mq_ops);
807592a4 567
e3c78ca5 568 while (true) {
481a7d64 569 bool drain = false;
e3c78ca5 570
b855b04a
TH
571 /*
572 * The caller might be trying to drain @q before its
573 * elevator is initialized.
574 */
575 if (q->elevator)
576 elv_drain_elevator(q);
577
5efd6113 578 blkcg_drain_queue(q);
e3c78ca5 579
4eabc941
TH
580 /*
581 * This function might be called on a queue which failed
b855b04a
TH
582 * driver init after queue creation or is not yet fully
583 * active yet. Some drivers (e.g. fd and loop) get unhappy
584 * in such cases. Kick queue iff dispatch queue has
585 * something on it and @q has request_fn set.
4eabc941 586 */
b855b04a 587 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 588 __blk_run_queue(q);
c9a929dd 589
8a5ecdd4 590 drain |= q->nr_rqs_elvpriv;
24faf6f6 591 drain |= q->request_fn_active;
481a7d64
TH
592
593 /*
594 * Unfortunately, requests are queued at and tracked from
595 * multiple places and there's no single counter which can
596 * be drained. Check all the queues and counters.
597 */
598 if (drain_all) {
e97c293c 599 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
600 drain |= !list_empty(&q->queue_head);
601 for (i = 0; i < 2; i++) {
8a5ecdd4 602 drain |= q->nr_rqs[i];
481a7d64 603 drain |= q->in_flight[i];
7c94e1c1
ML
604 if (fq)
605 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
606 }
607 }
e3c78ca5 608
481a7d64 609 if (!drain)
e3c78ca5 610 break;
807592a4
BVA
611
612 spin_unlock_irq(q->queue_lock);
613
e3c78ca5 614 msleep(10);
807592a4
BVA
615
616 spin_lock_irq(q->queue_lock);
e3c78ca5 617 }
458f27a9
AH
618
619 /*
620 * With queue marked dead, any woken up waiter will fail the
621 * allocation path, so the wakeup chaining is lost and we're
622 * left with hung waiters. We need to wake up those waiters.
623 */
624 if (q->request_fn) {
a051661c
TH
625 struct request_list *rl;
626
a051661c
TH
627 blk_queue_for_each_rl(rl, q)
628 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
629 wake_up_all(&rl->wait[i]);
458f27a9 630 }
e3c78ca5
TH
631}
632
454be724
ML
633void blk_drain_queue(struct request_queue *q)
634{
635 spin_lock_irq(q->queue_lock);
636 __blk_drain_queue(q, true);
637 spin_unlock_irq(q->queue_lock);
638}
639
d732580b
TH
640/**
641 * blk_queue_bypass_start - enter queue bypass mode
642 * @q: queue of interest
643 *
644 * In bypass mode, only the dispatch FIFO queue of @q is used. This
645 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 646 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
647 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
648 * inside queue or RCU read lock.
d732580b
TH
649 */
650void blk_queue_bypass_start(struct request_queue *q)
651{
332ebbf7
BVA
652 WARN_ON_ONCE(q->mq_ops);
653
d732580b 654 spin_lock_irq(q->queue_lock);
776687bc 655 q->bypass_depth++;
d732580b
TH
656 queue_flag_set(QUEUE_FLAG_BYPASS, q);
657 spin_unlock_irq(q->queue_lock);
658
776687bc
TH
659 /*
660 * Queues start drained. Skip actual draining till init is
661 * complete. This avoids lenghty delays during queue init which
662 * can happen many times during boot.
663 */
664 if (blk_queue_init_done(q)) {
807592a4
BVA
665 spin_lock_irq(q->queue_lock);
666 __blk_drain_queue(q, false);
667 spin_unlock_irq(q->queue_lock);
668
b82d4b19
TH
669 /* ensure blk_queue_bypass() is %true inside RCU read lock */
670 synchronize_rcu();
671 }
d732580b
TH
672}
673EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
674
675/**
676 * blk_queue_bypass_end - leave queue bypass mode
677 * @q: queue of interest
678 *
679 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
680 *
681 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
682 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
683 */
684void blk_queue_bypass_end(struct request_queue *q)
685{
686 spin_lock_irq(q->queue_lock);
687 if (!--q->bypass_depth)
688 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
689 WARN_ON_ONCE(q->bypass_depth < 0);
690 spin_unlock_irq(q->queue_lock);
691}
692EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
693
aed3ea94
JA
694void blk_set_queue_dying(struct request_queue *q)
695{
8814ce8a 696 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 697
d3cfb2a0
ML
698 /*
699 * When queue DYING flag is set, we need to block new req
700 * entering queue, so we call blk_freeze_queue_start() to
701 * prevent I/O from crossing blk_queue_enter().
702 */
703 blk_freeze_queue_start(q);
704
aed3ea94
JA
705 if (q->mq_ops)
706 blk_mq_wake_waiters(q);
707 else {
708 struct request_list *rl;
709
bbfc3c5d 710 spin_lock_irq(q->queue_lock);
aed3ea94
JA
711 blk_queue_for_each_rl(rl, q) {
712 if (rl->rq_pool) {
34d9715a
ML
713 wake_up_all(&rl->wait[BLK_RW_SYNC]);
714 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
715 }
716 }
bbfc3c5d 717 spin_unlock_irq(q->queue_lock);
aed3ea94 718 }
055f6e18
ML
719
720 /* Make blk_queue_enter() reexamine the DYING flag. */
721 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
722}
723EXPORT_SYMBOL_GPL(blk_set_queue_dying);
724
c9a929dd
TH
725/**
726 * blk_cleanup_queue - shutdown a request queue
727 * @q: request queue to shutdown
728 *
c246e80d
BVA
729 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
730 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 731 */
6728cb0e 732void blk_cleanup_queue(struct request_queue *q)
483f4afc 733{
c9a929dd 734 spinlock_t *lock = q->queue_lock;
e3335de9 735
3f3299d5 736 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 737 mutex_lock(&q->sysfs_lock);
aed3ea94 738 blk_set_queue_dying(q);
c9a929dd 739 spin_lock_irq(lock);
6ecf23af 740
80fd9979 741 /*
3f3299d5 742 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
743 * that, unlike blk_queue_bypass_start(), we aren't performing
744 * synchronize_rcu() after entering bypass mode to avoid the delay
745 * as some drivers create and destroy a lot of queues while
746 * probing. This is still safe because blk_release_queue() will be
747 * called only after the queue refcnt drops to zero and nothing,
748 * RCU or not, would be traversing the queue by then.
749 */
6ecf23af
TH
750 q->bypass_depth++;
751 queue_flag_set(QUEUE_FLAG_BYPASS, q);
752
c9a929dd
TH
753 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
754 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 755 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
756 spin_unlock_irq(lock);
757 mutex_unlock(&q->sysfs_lock);
758
c246e80d
BVA
759 /*
760 * Drain all requests queued before DYING marking. Set DEAD flag to
761 * prevent that q->request_fn() gets invoked after draining finished.
762 */
3ef28e83 763 blk_freeze_queue(q);
9c1051aa 764 spin_lock_irq(lock);
c246e80d 765 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 766 spin_unlock_irq(lock);
c9a929dd 767
c2856ae2
ML
768 /*
769 * make sure all in-progress dispatch are completed because
770 * blk_freeze_queue() can only complete all requests, and
771 * dispatch may still be in-progress since we dispatch requests
772 * from more than one contexts
773 */
774 if (q->mq_ops)
775 blk_mq_quiesce_queue(q);
776
5a48fc14
DW
777 /* for synchronous bio-based driver finish in-flight integrity i/o */
778 blk_flush_integrity();
779
c9a929dd 780 /* @q won't process any more request, flush async actions */
dc3b17cc 781 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
782 blk_sync_queue(q);
783
a063057d
BVA
784 /*
785 * I/O scheduler exit is only safe after the sysfs scheduler attribute
786 * has been removed.
787 */
788 WARN_ON_ONCE(q->kobj.state_in_sysfs);
789
790 /*
791 * Since the I/O scheduler exit code may access cgroup information,
792 * perform I/O scheduler exit before disassociating from the block
793 * cgroup controller.
794 */
795 if (q->elevator) {
796 ioc_clear_queue(q);
797 elevator_exit(q, q->elevator);
798 q->elevator = NULL;
799 }
800
801 /*
802 * Remove all references to @q from the block cgroup controller before
803 * restoring @q->queue_lock to avoid that restoring this pointer causes
804 * e.g. blkcg_print_blkgs() to crash.
805 */
806 blkcg_exit_queue(q);
807
808 /*
809 * Since the cgroup code may dereference the @q->backing_dev_info
810 * pointer, only decrease its reference count after having removed the
811 * association with the block cgroup controller.
812 */
813 bdi_put(q->backing_dev_info);
814
45a9c9d9
BVA
815 if (q->mq_ops)
816 blk_mq_free_queue(q);
3ef28e83 817 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 818
5e5cfac0
AH
819 spin_lock_irq(lock);
820 if (q->queue_lock != &q->__queue_lock)
821 q->queue_lock = &q->__queue_lock;
822 spin_unlock_irq(lock);
823
c9a929dd 824 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
825 blk_put_queue(q);
826}
1da177e4
LT
827EXPORT_SYMBOL(blk_cleanup_queue);
828
271508db 829/* Allocate memory local to the request queue */
6d247d7f 830static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 831{
6d247d7f
CH
832 struct request_queue *q = data;
833
834 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
835}
836
6d247d7f 837static void free_request_simple(void *element, void *data)
271508db
DR
838{
839 kmem_cache_free(request_cachep, element);
840}
841
6d247d7f
CH
842static void *alloc_request_size(gfp_t gfp_mask, void *data)
843{
844 struct request_queue *q = data;
845 struct request *rq;
846
847 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
848 q->node);
849 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
850 kfree(rq);
851 rq = NULL;
852 }
853 return rq;
854}
855
856static void free_request_size(void *element, void *data)
857{
858 struct request_queue *q = data;
859
860 if (q->exit_rq_fn)
861 q->exit_rq_fn(q, element);
862 kfree(element);
863}
864
5b788ce3
TH
865int blk_init_rl(struct request_list *rl, struct request_queue *q,
866 gfp_t gfp_mask)
1da177e4 867{
85acb3ba 868 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
869 return 0;
870
5b788ce3 871 rl->q = q;
1faa16d2
JA
872 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
873 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
874 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
875 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 876
6d247d7f
CH
877 if (q->cmd_size) {
878 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
879 alloc_request_size, free_request_size,
880 q, gfp_mask, q->node);
881 } else {
882 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
883 alloc_request_simple, free_request_simple,
884 q, gfp_mask, q->node);
885 }
1da177e4
LT
886 if (!rl->rq_pool)
887 return -ENOMEM;
888
b425e504
BVA
889 if (rl != &q->root_rl)
890 WARN_ON_ONCE(!blk_get_queue(q));
891
1da177e4
LT
892 return 0;
893}
894
b425e504 895void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 896{
b425e504 897 if (rl->rq_pool) {
5b788ce3 898 mempool_destroy(rl->rq_pool);
b425e504
BVA
899 if (rl != &q->root_rl)
900 blk_put_queue(q);
901 }
5b788ce3
TH
902}
903
165125e1 904struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 905{
5ee0524b 906 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
1946089a
CL
907}
908EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 909
3a0a5299
BVA
910/**
911 * blk_queue_enter() - try to increase q->q_usage_counter
912 * @q: request queue pointer
913 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
914 */
9a95e4ef 915int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 916{
3a0a5299
BVA
917 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
918
3ef28e83 919 while (true) {
3a0a5299 920 bool success = false;
3ef28e83 921
818e0fa2 922 rcu_read_lock();
3a0a5299
BVA
923 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
924 /*
925 * The code that sets the PREEMPT_ONLY flag is
926 * responsible for ensuring that that flag is globally
927 * visible before the queue is unfrozen.
928 */
929 if (preempt || !blk_queue_preempt_only(q)) {
930 success = true;
931 } else {
932 percpu_ref_put(&q->q_usage_counter);
933 }
934 }
818e0fa2 935 rcu_read_unlock();
3a0a5299
BVA
936
937 if (success)
3ef28e83
DW
938 return 0;
939
3a0a5299 940 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
941 return -EBUSY;
942
5ed61d3f 943 /*
1671d522 944 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 945 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
946 * .q_usage_counter and reading .mq_freeze_depth or
947 * queue dying flag, otherwise the following wait may
948 * never return if the two reads are reordered.
5ed61d3f
ML
949 */
950 smp_rmb();
951
1dc3039b
AJ
952 wait_event(q->mq_freeze_wq,
953 (atomic_read(&q->mq_freeze_depth) == 0 &&
954 (preempt || !blk_queue_preempt_only(q))) ||
955 blk_queue_dying(q));
3ef28e83
DW
956 if (blk_queue_dying(q))
957 return -ENODEV;
3ef28e83
DW
958 }
959}
960
961void blk_queue_exit(struct request_queue *q)
962{
963 percpu_ref_put(&q->q_usage_counter);
964}
965
966static void blk_queue_usage_counter_release(struct percpu_ref *ref)
967{
968 struct request_queue *q =
969 container_of(ref, struct request_queue, q_usage_counter);
970
971 wake_up_all(&q->mq_freeze_wq);
972}
973
bca237a5 974static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 975{
bca237a5 976 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
977
978 kblockd_schedule_work(&q->timeout_work);
979}
980
498f6650
BVA
981/**
982 * blk_alloc_queue_node - allocate a request queue
983 * @gfp_mask: memory allocation flags
984 * @node_id: NUMA node to allocate memory from
985 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
986 * serialize calls to the legacy .request_fn() callback. Ignored for
987 * blk-mq request queues.
988 *
989 * Note: pass the queue lock as the third argument to this function instead of
990 * setting the queue lock pointer explicitly to avoid triggering a sporadic
991 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
992 * the queue lock pointer must be set before blkcg_init_queue() is called.
993 */
5ee0524b
BVA
994struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
995 spinlock_t *lock)
1946089a 996{
165125e1 997 struct request_queue *q;
1946089a 998
8324aa91 999 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 1000 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1001 if (!q)
1002 return NULL;
1003
00380a40 1004 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 1005 if (q->id < 0)
3d2936f4 1006 goto fail_q;
a73f730d 1007
93b27e72 1008 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
1009 if (!q->bio_split)
1010 goto fail_id;
1011
d03f6cdc
JK
1012 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1013 if (!q->backing_dev_info)
1014 goto fail_split;
1015
a83b576c
JA
1016 q->stats = blk_alloc_queue_stats();
1017 if (!q->stats)
1018 goto fail_stats;
1019
dc3b17cc 1020 q->backing_dev_info->ra_pages =
09cbfeaf 1021 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
1022 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1023 q->backing_dev_info->name = "block";
5151412d 1024 q->node = node_id;
0989a025 1025
bca237a5
KC
1026 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1027 laptop_mode_timer_fn, 0);
1028 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 1029 INIT_WORK(&q->timeout_work, NULL);
b855b04a 1030 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 1031 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 1032 INIT_LIST_HEAD(&q->icq_list);
4eef3049 1033#ifdef CONFIG_BLK_CGROUP
e8989fae 1034 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 1035#endif
3cca6dc1 1036 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 1037
8324aa91 1038 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 1039
5acb3cc2
WL
1040#ifdef CONFIG_BLK_DEV_IO_TRACE
1041 mutex_init(&q->blk_trace_mutex);
1042#endif
483f4afc 1043 mutex_init(&q->sysfs_lock);
e7e72bf6 1044 spin_lock_init(&q->__queue_lock);
483f4afc 1045
498f6650
BVA
1046 if (!q->mq_ops)
1047 q->queue_lock = lock ? : &q->__queue_lock;
c94a96ac 1048
b82d4b19
TH
1049 /*
1050 * A queue starts its life with bypass turned on to avoid
1051 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
1052 * init. The initial bypass will be finished when the queue is
1053 * registered by blk_register_queue().
b82d4b19
TH
1054 */
1055 q->bypass_depth = 1;
f78bac2c 1056 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
b82d4b19 1057
320ae51f
JA
1058 init_waitqueue_head(&q->mq_freeze_wq);
1059
3ef28e83
DW
1060 /*
1061 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1062 * See blk_register_queue() for details.
1063 */
1064 if (percpu_ref_init(&q->q_usage_counter,
1065 blk_queue_usage_counter_release,
1066 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 1067 goto fail_bdi;
f51b802c 1068
3ef28e83
DW
1069 if (blkcg_init_queue(q))
1070 goto fail_ref;
1071
1da177e4 1072 return q;
a73f730d 1073
3ef28e83
DW
1074fail_ref:
1075 percpu_ref_exit(&q->q_usage_counter);
fff4996b 1076fail_bdi:
a83b576c
JA
1077 blk_free_queue_stats(q->stats);
1078fail_stats:
d03f6cdc 1079 bdi_put(q->backing_dev_info);
54efd50b
KO
1080fail_split:
1081 bioset_free(q->bio_split);
a73f730d
TH
1082fail_id:
1083 ida_simple_remove(&blk_queue_ida, q->id);
1084fail_q:
1085 kmem_cache_free(blk_requestq_cachep, q);
1086 return NULL;
1da177e4 1087}
1946089a 1088EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1089
1090/**
1091 * blk_init_queue - prepare a request queue for use with a block device
1092 * @rfn: The function to be called to process requests that have been
1093 * placed on the queue.
1094 * @lock: Request queue spin lock
1095 *
1096 * Description:
1097 * If a block device wishes to use the standard request handling procedures,
1098 * which sorts requests and coalesces adjacent requests, then it must
1099 * call blk_init_queue(). The function @rfn will be called when there
1100 * are requests on the queue that need to be processed. If the device
1101 * supports plugging, then @rfn may not be called immediately when requests
1102 * are available on the queue, but may be called at some time later instead.
1103 * Plugged queues are generally unplugged when a buffer belonging to one
1104 * of the requests on the queue is needed, or due to memory pressure.
1105 *
1106 * @rfn is not required, or even expected, to remove all requests off the
1107 * queue, but only as many as it can handle at a time. If it does leave
1108 * requests on the queue, it is responsible for arranging that the requests
1109 * get dealt with eventually.
1110 *
1111 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1112 * request queue; this lock will be taken also from interrupt context, so irq
1113 * disabling is needed for it.
1da177e4 1114 *
710027a4 1115 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1116 * it didn't succeed.
1117 *
1118 * Note:
1119 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1120 * when the block device is deactivated (such as at module unload).
1121 **/
1946089a 1122
165125e1 1123struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1124{
c304a51b 1125 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1126}
1127EXPORT_SYMBOL(blk_init_queue);
1128
165125e1 1129struct request_queue *
1946089a
CL
1130blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1131{
5ea708d1 1132 struct request_queue *q;
1da177e4 1133
498f6650 1134 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
5ea708d1 1135 if (!q)
c86d1b8a
MS
1136 return NULL;
1137
5ea708d1 1138 q->request_fn = rfn;
5ea708d1
CH
1139 if (blk_init_allocated_queue(q) < 0) {
1140 blk_cleanup_queue(q);
1141 return NULL;
1142 }
18741986 1143
7982e90c 1144 return q;
01effb0d
MS
1145}
1146EXPORT_SYMBOL(blk_init_queue_node);
1147
dece1635 1148static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1149
1da177e4 1150
5ea708d1
CH
1151int blk_init_allocated_queue(struct request_queue *q)
1152{
332ebbf7
BVA
1153 WARN_ON_ONCE(q->mq_ops);
1154
6d247d7f 1155 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1156 if (!q->fq)
5ea708d1 1157 return -ENOMEM;
7982e90c 1158
6d247d7f
CH
1159 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1160 goto out_free_flush_queue;
7982e90c 1161
a051661c 1162 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1163 goto out_exit_flush_rq;
1da177e4 1164
287922eb 1165 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1166 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1167
f3b144aa
JA
1168 /*
1169 * This also sets hw/phys segments, boundary and size
1170 */
c20e8de2 1171 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1172
44ec9542
AS
1173 q->sg_reserved_size = INT_MAX;
1174
eb1c160b
TS
1175 /* Protect q->elevator from elevator_change */
1176 mutex_lock(&q->sysfs_lock);
1177
b82d4b19 1178 /* init elevator */
eb1c160b
TS
1179 if (elevator_init(q, NULL)) {
1180 mutex_unlock(&q->sysfs_lock);
6d247d7f 1181 goto out_exit_flush_rq;
eb1c160b
TS
1182 }
1183
1184 mutex_unlock(&q->sysfs_lock);
5ea708d1 1185 return 0;
eb1c160b 1186
6d247d7f
CH
1187out_exit_flush_rq:
1188 if (q->exit_rq_fn)
1189 q->exit_rq_fn(q, q->fq->flush_rq);
1190out_free_flush_queue:
ba483388 1191 blk_free_flush_queue(q->fq);
5ea708d1 1192 return -ENOMEM;
1da177e4 1193}
5151412d 1194EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1195
09ac46c4 1196bool blk_get_queue(struct request_queue *q)
1da177e4 1197{
3f3299d5 1198 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1199 __blk_get_queue(q);
1200 return true;
1da177e4
LT
1201 }
1202
09ac46c4 1203 return false;
1da177e4 1204}
d86e0e83 1205EXPORT_SYMBOL(blk_get_queue);
1da177e4 1206
5b788ce3 1207static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1208{
e8064021 1209 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1210 elv_put_request(rl->q, rq);
f1f8cc94 1211 if (rq->elv.icq)
11a3122f 1212 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1213 }
1214
5b788ce3 1215 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1216}
1217
1da177e4
LT
1218/*
1219 * ioc_batching returns true if the ioc is a valid batching request and
1220 * should be given priority access to a request.
1221 */
165125e1 1222static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1223{
1224 if (!ioc)
1225 return 0;
1226
1227 /*
1228 * Make sure the process is able to allocate at least 1 request
1229 * even if the batch times out, otherwise we could theoretically
1230 * lose wakeups.
1231 */
1232 return ioc->nr_batch_requests == q->nr_batching ||
1233 (ioc->nr_batch_requests > 0
1234 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1235}
1236
1237/*
1238 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1239 * will cause the process to be a "batcher" on all queues in the system. This
1240 * is the behaviour we want though - once it gets a wakeup it should be given
1241 * a nice run.
1242 */
165125e1 1243static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1244{
1245 if (!ioc || ioc_batching(q, ioc))
1246 return;
1247
1248 ioc->nr_batch_requests = q->nr_batching;
1249 ioc->last_waited = jiffies;
1250}
1251
5b788ce3 1252static void __freed_request(struct request_list *rl, int sync)
1da177e4 1253{
5b788ce3 1254 struct request_queue *q = rl->q;
1da177e4 1255
d40f75a0
TH
1256 if (rl->count[sync] < queue_congestion_off_threshold(q))
1257 blk_clear_congested(rl, sync);
1da177e4 1258
1faa16d2
JA
1259 if (rl->count[sync] + 1 <= q->nr_requests) {
1260 if (waitqueue_active(&rl->wait[sync]))
1261 wake_up(&rl->wait[sync]);
1da177e4 1262
5b788ce3 1263 blk_clear_rl_full(rl, sync);
1da177e4
LT
1264 }
1265}
1266
1267/*
1268 * A request has just been released. Account for it, update the full and
1269 * congestion status, wake up any waiters. Called under q->queue_lock.
1270 */
e8064021
CH
1271static void freed_request(struct request_list *rl, bool sync,
1272 req_flags_t rq_flags)
1da177e4 1273{
5b788ce3 1274 struct request_queue *q = rl->q;
1da177e4 1275
8a5ecdd4 1276 q->nr_rqs[sync]--;
1faa16d2 1277 rl->count[sync]--;
e8064021 1278 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1279 q->nr_rqs_elvpriv--;
1da177e4 1280
5b788ce3 1281 __freed_request(rl, sync);
1da177e4 1282
1faa16d2 1283 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1284 __freed_request(rl, sync ^ 1);
1da177e4
LT
1285}
1286
e3a2b3f9
JA
1287int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1288{
1289 struct request_list *rl;
d40f75a0 1290 int on_thresh, off_thresh;
e3a2b3f9 1291
332ebbf7
BVA
1292 WARN_ON_ONCE(q->mq_ops);
1293
e3a2b3f9
JA
1294 spin_lock_irq(q->queue_lock);
1295 q->nr_requests = nr;
1296 blk_queue_congestion_threshold(q);
d40f75a0
TH
1297 on_thresh = queue_congestion_on_threshold(q);
1298 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1299
d40f75a0
TH
1300 blk_queue_for_each_rl(rl, q) {
1301 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1302 blk_set_congested(rl, BLK_RW_SYNC);
1303 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1304 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1305
d40f75a0
TH
1306 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1307 blk_set_congested(rl, BLK_RW_ASYNC);
1308 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1309 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1310
e3a2b3f9
JA
1311 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1312 blk_set_rl_full(rl, BLK_RW_SYNC);
1313 } else {
1314 blk_clear_rl_full(rl, BLK_RW_SYNC);
1315 wake_up(&rl->wait[BLK_RW_SYNC]);
1316 }
1317
1318 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1319 blk_set_rl_full(rl, BLK_RW_ASYNC);
1320 } else {
1321 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1322 wake_up(&rl->wait[BLK_RW_ASYNC]);
1323 }
1324 }
1325
1326 spin_unlock_irq(q->queue_lock);
1327 return 0;
1328}
1329
da8303c6 1330/**
a06e05e6 1331 * __get_request - get a free request
5b788ce3 1332 * @rl: request list to allocate from
ef295ecf 1333 * @op: operation and flags
da8303c6 1334 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1335 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1336 *
1337 * Get a free request from @q. This function may fail under memory
1338 * pressure or if @q is dead.
1339 *
da3dae54 1340 * Must be called with @q->queue_lock held and,
a492f075
JL
1341 * Returns ERR_PTR on failure, with @q->queue_lock held.
1342 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1343 */
ef295ecf 1344static struct request *__get_request(struct request_list *rl, unsigned int op,
9a95e4ef 1345 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1346{
5b788ce3 1347 struct request_queue *q = rl->q;
b679281a 1348 struct request *rq;
7f4b35d1
TH
1349 struct elevator_type *et = q->elevator->type;
1350 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1351 struct io_cq *icq = NULL;
ef295ecf 1352 const bool is_sync = op_is_sync(op);
75eb6c37 1353 int may_queue;
6a15674d
BVA
1354 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1355 __GFP_DIRECT_RECLAIM;
e8064021 1356 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1357
2fff8a92
BVA
1358 lockdep_assert_held(q->queue_lock);
1359
3f3299d5 1360 if (unlikely(blk_queue_dying(q)))
a492f075 1361 return ERR_PTR(-ENODEV);
da8303c6 1362
ef295ecf 1363 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1364 if (may_queue == ELV_MQUEUE_NO)
1365 goto rq_starved;
1366
1faa16d2
JA
1367 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1368 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1369 /*
1370 * The queue will fill after this allocation, so set
1371 * it as full, and mark this process as "batching".
1372 * This process will be allowed to complete a batch of
1373 * requests, others will be blocked.
1374 */
5b788ce3 1375 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1376 ioc_set_batching(q, ioc);
5b788ce3 1377 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1378 } else {
1379 if (may_queue != ELV_MQUEUE_MUST
1380 && !ioc_batching(q, ioc)) {
1381 /*
1382 * The queue is full and the allocating
1383 * process is not a "batcher", and not
1384 * exempted by the IO scheduler
1385 */
a492f075 1386 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1387 }
1388 }
1da177e4 1389 }
d40f75a0 1390 blk_set_congested(rl, is_sync);
1da177e4
LT
1391 }
1392
082cf69e
JA
1393 /*
1394 * Only allow batching queuers to allocate up to 50% over the defined
1395 * limit of requests, otherwise we could have thousands of requests
1396 * allocated with any setting of ->nr_requests
1397 */
1faa16d2 1398 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1399 return ERR_PTR(-ENOMEM);
fd782a4a 1400
8a5ecdd4 1401 q->nr_rqs[is_sync]++;
1faa16d2
JA
1402 rl->count[is_sync]++;
1403 rl->starved[is_sync] = 0;
cb98fc8b 1404
f1f8cc94
TH
1405 /*
1406 * Decide whether the new request will be managed by elevator. If
e8064021 1407 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1408 * prevent the current elevator from being destroyed until the new
1409 * request is freed. This guarantees icq's won't be destroyed and
1410 * makes creating new ones safe.
1411 *
e6f7f93d
CH
1412 * Flush requests do not use the elevator so skip initialization.
1413 * This allows a request to share the flush and elevator data.
1414 *
f1f8cc94
TH
1415 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1416 * it will be created after releasing queue_lock.
1417 */
e6f7f93d 1418 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1419 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1420 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1421 if (et->icq_cache && ioc)
1422 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1423 }
cb98fc8b 1424
f253b86b 1425 if (blk_queue_io_stat(q))
e8064021 1426 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1427 spin_unlock_irq(q->queue_lock);
1428
29e2b09a 1429 /* allocate and init request */
5b788ce3 1430 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1431 if (!rq)
b679281a 1432 goto fail_alloc;
1da177e4 1433
29e2b09a 1434 blk_rq_init(q, rq);
a051661c 1435 blk_rq_set_rl(rq, rl);
ef295ecf 1436 rq->cmd_flags = op;
e8064021 1437 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1438 if (flags & BLK_MQ_REQ_PREEMPT)
1439 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1440
aaf7c680 1441 /* init elvpriv */
e8064021 1442 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1443 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1444 if (ioc)
1445 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1446 if (!icq)
1447 goto fail_elvpriv;
29e2b09a 1448 }
aaf7c680
TH
1449
1450 rq->elv.icq = icq;
1451 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1452 goto fail_elvpriv;
1453
1454 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1455 if (icq)
1456 get_io_context(icq->ioc);
1457 }
aaf7c680 1458out:
88ee5ef1
JA
1459 /*
1460 * ioc may be NULL here, and ioc_batching will be false. That's
1461 * OK, if the queue is under the request limit then requests need
1462 * not count toward the nr_batch_requests limit. There will always
1463 * be some limit enforced by BLK_BATCH_TIME.
1464 */
1da177e4
LT
1465 if (ioc_batching(q, ioc))
1466 ioc->nr_batch_requests--;
6728cb0e 1467
e6a40b09 1468 trace_block_getrq(q, bio, op);
1da177e4 1469 return rq;
b679281a 1470
aaf7c680
TH
1471fail_elvpriv:
1472 /*
1473 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1474 * and may fail indefinitely under memory pressure and thus
1475 * shouldn't stall IO. Treat this request as !elvpriv. This will
1476 * disturb iosched and blkcg but weird is bettern than dead.
1477 */
7b2b10e0 1478 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1479 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1480
e8064021 1481 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1482 rq->elv.icq = NULL;
1483
1484 spin_lock_irq(q->queue_lock);
8a5ecdd4 1485 q->nr_rqs_elvpriv--;
aaf7c680
TH
1486 spin_unlock_irq(q->queue_lock);
1487 goto out;
1488
b679281a
TH
1489fail_alloc:
1490 /*
1491 * Allocation failed presumably due to memory. Undo anything we
1492 * might have messed up.
1493 *
1494 * Allocating task should really be put onto the front of the wait
1495 * queue, but this is pretty rare.
1496 */
1497 spin_lock_irq(q->queue_lock);
e8064021 1498 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1499
1500 /*
1501 * in the very unlikely event that allocation failed and no
1502 * requests for this direction was pending, mark us starved so that
1503 * freeing of a request in the other direction will notice
1504 * us. another possible fix would be to split the rq mempool into
1505 * READ and WRITE
1506 */
1507rq_starved:
1508 if (unlikely(rl->count[is_sync] == 0))
1509 rl->starved[is_sync] = 1;
a492f075 1510 return ERR_PTR(-ENOMEM);
1da177e4
LT
1511}
1512
da8303c6 1513/**
a06e05e6 1514 * get_request - get a free request
da8303c6 1515 * @q: request_queue to allocate request from
ef295ecf 1516 * @op: operation and flags
da8303c6 1517 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1518 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1519 *
d0164adc
MG
1520 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1521 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1522 *
da3dae54 1523 * Must be called with @q->queue_lock held and,
a492f075
JL
1524 * Returns ERR_PTR on failure, with @q->queue_lock held.
1525 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1526 */
ef295ecf 1527static struct request *get_request(struct request_queue *q, unsigned int op,
9a95e4ef 1528 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1529{
ef295ecf 1530 const bool is_sync = op_is_sync(op);
a06e05e6 1531 DEFINE_WAIT(wait);
a051661c 1532 struct request_list *rl;
1da177e4 1533 struct request *rq;
a051661c 1534
2fff8a92 1535 lockdep_assert_held(q->queue_lock);
332ebbf7 1536 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1537
a051661c 1538 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1539retry:
6a15674d 1540 rq = __get_request(rl, op, bio, flags);
a492f075 1541 if (!IS_ERR(rq))
a06e05e6 1542 return rq;
1da177e4 1543
03a07c92
GR
1544 if (op & REQ_NOWAIT) {
1545 blk_put_rl(rl);
1546 return ERR_PTR(-EAGAIN);
1547 }
1548
6a15674d 1549 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1550 blk_put_rl(rl);
a492f075 1551 return rq;
a051661c 1552 }
1da177e4 1553
a06e05e6
TH
1554 /* wait on @rl and retry */
1555 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1556 TASK_UNINTERRUPTIBLE);
1da177e4 1557
e6a40b09 1558 trace_block_sleeprq(q, bio, op);
1da177e4 1559
a06e05e6
TH
1560 spin_unlock_irq(q->queue_lock);
1561 io_schedule();
d6344532 1562
a06e05e6
TH
1563 /*
1564 * After sleeping, we become a "batching" process and will be able
1565 * to allocate at least one request, and up to a big batch of them
1566 * for a small period time. See ioc_batching, ioc_set_batching
1567 */
a06e05e6 1568 ioc_set_batching(q, current->io_context);
05caf8db 1569
a06e05e6
TH
1570 spin_lock_irq(q->queue_lock);
1571 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1572
a06e05e6 1573 goto retry;
1da177e4
LT
1574}
1575
6a15674d 1576/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1577static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1578 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1579{
1580 struct request *rq;
6a15674d
BVA
1581 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1582 __GFP_DIRECT_RECLAIM;
055f6e18 1583 int ret = 0;
1da177e4 1584
332ebbf7
BVA
1585 WARN_ON_ONCE(q->mq_ops);
1586
7f4b35d1
TH
1587 /* create ioc upfront */
1588 create_io_context(gfp_mask, q->node);
1589
3a0a5299 1590 ret = blk_queue_enter(q, flags);
055f6e18
ML
1591 if (ret)
1592 return ERR_PTR(ret);
d6344532 1593 spin_lock_irq(q->queue_lock);
6a15674d 1594 rq = get_request(q, op, NULL, flags);
0c4de0f3 1595 if (IS_ERR(rq)) {
da8303c6 1596 spin_unlock_irq(q->queue_lock);
055f6e18 1597 blk_queue_exit(q);
0c4de0f3
CH
1598 return rq;
1599 }
1da177e4 1600
0c4de0f3
CH
1601 /* q->queue_lock is unlocked at this point */
1602 rq->__data_len = 0;
1603 rq->__sector = (sector_t) -1;
1604 rq->bio = rq->biotail = NULL;
1da177e4
LT
1605 return rq;
1606}
320ae51f 1607
6a15674d
BVA
1608/**
1609 * blk_get_request_flags - allocate a request
1610 * @q: request queue to allocate a request for
1611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1613 */
1614struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
9a95e4ef 1615 blk_mq_req_flags_t flags)
320ae51f 1616{
d280bab3
BVA
1617 struct request *req;
1618
6a15674d 1619 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1620 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1621
d280bab3 1622 if (q->mq_ops) {
6a15674d 1623 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1624 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1625 q->mq_ops->initialize_rq_fn(req);
1626 } else {
6a15674d 1627 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1628 if (!IS_ERR(req) && q->initialize_rq_fn)
1629 q->initialize_rq_fn(req);
1630 }
1631
1632 return req;
320ae51f 1633}
6a15674d
BVA
1634EXPORT_SYMBOL(blk_get_request_flags);
1635
1636struct request *blk_get_request(struct request_queue *q, unsigned int op,
1637 gfp_t gfp_mask)
1638{
1639 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1640 0 : BLK_MQ_REQ_NOWAIT);
1641}
1da177e4
LT
1642EXPORT_SYMBOL(blk_get_request);
1643
1644/**
1645 * blk_requeue_request - put a request back on queue
1646 * @q: request queue where request should be inserted
1647 * @rq: request to be inserted
1648 *
1649 * Description:
1650 * Drivers often keep queueing requests until the hardware cannot accept
1651 * more, when that condition happens we need to put the request back
1652 * on the queue. Must be called with queue lock held.
1653 */
165125e1 1654void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1655{
2fff8a92 1656 lockdep_assert_held(q->queue_lock);
332ebbf7 1657 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1658
242f9dcb
JA
1659 blk_delete_timer(rq);
1660 blk_clear_rq_complete(rq);
5f3ea37c 1661 trace_block_rq_requeue(q, rq);
a8a45941 1662 wbt_requeue(q->rq_wb, rq);
2056a782 1663
e8064021 1664 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1665 blk_queue_end_tag(q, rq);
1666
ba396a6c
JB
1667 BUG_ON(blk_queued_rq(rq));
1668
1da177e4
LT
1669 elv_requeue_request(q, rq);
1670}
1da177e4
LT
1671EXPORT_SYMBOL(blk_requeue_request);
1672
73c10101
JA
1673static void add_acct_request(struct request_queue *q, struct request *rq,
1674 int where)
1675{
320ae51f 1676 blk_account_io_start(rq, true);
7eaceacc 1677 __elv_add_request(q, rq, where);
73c10101
JA
1678}
1679
d62e26b3 1680static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1681 struct hd_struct *part, unsigned long now,
1682 unsigned int inflight)
074a7aca 1683{
b8d62b3a 1684 if (inflight) {
074a7aca 1685 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1686 inflight * (now - part->stamp));
074a7aca
TH
1687 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1688 }
1689 part->stamp = now;
1690}
1691
1692/**
496aa8a9 1693 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1694 * @q: target block queue
496aa8a9
RD
1695 * @cpu: cpu number for stats access
1696 * @part: target partition
1da177e4
LT
1697 *
1698 * The average IO queue length and utilisation statistics are maintained
1699 * by observing the current state of the queue length and the amount of
1700 * time it has been in this state for.
1701 *
1702 * Normally, that accounting is done on IO completion, but that can result
1703 * in more than a second's worth of IO being accounted for within any one
1704 * second, leading to >100% utilisation. To deal with that, we call this
1705 * function to do a round-off before returning the results when reading
1706 * /proc/diskstats. This accounts immediately for all queue usage up to
1707 * the current jiffies and restarts the counters again.
1708 */
d62e26b3 1709void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1710{
b8d62b3a 1711 struct hd_struct *part2 = NULL;
6f2576af 1712 unsigned long now = jiffies;
b8d62b3a
JA
1713 unsigned int inflight[2];
1714 int stats = 0;
1715
1716 if (part->stamp != now)
1717 stats |= 1;
1718
1719 if (part->partno) {
1720 part2 = &part_to_disk(part)->part0;
1721 if (part2->stamp != now)
1722 stats |= 2;
1723 }
1724
1725 if (!stats)
1726 return;
1727
1728 part_in_flight(q, part, inflight);
6f2576af 1729
b8d62b3a
JA
1730 if (stats & 2)
1731 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1732 if (stats & 1)
1733 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1734}
074a7aca 1735EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1736
47fafbc7 1737#ifdef CONFIG_PM
c8158819
LM
1738static void blk_pm_put_request(struct request *rq)
1739{
e8064021 1740 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1741 pm_runtime_mark_last_busy(rq->q->dev);
1742}
1743#else
1744static inline void blk_pm_put_request(struct request *rq) {}
1745#endif
1746
165125e1 1747void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1748{
e8064021
CH
1749 req_flags_t rq_flags = req->rq_flags;
1750
1da177e4
LT
1751 if (unlikely(!q))
1752 return;
1da177e4 1753
6f5ba581
CH
1754 if (q->mq_ops) {
1755 blk_mq_free_request(req);
1756 return;
1757 }
1758
2fff8a92
BVA
1759 lockdep_assert_held(q->queue_lock);
1760
6cc77e9c 1761 blk_req_zone_write_unlock(req);
c8158819
LM
1762 blk_pm_put_request(req);
1763
8922e16c
TH
1764 elv_completed_request(q, req);
1765
1cd96c24
BH
1766 /* this is a bio leak */
1767 WARN_ON(req->bio != NULL);
1768
a8a45941 1769 wbt_done(q->rq_wb, req);
87760e5e 1770
1da177e4
LT
1771 /*
1772 * Request may not have originated from ll_rw_blk. if not,
1773 * it didn't come out of our reserved rq pools
1774 */
e8064021 1775 if (rq_flags & RQF_ALLOCED) {
a051661c 1776 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1777 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1778
1da177e4 1779 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1780 BUG_ON(ELV_ON_HASH(req));
1da177e4 1781
a051661c 1782 blk_free_request(rl, req);
e8064021 1783 freed_request(rl, sync, rq_flags);
a051661c 1784 blk_put_rl(rl);
055f6e18 1785 blk_queue_exit(q);
1da177e4
LT
1786 }
1787}
6e39b69e
MC
1788EXPORT_SYMBOL_GPL(__blk_put_request);
1789
1da177e4
LT
1790void blk_put_request(struct request *req)
1791{
165125e1 1792 struct request_queue *q = req->q;
8922e16c 1793
320ae51f
JA
1794 if (q->mq_ops)
1795 blk_mq_free_request(req);
1796 else {
1797 unsigned long flags;
1798
1799 spin_lock_irqsave(q->queue_lock, flags);
1800 __blk_put_request(q, req);
1801 spin_unlock_irqrestore(q->queue_lock, flags);
1802 }
1da177e4 1803}
1da177e4
LT
1804EXPORT_SYMBOL(blk_put_request);
1805
320ae51f
JA
1806bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1807 struct bio *bio)
73c10101 1808{
1eff9d32 1809 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1810
73c10101
JA
1811 if (!ll_back_merge_fn(q, req, bio))
1812 return false;
1813
8c1cf6bb 1814 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1815
1816 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1817 blk_rq_set_mixed_merge(req);
1818
1819 req->biotail->bi_next = bio;
1820 req->biotail = bio;
4f024f37 1821 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1822 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1823
320ae51f 1824 blk_account_io_start(req, false);
73c10101
JA
1825 return true;
1826}
1827
320ae51f
JA
1828bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1829 struct bio *bio)
73c10101 1830{
1eff9d32 1831 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1832
73c10101
JA
1833 if (!ll_front_merge_fn(q, req, bio))
1834 return false;
1835
8c1cf6bb 1836 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1837
1838 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1839 blk_rq_set_mixed_merge(req);
1840
73c10101
JA
1841 bio->bi_next = req->bio;
1842 req->bio = bio;
1843
4f024f37
KO
1844 req->__sector = bio->bi_iter.bi_sector;
1845 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1846 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1847
320ae51f 1848 blk_account_io_start(req, false);
73c10101
JA
1849 return true;
1850}
1851
1e739730
CH
1852bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1853 struct bio *bio)
1854{
1855 unsigned short segments = blk_rq_nr_discard_segments(req);
1856
1857 if (segments >= queue_max_discard_segments(q))
1858 goto no_merge;
1859 if (blk_rq_sectors(req) + bio_sectors(bio) >
1860 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1861 goto no_merge;
1862
1863 req->biotail->bi_next = bio;
1864 req->biotail = bio;
1865 req->__data_len += bio->bi_iter.bi_size;
1866 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1867 req->nr_phys_segments = segments + 1;
1868
1869 blk_account_io_start(req, false);
1870 return true;
1871no_merge:
1872 req_set_nomerge(q, req);
1873 return false;
1874}
1875
bd87b589 1876/**
320ae51f 1877 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1878 * @q: request_queue new bio is being queued at
1879 * @bio: new bio being queued
1880 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1881 * @same_queue_rq: pointer to &struct request that gets filled in when
1882 * another request associated with @q is found on the plug list
1883 * (optional, may be %NULL)
bd87b589
TH
1884 *
1885 * Determine whether @bio being queued on @q can be merged with a request
1886 * on %current's plugged list. Returns %true if merge was successful,
1887 * otherwise %false.
1888 *
07c2bd37
TH
1889 * Plugging coalesces IOs from the same issuer for the same purpose without
1890 * going through @q->queue_lock. As such it's more of an issuing mechanism
1891 * than scheduling, and the request, while may have elvpriv data, is not
1892 * added on the elevator at this point. In addition, we don't have
1893 * reliable access to the elevator outside queue lock. Only check basic
1894 * merging parameters without querying the elevator.
da41a589
RE
1895 *
1896 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1897 */
320ae51f 1898bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1899 unsigned int *request_count,
1900 struct request **same_queue_rq)
73c10101
JA
1901{
1902 struct blk_plug *plug;
1903 struct request *rq;
92f399c7 1904 struct list_head *plug_list;
73c10101 1905
bd87b589 1906 plug = current->plug;
73c10101 1907 if (!plug)
34fe7c05 1908 return false;
56ebdaf2 1909 *request_count = 0;
73c10101 1910
92f399c7
SL
1911 if (q->mq_ops)
1912 plug_list = &plug->mq_list;
1913 else
1914 plug_list = &plug->list;
1915
1916 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1917 bool merged = false;
73c10101 1918
5b3f341f 1919 if (rq->q == q) {
1b2e19f1 1920 (*request_count)++;
5b3f341f
SL
1921 /*
1922 * Only blk-mq multiple hardware queues case checks the
1923 * rq in the same queue, there should be only one such
1924 * rq in a queue
1925 **/
1926 if (same_queue_rq)
1927 *same_queue_rq = rq;
1928 }
56ebdaf2 1929
07c2bd37 1930 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1931 continue;
1932
34fe7c05
CH
1933 switch (blk_try_merge(rq, bio)) {
1934 case ELEVATOR_BACK_MERGE:
1935 merged = bio_attempt_back_merge(q, rq, bio);
1936 break;
1937 case ELEVATOR_FRONT_MERGE:
1938 merged = bio_attempt_front_merge(q, rq, bio);
1939 break;
1e739730
CH
1940 case ELEVATOR_DISCARD_MERGE:
1941 merged = bio_attempt_discard_merge(q, rq, bio);
1942 break;
34fe7c05
CH
1943 default:
1944 break;
73c10101 1945 }
34fe7c05
CH
1946
1947 if (merged)
1948 return true;
73c10101 1949 }
34fe7c05
CH
1950
1951 return false;
73c10101
JA
1952}
1953
0809e3ac
JM
1954unsigned int blk_plug_queued_count(struct request_queue *q)
1955{
1956 struct blk_plug *plug;
1957 struct request *rq;
1958 struct list_head *plug_list;
1959 unsigned int ret = 0;
1960
1961 plug = current->plug;
1962 if (!plug)
1963 goto out;
1964
1965 if (q->mq_ops)
1966 plug_list = &plug->mq_list;
1967 else
1968 plug_list = &plug->list;
1969
1970 list_for_each_entry(rq, plug_list, queuelist) {
1971 if (rq->q == q)
1972 ret++;
1973 }
1974out:
1975 return ret;
1976}
1977
da8d7f07 1978void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1979{
0be0dee6
BVA
1980 struct io_context *ioc = rq_ioc(bio);
1981
1eff9d32 1982 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1983 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1984
4f024f37 1985 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1986 if (ioprio_valid(bio_prio(bio)))
1987 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1988 else if (ioc)
1989 req->ioprio = ioc->ioprio;
1990 else
1991 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1992 req->write_hint = bio->bi_write_hint;
bc1c56fd 1993 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1994}
da8d7f07 1995EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1996
dece1635 1997static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1998{
73c10101 1999 struct blk_plug *plug;
34fe7c05 2000 int where = ELEVATOR_INSERT_SORT;
e4d750c9 2001 struct request *req, *free;
56ebdaf2 2002 unsigned int request_count = 0;
87760e5e 2003 unsigned int wb_acct;
1da177e4 2004
1da177e4
LT
2005 /*
2006 * low level driver can indicate that it wants pages above a
2007 * certain limit bounced to low memory (ie for highmem, or even
2008 * ISA dma in theory)
2009 */
2010 blk_queue_bounce(q, &bio);
2011
af67c31f 2012 blk_queue_split(q, &bio);
23688bf4 2013
e23947bd 2014 if (!bio_integrity_prep(bio))
dece1635 2015 return BLK_QC_T_NONE;
ffecfd1a 2016
f73f44eb 2017 if (op_is_flush(bio->bi_opf)) {
73c10101 2018 spin_lock_irq(q->queue_lock);
ae1b1539 2019 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
2020 goto get_rq;
2021 }
2022
73c10101
JA
2023 /*
2024 * Check if we can merge with the plugged list before grabbing
2025 * any locks.
2026 */
0809e3ac
JM
2027 if (!blk_queue_nomerges(q)) {
2028 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 2029 return BLK_QC_T_NONE;
0809e3ac
JM
2030 } else
2031 request_count = blk_plug_queued_count(q);
1da177e4 2032
73c10101 2033 spin_lock_irq(q->queue_lock);
2056a782 2034
34fe7c05
CH
2035 switch (elv_merge(q, &req, bio)) {
2036 case ELEVATOR_BACK_MERGE:
2037 if (!bio_attempt_back_merge(q, req, bio))
2038 break;
2039 elv_bio_merged(q, req, bio);
2040 free = attempt_back_merge(q, req);
2041 if (free)
2042 __blk_put_request(q, free);
2043 else
2044 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2045 goto out_unlock;
2046 case ELEVATOR_FRONT_MERGE:
2047 if (!bio_attempt_front_merge(q, req, bio))
2048 break;
2049 elv_bio_merged(q, req, bio);
2050 free = attempt_front_merge(q, req);
2051 if (free)
2052 __blk_put_request(q, free);
2053 else
2054 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2055 goto out_unlock;
2056 default:
2057 break;
1da177e4
LT
2058 }
2059
450991bc 2060get_rq:
87760e5e
JA
2061 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2062
1da177e4 2063 /*
450991bc 2064 * Grab a free request. This is might sleep but can not fail.
d6344532 2065 * Returns with the queue unlocked.
450991bc 2066 */
055f6e18 2067 blk_queue_enter_live(q);
6a15674d 2068 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 2069 if (IS_ERR(req)) {
055f6e18 2070 blk_queue_exit(q);
87760e5e 2071 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
2072 if (PTR_ERR(req) == -ENOMEM)
2073 bio->bi_status = BLK_STS_RESOURCE;
2074 else
2075 bio->bi_status = BLK_STS_IOERR;
4246a0b6 2076 bio_endio(bio);
da8303c6
TH
2077 goto out_unlock;
2078 }
d6344532 2079
a8a45941 2080 wbt_track(req, wb_acct);
87760e5e 2081
450991bc
NP
2082 /*
2083 * After dropping the lock and possibly sleeping here, our request
2084 * may now be mergeable after it had proven unmergeable (above).
2085 * We don't worry about that case for efficiency. It won't happen
2086 * often, and the elevators are able to handle it.
1da177e4 2087 */
da8d7f07 2088 blk_init_request_from_bio(req, bio);
1da177e4 2089
9562ad9a 2090 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 2091 req->cpu = raw_smp_processor_id();
73c10101
JA
2092
2093 plug = current->plug;
721a9602 2094 if (plug) {
dc6d36c9
JA
2095 /*
2096 * If this is the first request added after a plug, fire
7aef2e78 2097 * of a plug trace.
0a6219a9
ML
2098 *
2099 * @request_count may become stale because of schedule
2100 * out, so check plug list again.
dc6d36c9 2101 */
0a6219a9 2102 if (!request_count || list_empty(&plug->list))
dc6d36c9 2103 trace_block_plug(q);
3540d5e8 2104 else {
50d24c34
SL
2105 struct request *last = list_entry_rq(plug->list.prev);
2106 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2107 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2108 blk_flush_plug_list(plug, false);
019ceb7d
SL
2109 trace_block_plug(q);
2110 }
73c10101 2111 }
73c10101 2112 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2113 blk_account_io_start(req, true);
73c10101
JA
2114 } else {
2115 spin_lock_irq(q->queue_lock);
2116 add_acct_request(q, req, where);
24ecfbe2 2117 __blk_run_queue(q);
73c10101
JA
2118out_unlock:
2119 spin_unlock_irq(q->queue_lock);
2120 }
dece1635
JA
2121
2122 return BLK_QC_T_NONE;
1da177e4
LT
2123}
2124
52c5e62d 2125static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
2126{
2127 char b[BDEVNAME_SIZE];
2128
2129 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2130 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2131 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2132 (unsigned long long)bio_end_sector(bio),
52c5e62d 2133 (long long)maxsector);
1da177e4
LT
2134}
2135
c17bb495
AM
2136#ifdef CONFIG_FAIL_MAKE_REQUEST
2137
2138static DECLARE_FAULT_ATTR(fail_make_request);
2139
2140static int __init setup_fail_make_request(char *str)
2141{
2142 return setup_fault_attr(&fail_make_request, str);
2143}
2144__setup("fail_make_request=", setup_fail_make_request);
2145
b2c9cd37 2146static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2147{
b2c9cd37 2148 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2149}
2150
2151static int __init fail_make_request_debugfs(void)
2152{
dd48c085
AM
2153 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2154 NULL, &fail_make_request);
2155
21f9fcd8 2156 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2157}
2158
2159late_initcall(fail_make_request_debugfs);
2160
2161#else /* CONFIG_FAIL_MAKE_REQUEST */
2162
b2c9cd37
AM
2163static inline bool should_fail_request(struct hd_struct *part,
2164 unsigned int bytes)
c17bb495 2165{
b2c9cd37 2166 return false;
c17bb495
AM
2167}
2168
2169#endif /* CONFIG_FAIL_MAKE_REQUEST */
2170
721c7fc7
ID
2171static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2172{
2173 if (part->policy && op_is_write(bio_op(bio))) {
2174 char b[BDEVNAME_SIZE];
2175
2176 printk(KERN_ERR
2177 "generic_make_request: Trying to write "
2178 "to read-only block-device %s (partno %d)\n",
2179 bio_devname(bio, b), part->partno);
2180 return true;
2181 }
2182
2183 return false;
2184}
2185
30abb3a6
HM
2186static noinline int should_fail_bio(struct bio *bio)
2187{
2188 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2189 return -EIO;
2190 return 0;
2191}
2192ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2193
52c5e62d
CH
2194/*
2195 * Check whether this bio extends beyond the end of the device or partition.
2196 * This may well happen - the kernel calls bread() without checking the size of
2197 * the device, e.g., when mounting a file system.
2198 */
2199static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2200{
2201 unsigned int nr_sectors = bio_sectors(bio);
2202
2203 if (nr_sectors && maxsector &&
2204 (nr_sectors > maxsector ||
2205 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2206 handle_bad_sector(bio, maxsector);
2207 return -EIO;
2208 }
2209 return 0;
2210}
2211
74d46992
CH
2212/*
2213 * Remap block n of partition p to block n+start(p) of the disk.
2214 */
2215static inline int blk_partition_remap(struct bio *bio)
2216{
2217 struct hd_struct *p;
52c5e62d 2218 int ret = -EIO;
74d46992 2219
721c7fc7
ID
2220 rcu_read_lock();
2221 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
2222 if (unlikely(!p))
2223 goto out;
2224 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2225 goto out;
2226 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 2227 goto out;
721c7fc7 2228
74d46992
CH
2229 /*
2230 * Zone reset does not include bi_size so bio_sectors() is always 0.
2231 * Include a test for the reset op code and perform the remap if needed.
2232 */
52c5e62d
CH
2233 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2234 if (bio_check_eod(bio, part_nr_sects_read(p)))
2235 goto out;
2236 bio->bi_iter.bi_sector += p->start_sect;
2237 bio->bi_partno = 0;
2238 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2239 bio->bi_iter.bi_sector - p->start_sect);
2240 }
2241 ret = 0;
721c7fc7
ID
2242out:
2243 rcu_read_unlock();
74d46992
CH
2244 return ret;
2245}
2246
27a84d54
CH
2247static noinline_for_stack bool
2248generic_make_request_checks(struct bio *bio)
1da177e4 2249{
165125e1 2250 struct request_queue *q;
5a7bbad2 2251 int nr_sectors = bio_sectors(bio);
4e4cbee9 2252 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2253 char b[BDEVNAME_SIZE];
1da177e4
LT
2254
2255 might_sleep();
1da177e4 2256
74d46992 2257 q = bio->bi_disk->queue;
5a7bbad2
CH
2258 if (unlikely(!q)) {
2259 printk(KERN_ERR
2260 "generic_make_request: Trying to access "
2261 "nonexistent block-device %s (%Lu)\n",
74d46992 2262 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2263 goto end_io;
2264 }
c17bb495 2265
03a07c92
GR
2266 /*
2267 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2268 * if queue is not a request based queue.
2269 */
03a07c92
GR
2270 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2271 goto not_supported;
2272
30abb3a6 2273 if (should_fail_bio(bio))
5a7bbad2 2274 goto end_io;
2056a782 2275
52c5e62d
CH
2276 if (bio->bi_partno) {
2277 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
2278 goto end_io;
2279 } else {
52c5e62d
CH
2280 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2281 goto end_io;
2282 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
2283 goto end_io;
2284 }
2056a782 2285
5a7bbad2
CH
2286 /*
2287 * Filter flush bio's early so that make_request based
2288 * drivers without flush support don't have to worry
2289 * about them.
2290 */
f3a8ab7d 2291 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2292 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2293 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2294 if (!nr_sectors) {
4e4cbee9 2295 status = BLK_STS_OK;
51fd77bd
JA
2296 goto end_io;
2297 }
5a7bbad2 2298 }
5ddfe969 2299
288dab8a
CH
2300 switch (bio_op(bio)) {
2301 case REQ_OP_DISCARD:
2302 if (!blk_queue_discard(q))
2303 goto not_supported;
2304 break;
2305 case REQ_OP_SECURE_ERASE:
2306 if (!blk_queue_secure_erase(q))
2307 goto not_supported;
2308 break;
2309 case REQ_OP_WRITE_SAME:
74d46992 2310 if (!q->limits.max_write_same_sectors)
288dab8a 2311 goto not_supported;
58886785 2312 break;
2d253440
ST
2313 case REQ_OP_ZONE_REPORT:
2314 case REQ_OP_ZONE_RESET:
74d46992 2315 if (!blk_queue_is_zoned(q))
2d253440 2316 goto not_supported;
288dab8a 2317 break;
a6f0788e 2318 case REQ_OP_WRITE_ZEROES:
74d46992 2319 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2320 goto not_supported;
2321 break;
288dab8a
CH
2322 default:
2323 break;
5a7bbad2 2324 }
01edede4 2325
7f4b35d1
TH
2326 /*
2327 * Various block parts want %current->io_context and lazy ioc
2328 * allocation ends up trading a lot of pain for a small amount of
2329 * memory. Just allocate it upfront. This may fail and block
2330 * layer knows how to live with it.
2331 */
2332 create_io_context(GFP_ATOMIC, q->node);
2333
ae118896
TH
2334 if (!blkcg_bio_issue_check(q, bio))
2335 return false;
27a84d54 2336
fbbaf700
N
2337 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2338 trace_block_bio_queue(q, bio);
2339 /* Now that enqueuing has been traced, we need to trace
2340 * completion as well.
2341 */
2342 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2343 }
27a84d54 2344 return true;
a7384677 2345
288dab8a 2346not_supported:
4e4cbee9 2347 status = BLK_STS_NOTSUPP;
a7384677 2348end_io:
4e4cbee9 2349 bio->bi_status = status;
4246a0b6 2350 bio_endio(bio);
27a84d54 2351 return false;
1da177e4
LT
2352}
2353
27a84d54
CH
2354/**
2355 * generic_make_request - hand a buffer to its device driver for I/O
2356 * @bio: The bio describing the location in memory and on the device.
2357 *
2358 * generic_make_request() is used to make I/O requests of block
2359 * devices. It is passed a &struct bio, which describes the I/O that needs
2360 * to be done.
2361 *
2362 * generic_make_request() does not return any status. The
2363 * success/failure status of the request, along with notification of
2364 * completion, is delivered asynchronously through the bio->bi_end_io
2365 * function described (one day) else where.
2366 *
2367 * The caller of generic_make_request must make sure that bi_io_vec
2368 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2369 * set to describe the device address, and the
2370 * bi_end_io and optionally bi_private are set to describe how
2371 * completion notification should be signaled.
2372 *
2373 * generic_make_request and the drivers it calls may use bi_next if this
2374 * bio happens to be merged with someone else, and may resubmit the bio to
2375 * a lower device by calling into generic_make_request recursively, which
2376 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2377 */
dece1635 2378blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2379{
f5fe1b51
N
2380 /*
2381 * bio_list_on_stack[0] contains bios submitted by the current
2382 * make_request_fn.
2383 * bio_list_on_stack[1] contains bios that were submitted before
2384 * the current make_request_fn, but that haven't been processed
2385 * yet.
2386 */
2387 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
2388 blk_mq_req_flags_t flags = 0;
2389 struct request_queue *q = bio->bi_disk->queue;
dece1635 2390 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2391
37f9579f
BVA
2392 if (bio->bi_opf & REQ_NOWAIT)
2393 flags = BLK_MQ_REQ_NOWAIT;
2394 if (blk_queue_enter(q, flags) < 0) {
2395 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2396 bio_wouldblock_error(bio);
2397 else
2398 bio_io_error(bio);
2399 return ret;
2400 }
2401
27a84d54 2402 if (!generic_make_request_checks(bio))
dece1635 2403 goto out;
27a84d54
CH
2404
2405 /*
2406 * We only want one ->make_request_fn to be active at a time, else
2407 * stack usage with stacked devices could be a problem. So use
2408 * current->bio_list to keep a list of requests submited by a
2409 * make_request_fn function. current->bio_list is also used as a
2410 * flag to say if generic_make_request is currently active in this
2411 * task or not. If it is NULL, then no make_request is active. If
2412 * it is non-NULL, then a make_request is active, and new requests
2413 * should be added at the tail
2414 */
bddd87c7 2415 if (current->bio_list) {
f5fe1b51 2416 bio_list_add(&current->bio_list[0], bio);
dece1635 2417 goto out;
d89d8796 2418 }
27a84d54 2419
d89d8796
NB
2420 /* following loop may be a bit non-obvious, and so deserves some
2421 * explanation.
2422 * Before entering the loop, bio->bi_next is NULL (as all callers
2423 * ensure that) so we have a list with a single bio.
2424 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2425 * we assign bio_list to a pointer to the bio_list_on_stack,
2426 * thus initialising the bio_list of new bios to be
27a84d54 2427 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2428 * through a recursive call to generic_make_request. If it
2429 * did, we find a non-NULL value in bio_list and re-enter the loop
2430 * from the top. In this case we really did just take the bio
bddd87c7 2431 * of the top of the list (no pretending) and so remove it from
27a84d54 2432 * bio_list, and call into ->make_request() again.
d89d8796
NB
2433 */
2434 BUG_ON(bio->bi_next);
f5fe1b51
N
2435 bio_list_init(&bio_list_on_stack[0]);
2436 current->bio_list = bio_list_on_stack;
d89d8796 2437 do {
37f9579f
BVA
2438 bool enter_succeeded = true;
2439
2440 if (unlikely(q != bio->bi_disk->queue)) {
2441 if (q)
2442 blk_queue_exit(q);
2443 q = bio->bi_disk->queue;
2444 flags = 0;
2445 if (bio->bi_opf & REQ_NOWAIT)
2446 flags = BLK_MQ_REQ_NOWAIT;
2447 if (blk_queue_enter(q, flags) < 0) {
2448 enter_succeeded = false;
2449 q = NULL;
2450 }
2451 }
27a84d54 2452
37f9579f 2453 if (enter_succeeded) {
79bd9959
N
2454 struct bio_list lower, same;
2455
2456 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2457 bio_list_on_stack[1] = bio_list_on_stack[0];
2458 bio_list_init(&bio_list_on_stack[0]);
dece1635 2459 ret = q->make_request_fn(q, bio);
3ef28e83 2460
79bd9959
N
2461 /* sort new bios into those for a lower level
2462 * and those for the same level
2463 */
2464 bio_list_init(&lower);
2465 bio_list_init(&same);
f5fe1b51 2466 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2467 if (q == bio->bi_disk->queue)
79bd9959
N
2468 bio_list_add(&same, bio);
2469 else
2470 bio_list_add(&lower, bio);
2471 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2472 bio_list_merge(&bio_list_on_stack[0], &lower);
2473 bio_list_merge(&bio_list_on_stack[0], &same);
2474 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2475 } else {
03a07c92
GR
2476 if (unlikely(!blk_queue_dying(q) &&
2477 (bio->bi_opf & REQ_NOWAIT)))
2478 bio_wouldblock_error(bio);
2479 else
2480 bio_io_error(bio);
3ef28e83 2481 }
f5fe1b51 2482 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2483 } while (bio);
bddd87c7 2484 current->bio_list = NULL; /* deactivate */
dece1635
JA
2485
2486out:
37f9579f
BVA
2487 if (q)
2488 blk_queue_exit(q);
dece1635 2489 return ret;
d89d8796 2490}
1da177e4
LT
2491EXPORT_SYMBOL(generic_make_request);
2492
f421e1d9
CH
2493/**
2494 * direct_make_request - hand a buffer directly to its device driver for I/O
2495 * @bio: The bio describing the location in memory and on the device.
2496 *
2497 * This function behaves like generic_make_request(), but does not protect
2498 * against recursion. Must only be used if the called driver is known
2499 * to not call generic_make_request (or direct_make_request) again from
2500 * its make_request function. (Calling direct_make_request again from
2501 * a workqueue is perfectly fine as that doesn't recurse).
2502 */
2503blk_qc_t direct_make_request(struct bio *bio)
2504{
2505 struct request_queue *q = bio->bi_disk->queue;
2506 bool nowait = bio->bi_opf & REQ_NOWAIT;
2507 blk_qc_t ret;
2508
2509 if (!generic_make_request_checks(bio))
2510 return BLK_QC_T_NONE;
2511
3a0a5299 2512 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2513 if (nowait && !blk_queue_dying(q))
2514 bio->bi_status = BLK_STS_AGAIN;
2515 else
2516 bio->bi_status = BLK_STS_IOERR;
2517 bio_endio(bio);
2518 return BLK_QC_T_NONE;
2519 }
2520
2521 ret = q->make_request_fn(q, bio);
2522 blk_queue_exit(q);
2523 return ret;
2524}
2525EXPORT_SYMBOL_GPL(direct_make_request);
2526
1da177e4 2527/**
710027a4 2528 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2529 * @bio: The &struct bio which describes the I/O
2530 *
2531 * submit_bio() is very similar in purpose to generic_make_request(), and
2532 * uses that function to do most of the work. Both are fairly rough
710027a4 2533 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2534 *
2535 */
4e49ea4a 2536blk_qc_t submit_bio(struct bio *bio)
1da177e4 2537{
bf2de6f5
JA
2538 /*
2539 * If it's a regular read/write or a barrier with data attached,
2540 * go through the normal accounting stuff before submission.
2541 */
e2a60da7 2542 if (bio_has_data(bio)) {
4363ac7c
MP
2543 unsigned int count;
2544
95fe6c1a 2545 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 2546 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2547 else
2548 count = bio_sectors(bio);
2549
a8ebb056 2550 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2551 count_vm_events(PGPGOUT, count);
2552 } else {
4f024f37 2553 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2554 count_vm_events(PGPGIN, count);
2555 }
2556
2557 if (unlikely(block_dump)) {
2558 char b[BDEVNAME_SIZE];
8dcbdc74 2559 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2560 current->comm, task_pid_nr(current),
a8ebb056 2561 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2562 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2563 bio_devname(bio, b), count);
bf2de6f5 2564 }
1da177e4
LT
2565 }
2566
dece1635 2567 return generic_make_request(bio);
1da177e4 2568}
1da177e4
LT
2569EXPORT_SYMBOL(submit_bio);
2570
ea435e1b
CH
2571bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2572{
2573 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2574 return false;
2575
2576 if (current->plug)
2577 blk_flush_plug_list(current->plug, false);
2578 return q->poll_fn(q, cookie);
2579}
2580EXPORT_SYMBOL_GPL(blk_poll);
2581
82124d60 2582/**
bf4e6b4e
HR
2583 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2584 * for new the queue limits
82124d60
KU
2585 * @q: the queue
2586 * @rq: the request being checked
2587 *
2588 * Description:
2589 * @rq may have been made based on weaker limitations of upper-level queues
2590 * in request stacking drivers, and it may violate the limitation of @q.
2591 * Since the block layer and the underlying device driver trust @rq
2592 * after it is inserted to @q, it should be checked against @q before
2593 * the insertion using this generic function.
2594 *
82124d60 2595 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2596 * limits when retrying requests on other queues. Those requests need
2597 * to be checked against the new queue limits again during dispatch.
82124d60 2598 */
bf4e6b4e
HR
2599static int blk_cloned_rq_check_limits(struct request_queue *q,
2600 struct request *rq)
82124d60 2601{
8fe0d473 2602 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2603 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2604 return -EIO;
2605 }
2606
2607 /*
2608 * queue's settings related to segment counting like q->bounce_pfn
2609 * may differ from that of other stacking queues.
2610 * Recalculate it to check the request correctly on this queue's
2611 * limitation.
2612 */
2613 blk_recalc_rq_segments(rq);
8a78362c 2614 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2615 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2616 return -EIO;
2617 }
2618
2619 return 0;
2620}
82124d60
KU
2621
2622/**
2623 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2624 * @q: the queue to submit the request
2625 * @rq: the request being queued
2626 */
2a842aca 2627blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2628{
2629 unsigned long flags;
4853abaa 2630 int where = ELEVATOR_INSERT_BACK;
82124d60 2631
bf4e6b4e 2632 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2633 return BLK_STS_IOERR;
82124d60 2634
b2c9cd37
AM
2635 if (rq->rq_disk &&
2636 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2637 return BLK_STS_IOERR;
82124d60 2638
7fb4898e
KB
2639 if (q->mq_ops) {
2640 if (blk_queue_io_stat(q))
2641 blk_account_io_start(rq, true);
157f377b
JA
2642 /*
2643 * Since we have a scheduler attached on the top device,
2644 * bypass a potential scheduler on the bottom device for
2645 * insert.
2646 */
c77ff7fd 2647 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2648 }
2649
82124d60 2650 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2651 if (unlikely(blk_queue_dying(q))) {
8ba61435 2652 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2653 return BLK_STS_IOERR;
8ba61435 2654 }
82124d60
KU
2655
2656 /*
2657 * Submitting request must be dequeued before calling this function
2658 * because it will be linked to another request_queue
2659 */
2660 BUG_ON(blk_queued_rq(rq));
2661
f73f44eb 2662 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2663 where = ELEVATOR_INSERT_FLUSH;
2664
2665 add_acct_request(q, rq, where);
e67b77c7
JM
2666 if (where == ELEVATOR_INSERT_FLUSH)
2667 __blk_run_queue(q);
82124d60
KU
2668 spin_unlock_irqrestore(q->queue_lock, flags);
2669
2a842aca 2670 return BLK_STS_OK;
82124d60
KU
2671}
2672EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2673
80a761fd
TH
2674/**
2675 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2676 * @rq: request to examine
2677 *
2678 * Description:
2679 * A request could be merge of IOs which require different failure
2680 * handling. This function determines the number of bytes which
2681 * can be failed from the beginning of the request without
2682 * crossing into area which need to be retried further.
2683 *
2684 * Return:
2685 * The number of bytes to fail.
80a761fd
TH
2686 */
2687unsigned int blk_rq_err_bytes(const struct request *rq)
2688{
2689 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2690 unsigned int bytes = 0;
2691 struct bio *bio;
2692
e8064021 2693 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2694 return blk_rq_bytes(rq);
2695
2696 /*
2697 * Currently the only 'mixing' which can happen is between
2698 * different fastfail types. We can safely fail portions
2699 * which have all the failfast bits that the first one has -
2700 * the ones which are at least as eager to fail as the first
2701 * one.
2702 */
2703 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2704 if ((bio->bi_opf & ff) != ff)
80a761fd 2705 break;
4f024f37 2706 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2707 }
2708
2709 /* this could lead to infinite loop */
2710 BUG_ON(blk_rq_bytes(rq) && !bytes);
2711 return bytes;
2712}
2713EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2714
320ae51f 2715void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2716{
c2553b58 2717 if (blk_do_io_stat(req)) {
bc58ba94
JA
2718 const int rw = rq_data_dir(req);
2719 struct hd_struct *part;
2720 int cpu;
2721
2722 cpu = part_stat_lock();
09e099d4 2723 part = req->part;
bc58ba94
JA
2724 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2725 part_stat_unlock();
2726 }
2727}
2728
320ae51f 2729void blk_account_io_done(struct request *req)
bc58ba94 2730{
bc58ba94 2731 /*
dd4c133f
TH
2732 * Account IO completion. flush_rq isn't accounted as a
2733 * normal IO on queueing nor completion. Accounting the
2734 * containing request is enough.
bc58ba94 2735 */
e8064021 2736 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2737 unsigned long duration = jiffies - req->start_time;
2738 const int rw = rq_data_dir(req);
2739 struct hd_struct *part;
2740 int cpu;
2741
2742 cpu = part_stat_lock();
09e099d4 2743 part = req->part;
bc58ba94
JA
2744
2745 part_stat_inc(cpu, part, ios[rw]);
2746 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2747 part_round_stats(req->q, cpu, part);
2748 part_dec_in_flight(req->q, part, rw);
bc58ba94 2749
6c23a968 2750 hd_struct_put(part);
bc58ba94
JA
2751 part_stat_unlock();
2752 }
2753}
2754
47fafbc7 2755#ifdef CONFIG_PM
c8158819
LM
2756/*
2757 * Don't process normal requests when queue is suspended
2758 * or in the process of suspending/resuming
2759 */
e4f36b24 2760static bool blk_pm_allow_request(struct request *rq)
c8158819 2761{
e4f36b24
CH
2762 switch (rq->q->rpm_status) {
2763 case RPM_RESUMING:
2764 case RPM_SUSPENDING:
2765 return rq->rq_flags & RQF_PM;
2766 case RPM_SUSPENDED:
2767 return false;
2768 }
2769
2770 return true;
c8158819
LM
2771}
2772#else
e4f36b24 2773static bool blk_pm_allow_request(struct request *rq)
c8158819 2774{
e4f36b24 2775 return true;
c8158819
LM
2776}
2777#endif
2778
320ae51f
JA
2779void blk_account_io_start(struct request *rq, bool new_io)
2780{
2781 struct hd_struct *part;
2782 int rw = rq_data_dir(rq);
2783 int cpu;
2784
2785 if (!blk_do_io_stat(rq))
2786 return;
2787
2788 cpu = part_stat_lock();
2789
2790 if (!new_io) {
2791 part = rq->part;
2792 part_stat_inc(cpu, part, merges[rw]);
2793 } else {
2794 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2795 if (!hd_struct_try_get(part)) {
2796 /*
2797 * The partition is already being removed,
2798 * the request will be accounted on the disk only
2799 *
2800 * We take a reference on disk->part0 although that
2801 * partition will never be deleted, so we can treat
2802 * it as any other partition.
2803 */
2804 part = &rq->rq_disk->part0;
2805 hd_struct_get(part);
2806 }
d62e26b3
JA
2807 part_round_stats(rq->q, cpu, part);
2808 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2809 rq->part = part;
2810 }
2811
2812 part_stat_unlock();
2813}
2814
9c988374
CH
2815static struct request *elv_next_request(struct request_queue *q)
2816{
2817 struct request *rq;
2818 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2819
2820 WARN_ON_ONCE(q->mq_ops);
2821
2822 while (1) {
e4f36b24
CH
2823 list_for_each_entry(rq, &q->queue_head, queuelist) {
2824 if (blk_pm_allow_request(rq))
2825 return rq;
2826
2827 if (rq->rq_flags & RQF_SOFTBARRIER)
2828 break;
9c988374
CH
2829 }
2830
2831 /*
2832 * Flush request is running and flush request isn't queueable
2833 * in the drive, we can hold the queue till flush request is
2834 * finished. Even we don't do this, driver can't dispatch next
2835 * requests and will requeue them. And this can improve
2836 * throughput too. For example, we have request flush1, write1,
2837 * flush 2. flush1 is dispatched, then queue is hold, write1
2838 * isn't inserted to queue. After flush1 is finished, flush2
2839 * will be dispatched. Since disk cache is already clean,
2840 * flush2 will be finished very soon, so looks like flush2 is
2841 * folded to flush1.
2842 * Since the queue is hold, a flag is set to indicate the queue
2843 * should be restarted later. Please see flush_end_io() for
2844 * details.
2845 */
2846 if (fq->flush_pending_idx != fq->flush_running_idx &&
2847 !queue_flush_queueable(q)) {
2848 fq->flush_queue_delayed = 1;
2849 return NULL;
2850 }
2851 if (unlikely(blk_queue_bypass(q)) ||
2852 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2853 return NULL;
2854 }
2855}
2856
3bcddeac 2857/**
9934c8c0
TH
2858 * blk_peek_request - peek at the top of a request queue
2859 * @q: request queue to peek at
2860 *
2861 * Description:
2862 * Return the request at the top of @q. The returned request
2863 * should be started using blk_start_request() before LLD starts
2864 * processing it.
2865 *
2866 * Return:
2867 * Pointer to the request at the top of @q if available. Null
2868 * otherwise.
9934c8c0
TH
2869 */
2870struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2871{
2872 struct request *rq;
2873 int ret;
2874
2fff8a92 2875 lockdep_assert_held(q->queue_lock);
332ebbf7 2876 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2877
9c988374 2878 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2879 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2880 /*
2881 * This is the first time the device driver
2882 * sees this request (possibly after
2883 * requeueing). Notify IO scheduler.
2884 */
e8064021 2885 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2886 elv_activate_rq(q, rq);
2887
2888 /*
2889 * just mark as started even if we don't start
2890 * it, a request that has been delayed should
2891 * not be passed by new incoming requests
2892 */
e8064021 2893 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2894 trace_block_rq_issue(q, rq);
2895 }
2896
2897 if (!q->boundary_rq || q->boundary_rq == rq) {
2898 q->end_sector = rq_end_sector(rq);
2899 q->boundary_rq = NULL;
2900 }
2901
e8064021 2902 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2903 break;
2904
2e46e8b2 2905 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2906 /*
2907 * make sure space for the drain appears we
2908 * know we can do this because max_hw_segments
2909 * has been adjusted to be one fewer than the
2910 * device can handle
2911 */
2912 rq->nr_phys_segments++;
2913 }
2914
2915 if (!q->prep_rq_fn)
2916 break;
2917
2918 ret = q->prep_rq_fn(q, rq);
2919 if (ret == BLKPREP_OK) {
2920 break;
2921 } else if (ret == BLKPREP_DEFER) {
2922 /*
2923 * the request may have been (partially) prepped.
2924 * we need to keep this request in the front to
e8064021 2925 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2926 * prevent other fs requests from passing this one.
2927 */
2e46e8b2 2928 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2929 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2930 /*
2931 * remove the space for the drain we added
2932 * so that we don't add it again
2933 */
2934 --rq->nr_phys_segments;
2935 }
2936
2937 rq = NULL;
2938 break;
0fb5b1fb 2939 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2940 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2941 /*
2942 * Mark this request as started so we don't trigger
2943 * any debug logic in the end I/O path.
2944 */
2945 blk_start_request(rq);
2a842aca
CH
2946 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2947 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2948 } else {
2949 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2950 break;
2951 }
2952 }
2953
2954 return rq;
2955}
9934c8c0 2956EXPORT_SYMBOL(blk_peek_request);
158dbda0 2957
5034435c 2958static void blk_dequeue_request(struct request *rq)
158dbda0 2959{
9934c8c0
TH
2960 struct request_queue *q = rq->q;
2961
158dbda0
TH
2962 BUG_ON(list_empty(&rq->queuelist));
2963 BUG_ON(ELV_ON_HASH(rq));
2964
2965 list_del_init(&rq->queuelist);
2966
2967 /*
2968 * the time frame between a request being removed from the lists
2969 * and to it is freed is accounted as io that is in progress at
2970 * the driver side.
2971 */
9195291e 2972 if (blk_account_rq(rq)) {
0a7ae2ff 2973 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2974 set_io_start_time_ns(rq);
2975 }
158dbda0
TH
2976}
2977
9934c8c0
TH
2978/**
2979 * blk_start_request - start request processing on the driver
2980 * @req: request to dequeue
2981 *
2982 * Description:
2983 * Dequeue @req and start timeout timer on it. This hands off the
2984 * request to the driver.
9934c8c0
TH
2985 */
2986void blk_start_request(struct request *req)
2987{
2fff8a92 2988 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2989 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2990
9934c8c0
TH
2991 blk_dequeue_request(req);
2992
cf43e6be 2993 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
544ccc8d
OS
2994 req->io_start_time_ns = ktime_get_ns();
2995#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2996 req->throtl_size = blk_rq_sectors(req);
2997#endif
cf43e6be 2998 req->rq_flags |= RQF_STATS;
a8a45941 2999 wbt_issue(req->q->rq_wb, req);
cf43e6be
JA
3000 }
3001
e14575b3 3002 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
3003 blk_add_timer(req);
3004}
3005EXPORT_SYMBOL(blk_start_request);
3006
3007/**
3008 * blk_fetch_request - fetch a request from a request queue
3009 * @q: request queue to fetch a request from
3010 *
3011 * Description:
3012 * Return the request at the top of @q. The request is started on
3013 * return and LLD can start processing it immediately.
3014 *
3015 * Return:
3016 * Pointer to the request at the top of @q if available. Null
3017 * otherwise.
9934c8c0
TH
3018 */
3019struct request *blk_fetch_request(struct request_queue *q)
3020{
3021 struct request *rq;
3022
2fff8a92 3023 lockdep_assert_held(q->queue_lock);
332ebbf7 3024 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3025
9934c8c0
TH
3026 rq = blk_peek_request(q);
3027 if (rq)
3028 blk_start_request(rq);
3029 return rq;
3030}
3031EXPORT_SYMBOL(blk_fetch_request);
3032
ef71de8b
CH
3033/*
3034 * Steal bios from a request and add them to a bio list.
3035 * The request must not have been partially completed before.
3036 */
3037void blk_steal_bios(struct bio_list *list, struct request *rq)
3038{
3039 if (rq->bio) {
3040 if (list->tail)
3041 list->tail->bi_next = rq->bio;
3042 else
3043 list->head = rq->bio;
3044 list->tail = rq->biotail;
3045
3046 rq->bio = NULL;
3047 rq->biotail = NULL;
3048 }
3049
3050 rq->__data_len = 0;
3051}
3052EXPORT_SYMBOL_GPL(blk_steal_bios);
3053
3bcddeac 3054/**
2e60e022 3055 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 3056 * @req: the request being processed
2a842aca 3057 * @error: block status code
8ebf9756 3058 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
3059 *
3060 * Description:
8ebf9756
RD
3061 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3062 * the request structure even if @req doesn't have leftover.
3063 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
3064 *
3065 * This special helper function is only for request stacking drivers
3066 * (e.g. request-based dm) so that they can handle partial completion.
3067 * Actual device drivers should use blk_end_request instead.
3068 *
3069 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3070 * %false return from this function.
3bcddeac
KU
3071 *
3072 * Return:
2e60e022
TH
3073 * %false - this request doesn't have any more data
3074 * %true - this request has more data
3bcddeac 3075 **/
2a842aca
CH
3076bool blk_update_request(struct request *req, blk_status_t error,
3077 unsigned int nr_bytes)
1da177e4 3078{
f79ea416 3079 int total_bytes;
1da177e4 3080
2a842aca 3081 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 3082
2e60e022
TH
3083 if (!req->bio)
3084 return false;
3085
2a842aca
CH
3086 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3087 !(req->rq_flags & RQF_QUIET)))
3088 print_req_error(req, error);
1da177e4 3089
bc58ba94 3090 blk_account_io_completion(req, nr_bytes);
d72d904a 3091
f79ea416
KO
3092 total_bytes = 0;
3093 while (req->bio) {
3094 struct bio *bio = req->bio;
4f024f37 3095 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 3096
4f024f37 3097 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 3098 req->bio = bio->bi_next;
1da177e4 3099
fbbaf700
N
3100 /* Completion has already been traced */
3101 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 3102 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 3103
f79ea416
KO
3104 total_bytes += bio_bytes;
3105 nr_bytes -= bio_bytes;
1da177e4 3106
f79ea416
KO
3107 if (!nr_bytes)
3108 break;
1da177e4
LT
3109 }
3110
3111 /*
3112 * completely done
3113 */
2e60e022
TH
3114 if (!req->bio) {
3115 /*
3116 * Reset counters so that the request stacking driver
3117 * can find how many bytes remain in the request
3118 * later.
3119 */
a2dec7b3 3120 req->__data_len = 0;
2e60e022
TH
3121 return false;
3122 }
1da177e4 3123
a2dec7b3 3124 req->__data_len -= total_bytes;
2e46e8b2
TH
3125
3126 /* update sector only for requests with clear definition of sector */
57292b58 3127 if (!blk_rq_is_passthrough(req))
a2dec7b3 3128 req->__sector += total_bytes >> 9;
2e46e8b2 3129
80a761fd 3130 /* mixed attributes always follow the first bio */
e8064021 3131 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3132 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3133 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3134 }
3135
ed6565e7
CH
3136 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3137 /*
3138 * If total number of sectors is less than the first segment
3139 * size, something has gone terribly wrong.
3140 */
3141 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3142 blk_dump_rq_flags(req, "request botched");
3143 req->__data_len = blk_rq_cur_bytes(req);
3144 }
2e46e8b2 3145
ed6565e7
CH
3146 /* recalculate the number of segments */
3147 blk_recalc_rq_segments(req);
3148 }
2e46e8b2 3149
2e60e022 3150 return true;
1da177e4 3151}
2e60e022 3152EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3153
2a842aca 3154static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3155 unsigned int nr_bytes,
3156 unsigned int bidi_bytes)
5efccd17 3157{
2e60e022
TH
3158 if (blk_update_request(rq, error, nr_bytes))
3159 return true;
5efccd17 3160
2e60e022
TH
3161 /* Bidi request must be completed as a whole */
3162 if (unlikely(blk_bidi_rq(rq)) &&
3163 blk_update_request(rq->next_rq, error, bidi_bytes))
3164 return true;
5efccd17 3165
e2e1a148
JA
3166 if (blk_queue_add_random(rq->q))
3167 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3168
3169 return false;
1da177e4
LT
3170}
3171
28018c24
JB
3172/**
3173 * blk_unprep_request - unprepare a request
3174 * @req: the request
3175 *
3176 * This function makes a request ready for complete resubmission (or
3177 * completion). It happens only after all error handling is complete,
3178 * so represents the appropriate moment to deallocate any resources
3179 * that were allocated to the request in the prep_rq_fn. The queue
3180 * lock is held when calling this.
3181 */
3182void blk_unprep_request(struct request *req)
3183{
3184 struct request_queue *q = req->q;
3185
e8064021 3186 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3187 if (q->unprep_rq_fn)
3188 q->unprep_rq_fn(q, req);
3189}
3190EXPORT_SYMBOL_GPL(blk_unprep_request);
3191
2a842aca 3192void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3193{
cf43e6be
JA
3194 struct request_queue *q = req->q;
3195
2fff8a92 3196 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3197 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3198
cf43e6be 3199 if (req->rq_flags & RQF_STATS)
34dbad5d 3200 blk_stat_add(req);
cf43e6be 3201
e8064021 3202 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3203 blk_queue_end_tag(q, req);
b8286239 3204
ba396a6c 3205 BUG_ON(blk_queued_rq(req));
1da177e4 3206
57292b58 3207 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3208 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3209
e78042e5
MA
3210 blk_delete_timer(req);
3211
e8064021 3212 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3213 blk_unprep_request(req);
3214
bc58ba94 3215 blk_account_io_done(req);
b8286239 3216
87760e5e 3217 if (req->end_io) {
a8a45941 3218 wbt_done(req->q->rq_wb, req);
8ffdc655 3219 req->end_io(req, error);
87760e5e 3220 } else {
b8286239
KU
3221 if (blk_bidi_rq(req))
3222 __blk_put_request(req->next_rq->q, req->next_rq);
3223
cf43e6be 3224 __blk_put_request(q, req);
b8286239 3225 }
1da177e4 3226}
12120077 3227EXPORT_SYMBOL(blk_finish_request);
1da177e4 3228
3b11313a 3229/**
2e60e022
TH
3230 * blk_end_bidi_request - Complete a bidi request
3231 * @rq: the request to complete
2a842aca 3232 * @error: block status code
2e60e022
TH
3233 * @nr_bytes: number of bytes to complete @rq
3234 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3235 *
3236 * Description:
e3a04fe3 3237 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3238 * Drivers that supports bidi can safely call this member for any
3239 * type of request, bidi or uni. In the later case @bidi_bytes is
3240 * just ignored.
336cdb40
KU
3241 *
3242 * Return:
2e60e022
TH
3243 * %false - we are done with this request
3244 * %true - still buffers pending for this request
a0cd1285 3245 **/
2a842aca 3246static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3247 unsigned int nr_bytes, unsigned int bidi_bytes)
3248{
336cdb40 3249 struct request_queue *q = rq->q;
2e60e022 3250 unsigned long flags;
32fab448 3251
332ebbf7
BVA
3252 WARN_ON_ONCE(q->mq_ops);
3253
2e60e022
TH
3254 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3255 return true;
32fab448 3256
336cdb40 3257 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3258 blk_finish_request(rq, error);
336cdb40
KU
3259 spin_unlock_irqrestore(q->queue_lock, flags);
3260
2e60e022 3261 return false;
32fab448
KU
3262}
3263
336cdb40 3264/**
2e60e022
TH
3265 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3266 * @rq: the request to complete
2a842aca 3267 * @error: block status code
e3a04fe3
KU
3268 * @nr_bytes: number of bytes to complete @rq
3269 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3270 *
3271 * Description:
2e60e022
TH
3272 * Identical to blk_end_bidi_request() except that queue lock is
3273 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3274 *
3275 * Return:
2e60e022
TH
3276 * %false - we are done with this request
3277 * %true - still buffers pending for this request
336cdb40 3278 **/
2a842aca 3279static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3280 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3281{
2fff8a92 3282 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3283 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3284
2e60e022
TH
3285 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3286 return true;
336cdb40 3287
2e60e022 3288 blk_finish_request(rq, error);
336cdb40 3289
2e60e022 3290 return false;
336cdb40 3291}
e19a3ab0
KU
3292
3293/**
3294 * blk_end_request - Helper function for drivers to complete the request.
3295 * @rq: the request being processed
2a842aca 3296 * @error: block status code
e19a3ab0
KU
3297 * @nr_bytes: number of bytes to complete
3298 *
3299 * Description:
3300 * Ends I/O on a number of bytes attached to @rq.
3301 * If @rq has leftover, sets it up for the next range of segments.
3302 *
3303 * Return:
b1f74493
FT
3304 * %false - we are done with this request
3305 * %true - still buffers pending for this request
e19a3ab0 3306 **/
2a842aca
CH
3307bool blk_end_request(struct request *rq, blk_status_t error,
3308 unsigned int nr_bytes)
e19a3ab0 3309{
332ebbf7 3310 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3311 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3312}
56ad1740 3313EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3314
3315/**
b1f74493
FT
3316 * blk_end_request_all - Helper function for drives to finish the request.
3317 * @rq: the request to finish
2a842aca 3318 * @error: block status code
336cdb40
KU
3319 *
3320 * Description:
b1f74493
FT
3321 * Completely finish @rq.
3322 */
2a842aca 3323void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3324{
b1f74493
FT
3325 bool pending;
3326 unsigned int bidi_bytes = 0;
336cdb40 3327
b1f74493
FT
3328 if (unlikely(blk_bidi_rq(rq)))
3329 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3330
b1f74493
FT
3331 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3332 BUG_ON(pending);
3333}
56ad1740 3334EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3335
e3a04fe3 3336/**
b1f74493
FT
3337 * __blk_end_request - Helper function for drivers to complete the request.
3338 * @rq: the request being processed
2a842aca 3339 * @error: block status code
b1f74493 3340 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3341 *
3342 * Description:
b1f74493 3343 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3344 *
3345 * Return:
b1f74493
FT
3346 * %false - we are done with this request
3347 * %true - still buffers pending for this request
e3a04fe3 3348 **/
2a842aca
CH
3349bool __blk_end_request(struct request *rq, blk_status_t error,
3350 unsigned int nr_bytes)
e3a04fe3 3351{
2fff8a92 3352 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3353 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3354
b1f74493 3355 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3356}
56ad1740 3357EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3358
32fab448 3359/**
b1f74493
FT
3360 * __blk_end_request_all - Helper function for drives to finish the request.
3361 * @rq: the request to finish
2a842aca 3362 * @error: block status code
32fab448
KU
3363 *
3364 * Description:
b1f74493 3365 * Completely finish @rq. Must be called with queue lock held.
32fab448 3366 */
2a842aca 3367void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3368{
b1f74493
FT
3369 bool pending;
3370 unsigned int bidi_bytes = 0;
3371
2fff8a92 3372 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3373 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3374
b1f74493
FT
3375 if (unlikely(blk_bidi_rq(rq)))
3376 bidi_bytes = blk_rq_bytes(rq->next_rq);
3377
3378 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3379 BUG_ON(pending);
32fab448 3380}
56ad1740 3381EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3382
e19a3ab0 3383/**
b1f74493
FT
3384 * __blk_end_request_cur - Helper function to finish the current request chunk.
3385 * @rq: the request to finish the current chunk for
2a842aca 3386 * @error: block status code
e19a3ab0
KU
3387 *
3388 * Description:
b1f74493
FT
3389 * Complete the current consecutively mapped chunk from @rq. Must
3390 * be called with queue lock held.
e19a3ab0
KU
3391 *
3392 * Return:
b1f74493
FT
3393 * %false - we are done with this request
3394 * %true - still buffers pending for this request
3395 */
2a842aca 3396bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3397{
b1f74493 3398 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3399}
56ad1740 3400EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3401
86db1e29
JA
3402void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3403 struct bio *bio)
1da177e4 3404{
b4f42e28 3405 if (bio_has_data(bio))
fb2dce86 3406 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
3407 else if (bio_op(bio) == REQ_OP_DISCARD)
3408 rq->nr_phys_segments = 1;
b4f42e28 3409
4f024f37 3410 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3411 rq->bio = rq->biotail = bio;
1da177e4 3412
74d46992
CH
3413 if (bio->bi_disk)
3414 rq->rq_disk = bio->bi_disk;
66846572 3415}
1da177e4 3416
2d4dc890
IL
3417#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3418/**
3419 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3420 * @rq: the request to be flushed
3421 *
3422 * Description:
3423 * Flush all pages in @rq.
3424 */
3425void rq_flush_dcache_pages(struct request *rq)
3426{
3427 struct req_iterator iter;
7988613b 3428 struct bio_vec bvec;
2d4dc890
IL
3429
3430 rq_for_each_segment(bvec, rq, iter)
7988613b 3431 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3432}
3433EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3434#endif
3435
ef9e3fac
KU
3436/**
3437 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3438 * @q : the queue of the device being checked
3439 *
3440 * Description:
3441 * Check if underlying low-level drivers of a device are busy.
3442 * If the drivers want to export their busy state, they must set own
3443 * exporting function using blk_queue_lld_busy() first.
3444 *
3445 * Basically, this function is used only by request stacking drivers
3446 * to stop dispatching requests to underlying devices when underlying
3447 * devices are busy. This behavior helps more I/O merging on the queue
3448 * of the request stacking driver and prevents I/O throughput regression
3449 * on burst I/O load.
3450 *
3451 * Return:
3452 * 0 - Not busy (The request stacking driver should dispatch request)
3453 * 1 - Busy (The request stacking driver should stop dispatching request)
3454 */
3455int blk_lld_busy(struct request_queue *q)
3456{
3457 if (q->lld_busy_fn)
3458 return q->lld_busy_fn(q);
3459
3460 return 0;
3461}
3462EXPORT_SYMBOL_GPL(blk_lld_busy);
3463
78d8e58a
MS
3464/**
3465 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3466 * @rq: the clone request to be cleaned up
3467 *
3468 * Description:
3469 * Free all bios in @rq for a cloned request.
3470 */
3471void blk_rq_unprep_clone(struct request *rq)
3472{
3473 struct bio *bio;
3474
3475 while ((bio = rq->bio) != NULL) {
3476 rq->bio = bio->bi_next;
3477
3478 bio_put(bio);
3479 }
3480}
3481EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3482
3483/*
3484 * Copy attributes of the original request to the clone request.
3485 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3486 */
3487static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3488{
3489 dst->cpu = src->cpu;
b0fd271d
KU
3490 dst->__sector = blk_rq_pos(src);
3491 dst->__data_len = blk_rq_bytes(src);
3492 dst->nr_phys_segments = src->nr_phys_segments;
3493 dst->ioprio = src->ioprio;
3494 dst->extra_len = src->extra_len;
78d8e58a
MS
3495}
3496
3497/**
3498 * blk_rq_prep_clone - Helper function to setup clone request
3499 * @rq: the request to be setup
3500 * @rq_src: original request to be cloned
3501 * @bs: bio_set that bios for clone are allocated from
3502 * @gfp_mask: memory allocation mask for bio
3503 * @bio_ctr: setup function to be called for each clone bio.
3504 * Returns %0 for success, non %0 for failure.
3505 * @data: private data to be passed to @bio_ctr
3506 *
3507 * Description:
3508 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3509 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3510 * are not copied, and copying such parts is the caller's responsibility.
3511 * Also, pages which the original bios are pointing to are not copied
3512 * and the cloned bios just point same pages.
3513 * So cloned bios must be completed before original bios, which means
3514 * the caller must complete @rq before @rq_src.
3515 */
3516int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3517 struct bio_set *bs, gfp_t gfp_mask,
3518 int (*bio_ctr)(struct bio *, struct bio *, void *),
3519 void *data)
3520{
3521 struct bio *bio, *bio_src;
3522
3523 if (!bs)
3524 bs = fs_bio_set;
3525
3526 __rq_for_each_bio(bio_src, rq_src) {
3527 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3528 if (!bio)
3529 goto free_and_out;
3530
3531 if (bio_ctr && bio_ctr(bio, bio_src, data))
3532 goto free_and_out;
3533
3534 if (rq->bio) {
3535 rq->biotail->bi_next = bio;
3536 rq->biotail = bio;
3537 } else
3538 rq->bio = rq->biotail = bio;
3539 }
3540
3541 __blk_rq_prep_clone(rq, rq_src);
3542
3543 return 0;
3544
3545free_and_out:
3546 if (bio)
3547 bio_put(bio);
3548 blk_rq_unprep_clone(rq);
3549
3550 return -ENOMEM;
b0fd271d
KU
3551}
3552EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3553
59c3d45e 3554int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3555{
3556 return queue_work(kblockd_workqueue, work);
3557}
1da177e4
LT
3558EXPORT_SYMBOL(kblockd_schedule_work);
3559
ee63cfa7
JA
3560int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3561{
3562 return queue_work_on(cpu, kblockd_workqueue, work);
3563}
3564EXPORT_SYMBOL(kblockd_schedule_work_on);
3565
818cd1cb
JA
3566int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3567 unsigned long delay)
3568{
3569 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3570}
3571EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3572
75df7136
SJ
3573/**
3574 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3575 * @plug: The &struct blk_plug that needs to be initialized
3576 *
3577 * Description:
3578 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3579 * pending I/O should the task end up blocking between blk_start_plug() and
3580 * blk_finish_plug(). This is important from a performance perspective, but
3581 * also ensures that we don't deadlock. For instance, if the task is blocking
3582 * for a memory allocation, memory reclaim could end up wanting to free a
3583 * page belonging to that request that is currently residing in our private
3584 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3585 * this kind of deadlock.
3586 */
73c10101
JA
3587void blk_start_plug(struct blk_plug *plug)
3588{
3589 struct task_struct *tsk = current;
3590
dd6cf3e1
SL
3591 /*
3592 * If this is a nested plug, don't actually assign it.
3593 */
3594 if (tsk->plug)
3595 return;
3596
73c10101 3597 INIT_LIST_HEAD(&plug->list);
320ae51f 3598 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3599 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3600 /*
dd6cf3e1
SL
3601 * Store ordering should not be needed here, since a potential
3602 * preempt will imply a full memory barrier
73c10101 3603 */
dd6cf3e1 3604 tsk->plug = plug;
73c10101
JA
3605}
3606EXPORT_SYMBOL(blk_start_plug);
3607
3608static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3609{
3610 struct request *rqa = container_of(a, struct request, queuelist);
3611 struct request *rqb = container_of(b, struct request, queuelist);
3612
975927b9
JM
3613 return !(rqa->q < rqb->q ||
3614 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3615}
3616
49cac01e
JA
3617/*
3618 * If 'from_schedule' is true, then postpone the dispatch of requests
3619 * until a safe kblockd context. We due this to avoid accidental big
3620 * additional stack usage in driver dispatch, in places where the originally
3621 * plugger did not intend it.
3622 */
f6603783 3623static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3624 bool from_schedule)
99e22598 3625 __releases(q->queue_lock)
94b5eb28 3626{
2fff8a92
BVA
3627 lockdep_assert_held(q->queue_lock);
3628
49cac01e 3629 trace_block_unplug(q, depth, !from_schedule);
99e22598 3630
70460571 3631 if (from_schedule)
24ecfbe2 3632 blk_run_queue_async(q);
70460571 3633 else
24ecfbe2 3634 __blk_run_queue(q);
50864670 3635 spin_unlock_irq(q->queue_lock);
94b5eb28
JA
3636}
3637
74018dc3 3638static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3639{
3640 LIST_HEAD(callbacks);
3641
2a7d5559
SL
3642 while (!list_empty(&plug->cb_list)) {
3643 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3644
2a7d5559
SL
3645 while (!list_empty(&callbacks)) {
3646 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3647 struct blk_plug_cb,
3648 list);
2a7d5559 3649 list_del(&cb->list);
74018dc3 3650 cb->callback(cb, from_schedule);
2a7d5559 3651 }
048c9374
N
3652 }
3653}
3654
9cbb1750
N
3655struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3656 int size)
3657{
3658 struct blk_plug *plug = current->plug;
3659 struct blk_plug_cb *cb;
3660
3661 if (!plug)
3662 return NULL;
3663
3664 list_for_each_entry(cb, &plug->cb_list, list)
3665 if (cb->callback == unplug && cb->data == data)
3666 return cb;
3667
3668 /* Not currently on the callback list */
3669 BUG_ON(size < sizeof(*cb));
3670 cb = kzalloc(size, GFP_ATOMIC);
3671 if (cb) {
3672 cb->data = data;
3673 cb->callback = unplug;
3674 list_add(&cb->list, &plug->cb_list);
3675 }
3676 return cb;
3677}
3678EXPORT_SYMBOL(blk_check_plugged);
3679
49cac01e 3680void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3681{
3682 struct request_queue *q;
73c10101 3683 struct request *rq;
109b8129 3684 LIST_HEAD(list);
94b5eb28 3685 unsigned int depth;
73c10101 3686
74018dc3 3687 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3688
3689 if (!list_empty(&plug->mq_list))
3690 blk_mq_flush_plug_list(plug, from_schedule);
3691
73c10101
JA
3692 if (list_empty(&plug->list))
3693 return;
3694
109b8129
N
3695 list_splice_init(&plug->list, &list);
3696
422765c2 3697 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3698
3699 q = NULL;
94b5eb28 3700 depth = 0;
18811272 3701
109b8129
N
3702 while (!list_empty(&list)) {
3703 rq = list_entry_rq(list.next);
73c10101 3704 list_del_init(&rq->queuelist);
73c10101
JA
3705 BUG_ON(!rq->q);
3706 if (rq->q != q) {
99e22598
JA
3707 /*
3708 * This drops the queue lock
3709 */
3710 if (q)
49cac01e 3711 queue_unplugged(q, depth, from_schedule);
73c10101 3712 q = rq->q;
94b5eb28 3713 depth = 0;
50864670 3714 spin_lock_irq(q->queue_lock);
73c10101 3715 }
8ba61435
TH
3716
3717 /*
3718 * Short-circuit if @q is dead
3719 */
3f3299d5 3720 if (unlikely(blk_queue_dying(q))) {
2a842aca 3721 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3722 continue;
3723 }
3724
73c10101
JA
3725 /*
3726 * rq is already accounted, so use raw insert
3727 */
f73f44eb 3728 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3729 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3730 else
3731 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3732
3733 depth++;
73c10101
JA
3734 }
3735
99e22598
JA
3736 /*
3737 * This drops the queue lock
3738 */
3739 if (q)
49cac01e 3740 queue_unplugged(q, depth, from_schedule);
73c10101 3741}
73c10101
JA
3742
3743void blk_finish_plug(struct blk_plug *plug)
3744{
dd6cf3e1
SL
3745 if (plug != current->plug)
3746 return;
f6603783 3747 blk_flush_plug_list(plug, false);
73c10101 3748
dd6cf3e1 3749 current->plug = NULL;
73c10101 3750}
88b996cd 3751EXPORT_SYMBOL(blk_finish_plug);
73c10101 3752
47fafbc7 3753#ifdef CONFIG_PM
6c954667
LM
3754/**
3755 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3756 * @q: the queue of the device
3757 * @dev: the device the queue belongs to
3758 *
3759 * Description:
3760 * Initialize runtime-PM-related fields for @q and start auto suspend for
3761 * @dev. Drivers that want to take advantage of request-based runtime PM
3762 * should call this function after @dev has been initialized, and its
3763 * request queue @q has been allocated, and runtime PM for it can not happen
3764 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3765 * cases, driver should call this function before any I/O has taken place.
3766 *
3767 * This function takes care of setting up using auto suspend for the device,
3768 * the autosuspend delay is set to -1 to make runtime suspend impossible
3769 * until an updated value is either set by user or by driver. Drivers do
3770 * not need to touch other autosuspend settings.
3771 *
3772 * The block layer runtime PM is request based, so only works for drivers
3773 * that use request as their IO unit instead of those directly use bio's.
3774 */
3775void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3776{
765e40b6
CH
3777 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3778 if (q->mq_ops)
3779 return;
3780
6c954667
LM
3781 q->dev = dev;
3782 q->rpm_status = RPM_ACTIVE;
3783 pm_runtime_set_autosuspend_delay(q->dev, -1);
3784 pm_runtime_use_autosuspend(q->dev);
3785}
3786EXPORT_SYMBOL(blk_pm_runtime_init);
3787
3788/**
3789 * blk_pre_runtime_suspend - Pre runtime suspend check
3790 * @q: the queue of the device
3791 *
3792 * Description:
3793 * This function will check if runtime suspend is allowed for the device
3794 * by examining if there are any requests pending in the queue. If there
3795 * are requests pending, the device can not be runtime suspended; otherwise,
3796 * the queue's status will be updated to SUSPENDING and the driver can
3797 * proceed to suspend the device.
3798 *
3799 * For the not allowed case, we mark last busy for the device so that
3800 * runtime PM core will try to autosuspend it some time later.
3801 *
3802 * This function should be called near the start of the device's
3803 * runtime_suspend callback.
3804 *
3805 * Return:
3806 * 0 - OK to runtime suspend the device
3807 * -EBUSY - Device should not be runtime suspended
3808 */
3809int blk_pre_runtime_suspend(struct request_queue *q)
3810{
3811 int ret = 0;
3812
4fd41a85
KX
3813 if (!q->dev)
3814 return ret;
3815
6c954667
LM
3816 spin_lock_irq(q->queue_lock);
3817 if (q->nr_pending) {
3818 ret = -EBUSY;
3819 pm_runtime_mark_last_busy(q->dev);
3820 } else {
3821 q->rpm_status = RPM_SUSPENDING;
3822 }
3823 spin_unlock_irq(q->queue_lock);
3824 return ret;
3825}
3826EXPORT_SYMBOL(blk_pre_runtime_suspend);
3827
3828/**
3829 * blk_post_runtime_suspend - Post runtime suspend processing
3830 * @q: the queue of the device
3831 * @err: return value of the device's runtime_suspend function
3832 *
3833 * Description:
3834 * Update the queue's runtime status according to the return value of the
3835 * device's runtime suspend function and mark last busy for the device so
3836 * that PM core will try to auto suspend the device at a later time.
3837 *
3838 * This function should be called near the end of the device's
3839 * runtime_suspend callback.
3840 */
3841void blk_post_runtime_suspend(struct request_queue *q, int err)
3842{
4fd41a85
KX
3843 if (!q->dev)
3844 return;
3845
6c954667
LM
3846 spin_lock_irq(q->queue_lock);
3847 if (!err) {
3848 q->rpm_status = RPM_SUSPENDED;
3849 } else {
3850 q->rpm_status = RPM_ACTIVE;
3851 pm_runtime_mark_last_busy(q->dev);
3852 }
3853 spin_unlock_irq(q->queue_lock);
3854}
3855EXPORT_SYMBOL(blk_post_runtime_suspend);
3856
3857/**
3858 * blk_pre_runtime_resume - Pre runtime resume processing
3859 * @q: the queue of the device
3860 *
3861 * Description:
3862 * Update the queue's runtime status to RESUMING in preparation for the
3863 * runtime resume of the device.
3864 *
3865 * This function should be called near the start of the device's
3866 * runtime_resume callback.
3867 */
3868void blk_pre_runtime_resume(struct request_queue *q)
3869{
4fd41a85
KX
3870 if (!q->dev)
3871 return;
3872
6c954667
LM
3873 spin_lock_irq(q->queue_lock);
3874 q->rpm_status = RPM_RESUMING;
3875 spin_unlock_irq(q->queue_lock);
3876}
3877EXPORT_SYMBOL(blk_pre_runtime_resume);
3878
3879/**
3880 * blk_post_runtime_resume - Post runtime resume processing
3881 * @q: the queue of the device
3882 * @err: return value of the device's runtime_resume function
3883 *
3884 * Description:
3885 * Update the queue's runtime status according to the return value of the
3886 * device's runtime_resume function. If it is successfully resumed, process
3887 * the requests that are queued into the device's queue when it is resuming
3888 * and then mark last busy and initiate autosuspend for it.
3889 *
3890 * This function should be called near the end of the device's
3891 * runtime_resume callback.
3892 */
3893void blk_post_runtime_resume(struct request_queue *q, int err)
3894{
4fd41a85
KX
3895 if (!q->dev)
3896 return;
3897
6c954667
LM
3898 spin_lock_irq(q->queue_lock);
3899 if (!err) {
3900 q->rpm_status = RPM_ACTIVE;
3901 __blk_run_queue(q);
3902 pm_runtime_mark_last_busy(q->dev);
c60855cd 3903 pm_request_autosuspend(q->dev);
6c954667
LM
3904 } else {
3905 q->rpm_status = RPM_SUSPENDED;
3906 }
3907 spin_unlock_irq(q->queue_lock);
3908}
3909EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3910
3911/**
3912 * blk_set_runtime_active - Force runtime status of the queue to be active
3913 * @q: the queue of the device
3914 *
3915 * If the device is left runtime suspended during system suspend the resume
3916 * hook typically resumes the device and corrects runtime status
3917 * accordingly. However, that does not affect the queue runtime PM status
3918 * which is still "suspended". This prevents processing requests from the
3919 * queue.
3920 *
3921 * This function can be used in driver's resume hook to correct queue
3922 * runtime PM status and re-enable peeking requests from the queue. It
3923 * should be called before first request is added to the queue.
3924 */
3925void blk_set_runtime_active(struct request_queue *q)
3926{
3927 spin_lock_irq(q->queue_lock);
3928 q->rpm_status = RPM_ACTIVE;
3929 pm_runtime_mark_last_busy(q->dev);
3930 pm_request_autosuspend(q->dev);
3931 spin_unlock_irq(q->queue_lock);
3932}
3933EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3934#endif
3935
1da177e4
LT
3936int __init blk_dev_init(void)
3937{
ef295ecf
CH
3938 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3939 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3940 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3941 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3942 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3943
89b90be2
TH
3944 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3945 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3946 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3947 if (!kblockd_workqueue)
3948 panic("Failed to create kblockd\n");
3949
3950 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3951 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3952
c2789bd4 3953 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3954 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3955
18fbda91
OS
3956#ifdef CONFIG_DEBUG_FS
3957 blk_debugfs_root = debugfs_create_dir("block", NULL);
3958#endif
3959
d38ecf93 3960 return 0;
1da177e4 3961}